JP2009289714A - Lithium-ion secondary battery and method of manufacturing the same - Google Patents

Lithium-ion secondary battery and method of manufacturing the same Download PDF

Info

Publication number
JP2009289714A
JP2009289714A JP2008144230A JP2008144230A JP2009289714A JP 2009289714 A JP2009289714 A JP 2009289714A JP 2008144230 A JP2008144230 A JP 2008144230A JP 2008144230 A JP2008144230 A JP 2008144230A JP 2009289714 A JP2009289714 A JP 2009289714A
Authority
JP
Japan
Prior art keywords
negative electrode
current collecting
positive
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008144230A
Other languages
Japanese (ja)
Other versions
JP5248210B2 (en
JP2009289714A5 (en
Inventor
Akinori Tada
明徳 多田
Kenji Nakai
賢治 中井
Kinya Aota
欣也 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2008144230A priority Critical patent/JP5248210B2/en
Publication of JP2009289714A publication Critical patent/JP2009289714A/en
Publication of JP2009289714A5 publication Critical patent/JP2009289714A5/ja
Application granted granted Critical
Publication of JP5248210B2 publication Critical patent/JP5248210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery capable of ensuring the battery performance. <P>SOLUTION: A lithium-ion secondary battery 13 has a battery can 11, and an electrode group 3 with positive/negative electrode plates wound via a separator is housed inside the battery can 11. A plurality of current collection tabs derived from one side of the positive/negative electrode plates, respectively, are disposed on the opposite side of the electrode group 3 with respect to one another. Current collection rings 4, 7 are disposed in opposition to each other at both ends of the electrode group 3. At the outer peripheral surfaces of the current collection rings 4, 7, each of the ends of the current collection tabs 6, 8 is collected, and metal stiffening plates 5, 9 are disposed over the almost entire circumference so that both ends of the plates are never overlapped. The stiffening plates 5, 9 are bonded over the entire circumference by means of the laser beam irradiated almost orthogonally to the outer peripheral surfaces of the current collection rings 4, 7. The ends of the current collection tabs 6, 8 are bonded to be sandwiched between the current collection rings 4, 7 and the stiffening plates 5, 9. The laser beam is not oriented to the electrode group 3 during the laser welding. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はリチウムイオン二次電池およびその製造方法に係り、特に、正負極板がセパレータを介して捲回された電極群を備え、正負極集電タブが正負極板の一側からそれぞれ導出され電極群の互いに反対側に配設されたリチウムイオン二次電池およびその製造方法に関する。   The present invention relates to a lithium ion secondary battery and a method for manufacturing the same, and in particular, includes a group of electrodes in which a positive and negative electrode plate is wound through a separator, and a positive and negative current collecting tab is derived from one side of the positive and negative electrode plates, respectively. The present invention relates to a lithium ion secondary battery disposed on opposite sides of an electrode group and a method for manufacturing the same.

従来、リチウムイオン二次電池は、さまざまな用途で広く使用されている。中でも、帯状の正負極板がセパレータを介して軸芯に断面渦巻状に捲回された電極群を円筒状の電池缶に収容した円柱型捲回式リチウムイオン二次電池は、高エネルギー密度であるメリットを活かして、VTRカメラ、ノート型パソコンまたは携帯電話等のポータブル機器に使用されている。一方、円柱型捲回式リチウムイオン二次電池は、大電流充放電用途の二次電池として、電気自動車(EV)やハイブリッド電気自動車(HEV)の車載電源等にも使用されている。   Conventionally, lithium ion secondary batteries have been widely used in various applications. In particular, a cylindrical wound lithium ion secondary battery in which a group of electrodes in which a strip-like positive and negative electrode plate is wound in a spiral shape in cross section around a shaft via a separator is housed in a cylindrical battery can is a high energy density. Taking advantage of a certain merit, it is used in portable devices such as VTR cameras, notebook computers or mobile phones. On the other hand, the cylindrical wound lithium ion secondary battery is also used as an in-vehicle power source of an electric vehicle (EV) or a hybrid electric vehicle (HEV) as a secondary battery for large current charge / discharge applications.

一般に、大電流充放電用途の捲回式二次電池では、電池の内部抵抗を低減するため、正負極板の一側から複数の集電タブがそれぞれ導出されている。集電タブは電極群の互いに反対側にそれぞれ配設され、集電タブの端部が、電極群の端面にそれぞれ対向配置された集電部品の電極群に対向する面と交差する側周面に集められ接合されている。集電タブを集電部品に接合する方法としては、超音波接合やレーザ溶接等があげられる。   In general, in a wound secondary battery for large current charge / discharge applications, a plurality of current collecting tabs are led out from one side of the positive and negative electrode plates in order to reduce the internal resistance of the battery. The current collecting tabs are respectively arranged on opposite sides of the electrode group, and the end surfaces of the current collecting tabs intersect the surfaces facing the electrode group of the current collecting parts arranged to face the end surfaces of the electrode group, respectively. Collected and joined together. Examples of a method for joining the current collecting tab to the current collecting component include ultrasonic joining and laser welding.

超音波接合は、接合する部材に加圧した状態で振動を加え、金属表面に形成された酸化被膜を除去し、現れた金属表面間で金属原子を拡散することにより、金属を接合する方法である。ところが、上述したように複数の集電タブを集めて超音波接合を行う場合、加圧力、超音波の振幅、振動時間および周波数などの条件により、集電タブが疲労破壊されてしまう場合がある。一方、レーザ溶接では、単一波長の光を極めて小さな点に集光するため、エネルギー密度が非常に高くなる。このため、溶接に伴う周囲への熱影響も少なく、被溶接物を照射方向に高速に深く溶融させて接合することができる。例えば、集電部品の電極群に対向する面と交差する側周面に沿う方向(垂直方向)にレーザ光を照射して集電部品に集電タブを接合する技術が開示されている(特許文献1参照)。   Ultrasonic bonding is a method of bonding metals by applying vibration to the members to be bonded, removing the oxide film formed on the metal surfaces, and diffusing metal atoms between the exposed metal surfaces. is there. However, when a plurality of current collecting tabs are collected and ultrasonic bonding is performed as described above, the current collecting tabs may be subject to fatigue failure depending on conditions such as applied pressure, ultrasonic amplitude, vibration time, and frequency. . On the other hand, in laser welding, the energy density is very high because light of a single wavelength is collected at an extremely small point. For this reason, the influence of heat on the surroundings due to welding is small, and the workpieces can be melted and deeply joined in the irradiation direction at high speed. For example, a technique is disclosed in which a current collecting tab is joined to a current collecting component by irradiating a laser beam in a direction (vertical direction) along a side circumferential surface intersecting a surface facing the electrode group of the current collecting component (patent) Reference 1).

特開平9−92335号公報JP-A-9-92335

しかしながら、捲回式リチウムイオン二次電池では、複数の集電タブが導出された正負極板が捲回されているので、集電タブを集電部品の側周面に集めた場合、集電タブの重なりに疎密が生じる。このため、重なりが疎な箇所でレーザ光の入熱エネルギーが過大になり、レーザ光が集電タブおよび集電部品を貫通してしまう可能性がある。特許文献1の技術では、集電部品の電極群に対向する面と交差する側周面に沿う方向、すなわち、電極群方向にレーザ光が照射されるので、集電部品を貫通したレーザ光が電極群を損傷して電池性能を損なう可能性が考えられる。更に、集電部品および電極群が近接していた場合、レーザ光が貫通したか否か確認することも難しくなる。   However, in a wound lithium ion secondary battery, since the positive and negative electrode plates from which a plurality of current collecting tabs are drawn are wound, when the current collecting tabs are collected on the side surface of the current collecting component, the current collecting The density of tabs overlaps. For this reason, the heat input energy of the laser light becomes excessive at a place where the overlap is sparse, and the laser light may penetrate the current collecting tab and the current collecting component. In the technique of Patent Document 1, laser light is irradiated in a direction along a side circumferential surface intersecting with a surface facing the electrode group of the current collecting component, that is, in the direction of the electrode group. There is a possibility of damaging the electrode group and impairing battery performance. Furthermore, when the current collecting component and the electrode group are close to each other, it is difficult to confirm whether or not the laser beam has penetrated.

本発明は上記事案に鑑み、電池性能を確保することができるリチウムイオン二次電池およびその製造方法を提供することを課題とする。   An object of the present invention is to provide a lithium ion secondary battery capable of ensuring battery performance and a method for manufacturing the same, in view of the above-described case.

上記課題を解決するために、本発明の第1の態様は、正負極板がセパレータを介して捲回された電極群を備え、正負極集電タブが前記正負極板の一側からそれぞれ導出され前記電極群の互いに反対側に配設されたリチウムイオン二次電池において、少なくとも前記正極集電タブおよび負極集電タブの一方は、前記電極群の端面に対向配置された集電部品の前記電極群に対向する面と交差する側周面に、略水平方向に照射されたレーザ光で接合されたことを特徴とする。   In order to solve the above problems, a first aspect of the present invention includes an electrode group in which a positive and negative electrode plate is wound through a separator, and a positive and negative current collecting tab is led out from one side of the positive and negative electrode plate, respectively. In the lithium ion secondary battery disposed on the opposite side of the electrode group, at least one of the positive electrode current collecting tab and the negative electrode current collecting tab is the current collecting component disposed opposite to the end surface of the electrode group. It is characterized in that it is bonded to a side peripheral surface intersecting with a surface facing the electrode group by a laser beam irradiated in a substantially horizontal direction.

第1の態様では、集電部品の電極群に対向する面と交差する側周面に略水平方向にレーザが照射されるため、電極群の損傷を防止でき電池性能を確保することができる。   In the first aspect, since the laser is irradiated in a substantially horizontal direction on the side peripheral surface that intersects the surface facing the electrode group of the current collecting component, damage to the electrode group can be prevented and battery performance can be ensured.

この場合において、少なくとも正極集電タブおよび負極集電タブの一方は、集電部品の側周面と金属製の当て板とに挟まれて接合されていることが好ましい。このとき、当て板の両端部の重なりが未形成となるように集電部品の側周面に対向配置されるようにすれば、集電部品および当て板間に隙間が形成されず当て板が配置されるため、溶接不良を抑制して、集電タブと集電部品とを確実に接合することができる。また、負極集電タブが接合された集電部品および当て板は、それぞれ、銅、ニッケル、銅とニッケルとの合金または銅とニッケルとの多層体を材質としてもよい。   In this case, it is preferable that at least one of the positive electrode current collecting tab and the negative electrode current collecting tab is sandwiched and joined between the side peripheral surface of the current collecting component and the metal backing plate. At this time, if it is arranged so as to be opposed to the side peripheral surface of the current collector component so that the overlapping of both ends of the contact plate is not formed, a gap is not formed between the current collector component and the contact plate, Since it arrange | positions, poor welding can be suppressed and a current collection tab and current collection components can be joined reliably. The current collecting component and the contact plate to which the negative electrode current collecting tab is bonded may be made of copper, nickel, an alloy of copper and nickel, or a multilayer body of copper and nickel, respectively.

また、本発明の第2の態様は、請求項1に記載のリチウムイオン二次電池の製造方法であって、金属製の当て板を該当て板の両端部の重なりが未形成となるように前記集電部品の側周面に対向配置し、前記当て板の両端部をそれぞれスポットで溶接した後、前記当て板の全周に亘り接合することを特徴とする。   According to a second aspect of the present invention, there is provided a method of manufacturing a lithium ion secondary battery according to claim 1, wherein a metal backing plate is applied so that the overlapping of both ends of the plate is not formed. It arrange | positions facing the surrounding side surface of the said current collection component, and welds over the perimeter of the said contact plate, after welding the both ends of the said contact plate with a spot, respectively.

本発明によれば、集電部品の電極群に対向する面と交差する側周面に略水平方向にレーザが照射されるため、電極群の損傷を防止でき電池性能を確保することができる、という効果を得ることができる。   According to the present invention, since the laser is irradiated in a substantially horizontal direction on the side circumferential surface that intersects the surface facing the electrode group of the current collecting component, damage to the electrode group can be prevented and battery performance can be ensured. The effect that can be obtained.

以下、図面を参照して、本発明を適用した円柱型リチウムイオン二次電池の実施の形態について説明する。   Embodiments of a cylindrical lithium ion secondary battery to which the present invention is applied will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の円柱型リチウムイオン二次電池13は、帯状の正負極板が直接接触しないようにセパレータを介して中空状で樹脂製の軸芯に断面渦巻状に捲回された電極群3を備えている。電極群3は、ニッケルメッキが施された鋼板製で有底円筒状の電池缶11に収容されている。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 13 according to the present embodiment has a hollow and resin-made shaft core in a spiral shape through a separator so that the strip-like positive and negative electrode plates do not directly contact each other. A rotated electrode group 3 is provided. The electrode group 3 is made of a nickel-plated steel plate and accommodated in a bottomed cylindrical battery can 11.

電極群3の上側端面には、該端面に対向するように正極板からの電位を集電するためのアルミニウム製でリング状の正極集電リング(集電部品)4が配置されている。正極集電リング4は、軸芯の上端部に固定されている。正極集電リング4の周囲から一体に張り出している鍔部外周面、すなわち、電極群3に対向する面と交差する側周面には、正極板の一側から導出された複数の正極集電タブ6の端部が集められている。集められた正極集電タブ6の外側には、アルミニウム製で帯状の正極当て板5が正極集電リング4の鍔部外周面と対向するように配置されている。換言すれば、正極集電リング4の鍔部外周面に正極当て板5がほぼ全周に亘り配置される。このとき、正極当て板5の両端部同士が重ならないように配置される。正極当て板5は、軸芯が垂直方向となる状態で、正極集電リング4の鍔部外周面に略直交方向、すなわち、略水平方向に照射されたレーザ光で全周に亘り接合される。従って、正極集電タブ6の端部が正極集電リング4の鍔部外周面と正極当て板5の内周面とに挟まれて接合されている。正極集電リング4の上側には、正極外部端子となる円盤状の上蓋1が配置されている。上蓋1は、略中央部に上方に突出した円筒状の突起を有する蓋キャップと、アルミニウム合金製で下方(電極群3側)に突出した皿状の蓋ケース(ダイアフラム)とが組み合わされて形成されているが、更に一定内圧で開裂する開裂弁を有するものであってよい。上蓋1の下面および正極集電リング4の中央部上面には、アルミニウム製で帯状の正極リード2の両端がそれぞれ接続されており、上蓋1と正極板とが電気的に接続されている。   On the upper end surface of the electrode group 3, an aluminum-made ring-shaped positive electrode current collection ring (current collection component) 4 for collecting the potential from the positive electrode plate is disposed so as to face the end surface. The positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core. A plurality of positive electrode current collectors led out from one side of the positive electrode plate are provided on the outer peripheral surface of the flange that integrally projects from the periphery of the positive electrode current collector ring 4, that is, on the side peripheral surface that intersects the surface facing the electrode group 3. The ends of the tabs 6 are collected. On the outside of the collected positive electrode current collecting tab 6, a strip-like positive electrode contact plate 5 made of aluminum is disposed so as to face the outer peripheral surface of the flange portion of the positive electrode current collecting ring 4. In other words, the positive electrode abutting plate 5 is disposed on the outer peripheral surface of the flange portion of the positive electrode current collecting ring 4 over almost the entire circumference. At this time, it arrange | positions so that the both ends of the positive electrode application plate 5 may not overlap. The positive electrode abutting plate 5 is joined to the outer peripheral surface of the flange portion of the positive electrode current collecting ring 4 with the laser beam irradiated in a substantially orthogonal direction, that is, in a substantially horizontal direction, with the axis being in the vertical direction. . Therefore, the end portion of the positive electrode current collecting tab 6 is sandwiched and joined between the outer peripheral surface of the flange portion of the positive electrode current collecting ring 4 and the inner peripheral surface of the positive electrode contact plate 5. A disc-shaped upper lid 1 serving as a positive electrode external terminal is disposed on the upper side of the positive electrode current collecting ring 4. The upper lid 1 is formed by combining a lid cap having a cylindrical projection projecting upward at a substantially central portion and a dish-shaped lid case (diaphragm) made of aluminum alloy and projecting downward (electrode group 3 side). However, it may further have a cleavage valve that cleaves at a constant internal pressure. Both ends of a belt-like positive electrode lead 2 made of aluminum are connected to the lower surface of the upper lid 1 and the upper surface of the central portion of the positive electrode current collecting ring 4, and the upper lid 1 and the positive electrode plate are electrically connected.

一方、電極群3の下側端面には、該端面に対向するように負極板からの電位を集電するための銅製でリング状の負極集電リング(集電部品)7が配置されている。負極集電リング7の中央部には、軸芯の下端部外周面が固定されている。負極集電リング7の外周面、すなわち、電極群3に対向する面と交差する側周面には、負極板の一側から導出された複数の負極集電タブ8の端部が集められている。集められた負極集電タブ8の外側には、正極当て板5と同様に、銅製で帯状の負極当て板9の両端部同士が重ならないようにほぼ全周に亘り配置されている。負極当て板9は、正極当て板5と同様に、負極集電リング7の外周面に略直交方向に照射されたレーザ光で全周に亘り接合される。すなわち、負極集電タブ8の端部が負極集電リング7の外周面と負極当て板9の内周面とに挟まれて接合されている。負極集電リング7の下面には、ニッケル製の負極リード板10が接合されている。負極リード板10の中央部は、電池缶11の内底面に抵抗溶接で接合・固定されており、負極外部端子を兼ねる電池缶11と負極板とが電気的に接続されている。   On the other hand, a ring-shaped negative electrode current collector ring (current collector component) 7 made of copper for collecting the potential from the negative electrode plate is disposed on the lower end face of the electrode group 3 so as to face the end face. . The outer peripheral surface of the lower end portion of the shaft core is fixed to the central portion of the negative electrode current collecting ring 7. On the outer peripheral surface of the negative electrode current collector ring 7, that is, on the side peripheral surface intersecting the surface facing the electrode group 3, end portions of a plurality of negative electrode current collector tabs 8 led out from one side of the negative electrode plate are collected. Yes. Similar to the positive electrode application plate 5, the collected negative electrode current collection tabs 8 are arranged over the entire circumference so that both ends of the copper negative electrode application plate 9 do not overlap each other. Similarly to the positive electrode contact plate 5, the negative electrode contact plate 9 is bonded to the outer peripheral surface of the negative electrode current collecting ring 7 with the laser beam irradiated in a substantially orthogonal direction over the entire periphery. That is, the end of the negative electrode current collecting tab 8 is sandwiched and joined between the outer peripheral surface of the negative electrode current collecting ring 7 and the inner peripheral surface of the negative electrode contact plate 9. A negative electrode lead plate 10 made of nickel is bonded to the lower surface of the negative electrode current collecting ring 7. The central portion of the negative electrode lead plate 10 is joined and fixed to the inner bottom surface of the battery can 11 by resistance welding, and the battery can 11 serving also as the negative electrode external terminal and the negative electrode plate are electrically connected.

電極群3を構成する正極板は、帯状で厚さ20μmのアルミニウム箔の両面に正極活物質を含む合剤が略均一に塗着されている。合剤には、正極活物質のリチウム遷移金属複酸化物であるマンガン酸リチウム(LiMn)と導電材の鱗片状黒鉛と結着剤のポリフッ化ビニリデン(以下、PVDFと略記する。)とが配合されている。アルミニウム箔の長手方向一側端部には、正極合剤の無塗着部が形成されている。この無塗着部は、櫛状(矩形状)に切り欠かれており、切り欠き残部で正極集電タブ6が形成されている。一方、負極板には、帯状で厚さ10μmの銅箔の両面に負極活物質の非晶質炭素粉末を含む負極合剤が略均一に塗着されており、長手方向一側端部に負極合剤の無塗着部が形成されている。この無塗着部には、正極板と同様に負極集電タブ8が形成されている。セパレータには、帯状で厚さ40μmのポリエチレン製の微多孔膜が用いられている。電極群3は、正極板および負極板が直接接触しないようにセパレータを介して捲回されている。電極群3では、正極集電タブ6および負極集電タブ8が、電極群3の互いに反対側に配設されており、電極群3の端面とほぼ直交する方向に導出されている。 The positive electrode plate constituting the electrode group 3 is a strip-shaped aluminum foil having a thickness of 20 μm, and a mixture containing a positive electrode active material is applied substantially uniformly on both surfaces. As the mixture, lithium manganate (LiMn 2 O 4 ), which is a lithium transition metal double oxide as a positive electrode active material, scaly graphite as a conductive material, and polyvinylidene fluoride as a binder (hereinafter abbreviated as PVDF). And are blended. A non-coating portion of the positive electrode mixture is formed at one end portion in the longitudinal direction of the aluminum foil. This non-coated portion is cut out in a comb shape (rectangular shape), and the positive electrode current collecting tab 6 is formed in the remaining portion of the cutout. On the other hand, the negative electrode plate is substantially uniformly coated with a negative electrode mixture containing amorphous carbon powder of a negative electrode active material on both sides of a strip-like copper foil having a thickness of 10 μm. An uncoated portion of the mixture is formed. A negative electrode current collecting tab 8 is formed in this non-coated portion in the same manner as the positive electrode plate. For the separator, a microporous polyethylene film having a band shape and a thickness of 40 μm is used. The electrode group 3 is wound through a separator so that the positive electrode plate and the negative electrode plate are not in direct contact with each other. In the electrode group 3, the positive electrode current collecting tab 6 and the negative electrode current collecting tab 8 are arranged on opposite sides of the electrode group 3, and are led out in a direction substantially orthogonal to the end face of the electrode group 3.

上蓋1は絶縁性及び耐熱性のEPDM樹脂製ガスケット12を介して電池缶11の上部にカシメ固定されており、リチウムイオン二次電池13が密閉されている。また、電池缶11内には、図示を省略した非水電解液が注液されている。非水電解液には、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの体積比1:1:1の混合溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。 The upper lid 1 is caulked and fixed to the upper portion of the battery can 11 via an insulating and heat resistant EPDM resin gasket 12, and the lithium ion secondary battery 13 is sealed. Further, a non-aqueous electrolyte solution (not shown) is injected into the battery can 11. The non-aqueous electrolyte is obtained by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as a lithium salt in a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1. Is used.

(電池製造)
リチウムイオン二次電池13は、正負極板を作製し、正負極板に正極集電タブ6および負極集電タブ8をそれぞれ形成する準備工程と、正負極板をセパレータを介して捲回し電極群3を作製する捲回工程と、正負極集電タブをそれぞれ正負極集電リングに接合する接合工程と、電極群3を電池缶11に収容しリチウムイオン二次電池13を完成する組み立て工程とで製造される。
(Battery manufacturing)
The lithium ion secondary battery 13 includes a preparation step in which a positive and negative electrode plate is produced, and a positive electrode current collecting tab 6 and a negative electrode current collecting tab 8 are respectively formed on the positive and negative electrode plates, and the positive and negative electrode plates are wound through a separator. A winding step for manufacturing the electrode 3, a bonding step for bonding the positive and negative electrode current collecting tabs to the positive and negative electrode current collecting rings, an assembly step for housing the electrode group 3 in the battery can 11 and completing the lithium ion secondary battery 13; Manufactured by.

準備工程では、マンガン酸リチウムの粉末と、導電材の鱗片状黒鉛と、結着剤のPVDFとを質量比85:10:5の割合で混合して正極合剤を調製する。粘度調整溶媒としてN−メチルピロリドン(以下、NMPと略記する。)を用い、正極合剤を略均一に混練して合剤スラリを調製する。帯状のアルミニウム箔の両面に合剤スラリを塗布する。このとき、アルミニウム箔の長手方向一側端部にスラリの無塗着部を形成する。無塗着部を櫛状に切り欠いて、切り欠き残部で正極集電タブ6を形成する。その後、乾燥し、プレスして正極板を作製する。一方、負極活物質の非晶質炭素粉末と、結着剤のPVDFとを質量比90:10の割合で混合して負極合剤を調製する。NMPを用い負極合剤を略均一に混練して合剤スラリを調製する。帯状の銅箔の両面に合剤スラリを塗布し、乾燥後、プレスして負極板を作製する。正極板と同様にして、無塗着部を櫛状に切り欠いて、切り欠き残部で負極集電タブ8を形成する。   In the preparation step, a positive electrode mixture is prepared by mixing lithium manganate powder, conductive graphite flakes, and binder PVDF in a mass ratio of 85: 10: 5. Using N-methylpyrrolidone (hereinafter abbreviated as NMP) as a viscosity adjusting solvent, the positive electrode mixture is kneaded substantially uniformly to prepare a mixture slurry. A mixture slurry is applied to both sides of a strip-shaped aluminum foil. At this time, an uncoated portion of slurry is formed at one end portion in the longitudinal direction of the aluminum foil. The non-coated portion is cut out in a comb shape, and the positive electrode current collecting tab 6 is formed at the remaining portion of the cutout. Then, it dries and presses and produces a positive electrode plate. On the other hand, an amorphous carbon powder as a negative electrode active material and PVDF as a binder are mixed at a mass ratio of 90:10 to prepare a negative electrode mixture. A negative electrode mixture is kneaded substantially uniformly using NMP to prepare a mixture slurry. A mixture slurry is applied to both sides of a strip-shaped copper foil, dried, and pressed to prepare a negative electrode plate. In the same manner as the positive electrode plate, the uncoated portion is cut out in a comb shape, and the negative electrode current collecting tab 8 is formed from the remaining portion of the cutout.

捲回工程では、2枚のセパレータの捲回始端部を軸芯に熱溶着などで固定する。正極集電タブ6と負極集電タブ8とが電極群3の互いに反対側となるように、正負極板をセパレータを介して軸芯に捲回する。所望の長さの正負極板およびセパレータを捲回した後、正負極板およびセパレータを切断する。切断したセパレータの端部をテープ等で固定して電極群3を作製する。   In the winding step, the winding start end portions of the two separators are fixed to the shaft core by heat welding or the like. The positive and negative electrode plates are wound around the shaft core through the separator so that the positive electrode current collecting tab 6 and the negative electrode current collecting tab 8 are opposite to each other of the electrode group 3. After winding the positive and negative electrode plates and the separator having a desired length, the positive and negative electrode plates and the separator are cut. The edge part of the cut | disconnected separator is fixed with a tape etc., and the electrode group 3 is produced.

接合工程では、まず、軸芯の上端部に正極集電リング4を電極群3の上側端面に対向するように固定する。正極集電タブ6の端部を正極集電リング4の鍔部外周面に集め、正極集電リング4の鍔部外周面に正極当て板5をほぼ全周に亘り配置する。このとき、正極当て板5の両端部が重ならない(重なりが未形成となる)ように配置する。軸芯が垂直方向となる状態で、正極集電リング4の鍔部外周面に略直交方向にレーザ光を照射して、正極当て板5の両端部を順にスポットで溶接した後に、正極当て板5の全周に亘り溶接する。従って、正極当て板5、正極集電タブ6および正極集電リング4の溶接時には、外周面の外側から略水平方向にレーザが照射されることとなる。同様に、負極集電タブ8の端部を負極集電リング7の外周面に集めて、負極当て板9の両端部が重ならないようにほぼ全周に亘り配置する。負極集電リング7の外周面に略直交方向にすなわち、略水平方向にレーザ光を照射して、負極当て板9の両端部を順にスポットで溶接した後に、負極当て板9の全周に亘り接合する。   In the joining step, first, the positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core so as to face the upper end surface of the electrode group 3. The ends of the positive electrode current collecting tab 6 are collected on the outer peripheral surface of the heel portion of the positive electrode current collecting ring 4, and the positive electrode abutting plate 5 is disposed on the outer peripheral surface of the heel portion of the positive electrode current collecting ring 4 over the entire circumference. At this time, it arrange | positions so that the both ends of the positive electrode abutting plate 5 may not overlap (overlapping will not be formed). In a state where the shaft core is in the vertical direction, the outer peripheral surface of the collar portion of the positive electrode current collecting ring 4 is irradiated with laser light in a substantially orthogonal direction, and both ends of the positive electrode abutting plate 5 are sequentially welded with spots, and then the positive electrode abutting plate Weld around the entire circumference of 5. Accordingly, when the positive electrode backing plate 5, the positive electrode current collecting tab 6 and the positive electrode current collecting ring 4 are welded, the laser is irradiated in a substantially horizontal direction from the outside of the outer peripheral surface. Similarly, the end portions of the negative electrode current collecting tab 8 are gathered on the outer peripheral surface of the negative electrode current collecting ring 7 and are arranged over substantially the entire circumference so that both end portions of the negative electrode contact plate 9 do not overlap. After irradiating the outer peripheral surface of the negative electrode current collecting ring 7 with laser light in a substantially orthogonal direction, that is, in a substantially horizontal direction, and welding both ends of the negative electrode abutting plate 9 with spots in order, the entire circumference of the negative electrode abutting plate 9 is applied. Join.

組み立て工程では、正負極集電部品等が溶接された電極群3を用いて、リチウムイオン二次電池13を組み立てる。まず、負極集電リング7の下面に負極リード10を溶接で接合する。電極群3を電池缶11に収容してから、軸芯の中空部に溶接治具を差し込んで、負極リード10を電池缶11の内底面に抵抗溶接で接合する。上蓋1の下面と正極集電リング4の中央部上面とに正極リード2の両端部をそれぞれ溶接する。電池缶11の電極群3より上側に上蓋1を載せるための段付け部を形成する段付け加工を施し、非水電解液を注液した後、段付け部に上蓋1を載せ、電池缶11と上蓋1とをガスケット12を介してかしめてリチウムイオン二次電池13の組み立てを完成させる。   In the assembly process, the lithium ion secondary battery 13 is assembled using the electrode group 3 to which the positive and negative electrode current collecting parts and the like are welded. First, the negative electrode lead 10 is joined to the lower surface of the negative electrode current collecting ring 7 by welding. After the electrode group 3 is accommodated in the battery can 11, a welding jig is inserted into the hollow portion of the shaft core, and the negative electrode lead 10 is joined to the inner bottom surface of the battery can 11 by resistance welding. Both end portions of the positive electrode lead 2 are welded to the lower surface of the upper lid 1 and the upper surface of the central portion of the positive electrode current collecting ring 4. A stepping process for forming a stepped portion for placing the upper lid 1 on the upper side of the electrode group 3 of the battery can 11 is performed, and after pouring a non-aqueous electrolyte, the upper lid 1 is placed on the stepped portion, and the battery can 11 And the upper lid 1 are caulked through the gasket 12 to complete the assembly of the lithium ion secondary battery 13.

次に、本実施形態に従い作製したリチウムイオン二次電池13の実施例について説明する。なお、比較のために作製した比較例についても説明する。また、説明を簡単にするために、以下の実施例では、負極集電リング7および負極当て板9の材質並びに溶接時のレーザ出力を変え、正極集電リング4および正極当て板5の材質は各実施例とも同じとしてリチウムイオン二次電池13を作製した。   Next, examples of the lithium ion secondary battery 13 manufactured according to the present embodiment will be described. A comparative example produced for comparison will also be described. In order to simplify the description, in the following examples, the materials of the negative electrode current collector ring 7 and the negative electrode contact plate 9 and the laser output during welding are changed. The lithium ion secondary battery 13 was produced in the same manner as each example.

(実施例1)
実施例1の電池では、下表1に示すように、負極集電リング7および負極当て板9の材質をいずれも銅(Cu)とした。正極当て板5および負極当て板9の両端の間隔をそれぞれ1mmに設定した。負極集電リング7、負極集電タブ8および負極当て板9の溶接時のレーザ出力を2000Wに設定し、リチウムイオン二次電池13を作製した。
(Example 1)
In the battery of Example 1, as shown in Table 1 below, the negative electrode current collecting ring 7 and the negative electrode contact plate 9 were both made of copper (Cu). The distance between both ends of the positive electrode plate 5 and the negative plate 9 was set to 1 mm. The laser output during welding of the negative electrode current collector ring 7, the negative electrode current collector tab 8, and the negative electrode contact plate 9 was set to 2000 W, and a lithium ion secondary battery 13 was produced.

Figure 2009289714
Figure 2009289714

(実施例2〜実施例7)
表1に示すように、実施例2〜実施例7の電池では、負極集電リング7および負極当て板9の材質ならびに溶接時のレーザ出力を変えること以外は、実施例1と同様にリチウムイオン二次電池13を作製した。実施例2の電池では、負極集電リング7の材質を銅、負極当て板9の材質をニッケル(Ni)とし、レーザ出力を1200Wとした。実施例3の電池では、負極集電リング7の材質を銅とニッケルとの質量比1:1の合金、負極当て板9の材質をニッケルとし、レーザ出力を1200Wとした。実施例4の電池では、負極集電リング7の材質を銅とニッケルとの質量比1:1のクラッド材(多層体)、負極当て板9の材質をニッケルとし、レーザ出力を1200Wとした。実施例5の電池では、負極集電リング7および負極当て板9の材質をいずれもニッケルとし、レーザ出力を1000Wとした。実施例6の電池では、負極集電リング7の材質を銅、負極当て板9の材質を銅とニッケルとの質量比1:1の合金とし、レーザ出力を1200Wとした。実施例7の電池では、負極集電リング7の材質を銅、負極当て板9の材質を銅とニッケルとの質量比1:1のクラッド材とし、レーザ出力を1200Wとした。
(Example 2 to Example 7)
As shown in Table 1, in the batteries of Examples 2 to 7, lithium ions were used in the same manner as in Example 1 except that the materials of the negative electrode current collecting ring 7 and the negative electrode contact plate 9 and the laser output during welding were changed. A secondary battery 13 was produced. In the battery of Example 2, the material of the negative electrode current collecting ring 7 was copper, the material of the negative electrode contact plate 9 was nickel (Ni), and the laser output was 1200 W. In the battery of Example 3, the material of the negative electrode current collecting ring 7 was an alloy having a mass ratio of copper and nickel of 1: 1, the material of the negative electrode backing plate 9 was nickel, and the laser output was 1200 W. In the battery of Example 4, the negative electrode current collector ring 7 was made of a clad material (multilayer body) having a mass ratio of copper and nickel of 1: 1, the negative electrode backing plate 9 was made of nickel, and the laser output was 1200 W. In the battery of Example 5, the negative electrode current collecting ring 7 and the negative electrode contact plate 9 were both made of nickel, and the laser output was 1000 W. In the battery of Example 6, the negative electrode current collecting ring 7 was made of copper, the negative electrode backing plate 9 was made of an alloy having a mass ratio of copper and nickel of 1: 1, and the laser output was 1200 W. In the battery of Example 7, the negative electrode current collecting ring 7 was made of copper, the negative electrode contact plate 9 was made of a clad material having a mass ratio of copper and nickel of 1: 1, and the laser output was 1200 W.

(実施例8)
表1に示すように、実施例8の電池では、負極当て板9を使用しないこと以外は、実施例1と同様にリチウムイオン二次電池13を作製した。
(Example 8)
As shown in Table 1, in the battery of Example 8, a lithium ion secondary battery 13 was produced in the same manner as in Example 1 except that the negative electrode backing plate 9 was not used.

(実施例9)
表1に示すように、実施例9の電池では、負極当て板9を両端部の重なりが5mm形成されるように配置してレーザ溶接すること以外は、実施例1と同様にリチウムイオン二次電池13を作製した。
Example 9
As shown in Table 1, in the battery of Example 9, the lithium ion secondary plate was the same as in Example 1 except that the negative electrode backing plate 9 was arranged and laser-welded so that the overlap between both ends was formed to 5 mm. A battery 13 was produced.

(比較例1)
表1に示すように、比較例1の電池では、負極当て板を使用しないことと、負極集電リング7の電極群に対向する面と交差する側周面に沿う方向にレーザ光を照射して溶接すること以外は、実施例1と同様にリチウムイオン二次電池を作製した。
(Comparative Example 1)
As shown in Table 1, in the battery of Comparative Example 1, the negative electrode backing plate was not used, and the laser beam was irradiated in a direction along the side circumferential surface intersecting the surface facing the electrode group of the negative electrode current collecting ring 7. A lithium ion secondary battery was produced in the same manner as in Example 1 except that welding was performed.

(評価)
各実施例の電池および比較例の電池をそれぞれ30個ずつ作製した。このときの各実施例および比較例の電池について負極集電リング7、負極集電タブ8および負極当て板9の溶接状態を評価した。溶接状態は、レーザ貫通(レーザ光による負極集電リング7および負極集電タブ8の貫通)および溶接ピットがともに発生しなかった溶接状態を◎、電極群3のダメージ(損傷)がないレーザ貫通または溶接ピットが発生した溶接状態を○、電極群3のダメージが発生した溶接状態を△の3段階で評価した。評価結果を表1に合わせて示す。
(Evaluation)
Thirty batteries of each example and comparative example were produced. At this time, the welded state of the negative electrode current collector ring 7, the negative electrode current collector tab 8, and the negative electrode contact plate 9 was evaluated for the batteries of the respective examples and comparative examples. As for the welding state, laser penetration (penetration of negative electrode current collecting ring 7 and negative electrode current collecting tab 8 by laser light) and welding state where neither welding pits occurred, laser penetration without electrode group 3 damage (damage) Alternatively, the welded state in which the weld pit was generated was evaluated in three stages: ◯, and the welded state in which the electrode group 3 was damaged was evaluated in three levels. The evaluation results are shown in Table 1.

表1に示すように、実施例1〜実施例7の電池では、レーザ貫通および溶接ピットがともに発生しなかった。実施例8の電池では、レーザ貫通が発生したものの、負極集電リング7の外周面に対して略直交にレーザ溶接したため、電極群3の損傷は認められなかった。実施例1および実施例8の電池の相違は、銅製の負極当て板9の有無だけである。従って、実施例8の電池では、負極当て板9を使用しなかったため、負極集電タブ8の重なりが疎な箇所でレーザ貫通が発生したものと考えられる。また、実施例9の電池では、溶接ピットが発生した。実施例1および実施例9の電池の相違は、負極当て板9の両端部の重なりの有無だけである。従って、実施例9の電池では、負極当て板9の両端部に重なりを形成してレーザ溶接したため、負極集電リング7の外周面と負極当て板9の内周面との間に隙間が形成されたため、溶接ピットが発生したと考えられる。これに対して、比較例1の電池では、負極当て板を使用していないため、実施例8の電池と同様にレーザ貫通が発生した。また、負極集電リングの電極群に対向する面と交差する側周面に沿う方向、すなわち電極群が配置された方向にレーザを照射したため、電極群が損傷した。   As shown in Table 1, in the batteries of Examples 1 to 7, neither laser penetration nor weld pits occurred. In the battery of Example 8, although laser penetration occurred, laser welding was performed substantially orthogonally to the outer peripheral surface of the negative electrode current collecting ring 7, so that no damage to the electrode group 3 was observed. The difference between the batteries of Example 1 and Example 8 is only the presence or absence of the copper negative electrode backing plate 9. Therefore, in the battery of Example 8, since the negative electrode contact plate 9 was not used, it is considered that laser penetration occurred at a place where the negative electrode current collecting tabs 8 overlapped with each other. In the battery of Example 9, weld pits occurred. The only difference between the batteries of Example 1 and Example 9 is the presence or absence of overlapping of both end portions of the negative electrode backing plate 9. Therefore, in the battery of Example 9, since both ends of the negative electrode contact plate 9 were overlapped and laser-welded, a gap was formed between the outer peripheral surface of the negative electrode current collecting ring 7 and the inner peripheral surface of the negative electrode contact plate 9. Therefore, it is considered that weld pits occurred. On the other hand, since the battery of Comparative Example 1 did not use the negative electrode backing plate, laser penetration occurred similarly to the battery of Example 8. Moreover, since the laser was irradiated in the direction along the side peripheral surface crossing the surface facing the electrode group of the negative electrode current collector ring, that is, the direction in which the electrode group was arranged, the electrode group was damaged.

(作用等)
次に、本実施形態のリチウムイオン二次電池13の作用等に説明する。なお、正負極集電タブ両方とも同じようにレーザ溶接で接合されているが、いずれも同様の作用を示すため、以下、負極側の負極集電タブ8、負極集電リング7および負極当て板9のレーザ溶接による接合について説明する。
(Action etc.)
Next, the operation of the lithium ion secondary battery 13 of this embodiment will be described. Both the positive and negative current collecting tabs are joined by laser welding in the same manner. However, since both of them exhibit the same action, hereinafter, the negative electrode current collecting tab 8, the negative electrode current collecting ring 7, and the negative electrode contact plate 9 will be described.

本実施形態のリチウムイオン二次電池13では、負極集電リング7の電極群3に対向する面と交差する側周面に略水平方向に照射されたレーザ光で負極集電タブ8が負極集電リング7と負極当て板9とに挟まれて接合されている。このため、レーザ光が電極群3が配置された方向に照射されないのでレーザ溶接による電極群3の損傷を防止でき、リチウムイオン二次電池13の電池性能を確保することができる。   In the lithium ion secondary battery 13 of the present embodiment, the negative electrode current collection tab 8 is formed of the negative electrode current collection tab 8 by a laser beam irradiated in a substantially horizontal direction on a side circumferential surface that intersects the surface facing the electrode group 3 of the negative electrode current collection ring 7. The electric ring 7 and the negative electrode contact plate 9 are sandwiched and joined. For this reason, since the laser beam is not irradiated in the direction in which the electrode group 3 is disposed, damage to the electrode group 3 due to laser welding can be prevented, and the battery performance of the lithium ion secondary battery 13 can be ensured.

また、本実施形態のリチウムイオン二次電池13では、負極集電タブ8が負極集電リング7の外周面と負極当て板9の内周面とに挟まれて接合されている。このため、負極集電タブ8の重なりに疎密が生じても、実施例1および実施例8でも示したように、負極当て板9、負極集電タブ8および負極集電リング7の密着度を高めることができ、負極集電リング7に対するレーザ貫通を生じさせることなく確実に溶接することができる。   In the lithium ion secondary battery 13 of the present embodiment, the negative electrode current collecting tab 8 is sandwiched and joined between the outer peripheral surface of the negative electrode current collecting ring 7 and the inner peripheral surface of the negative electrode contact plate 9. For this reason, even if the overlap of the negative electrode current collection tab 8 occurs, as shown in Example 1 and Example 8, the adhesion degree of the negative electrode backing plate 9, the negative electrode current collection tab 8, and the negative electrode current collection ring 7 is maintained. Therefore, welding can be performed reliably without causing laser penetration to the negative electrode current collecting ring 7.

更に、本実施形態のリチウムイオン二次電池13では、負極当て板9が負極集電リング7の外周面に負極当て板9の両端部同士の重なりが未形成となるように配置され溶接されている。このため、実施例1および実施例9でも示したように、負極当て板9の両端部では、負極集電リング7の外周面と負極当て板9の内周面との間に隙間が形成されず、溶接ピットなどの溶接不良が抑制されるので、負極集電リング7、負極集電タブ8および負極当て板9の接合性を向上させることができる。   Furthermore, in the lithium ion secondary battery 13 of the present embodiment, the negative electrode contact plate 9 is arranged and welded to the outer peripheral surface of the negative electrode current collecting ring 7 so that the overlapping of both ends of the negative electrode contact plate 9 is not formed. Yes. Therefore, as shown in Example 1 and Example 9, a gap is formed between the outer peripheral surface of the negative electrode current collecting ring 7 and the inner peripheral surface of the negative electrode contact plate 9 at both ends of the negative electrode contact plate 9. In addition, since poor welding such as welding pits is suppressed, the bondability of the negative electrode current collector ring 7, the negative electrode current collector tab 8, and the negative electrode contact plate 9 can be improved.

また更に、本実施形態のリチウムイオン二次電池13では、負極集電リング7の外周面に負極当て板9を接合するときに、負極当て板9の両端部を先にスポットで溶接する。このため、負極当て板9が負極集電リング7の外周面に配置された(捲き付けられた)状態で対向配置される。これにより、負極当て板9の全周に亘ってレーザ溶接するときに、負極集電タブ8が外れることなく負極当て板9と負極集電リング7とで挟持することができ、レーザ溶接で容易に接合することができる。   Furthermore, in the lithium ion secondary battery 13 of the present embodiment, when the negative electrode contact plate 9 is joined to the outer peripheral surface of the negative electrode current collecting ring 7, both ends of the negative electrode contact plate 9 are first welded with spots. For this reason, the negative electrode contact plate 9 is disposed so as to face the outer peripheral surface of the negative electrode current collector ring 7. Thus, when laser welding is performed over the entire circumference of the negative electrode contact plate 9, the negative electrode current collection tab 8 can be held between the negative electrode contact plate 9 and the negative electrode current collection ring 7 without detachment, and laser welding is easy. Can be joined.

更にまた、本実施形態のリチウムイオン二次電池13では、負極集電リング7の外周面に略直交方向にレーザ照射して溶接されている。レーザ光が負極集電リング7を貫通した場合は、レーザ照射部の裏側である負極集電リング7の内周面にその痕跡が残る。このため、負極集電リング7の内周面を観察することでレーザ貫通の有無を容易に判断することができる。すなわち、電池組立前にレーザ溶接による不具合が容易に判断されることで、電池不良の発生を低減することができる。   Furthermore, in the lithium ion secondary battery 13 of the present embodiment, the outer peripheral surface of the negative electrode current collecting ring 7 is welded by laser irradiation in a substantially orthogonal direction. When the laser beam penetrates the negative electrode current collecting ring 7, the trace remains on the inner peripheral surface of the negative electrode current collecting ring 7 on the back side of the laser irradiation portion. For this reason, the presence or absence of laser penetration can be easily determined by observing the inner peripheral surface of the negative electrode current collecting ring 7. That is, it is possible to reduce the occurrence of battery failure by easily determining a defect due to laser welding before battery assembly.

従来、円柱型捲回式リチウムイオン二次電池では、集電タブが等間隔で形成された帯状の正負極板が断面渦巻状に捲回されているので、集電部品の側面に集電タブの端部を集めた場合、重なりに疎密が生じる。この場合、一定出力のレーザを集電部品の沿う方向に照射して集電タブと集電部品とを溶接するときに、重なりが密の箇所を溶接できるようにレーザ出力を高くすると、重なりが疎な箇所で入熱エネルギーが過大となり、レーザ光が集電タブおよび集電部品を貫通してしまう可能性がある。このため、電池性能を損なうこととなる。反対に、重なりが疎な箇所を溶接するのに十分なレーザ出力とすると、重なりが密な箇所で溶接不十分な状態となる。本実施形態は、これらの問題を解決することができるリチウムイオン電池13である。   Conventionally, in a cylindrical wound lithium ion secondary battery, a strip-like positive and negative electrode plate having current collecting tabs formed at equal intervals is wound in a cross-sectional spiral shape. When the ends of the are collected, the overlap is sparse. In this case, when welding the current collecting tab and the current collecting component by irradiating a laser with a constant output in the direction along the current collecting component, if the laser output is increased so that the portion where the overlap is dense can be welded, the overlap will occur. There is a possibility that the heat input energy becomes excessive in a sparse part, and the laser light penetrates the current collecting tab and the current collecting component. For this reason, battery performance will be impaired. On the other hand, if the laser output is sufficient to weld a portion where the overlap is sparse, welding is insufficient at the portion where the overlap is dense. The present embodiment is a lithium ion battery 13 that can solve these problems.

なお、実施形態では、溶接用のレーザについて特に言及していないが、本発明はレーザの種類、発振形式または照射本数などに制限されるものではない。本発明が適用可能なレーザの種類としては、例えば、YAGレーザやファイバレーザなどを挙げることができる。また、複数本のレーザ光を照射して、正負極集電タブを正負極集電リングに接合してもよい。   In the embodiment, the laser for welding is not particularly mentioned, but the present invention is not limited to the type of laser, the oscillation type, or the number of irradiations. Examples of laser types to which the present invention can be applied include YAG lasers and fiber lasers. Alternatively, a plurality of laser beams may be irradiated to join the positive and negative current collecting tabs to the positive and negative current collecting rings.

また、本実施形態では、正負極集電リングの電極群3に対向する面と交差する側周面に略水平方向に照射されたレーザ光で溶接を行う例を示したが、本発明はこれに限定されるものではない。すなわち、レーザ貫通による電極群3の損傷を招く方向でなければ水平方向から若干の照射角度の相違があっても適用することができる。このような水平方向からの角度は電池や大きさによっても異なってくる。   In the present embodiment, an example is shown in which welding is performed with a laser beam that is irradiated in a substantially horizontal direction on a side circumferential surface that intersects the surface facing the electrode group 3 of the positive and negative current collecting rings. It is not limited to. That is, the present invention can be applied even if there is a slight difference in the irradiation angle from the horizontal direction unless the direction causes damage to the electrode group 3 due to laser penetration. Such an angle from the horizontal direction varies depending on the battery and size.

更に、本実施形態では、正負極集電タブが接合される正負極集電部品としてリング状のものを例示したが、本発明はこれに限定されるものではない。例えば、円盤状の集電部品を用いて側周面に正負極集電タブを接合するようにしてもよい。   Furthermore, in this embodiment, although the ring-shaped thing was illustrated as a positive / negative current collection component to which a positive / negative current collection tab is joined, this invention is not limited to this. For example, you may make it join a positive / negative current collection tab to a side peripheral surface using a disk-shaped current collection component.

また更に、本実施形態では、正負極集電リングの外周面に帯状の正負極当て板を両端部が重ならないようにほぼ全周に亘り配置する例を示したが、本発明はこれに限定されるものではない。例えば、複数の当て板を用い、隣り合う当て板同士がそれぞれ重ならないように正負極集電リングの外周面に対向配置してもよい。   Furthermore, in the present embodiment, an example in which the belt-like positive and negative electrode contact plates are arranged over substantially the entire circumference so as not to overlap both ends on the outer peripheral surface of the positive and negative electrode current collecting ring is shown, but the present invention is limited to this. Is not to be done. For example, a plurality of contact plates may be used and arranged to face the outer peripheral surface of the positive and negative current collecting rings so that adjacent contact plates do not overlap each other.

更にまた、本実施形態では、負極集電リング7および負極当て板9の材質として銅を例示したが、本発明はこれに限定されるものではない。例えば、銅製の負極集電タブ8および負極外部端子を兼ねるニッケルメッキが施された電池缶11の両者と確実に接合することができ、高電気伝導性である材質、例えば、銅、ニッケル、銅とニッケルとの合金または銅とニッケルとの多層体などを用いることが好ましい。   Furthermore, in this embodiment, although copper was illustrated as a material of the negative electrode current collection ring 7 and the negative electrode contact plate 9, this invention is not limited to this. For example, a negative electrode current collecting tab 8 made of copper and a nickel-plated battery can 11 also serving as a negative electrode external terminal can be reliably bonded to each other, and a material having high electrical conductivity, for example, copper, nickel, copper It is preferable to use an alloy of nickel and nickel or a multilayer body of copper and nickel.

また、本実施形態では、正負極当て板の両端部の2箇所をスポットで溶接してから、全周に亘りレーザ溶接する例を示したが、本発明はこれに制限されるものではない。例えば、何点かをさらにスポットで溶接してから、全周に亘り接合してもよい。   Further, in the present embodiment, an example is shown in which laser welding is performed over the entire circumference after spot welding at two locations on both ends of the positive and negative electrode contact plates, but the present invention is not limited to this. For example, some points may be further welded with spots and then joined over the entire circumference.

更に、本実施形態では、正極活物質のリチウム含有複合酸化物としてマンガン酸リチウムを示したが、本発明はこれに限定されるものではない。例えば、結晶中のマンガンやリチウムの一部をそれら以外の元素、例えば、Fe、Co、Ni、Cr、Al、Mg、等の元素で置換又はドープした組成の異なるリチウム含有複合酸化物を用いてもよい。また、結晶構造についても特に制限されるものではなく、例えば、スピネル結晶構造や層状結晶構造であってもよい。また、本実施形態では、正極導電材として鱗片状黒鉛を例示したが、本発明はこれに限定されるものではない。電子伝導性を有している他の物質を用いてもよいし、特に導電材を用いなくてもよい。   Furthermore, in the present embodiment, lithium manganate is shown as the lithium-containing composite oxide of the positive electrode active material, but the present invention is not limited to this. For example, using a lithium-containing composite oxide having a different composition in which a part of manganese or lithium in a crystal is substituted or doped with other elements such as Fe, Co, Ni, Cr, Al, Mg, etc. Also good. Further, the crystal structure is not particularly limited, and may be, for example, a spinel crystal structure or a layered crystal structure. In the present embodiment, scaly graphite is exemplified as the positive electrode conductive material, but the present invention is not limited to this. Other materials having electron conductivity may be used, and in particular, a conductive material may not be used.

また更に、本実施形態では、負極活物質として非晶質炭素を例示したが、本発明はこれに限定されるものではない。例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維等の黒鉛系炭素材などを用いることができる。   Furthermore, in this embodiment, although amorphous carbon was illustrated as a negative electrode active material, this invention is not limited to this. For example, graphite-based carbon materials such as natural graphite, artificial graphite, and vapor grown carbon fiber can be used.

さらにまた、本実施形態では、電気自動車用の電源に用いられる比較的大型のリチウムイオン二次電池を例示したが、本発明に係るリチウムイオン二次電池は、電池の容量、サイズ、形状等に制限されるものではない。また、本発明の適用可能な電池としては、上述した電池缶に上蓋がカシメ固定されて封口されている構造の電池以外であっても構わない。このような構造の一例として正負極外部端子が電池蓋を貫通し電池容器内で軸芯を介して押し合っている状態の電池を挙げることができる   Furthermore, in the present embodiment, a relatively large lithium ion secondary battery used for a power source for an electric vehicle has been exemplified, but the lithium ion secondary battery according to the present invention has a battery capacity, size, shape, etc. It is not limited. The battery to which the present invention can be applied may be other than a battery having a structure in which the upper lid is caulked and fixed to the battery can described above. As an example of such a structure, a battery in a state where positive and negative external terminals penetrate the battery lid and are pressed through the shaft core in the battery container can be mentioned.

本発明は、電池性能を確保することができるリチウムイオン二次電池およびその製造方法を提供するため、リチウムイオン二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention contributes to the manufacture and sale of lithium ion secondary batteries in order to provide a lithium ion secondary battery and a method for producing the same that can ensure battery performance, and thus has industrial applicability.

本発明を適用した実施形態の円柱型リチウムイオン二次電池の断面図である。It is sectional drawing of the cylindrical lithium ion secondary battery of embodiment to which this invention is applied.

符号の説明Explanation of symbols

3 電極群
4 正極集電リング(集電部品)
5 正極当て板
6 正極集電タブ
7 負極集電リング(集電部品)
8 負極集電タブ
9 負極当て板
13 円柱型リチウムイオン二次電池(リチウムイオン二次電池)
3 Electrode group 4 Positive current collector ring (current collector component)
5 Positive electrode contact plate 6 Positive electrode current collecting tab 7 Negative electrode current collecting ring (current collecting component)
8 Negative electrode current collecting tab 9 Negative electrode pad 13 Cylindrical lithium ion secondary battery (lithium ion secondary battery)

Claims (5)

正負極板がセパレータを介して捲回された電極群を備え、正負極集電タブが前記正負極板の一側からそれぞれ導出され前記電極群の互いに反対側に配設されたリチウムイオン二次電池において、少なくとも前記正極集電タブおよび負極集電タブの一方は、前記電極群の端面に対向配置された集電部品の前記電極群に対向する面と交差する側周面に、略水平方向に照射されたレーザ光で接合されたことを特徴とするリチウムイオン二次電池。   Lithium ion secondary comprising positive and negative electrode plates each having an electrode group wound through a separator, and positive and negative electrode current collecting tabs respectively led out from one side of the positive and negative electrode plates and arranged on opposite sides of the electrode group In the battery, at least one of the positive electrode current collecting tab and the negative electrode current collecting tab has a substantially horizontal direction on a side circumferential surface intersecting with a surface facing the electrode group of a current collecting component disposed to face an end surface of the electrode group. A lithium ion secondary battery, which is bonded with a laser beam irradiated on the surface. 前記少なくとも正極集電タブおよび負極集電タブの一方は、前記集電部品の側周面と金属製の当て板とに挟まれて接合されたことを特徴とする請求項1に記載のリチウムイオン二次電池。   2. The lithium ion according to claim 1, wherein at least one of the positive electrode current collecting tab and the negative electrode current collecting tab is sandwiched and joined between a side peripheral surface of the current collecting component and a metal backing plate. Secondary battery. 前記当て板は、該当て板の両端部の重なりが未形成となるように前記集電部品の側周面に対向配置されたことを特徴とする請求項2に記載のリチウムイオン二次電池。   3. The lithium ion secondary battery according to claim 2, wherein the contact plate is disposed opposite to a side peripheral surface of the current collecting component so that the overlapping of both ends of the plate is not formed. 前記負極集電タブが接合された集電部品および前記当て板は、それぞれ、銅、ニッケル、銅とニッケルとの合金または銅とニッケルとの多層体を材質としたことを特徴とする請求項2または請求項3に記載のリチウムイオン二次電池。   3. The current collecting component to which the negative electrode current collecting tab is bonded and the contact plate are made of copper, nickel, an alloy of copper and nickel, or a multilayer body of copper and nickel, respectively. Or the lithium ion secondary battery of Claim 3. 請求項1に記載のリチウムイオン二次電池の製造方法であって、金属製の当て板を該当て板の両端部の重なりが未形成となるように前記集電部品の側周面に対向配置し、前記当て板の両端部をそれぞれスポットで溶接した後、前記当て板の全周に亘り接合することを特徴とする製造方法。   2. The method of manufacturing a lithium ion secondary battery according to claim 1, wherein the metal contact plate is disposed so as to face the side peripheral surface of the current collecting component so that the overlapping of both ends of the plate is not formed. Then, after welding both end portions of the backing plate with spots, they are joined over the entire circumference of the backing plate.
JP2008144230A 2008-06-02 2008-06-02 Lithium ion secondary battery Expired - Fee Related JP5248210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144230A JP5248210B2 (en) 2008-06-02 2008-06-02 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144230A JP5248210B2 (en) 2008-06-02 2008-06-02 Lithium ion secondary battery

Publications (3)

Publication Number Publication Date
JP2009289714A true JP2009289714A (en) 2009-12-10
JP2009289714A5 JP2009289714A5 (en) 2010-11-11
JP5248210B2 JP5248210B2 (en) 2013-07-31

Family

ID=41458718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144230A Expired - Fee Related JP5248210B2 (en) 2008-06-02 2008-06-02 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5248210B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198562A (en) * 2010-03-18 2011-10-06 Hitachi Vehicle Energy Ltd Secondary battery
WO2013024774A1 (en) * 2011-08-18 2013-02-21 日立ビークルエナジー株式会社 Cylindrical secondary battery
JP2014022167A (en) * 2012-07-18 2014-02-03 Shin Kobe Electric Mach Co Ltd Method for manufacturing electrode plate group for battery, and electrode plate group for battery
CN112531221A (en) * 2020-12-03 2021-03-19 天津空间电源科技有限公司 Winding type lithium ion battery with integrated electric connection structure and forming process thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992335A (en) * 1995-09-27 1997-04-04 Sony Corp Cylindrical secondary battery
JP2000251942A (en) * 1999-03-01 2000-09-14 Matsushita Battery Industrial Co Ltd Manufacture of nonaqueous electrolyte battery
JP2001118561A (en) * 1999-10-19 2001-04-27 Sony Corp Current-collecting structure and secondary battery
JP2001283824A (en) * 2000-03-30 2001-10-12 Ngk Insulators Ltd Lithium secondary battery
JP2001297745A (en) * 2000-03-16 2001-10-26 Alcatel Method of connecting electrode plate with battery terminal and battery thus obtained
JP2002050343A (en) * 2000-08-04 2002-02-15 Nissan Motor Co Ltd Manufacturing method of secondary cell and secondary cell
JP2003036825A (en) * 2001-05-18 2003-02-07 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte solution battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992335A (en) * 1995-09-27 1997-04-04 Sony Corp Cylindrical secondary battery
JP2000251942A (en) * 1999-03-01 2000-09-14 Matsushita Battery Industrial Co Ltd Manufacture of nonaqueous electrolyte battery
JP2001118561A (en) * 1999-10-19 2001-04-27 Sony Corp Current-collecting structure and secondary battery
JP2001297745A (en) * 2000-03-16 2001-10-26 Alcatel Method of connecting electrode plate with battery terminal and battery thus obtained
JP2001283824A (en) * 2000-03-30 2001-10-12 Ngk Insulators Ltd Lithium secondary battery
JP2002050343A (en) * 2000-08-04 2002-02-15 Nissan Motor Co Ltd Manufacturing method of secondary cell and secondary cell
JP2003036825A (en) * 2001-05-18 2003-02-07 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte solution battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198562A (en) * 2010-03-18 2011-10-06 Hitachi Vehicle Energy Ltd Secondary battery
WO2013024774A1 (en) * 2011-08-18 2013-02-21 日立ビークルエナジー株式会社 Cylindrical secondary battery
WO2013024542A1 (en) * 2011-08-18 2013-02-21 日立ビークルエナジー株式会社 Cylindrical secondary battery
JP2014022167A (en) * 2012-07-18 2014-02-03 Shin Kobe Electric Mach Co Ltd Method for manufacturing electrode plate group for battery, and electrode plate group for battery
CN112531221A (en) * 2020-12-03 2021-03-19 天津空间电源科技有限公司 Winding type lithium ion battery with integrated electric connection structure and forming process thereof

Also Published As

Publication number Publication date
JP5248210B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP4444989B2 (en) Lithium ion secondary battery
US7976979B2 (en) Secondary battery and method for manufacturing secondary battery
JP5103489B2 (en) Sealed battery
JP2009110751A (en) Secondary battery
JP5137516B2 (en) Sealed battery
JP4688688B2 (en) Secondary battery for large current discharge
JP2009117092A (en) Secondary battery and its manufacturing method
CN111052453B (en) Sealed battery and method for manufacturing same
JP2017010743A (en) Secondary battery and assembled battery using the same
JP2008293681A (en) Lithium-ion secondary battery
JP5619033B2 (en) Sealed battery and manufacturing method thereof
JP3627645B2 (en) Lithium secondary battery
JP5179103B2 (en) Secondary battery and method for manufacturing secondary battery
JP5248210B2 (en) Lithium ion secondary battery
JP2009266695A (en) Manufacturing method of battery, and battery pack
JP5334429B2 (en) Lithium secondary battery
JP2009289683A (en) Sealed-type secondary battery
JP2002050343A (en) Manufacturing method of secondary cell and secondary cell
JP2012185912A (en) Cylindrical secondary cell
JP2012190739A (en) Secondary battery
US20210050579A1 (en) Hermetically sealed lithium ion cells and a method for their manufacture
JP5567462B2 (en) Secondary battery
JP4428965B2 (en) Battery unit
JP4204366B2 (en) Nonaqueous electrolyte secondary battery
JP2005011673A (en) Sealed battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees