JP5334429B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP5334429B2
JP5334429B2 JP2008064778A JP2008064778A JP5334429B2 JP 5334429 B2 JP5334429 B2 JP 5334429B2 JP 2008064778 A JP2008064778 A JP 2008064778A JP 2008064778 A JP2008064778 A JP 2008064778A JP 5334429 B2 JP5334429 B2 JP 5334429B2
Authority
JP
Japan
Prior art keywords
current collecting
width
secondary battery
positive electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008064778A
Other languages
Japanese (ja)
Other versions
JP2009224070A (en
Inventor
克典 鈴木
貴之 三谷
拓是 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2008064778A priority Critical patent/JP5334429B2/en
Publication of JP2009224070A publication Critical patent/JP2009224070A/en
Application granted granted Critical
Publication of JP5334429B2 publication Critical patent/JP5334429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

本発明はリチウム二次電池に係り、特に、正極活物質としてリチウム含有遷移金属酸化物、負極活物質としてリチウムイオンを吸蔵、放出可能な材料をそれぞれ金属箔に塗着した正負極板が捲回された電極群を備え、金属箔から直接導出され所定幅を有する複数の集電リードが集電部材に接合されたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and in particular, a positive and negative electrode plate in which a lithium-containing transition metal oxide as a positive electrode active material and a material capable of inserting and extracting lithium ions as a negative electrode active material are coated on a metal foil. The present invention relates to a lithium secondary battery including a plurality of current collecting leads each having a predetermined width that is directly derived from a metal foil and has a predetermined width.

非水電解液二次電池は、高エネルギ密度を有するため、様々な用途に用いられている。近年では、大型非水電解液二次電池も開発されており、例えば、動力源にモータを使用する電気自動車用やモータと内燃機関とを併用するハイブリッド電気自動車用の電源としても用いられている。このような用途においては、電池に高入出力特性が求められており、この要求に適応した電池としてリチウム二次電池が注目されている。   Non-aqueous electrolyte secondary batteries have high energy density and are used in various applications. In recent years, large nonaqueous electrolyte secondary batteries have also been developed, and are used, for example, as power sources for electric vehicles that use a motor as a power source or for hybrid electric vehicles that use a motor and an internal combustion engine in combination. . In such applications, high input / output characteristics are required for batteries, and lithium secondary batteries are attracting attention as batteries that meet these requirements.

通常、リチウム二次電池では、以下のような捲回式の内部構造を有している。すなわち、金属箔に活物質をそれぞれ塗着した正負極板が帯状に形成され、正負極板がセパレータを介して直接接触しないように断面渦巻状に捲回された電極群が形成されている。正負極板の捲回時には、捲きズレを防止するため、テンションをかけながら捲回される。この電極群が電池容器に収容され、非水電解液注液後、電池容器が電池蓋で封口されている。   Usually, a lithium secondary battery has the following wound internal structure. That is, a positive and negative electrode plate in which an active material is coated on a metal foil is formed in a strip shape, and an electrode group wound in a spiral cross section is formed so that the positive and negative electrode plates are not in direct contact via the separator. When the positive and negative electrode plates are wound, they are wound while applying tension to prevent twisting. This electrode group is accommodated in the battery container, and after pouring the non-aqueous electrolyte, the battery container is sealed with a battery lid.

電気自動車用電源等の高入出力特性を要求されるリチウム二次電池では、内部抵抗を低減するために、正負極板の金属箔からそれぞれ多数の集電リードが直接導出されている。集電リードとしては、電池の高出力化を図るため、例えば、正負極集電体である金属箔の一部に活物質を塗着せずに残しておき、矩形状に加工することで直接集電リードが導出される。導出された集電リードの端部は、電極群の両側にそれぞれ配置された円盤状の集電部材の周縁に接合されている。このとき、集電リードと集電部材とを確実に接合するために、例えば、円盤状の集電部材の外周面と金属製リングの内周面とで集電リードの端部を挟んで溶接する技術も開示されている(特許文献1参照)。   In a lithium secondary battery requiring high input / output characteristics such as a power source for an electric vehicle, a large number of current collecting leads are directly derived from the metal foil of the positive and negative electrode plates in order to reduce internal resistance. In order to increase the output of the battery, for example, the current collecting lead may be directly collected by processing it into a rectangular shape by leaving an active material uncoated on part of the metal foil that is a positive and negative current collector. Electrical leads are derived. The end portions of the derived current collecting leads are joined to the peripheral edges of the disk-shaped current collecting members disposed on both sides of the electrode group. At this time, in order to reliably join the current collecting lead and the current collecting member, for example, the end of the current collecting lead is welded between the outer peripheral surface of the disk-shaped current collecting member and the inner peripheral surface of the metal ring. The technique to do is also disclosed (refer patent document 1).

特開2001−118561号公報JP 2001-118561 A

しかしながら、捲回式のリチウム二次電池では、電池使用中の振動、温度変化や充放電の繰返しに伴う活物質の膨張収縮等が生じるため、捲回時にかけられたテンションにより電極群の外周部で不安定な捲き戻りが起こる。一方、集電リードが接合された集電部材が電極群より小さい直径を有していることが一般的なため、電極群の外周側の集電リードは電極群の内側に引っ張られることとなる。電極群の捲き戻りが起こると集電リードに過大な張力がかかり、集電リードが破損(切断)しやすくなるため、内部抵抗の上昇を引き起こし出力等の電池性能の低下を招きやすくなる。また、破損した集電リードがセパレータを圧迫、貫通して正負極板間の短絡を起こすこともある。   However, in a wound lithium secondary battery, vibration during use of the battery, temperature change, and expansion / contraction of the active material due to repeated charge / discharge, etc., occur. Therefore, the outer periphery of the electrode group is caused by tension applied during winding. An unstable whispering occurs. On the other hand, since the current collecting member to which the current collecting lead is joined generally has a smaller diameter than the electrode group, the current collecting lead on the outer peripheral side of the electrode group is pulled inside the electrode group. . When the electrode group is rolled back, excessive tension is applied to the current collecting lead, and the current collecting lead is likely to be broken (cut), so that the internal resistance is increased and the battery performance such as output is easily lowered. In addition, a damaged current collecting lead may press and penetrate the separator to cause a short circuit between the positive and negative electrode plates.

本発明は上記事案に鑑み、集電リードの破損を抑制し電池性能を確保することができるリチウム二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a lithium secondary battery that can prevent damage to a current collecting lead and ensure battery performance.

上記課題を解決するために、本発明は、正極活物質としてリチウム含有遷移金属酸化物、負極活物質としてリチウムイオンを吸蔵、放出可能な材料をそれぞれ金属箔に塗着した正負極板が捲回された電極群を備え、前記金属箔から直接導出され所定幅を有する複数の集電リードが集電部材に接合されたリチウム二次電池において、前記集電リードは、全てが、前記金属箔からの導出基部と前記集電部材に接合された端部との間に両側側縁が緩やかな弧状の幅細部を有しており、該幅細部を基点として屈曲しているとともに、前記幅細部が前記集電リードの最大幅に対して0.7倍以上の幅を有することを特徴とする。 In order to solve the above-described problems, the present invention provides a positive and negative electrode plate in which a lithium-containing transition metal oxide as a positive electrode active material and a material capable of inserting and extracting lithium ions as a negative electrode active material are coated on a metal foil. In the lithium secondary battery comprising a plurality of current collecting leads, each of which is directly derived from the metal foil and having a predetermined width and joined to a current collecting member, the current collecting leads are all made from the metal foil. Between the lead-out base portion and the end portion joined to the current collecting member, both side edges have a gentle arc-shaped width detail, and the width detail is bent with the width detail as a base point. It has a width of 0.7 times or more with respect to the maximum width of the current collecting lead .

本発明では、集電リードの全てが金属箔からの導出基部と集電部材に接合された端部との間に両側側縁が緩やかな弧状の幅細部を有しているので、その幅細部を基点として屈曲させることで、電極群作製時の集電リードの破損を抑制することができ、電極群の捲き戻りが生じても集電リードにかかる張力が緩和されることから、集電リードの破損を抑制することができ、幅細部が集電リードの最大幅に対して0.7倍以上の幅を有するので、集電リードの抵抗増大が抑制されることから、電池性能を確保することができる。 In the present invention, since all of the current collecting leads have gentle arc-shaped width details on both side edges between the base portion derived from the metal foil and the end portion joined to the current collecting member, the width details The current collector lead can be bent to prevent damage to the current collector lead during electrode group production, and the tension applied to the current collector lead is relaxed even if the electrode group is rolled back. Since the width detail has a width of 0.7 times or more with respect to the maximum width of the current collecting lead, an increase in resistance of the current collecting lead is suppressed, so that the battery performance is ensured. be able to.

この場合において、幅細部を導出基部寄りの位置に形成することができる In this case, the width detail can be formed at a position near the derived base .

本発明によれば、集電リードの全てが金属箔からの導出基部と集電部材に接合された端部との間に両側側縁が緩やかな弧状の幅細部を有しており、その幅細部を基点として屈曲しているので、集電リードの破損を抑制することができ、幅細部が集電リードの最大幅に対して0.7倍以上の幅を有するので、電池性能を確保することができる、という効果を得ることができる。 According to the present invention, all of the current collecting leads have gentle arc-shaped width details on both side edges between the base part derived from the metal foil and the end part joined to the current collecting member. Since it is bent with the detail as the base point, it is possible to suppress the damage of the current collecting lead , and the width detail has a width more than 0.7 times the maximum width of the current collecting lead, thus ensuring the battery performance. Can be obtained.

以下、図面を参照して、本発明を適用した密閉円筒型リチウムイオン二次電池の実施の形態について説明する。   Hereinafter, embodiments of a sealed cylindrical lithium ion secondary battery to which the present invention is applied will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の密閉円筒型リチウムイオン二次電池20は、帯状の正負極板が直接接触しないようにポリエチレン製微多孔薄膜のセパレータを介して中空状でガラス含有樹脂製の軸芯1の周りに断面渦巻状に捲回された電極群6を備えている。電極群6は、有底円筒状の電池缶7に収容されている。
(Constitution)
As shown in FIG. 1, the sealed cylindrical lithium ion secondary battery 20 of the present embodiment is hollow and made of a glass-containing resin through a polyethylene microporous thin film separator so that the strip-like positive and negative electrode plates are not in direct contact with each other. The electrode group 6 wound around the shaft core 1 in a spiral shape is provided. The electrode group 6 is housed in a bottomed cylindrical battery can 7.

電極群6の上側には、軸芯1のほぼ延長線上に正極板から電位を集電するための正極集電リング(集電部材)4が配置されている。正極集電リング4は、軸芯1の上端部に固定されている。正極集電リング4の周囲から一体に張り出している鍔部周縁には、正極板から導出された正極タブ(集電リード)2の端部が超音波溶接で接合されている。正極集電リング4の上方には、正極外部端子となる円盤状の上蓋14が配置されている。   On the upper side of the electrode group 6, a positive electrode current collecting ring (current collecting member) 4 for collecting a potential from the positive electrode plate is disposed on a substantially extension line of the shaft core 1. The positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core 1. The edge part of the positive electrode tab (current collection lead) 2 led out from the positive electrode plate is joined by ultrasonic welding to the peripheral edge of the collar part integrally protruding from the periphery of the positive electrode current collecting ring 4. A disc-shaped upper lid 14 serving as a positive electrode external terminal is disposed above the positive electrode current collecting ring 4.

上蓋14は、鉄製でニッケルメッキが施された円盤状の上蓋キャップを有している。上蓋キャップの中央部には上方に向けて突出した円筒状の突起が形成されており、突起の上面には電池内部で発生したガスを排出するための開口部15が形成されている。上蓋キャップの周縁部はダイヤフラム12の周縁部でかしめられている。ダイヤフラム12は、アルミニウム合金製で下方(電極群6側)に突出した反転部を有する皿状に形成されている。ダイヤフラム12の反転部は正極集電リング4に形成された開口内に収容されている。皿状の底部は平面状でありダイヤフラム12の中央部を形成している。ダイヤフラム12の中央部と周縁部との間には、薄肉化されており電池内圧が上昇したときに開裂する開裂溝が形成されている。   The upper lid 14 has a disk-shaped upper lid cap made of iron and nickel-plated. A cylindrical protrusion protruding upward is formed at the center of the upper lid cap, and an opening 15 for discharging gas generated inside the battery is formed on the upper surface of the protrusion. The peripheral edge portion of the upper lid cap is caulked by the peripheral edge portion of the diaphragm 12. The diaphragm 12 is made of an aluminum alloy and is formed in a dish shape having a reversing portion protruding downward (on the electrode group 6 side). The inversion part of the diaphragm 12 is accommodated in an opening formed in the positive electrode current collecting ring 4. The dish-shaped bottom is flat and forms the center of the diaphragm 12. Between the central part and the peripheral part of the diaphragm 12, a thinning groove is formed that is cleaved when the battery internal pressure rises.

正極集電リング4の中央部上面には、接続板9が摩擦攪拌溶接で接合されている。正極集電リング4の鍔部上面には、円環状で絶縁性のポリプロピレン製ブッシュ17が配置されている。接続板9の上面には、ダイヤフラム12の中央部底面が摩擦攪拌溶接で接合されている。この接合により、ブッシュ17は、正極集電リング4とダイヤフラム12とで挟持される。ダイヤフラム12と接続板9との接合強度は、リチウムイオン二次電池20の内圧が上昇したときにダイヤフラム12が作動(反転部が上蓋キャップ側に反転)するように、摩擦攪拌溶接で調整されている。   A connection plate 9 is joined to the upper surface of the central portion of the positive electrode current collecting ring 4 by friction stir welding. An annular and insulating polypropylene bush 17 is disposed on the upper surface of the collar portion of the positive electrode current collecting ring 4. The bottom surface of the central portion of the diaphragm 12 is joined to the upper surface of the connection plate 9 by friction stir welding. By this joining, the bush 17 is sandwiched between the positive electrode current collecting ring 4 and the diaphragm 12. The bonding strength between the diaphragm 12 and the connection plate 9 is adjusted by friction stir welding so that the diaphragm 12 operates (the reversing part is reversed to the upper lid cap side) when the internal pressure of the lithium ion secondary battery 20 is increased. Yes.

上蓋14の周縁部は、絶縁性及び耐熱性のEPDM樹脂製ガスケット10を介して電池缶7にかしめられており、リチウムイオン二次電池20が密閉されている。また、電池缶7内には、図示を省略した非水電解液が注液されている。非水電解液には、エチレンカーボネートとジメチルカーボネートとの体積比1:1の混合溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。 The peripheral edge of the upper lid 14 is caulked to the battery can 7 via an insulating and heat-resistant EPDM resin gasket 10, and the lithium ion secondary battery 20 is sealed. In addition, a non-aqueous electrolyte solution (not shown) is injected into the battery can 7. As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as a lithium salt in a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 is used. .

一方、電極群6の下側には負極板から電位を集電するための負極集電リング(集電部材)5が配置されている。負極集電リング5の内周面には軸芯1の下端部外周面が固定されている。負極集電リング5の外周縁には、負極板から導出された負極タブ(集電リード)3の端部が超音波溶接で接合されている。負極集電リング5の下部には電気的導通のための銅製の負極リード板8が固定されており、負極リード板8は、正極集電リング4と軸芯1との中央部分に電極棒を挿入することで、電池缶7の内底面に抵抗溶接で接合されており、電池缶7と負極板とが電気的に接続されている。   On the other hand, a negative electrode current collecting ring (current collecting member) 5 for collecting a potential from the negative electrode plate is disposed below the electrode group 6. The outer peripheral surface of the lower end portion of the shaft core 1 is fixed to the inner peripheral surface of the negative electrode current collecting ring 5. At the outer peripheral edge of the negative electrode current collecting ring 5, the end of the negative electrode tab (current collecting lead) 3 led out from the negative electrode plate is joined by ultrasonic welding. A copper negative electrode lead plate 8 for electrical continuity is fixed to the lower part of the negative electrode current collecting ring 5, and the negative electrode lead plate 8 has an electrode bar at the central portion between the positive electrode current collecting ring 4 and the shaft core 1. By inserting, the battery can 7 is joined to the inner bottom surface by resistance welding, and the battery can 7 and the negative electrode plate are electrically connected.

図2に示すように、電極群6を構成する正極板18は、正極集電体となる厚さ20μmのアルミニウム箔(金属箔)19を有している。アルミニウム箔19の両面には、正極活物質合剤が略均一に塗着されている。正極活物質合剤には、正極活物質としてのマンガン酸リチウム等のリチウムマンガン複合酸化物(LiMnO、LiMn)の粉末、導電材の炭素材料、結着剤のポリフッ化ビニリデン(以下、PVDFと略記する。)が配合されている。これらを粘度調整溶媒のn−メチルピロリドン(以下、NMPと略記する。)に混合して、略均一となるようにコーネルデスパで分散、混練されてペーストが作製される。このペーストがアルミニウム箔19に塗布され、乾燥後に厚さ90μmになるようにプレスされて正極板18が形成される。なお、アルミニウム箔19の長手方向一側の端部には、幅30mmの正極活物質合剤の未塗着部が形成されている。 As shown in FIG. 2, the positive electrode plate 18 constituting the electrode group 6 has an aluminum foil (metal foil) 19 having a thickness of 20 μm serving as a positive electrode current collector. The positive electrode active material mixture is applied to both surfaces of the aluminum foil 19 substantially uniformly. The positive electrode active material mixture includes a powder of lithium manganese composite oxide (LiMnO 2 , LiMn 2 O 4 ) such as lithium manganate as a positive electrode active material, a carbon material for a conductive material, and polyvinylidene fluoride as a binder (hereinafter referred to as a positive electrode active material mixture). , Abbreviated as PVDF). These are mixed with a viscosity adjusting solvent, n-methylpyrrolidone (hereinafter abbreviated as NMP), and dispersed and kneaded by Cornell Despa so as to be substantially uniform, thereby producing a paste. This paste is applied to the aluminum foil 19 and pressed to a thickness of 90 μm after drying to form the positive electrode plate 18. In addition, the uncoated part of the positive electrode active material mixture of width 30mm is formed in the edge part of the longitudinal direction one side of the aluminum foil 19. FIG.

正極活物質合剤の未塗着部は櫛状(矩形状)に切り欠かれており、切り欠き残部で正極タブ2が形成されている。換言すれば、正極タブ(切り欠き残部)2は、アルミニウム箔19の長手方向と交差する方向に導出されている。また、各正極タブ2は、導出基部と端部との間の1箇所に幅細部2aを有している。幅細部2aは、両側縁がほぼ同じ緩やかな弧状を呈している。また、幅細部2aは、正極タブ2の幅Wに対する最小幅Waの比Wa/Wが0.7以上(最小幅Waが幅Wの0.7倍以上)に設定されている。すなわち、幅細部2aは、幅細部2a以外の部分と比べて幅細に形成されている。なお、本例では、正極タブ2の幅Wは5mmに設定されており、隣り合う正極タブ2の間隔が50mm、正極タブ2の導出基部から端部までの長さは25mmに設定されている。   The uncoated portion of the positive electrode active material mixture is cut out in a comb shape (rectangular shape), and the positive electrode tab 2 is formed in the remaining portion of the cutout. In other words, the positive electrode tab (notch remaining portion) 2 is led out in a direction intersecting with the longitudinal direction of the aluminum foil 19. Moreover, each positive electrode tab 2 has the width | variety detail 2a in one place between the derivation | leading-out base and an edge part. The width detail 2a has a gentle arc shape with substantially the same side edges. In the width detail 2a, the ratio Wa / W of the minimum width Wa to the width W of the positive electrode tab 2 is set to 0.7 or more (the minimum width Wa is 0.7 times or more of the width W). That is, the width detail 2a is formed narrower than the portion other than the width detail 2a. In this example, the width W of the positive electrode tab 2 is set to 5 mm, the interval between the adjacent positive electrode tabs 2 is set to 50 mm, and the length from the base portion to the end of the positive electrode tab 2 is set to 25 mm. .

一方、負極板は、負極集電体となる厚さ10μmの圧延銅箔(金属箔)を有している。圧延銅箔の両面には、負極活物質合剤が略均一に塗着されている。負極活物質合剤には、負極活物質としての黒鉛、結着剤のPVDFが配合されている。これらを粘度調整溶媒のNMPに混合して、略均一となるようにコーネルデスパで分散、混練されてペーストが作製される。このペーストが圧延銅箔に塗布され、乾燥後に厚さ70μmになるようにプレスされて負極板が形成される。圧延銅箔の長手方向端部には、正極板18と同様に幅細部を有した負極タブ3が形成される。   On the other hand, the negative electrode plate has a rolled copper foil (metal foil) having a thickness of 10 μm serving as a negative electrode current collector. The negative electrode active material mixture is applied substantially uniformly on both surfaces of the rolled copper foil. In the negative electrode active material mixture, graphite as a negative electrode active material and PVDF as a binder are blended. These are mixed with NMP which is a viscosity adjusting solvent, and dispersed and kneaded by Cornell Despa so as to be substantially uniform, thereby producing a paste. This paste is applied to a rolled copper foil and pressed to a thickness of 70 μm after drying to form a negative electrode plate. Similarly to the positive electrode plate 18, the negative electrode tab 3 having a width detail is formed at the end in the longitudinal direction of the rolled copper foil.

(電池組み立て)
リチウムイオン二次電池20は、以下の手順で組み立てられる。すなわち、正極タブ2および負極タブ3を電極群6の互いに反対側の両端面に位置するように配置して、捲きズレを防止するためにテンションを掛けながら捲回して電極群6を作製する。正極集電リング4、負極集電リング5に正負極タブをそれぞれ幅細部で屈曲させて接合した後、電極群6を電池缶7に収容する。負極リード板8を電池缶7の内底面に抵抗溶接で接合した後、正極集電リング4の中央部上面に接続板9を摩擦攪拌溶接で接合する。電池缶7の電極群6より上側に上蓋14を載せるための段付け部を形成する段付け加工を施し、非水電解液を注液した後、段付け部に上蓋14を載せ、電池缶7と上蓋14とをガスケット10を介してかしめる。その後、上蓋キャップに形成された開口部15から溶接用の回転ツール(溶接治具)を差込み、ダイヤフラム12の上面に回転ツールを圧接しながら回転させることでダイヤフラム12と接続板9とを摩擦攪拌溶接で接合し、リチウムイオン二次電池20の組み立てを完成させる。
(Battery assembly)
The lithium ion secondary battery 20 is assembled in the following procedure. That is, the positive electrode tab 2 and the negative electrode tab 3 are arranged so as to be positioned on both end surfaces opposite to each other of the electrode group 6, and are wound while applying tension to prevent the electrode group 6 from being produced. After the positive and negative electrode tabs are bent and joined to the positive electrode current collecting ring 4 and the negative electrode current collecting ring 5 respectively, the electrode group 6 is accommodated in the battery can 7. After the negative electrode lead plate 8 is joined to the inner bottom surface of the battery can 7 by resistance welding, the connection plate 9 is joined to the upper surface of the central portion of the positive electrode current collecting ring 4 by friction stir welding. A stepping process for forming a stepped portion for placing the upper lid 14 on the upper side of the electrode group 6 of the battery can 7 is performed, and after pouring a non-aqueous electrolyte, the upper lid 14 is placed on the stepped portion, and the battery can 7 And the upper lid 14 are caulked through the gasket 10. Thereafter, a rotating tool (welding jig) for welding is inserted from the opening 15 formed in the upper lid cap, and the diaphragm 12 and the connecting plate 9 are frictionally stirred by rotating while rotating the rotating tool against the upper surface of the diaphragm 12. It joins by welding and the assembly of the lithium ion secondary battery 20 is completed.

(作用等)
次に、本実施形態のリチウムイオン二次電池20の作用等について、幅細部2aの作用を中心に説明する。なお、幅細部は、正負極タブ両方に形成されているが、いずれも同様の作用を示すため、以下、正極側の幅細部2aのみについて説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described focusing on the operation of the width detail 2a. Although the width details are formed on both the positive and negative electrode tabs, since both exhibit the same function, only the width detail 2a on the positive electrode side will be described below.

図3に示すように、集電リードに幅細部を持たない従来の捲回式リチウムイオン二次電池では、電池使用中の振動、温度変化や充放電の繰返しに伴う活物質の膨張収縮等が生じると、捲回時にかけられたテンションにより電極群の外周部で不安定な捲き戻りが起こる。この捲き戻りは、電極群の捲回方向に沿って生じるため、電極群の外周側ほど捲き戻り量が大きくなる。このため、電極群の外周側の集電リードに過大な張力がかかり、破損ないし切断することがある。また、集電リードを集電部材に接合するときに、集電リードに張力がかかり、破損ないし切断することもある。集電リードが破損ないし切断した場合、内部抵抗の上昇を引き起こし出力等の電池性能の低下を招きやすくなる。また、破損した集電リードがセパレータを圧迫、貫通して正負極板間の短絡を起こすこともある。本実施形態は、これらの問題を解決することができるリチウムイオン二次電池である。   As shown in FIG. 3, in a conventional wound type lithium ion secondary battery in which the current collecting lead does not have detail, vibration during use of the battery, temperature change, expansion / contraction of the active material due to repeated charge / discharge, etc. When this occurs, an unstable roll-back occurs at the outer periphery of the electrode group due to the tension applied during winding. Since this whirling occurs along the winding direction of the electrode group, the whirling amount increases toward the outer peripheral side of the electrode group. For this reason, excessive tension is applied to the current collecting leads on the outer peripheral side of the electrode group, which may be broken or cut. Further, when the current collecting lead is joined to the current collecting member, tension is applied to the current collecting lead, which may cause breakage or cutting. When the current collecting lead is damaged or cut, the internal resistance is increased, and the battery performance such as output is easily lowered. In addition, a damaged current collecting lead may press and penetrate the separator to cause a short circuit between the positive and negative electrode plates. The present embodiment is a lithium ion secondary battery that can solve these problems.

本実施形態では、正極タブ2が幅細部2aを有しており、正極タブ2は幅細部2aを基点として屈曲している。すなわち、正極タブ2に余裕があるので、電極群作製時や電池使用時に正極タブ2にかかる張力が緩和されることから、正極タブ2の破損を抑制することができる。   In the present embodiment, the positive electrode tab 2 has a width detail 2a, and the positive electrode tab 2 is bent with the width detail 2a as a base point. That is, since there is room in the positive electrode tab 2, the tension applied to the positive electrode tab 2 is relaxed when the electrode group is manufactured or the battery is used, so that the damage of the positive electrode tab 2 can be suppressed.

また、幅細部で幅が急激に変化している(三角状や矩形状に形成した)場合や幅細部の幅が細すぎる場合には、幅細部が却って破損しやすくなり、また、正極タブの通電抵抗も高くなる。本実施形態では、幅細部2aは、両側縁がほぼ同じ緩やかな弧状を呈しており、幅Waが正極タブ2の幅Wの0.7倍以上に形成されている。このため、幅細部2aを破損させることなく正極タブ2の抵抗増大が抑制されるので、電池性能を確保することができる。   Also, if the width changes abruptly in the width details (formed in a triangular or rectangular shape) or if the width of the width details is too thin, the width details tend to break, and the positive tab The energization resistance is also increased. In the present embodiment, the width detail 2 a has a gentle arc shape on both side edges, and the width Wa is 0.7 times or more the width W of the positive electrode tab 2. For this reason, since the increase in resistance of the positive electrode tab 2 is suppressed without damaging the width detail 2a, battery performance can be ensured.

なお、本実施形態では、全ての正極タブ2、負極タブ3が幅細部を有している例を示したが、本発明はこれに制限されるものではない。例えば、電極群6の外周側ほど捲き戻りが大きくなるため、外周側の集電リードのみが幅細部を有していてもよいが、電極群作製時の破損を考慮すれば、全ての集電リードが幅細部を有していることが好ましい。また、本実施形態では、各集電リードが幅細部を1箇所有している例を示したが、本発明はこれに限定されるものではなく、1つの集電リードが複数の幅細部を有していてもよい。   In this embodiment, an example in which all the positive electrode tabs 2 and the negative electrode tabs 3 have width details is shown, but the present invention is not limited to this. For example, as the outer peripheral side of the electrode group 6 becomes larger, only the current collecting lead on the outer peripheral side may have a width detail. However, considering the damage at the time of manufacturing the electrode group, Preferably, the lead has a width detail. In this embodiment, an example in which each current collecting lead has one width detail is shown, but the present invention is not limited to this, and one current collecting lead has a plurality of width details. You may have.

また、幅細部の形成される位置は、金属箔からの導出基部と集電部材に接合された端部との間であれば制限されるものではない。導出基部(電極群6)側の方が端部側と比べて、破損(切断)しやすいことを考慮すれば、集電リードの中央部より基部側の近傍であることが好ましい。   Moreover, the position where the width detail is formed is not limited as long as it is between the lead-out base from the metal foil and the end joined to the current collecting member. Considering that the lead-out base (electrode group 6) side is more likely to be broken (cut) than the end side, it is preferable that the lead-out base (electrode group 6) is closer to the base side than the central portion of the current collecting lead.

更に、本実施形態では、アルミニウム箔19の正極活物質合剤の未塗着部および圧延銅箔の負極活物質合剤の未塗着部をそれぞれ櫛状に切り欠くことにより正極タブ2および負極タブ3を導出する例を示したが、本発明はこれに制限されるものではなく、例えば、三角状等としてもよい。また、正極タブ2、負極タブ3の幅や間隔等にも制限のないことはもちろんである。更に、正極タブ2,負極タブ3のいずれか一方のみが幅細部を有するようにしてもよいが、電極群6の捲き戻りを考えれば、正極タブ2、負極タブ3の両方に幅細部を有するようにすることが好ましい。   Furthermore, in this embodiment, the positive electrode tab 2 and the negative electrode are formed by cutting out the uncoated portion of the positive electrode active material mixture of the aluminum foil 19 and the uncoated portion of the negative electrode active material mixture of the rolled copper foil, respectively. Although an example of deriving the tab 3 has been shown, the present invention is not limited to this, and may be triangular, for example. Needless to say, there are no restrictions on the width and interval of the positive electrode tab 2 and the negative electrode tab 3. Furthermore, only one of the positive electrode tab 2 and the negative electrode tab 3 may have a width detail, but considering the rebound of the electrode group 6, both the positive electrode tab 2 and the negative electrode tab 3 have a width detail. It is preferable to do so.

また更に、本実施形態では、正極活物質にリチウムマンガン複合酸化物を例示したが、本発明はこれらに限定されるものではなく、リチウム含有遷移金属酸化物であればよい。本実施形態以外で使用することができる正極活物質としては、例えば、化学式LiMn1−xMxO、LiMn2−xMxO(Mは、Mn、Fe、Co、Ni等から選ばれる1種以上の遷移金属)で表されるリチウムマンガン遷移金属複合酸化物を挙げることができる。また、結晶構造についても特に制限はなく、スピネル型、層状型、オリビン型のいずれの結晶構造を有していてもよい。また、本実施形態では、負極活物質に黒鉛を例示したが、本発明はこれに限定されるものではなく、リチウム二次電池に使われるものであればよい。本実施形態以外で使用することができる負極活物質としては、例えば、非晶質炭素等の炭素材や金属リチウムを使用することができる。また、非水電解液、導電材および結着剤等についても特に制限はなく、通常、リチウム二次電池に使用される材料を用いてもよいことはもちろんである。 Furthermore, in the present embodiment, the lithium manganese composite oxide is exemplified as the positive electrode active material, but the present invention is not limited thereto, and any lithium-containing transition metal oxide may be used. Examples of the positive electrode active material that can be used other than the present embodiment include, for example, chemical formula LiMn 1-x MxO 2 , LiMn 2−x MxO 4 (M is one or more selected from Mn, Fe, Co, Ni, etc.) Lithium transition metal composite oxide represented by (transition metal). The crystal structure is not particularly limited, and may have any crystal structure of spinel type, layered type, and olivine type. In the present embodiment, graphite is exemplified as the negative electrode active material. However, the present invention is not limited to this, and any material may be used as long as it is used for a lithium secondary battery. As a negative electrode active material that can be used in other than the present embodiment, for example, a carbon material such as amorphous carbon or metallic lithium can be used. Moreover, there is no restriction | limiting in particular also about a non-aqueous electrolyte, a electrically conductive material, a binder, etc. Of course, you may use the material normally used for a lithium secondary battery.

更にまた、本実施形態では、円筒型のリチウムイオン二次電池20を例示したが、本発明は電池形状に制限されるものではなく、正負極板が捲回されたリチウム二次電池に適用することができる。円筒型以外の電池形状として、例えば、角型等の多角形状の電池に適用することもできる。また、電池容量、サイズ等についても特に制限されるものではない。
更に、本発明が適用可能な電池構造としては、本実施形態の有底円筒状容器(缶)に電池上蓋がかしめられた構造以外に、例えば、正負極外部端子がそれぞれ電池蓋を貫通し電池容器内で軸芯を介して押し合っている構造を挙げることができる。
Furthermore, in the present embodiment, the cylindrical lithium ion secondary battery 20 is illustrated, but the present invention is not limited to the battery shape, and is applied to a lithium secondary battery in which the positive and negative electrode plates are wound. be able to. As a battery shape other than the cylindrical shape, for example, it can be applied to a polygonal battery such as a square shape. Also, the battery capacity, size, etc. are not particularly limited.
Furthermore, as a battery structure to which the present invention can be applied, in addition to the structure of the bottomed cylindrical container (can) of the present embodiment in which the battery upper lid is caulked, for example, positive and negative external terminals penetrate the battery lid, respectively. An example of the structure is that they are pressed together through an axis in the container.

次に、本実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例についても併記する。   Next, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. A comparative example prepared for comparison is also shown.

(実施例1)
実施例1では、集電リードの幅Wを5mm、幅細部2aの最小幅Waを4mm、すなわち、比Wa/Wを0.8に設定してリチウムイオン二次電池20を作製した。なお、電池容量は6Ahに設定した。
Example 1
In Example 1, the lithium ion secondary battery 20 was manufactured by setting the width W of the current collecting lead to 5 mm, the minimum width Wa of the width detail 2a to 4 mm, that is, the ratio Wa / W to 0.8. The battery capacity was set to 6 Ah.

(実施例2)
実施例2では、幅細部2aの最小幅Waを3.5mm、すなわち、比Wa/Wを0.7に設定する以外は実施例1と同様にしてリチウムイオン二次電池20を作製した。
(Example 2)
In Example 2, a lithium ion secondary battery 20 was produced in the same manner as in Example 1 except that the minimum width Wa of the width detail 2a was set to 3.5 mm, that is, the ratio Wa / W was set to 0.7.

(比較例1)
比較例1では、集電リードに幅細部を形成しないこと以外は実施例1と同様にしてリチウムイオン二次電池を作製した。(図3参照)
(Comparative Example 1)
In Comparative Example 1, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the width detail was not formed on the current collecting lead. (See Figure 3)

(比較例2)
比較例2では、集電リードの幅Wを3mmにする以外は比較例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 2)
In Comparative Example 2, a lithium ion secondary battery was fabricated in the same manner as in Comparative Example 1 except that the current collecting lead width W was 3 mm.

(試験評価)
各実施例及び比較例のリチウムイオン二次電池について、それぞれ40個作製したときの集電リードの切断本数を測定し、平均値を算出した。その結果を下表1に示す。
(Test evaluation)
About the lithium ion secondary battery of each Example and the comparative example, the cutting number of the current collection lead when 40 each was produced was measured, and the average value was computed. The results are shown in Table 1 below.

また、各実施例及び比較例のリチウムイオン二次電池それぞれの集電リード40本について、50A通電時の電圧変化から直流抵抗値を測定した。直流抵抗値の最小、最大および平均値を下表1にあわせて示す。   Further, for 40 current collecting leads of each of the lithium ion secondary batteries of each Example and Comparative Example, the DC resistance value was measured from the voltage change at the time of 50 A energization. The minimum, maximum and average DC resistance values are shown in Table 1 below.

Figure 0005334429
Figure 0005334429

表1に示すように、比較例1、2のリチウムイオン二次電池は、集電リードの切断が多くみられた。また、集電リードに幅細部を形成させずに集電リードの幅全体を狭くした比較例2のリチウムイオン二次電池では、作製時の集電リードの切断を抑制することができないばかりか、幅を狭くした分で却って切断本数が増加した。これに対して、実施例1、2のリチウムイオン二次電池20では、集電リードの切断がほとんど見られなかった。ここのことから、幅細部を形成したことにより、破損が抑制されていることが判った。更に、実施例1、2のリチウムイオン二次電池20では、直流抵抗値の平均値も比較例1、2のリチウムイオン二次電池に比べて低いことから、高出力を得られることが判明した。一方、図4に示すように、リード切れの本数が少ない電池ほど、直流抵抗が低く、またその分布も小さいことが判った。そして、実施例1、2のリチウムイオン二次電池20では、直流抵抗値の分布(表1における最大値と最小値との差)が比較例1、2のリチウムイオン二次電池に比べて小さいことから、電池性能が維持されることが判った。従って、集電リードに幅細部を形成したことにより、集電リードの破損を抑制し電池性能を確保できることが明らかとなった。   As shown in Table 1, in the lithium ion secondary batteries of Comparative Examples 1 and 2, many current collector leads were cut. Further, in the lithium ion secondary battery of Comparative Example 2 in which the entire width of the current collecting lead is reduced without forming the width detail in the current collecting lead, not only the cutting of the current collecting lead at the time of production can be suppressed, The number of cuts increased with the narrower width. On the other hand, in the lithium ion secondary batteries 20 of Examples 1 and 2, the current collector leads were hardly cut. From this, it was found that the damage was suppressed by forming the width details. Furthermore, in the lithium ion secondary battery 20 of Examples 1 and 2, since the average value of the DC resistance value was lower than that of the lithium ion secondary batteries of Comparative Examples 1 and 2, it was found that high output could be obtained. . On the other hand, as shown in FIG. 4, it was found that the battery with fewer lead breaks has lower DC resistance and a smaller distribution. In the lithium ion secondary batteries 20 of Examples 1 and 2, the DC resistance distribution (difference between the maximum value and the minimum value in Table 1) is smaller than that of the lithium ion secondary batteries of Comparative Examples 1 and 2. From this, it was found that the battery performance was maintained. Therefore, it has been clarified that the formation of the width detail in the current collecting lead can prevent the current collecting lead from being damaged and ensure the battery performance.

また、表1に示すように、比Wa/Wを0.8に設定した実施例1では、比Wa/Wを0.7に設定した実施例2より集電リードの切断本数が少なく、直流抵抗値の平均値も小さくなっていることが判った。従って、比Wa/Wは0.7以上でも大きめに設定することが集電リードの破損や電池性能の確保には有効であることが判った。   Further, as shown in Table 1, in Example 1 in which the ratio Wa / W was set to 0.8, the number of cuts of the current collecting leads was smaller than in Example 2 in which the ratio Wa / W was set to 0.7, and the direct current It was found that the average value of the resistance value was also small. Therefore, it has been found that setting the ratio Wa / W to be larger even if 0.7 or more is effective in securing the current collecting lead and ensuring the battery performance.

本発明は集電リードの破損を抑制し電池性能を確保することができるリチウム二次電池を提供するため、リチウム二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a lithium secondary battery capable of suppressing the damage of the current collecting lead and ensuring the battery performance, it contributes to the manufacture and sale of the lithium secondary battery, and thus has industrial applicability.

本発明を適用した実施形態の密閉円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the airtight cylindrical lithium ion secondary battery of embodiment to which this invention is applied. 実施形態のリチウムイオン二次電池を構成する正極板を模式的に示す平面図である。It is a top view which shows typically the positive electrode plate which comprises the lithium ion secondary battery of embodiment. 従来のリチウムイオン二次電池を構成する正極板を模式的に示す平面図である。It is a top view which shows typically the positive electrode plate which comprises the conventional lithium ion secondary battery. 実施例および比較例のリチウムイオン二次電池における直流抵抗値の測定結果を示すグラフである。It is a graph which shows the measurement result of the direct current | flow resistance value in the lithium ion secondary battery of an Example and a comparative example.

符号の説明Explanation of symbols

2 正極タブ(集電リード)
2a 幅細部
3 負極タブ(集電リード)
4 正極集電リング(集電部材)
5 負極集電リング(集電部材)
6 電極群
18 正極板
19 アルミニウム箔(金属箔)
20 密閉円筒型リチウムイオン二次電池(リチウム二次電池)
2 Positive electrode tab (current collecting lead)
2a Detail of width 3 Negative electrode tab (current collecting lead)
4 Positive current collector ring (current collector)
5 Negative current collector ring (current collector)
6 Electrode group 18 Positive electrode plate 19 Aluminum foil (metal foil)
20 Sealed cylindrical lithium ion secondary battery (lithium secondary battery)

Claims (2)

正極活物質としてリチウム含有遷移金属酸化物、負極活物質としてリチウムイオンを吸蔵、放出可能な材料をそれぞれ金属箔に塗着した正負極板が捲回された電極群を備え、前記金属箔から直接導出され所定幅を有する複数の集電リードが集電部材に接合されたリチウム二次電池において、前記集電リードは、全てが、前記金属箔からの導出基部と前記集電部材に接合された端部との間に両側側縁が緩やかな弧状の幅細部を有しており、該幅細部を基点として屈曲しているとともに、前記幅細部が前記集電リードの最大幅に対して0.7倍以上の幅を有することを特徴とするリチウム二次電池。 It comprises an electrode group in which positive and negative electrode plates each coated on a metal foil with a lithium-containing transition metal oxide as a positive electrode active material and a lithium ion storage and release material as a negative electrode active material are wound on the metal foil. In the lithium secondary battery in which a plurality of current collecting leads led out and having a predetermined width are joined to the current collecting member, the current collecting leads are all joined to the lead base from the metal foil and the current collecting member Both side edges have a gentle arc-shaped width detail between the end portion and the width detail is bent with the width detail as a base point , and the width detail is 0. 0 mm from the maximum width of the current collecting lead. A lithium secondary battery having a width of 7 times or more . 前記幅細部は、前記導出基部寄りの位置に形成されていることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the width detail is formed at a position near the lead-out base.
JP2008064778A 2008-03-13 2008-03-13 Lithium secondary battery Expired - Fee Related JP5334429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064778A JP5334429B2 (en) 2008-03-13 2008-03-13 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064778A JP5334429B2 (en) 2008-03-13 2008-03-13 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2009224070A JP2009224070A (en) 2009-10-01
JP5334429B2 true JP5334429B2 (en) 2013-11-06

Family

ID=41240648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064778A Expired - Fee Related JP5334429B2 (en) 2008-03-13 2008-03-13 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5334429B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702541B2 (en) * 2010-02-18 2015-04-15 株式会社日立製作所 Lithium ion battery and manufacturing method thereof
JP2012014935A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Battery
KR20130108387A (en) * 2010-10-15 2013-10-02 에이일이삼 시스템즈 인코포레이티드 Integral battery tab
JP6239222B2 (en) * 2011-10-28 2017-11-29 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN108123091B (en) * 2016-11-30 2021-02-19 宝山钢铁股份有限公司 Nearly equal sectional area gradual change formula utmost point ear
WO2023090577A1 (en) 2021-11-19 2023-05-25 주식회사 엘지에너지솔루션 Electrode assembly, battery, and battery pack and vehicle including same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117073U (en) * 1981-01-13 1982-07-20
JPH03124468U (en) * 1990-03-29 1991-12-17
JPH0992335A (en) * 1995-09-27 1997-04-04 Sony Corp Cylindrical secondary battery
JPH09147829A (en) * 1995-11-24 1997-06-06 Toyota Autom Loom Works Ltd Storage battery
JP3497380B2 (en) * 1998-06-02 2004-02-16 日本碍子株式会社 Lithium secondary battery
JP2001126708A (en) * 1999-10-27 2001-05-11 Sony Corp Method of manufacturing nonaqueous electrolyte battery
JP2002373639A (en) * 2001-06-13 2002-12-26 Nec Tokin Tochigi Ltd Sealed battery and manufacturing method
JP4934318B2 (en) * 2005-12-14 2012-05-16 日立ビークルエナジー株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2009224070A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5242364B2 (en) Flat secondary battery
KR100973173B1 (en) Assembled battery
JP5171401B2 (en) Lithium secondary battery
JP5135071B2 (en) Battery
JP5334429B2 (en) Lithium secondary battery
JP5433164B2 (en) Lithium ion secondary battery
JP3627645B2 (en) Lithium secondary battery
JP5231089B2 (en) Sealed secondary battery
WO2012105553A1 (en) Cylindrical secondary battery
JP3786074B2 (en) Sealed battery
JP2011054378A (en) Nonaqueous electrolyte secondary battery
JP2007165114A (en) Lithium secondary battery
JP2009224038A (en) Wound battery, and manufacturing method of wound battery
JP2012190739A (en) Secondary battery
JP2000243372A (en) Secondary battery
JP2009289714A (en) Lithium-ion secondary battery and method of manufacturing the same
JP4688527B2 (en) Lithium secondary battery
JP5134781B2 (en) Battery manufacturing method
JP2002170531A (en) Tubular secondary battery
JP2000077055A (en) Lithium secondary battery
JP4459559B2 (en) Sealed battery
JP3906872B2 (en) Battery device
JP2009187724A (en) Rolled lithium ion secondary battery
JP5567462B2 (en) Secondary battery
JP4548070B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees