JP5134781B2 - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP5134781B2
JP5134781B2 JP2006131709A JP2006131709A JP5134781B2 JP 5134781 B2 JP5134781 B2 JP 5134781B2 JP 2006131709 A JP2006131709 A JP 2006131709A JP 2006131709 A JP2006131709 A JP 2006131709A JP 5134781 B2 JP5134781 B2 JP 5134781B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current
positive
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006131709A
Other languages
Japanese (ja)
Other versions
JP2007305383A (en
Inventor
一成 小林
聡一 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006131709A priority Critical patent/JP5134781B2/en
Publication of JP2007305383A publication Critical patent/JP2007305383A/en
Application granted granted Critical
Publication of JP5134781B2 publication Critical patent/JP5134781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水電解質電池の製造に好適な電池の製造方法に関するものである。   The present invention relates to a battery manufacturing method suitable for manufacturing a nonaqueous electrolyte battery.

リチウムイオン二次電池などに代表される高出力に適した電池では、帯状の正極とセパレータと負極とを渦巻状にして電極表面積を大きくする技術が一般的に行われている。また、負極活物質が形成される負極集電体には、物理的加工強度の観点から銅を用いるのが一般的である。この渦巻き状に捲回された電極体を備えた円筒型リチウムイオン二次電池は、近年、電気自動車用としての開発がなされている。   In a battery suitable for high output, such as a lithium ion secondary battery, a technique for enlarging the electrode surface area by spirally forming a belt-like positive electrode, a separator, and a negative electrode is generally performed. Also, copper is generally used for the negative electrode current collector on which the negative electrode active material is formed from the viewpoint of physical processing strength. In recent years, a cylindrical lithium ion secondary battery including an electrode body wound in a spiral shape has been developed for an electric vehicle.

円筒型リチウムイオン二次電池における電極体からの集電方法として、例えば特許文献1には、アルミニウム箔からなる正極集電体と銅箔からなる負極集電体のうち、少なくとも一方の集電体にセパレータの端部から突出するように円弧状の電流取出部を形成し、その電流取出部が渦巻き電極体の径方向に並設されるように各周回毎に設けられており、これら電流取出部を重ねて溶着することにより端子を形成する技術が提案されている。   As a method for collecting current from an electrode body in a cylindrical lithium ion secondary battery, for example, Patent Document 1 discloses at least one of a positive electrode current collector made of an aluminum foil and a negative electrode current collector made of a copper foil. An arc-shaped current extraction portion is formed so as to protrude from the end of the separator, and the current extraction portion is provided for each turn so as to be arranged in parallel in the radial direction of the spiral electrode body. A technique for forming a terminal by overlapping and welding the portions has been proposed.

しかしながら、特許文献1に記載の二次電池では、負極集電体に銅箔が利用されているため、過放電により負極の電位が上昇した際に負極集電体が溶解し、放電容量が急激に低下する問題があった。   However, in the secondary battery described in Patent Document 1, since the copper foil is used for the negative electrode current collector, when the potential of the negative electrode increases due to overdischarge, the negative electrode current collector dissolves and the discharge capacity rapidly increases. There was a problem of lowering.

そこで、非水電解質電池の過放電特性を改善するため、特許文献2に提案されているように、負極集電体に平均結晶粒子径が50μm以下のアルミニウムまたはアルミニウム合金を使用することが行われている。   Therefore, in order to improve the overdischarge characteristics of the nonaqueous electrolyte battery, as proposed in Patent Document 2, aluminum or an aluminum alloy having an average crystal particle diameter of 50 μm or less is used for the negative electrode current collector. ing.

この負極集電体を用いた積層型電極群は、以下に説明する方法で製造されている。まず、負極集電体に一端部を除いて負極活物質含有層を形成した後、この負極集電体の一端部に打ち抜き加工により負極タブを形成し、負極を得る。また、正極集電体に一端部を除いて正極活物質含有層を形成した後、この正極集電体の一端部に打ち抜き加工により正極タブを形成し、正極を得る。得られた正極と負極をその間にセパレータを介在させながら交互に積層することにより、電極群を得る。   A laminated electrode group using this negative electrode current collector is manufactured by the method described below. First, a negative electrode active material-containing layer is formed by removing one end of the negative electrode current collector, and then a negative electrode tab is formed by punching at one end of the negative electrode current collector to obtain a negative electrode. Moreover, after forming a positive electrode active material containing layer by excluding one end portion of the positive electrode current collector, a positive electrode tab is formed on one end portion of the positive electrode current collector by punching to obtain a positive electrode. The obtained positive electrode and negative electrode are alternately laminated with a separator interposed therebetween, thereby obtaining an electrode group.

しかしながら、上述した負極集電体は、高容量化のために厚さを薄くすると十分な強度を得られなくなるため、打ち抜き加工の際に負極タブが折れ曲がったり、千切れ易く、量産性が低下するという問題点を生じる。
特開平11−73995号公報 特開2005−123183号公報
However, the above-described negative electrode current collector cannot obtain sufficient strength when the thickness is reduced to increase the capacity. Therefore, the negative electrode tab is easily bent or broken during punching, and mass productivity is reduced. This causes the problem.
Japanese Patent Application Laid-Open No. 11-73995 JP-A-2005-123183

本発明の目的は、平均結晶粒子径が50μm以下のアルミニウムまたはアルミニウム合金からなる集電体を使用した電池の製造方法の量産性を改善することにある。   An object of the present invention is to improve the mass productivity of a battery manufacturing method using a current collector made of aluminum or an aluminum alloy having an average crystal particle diameter of 50 μm or less.

本発明に係る電池の製造方法は、一端に電流導出部が形成され、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる厚さが20μm以下の正極集電体及び前記正極集電体の少なくとも前記電流導出部を除いて形成された正極活物質含有層を含む複数の正極と、一端に電流導出部が形成され、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる厚さが20μm以下の負極集電体及び前記負極集電体の少なくとも前記電流導出部を除いて形成された負極活物質含有層を含む複数の負極とを、前記正極活物質含有層と前記負極活物質含有層の間にセパレータ及び電解質層のうちの少なくとも一方の部材が介在されるように積層し、積層物の一辺において前記正極の前記電流導出部を前記負極及び前記部材よりも突出させ、かつ前記積層物の反対側の辺において前記負極の前記電流導出部を前記正極及び前記部材よりも突出させる工程と、
前記正極の前記電流導出部を溶接により一体化して正極端子を形成すると共に、前記負極の前記電流導出部を溶接により一体化して負極端子を形成する工程と、
前記正極端子及び前記負極端子それぞれを帯状に裁断する工程と、
得られた電極群を容器内に前記正極端子と前記負極端子が前記容器の外部に引き出されるように収納する工程と
を具備することを特徴とする。
The battery manufacturing method according to the present invention includes a positive electrode current collector formed of aluminum or an aluminum alloy having an average crystal particle diameter of 50 μm or less and a thickness of 20 μm or less, and a positive electrode current collector formed at one end of the current lead-out portion. A plurality of positive electrodes including a positive electrode active material-containing layer formed excluding at least the current deriving portion, a current deriving portion formed at one end, and a thickness of 20 μm made of aluminum or an aluminum alloy having an average crystal particle diameter of 50 μm or less The following negative electrode current collector and a plurality of negative electrodes including a negative electrode active material-containing layer formed excluding at least the current deriving portion of the negative electrode current collector, the positive electrode active material-containing layer and the negative electrode active material-containing layer Are laminated so that at least one member of the separator and the electrolyte layer is interposed therebetween, and the current lead-out portion of the positive electrode is connected to the negative electrode on one side of the laminate. And a step of also protrudes from the positive electrode and the member of the current lead portion of the negative electrode at the opposite side edges of the even protrude from the member and the laminate,
Integrating the current deriving portion of the positive electrode by welding to form a positive electrode terminal, and integrating the current deriving portion of the negative electrode by welding to form a negative electrode terminal;
Cutting each of the positive terminal and the negative terminal into strips;
And storing the obtained electrode group in a container so that the positive electrode terminal and the negative electrode terminal are drawn out of the container.

また、本発明に係る電池の製造方法は、一端に電流導出部が形成され、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる厚さが20μm以下の正極集電体及び前記正極集電体の少なくとも前記電流導出部を除いて形成された正極活物質含有層を含む複数の正極と、一端に電流導出部が形成され、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる厚さが20μm以下の負極集電体及び前記負極集電体の少なくとも前記電流導出部を除いて形成された負極活物質含有層を含む複数の負極とを、前記正極活物質含有層と前記負極活物質含有層の間にセパレータ及び電解質層のうちの少なくとも一方の部材が介在されるように積層し、積層物の一辺において前記正極の前記電流導出部を前記負極及び前記部材よりも突出させ、かつ前記積層物の反対側の辺において前記負極の前記電流導出部を前記正極及び前記部材よりも突出させる工程と、
前記突出させた前記正極の前記電流導出部及び前記突出させた前記負極の前記電流導出部それぞれを帯状に裁断する工程と、
前記裁断後、前記正極の前記電流導出部を溶接により一体化して正極端子を形成すると共に、前記負極の前記電流導出部を溶接により一体化して負極端子を形成する工程と、
得られた電極群を容器内に前記正極端子と前記負極端子が前記容器の外部に引き出されるように収納する工程と
を具備することを特徴とする。
In addition, the battery manufacturing method according to the present invention includes a positive electrode current collector having a thickness of 20 μm or less and a positive electrode current collector formed of aluminum or an aluminum alloy having an average crystal particle diameter of 50 μm or less, with a current lead-out portion formed at one end. A plurality of positive electrodes including a positive electrode active material-containing layer formed excluding at least the current deriving portion of the body, and a thickness made of aluminum or an aluminum alloy having a current deriving portion formed at one end and an average crystal grain size of 50 μm or less A negative electrode current collector having a thickness of 20 μm or less and a plurality of negative electrodes including a negative electrode active material-containing layer formed excluding at least the current deriving portion of the negative electrode current collector, the positive electrode active material-containing layer and the negative electrode active material Laminating so that at least one member of the separator and the electrolyte layer is interposed between the containing layers, Serial and negative electrode and also protrudes from the member, and step also protrudes from the positive electrode and the member of the current lead portion of the negative electrode at the opposite side edges of the laminate,
A step of cutting the respective said current deriving unit of the current deriving unit and the negative electrode obtained by the projection of the is protruded the positive electrode strip,
After the cutting, forming the positive electrode terminal by integrating the current deriving portion of the positive electrode by welding, and integrating the current deriving portion of the negative electrode by welding to form a negative electrode terminal;
And storing the obtained electrode group in a container so that the positive electrode terminal and the negative electrode terminal are drawn out of the container.

本発明によれば、平均結晶粒子径が50μm以下のアルミニウムまたはアルミニウム合金からなる集電体を使用した電池の製造方法の量産性を改善することができる。   According to the present invention, the mass productivity of a battery manufacturing method using a current collector made of aluminum or an aluminum alloy having an average crystal particle diameter of 50 μm or less can be improved.

(第1の実施形態)
第1の実施形態に係る電池の製造方法を図1〜3を参照して説明する。図1は、正極、セパレータ及び負極の製造過程を示す模式図で、図2は、正極、セパレータ及び負極を積層する工程を示す模式図で、図3は、第1の実施形態に係る方法で製造された積層型電極群を示す斜視図である。
(First embodiment)
A method for manufacturing a battery according to the first embodiment will be described with reference to FIGS. FIG. 1 is a schematic diagram illustrating a manufacturing process of a positive electrode, a separator, and a negative electrode, FIG. 2 is a schematic diagram illustrating a process of stacking the positive electrode, the separator, and the negative electrode, and FIG. 3 is a method according to the first embodiment. It is a perspective view which shows the manufactured laminated electrode group.

図1に示すように、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる帯状の正極集電体の両面に長辺側の電流導出部1を除いて正極活物質含有層2を形成する。次いで、長辺方向と直交するように裁断することにより短冊状の正極3を複数枚得る。また、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる帯状の負極集電体の両面に長辺側の電流導出部4を除いて負極活物質含有層5を形成する。次いで、長辺方向と直交するように裁断することにより短冊状の負極6を複数枚得る。さらに、多孔質シート7から袋状のセパレータ8を複数枚得る。袋状のセパレータ8は、所望の寸法に裁断された多孔質シート7を長辺に沿って折り返し、重なり合った長辺部分と一方の短辺部分を熱融着させることにより得られる。熱融着領域の境界を図1において点線8aで示す。多孔質シート7としては、合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルムなどを用いることができる。   As shown in FIG. 1, a positive electrode active material-containing layer 2 is formed on both surfaces of a strip-shaped positive electrode current collector made of aluminum or an aluminum alloy having an average crystal particle diameter of 50 μm or less, except for the current deriving portion 1 on the long side. . Next, a plurality of strip-shaped positive electrodes 3 are obtained by cutting so as to be orthogonal to the long side direction. Further, the negative electrode active material-containing layer 5 is formed on both surfaces of a strip-shaped negative electrode current collector made of aluminum or an aluminum alloy having an average crystal particle diameter of 50 μm or less, except for the current deriving portions 4 on the long side. Next, a plurality of strip-shaped negative electrodes 6 are obtained by cutting so as to be orthogonal to the long side direction. Further, a plurality of bag-like separators 8 are obtained from the porous sheet 7. The bag-shaped separator 8 is obtained by folding back the porous sheet 7 cut into a desired dimension along the long side and heat-sealing the overlapping long side portion and one short side portion. The boundary of the heat fusion region is indicated by a dotted line 8a in FIG. As the porous sheet 7, a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, or the like can be used.

正極集電体及び負極集電体を平均結晶粒子径が50μm以下のアルミニウムもしくは平均結晶粒子径が50μm以下のアルミニウム合金から形成することにより、非水電解質電池の過放電特性を向上することができる。より好ましい平均結晶粒子径は、3μm以下である。また、平均結晶粒子径の下限値は0.01μmにすることが望ましい。   By forming the positive electrode current collector and the negative electrode current collector from aluminum having an average crystal particle diameter of 50 μm or less or an aluminum alloy having an average crystal particle diameter of 50 μm or less, the overdischarge characteristics of the nonaqueous electrolyte battery can be improved. . A more preferable average crystal particle size is 3 μm or less. Moreover, it is desirable that the lower limit value of the average crystal particle diameter is 0.01 μm.

アルミニウムおよびアルミニウム合金の平均結晶粒子径は、以下に説明する方法で測定される。集電体表面の組織を金属顕微鏡観察し、1mm×1mmの視野内に存在する結晶粒子数nを測定し、下記(A)式より平均結晶粒子面積S(μm2)を算出する。 The average crystal particle diameter of aluminum and aluminum alloy is measured by the method described below. The structure of the current collector surface is observed with a metal microscope, the number n of crystal grains existing in a 1 mm × 1 mm visual field is measured, and the average crystal grain area S (μm 2 ) is calculated from the following formula (A).

S=(1×106)/n (A)
ここで、(1×106)で表わされる値は1mm×1mmの視野面積(μm2)で、nは結晶粒子数である。
S = (1 × 10 6 ) / n (A)
Here, the value represented by (1 × 10 6 ) is a visual field area (μm 2 ) of 1 mm × 1 mm, and n is the number of crystal grains.

得られた平均結晶粒子面積Sを用いて下記(B)式から平均結晶粒子径d(μm)を算出する。このような平均結晶粒子径dの算出を5箇所(5視野)について行ない、その平均値を平均結晶粒子径とした。なお、想定誤差は約5%である。   The average crystal particle diameter d (μm) is calculated from the following formula (B) using the obtained average crystal particle area S. Such calculation of the average crystal particle diameter d was performed for five locations (five fields of view), and the average value was defined as the average crystal particle diameter. Note that the assumed error is about 5%.

d=2(S/π)1/2 (B)
負極集電体の厚さは、高容量化のため、20μm以下が好ましい。より好ましい範囲は12μm以下である。また、負極集電体の厚さの下限値は、3μmにすることが望ましい。一方、正極集電体の厚さは、高容量化のため、20μm以下が好ましい。より好ましい範囲は15μm以下である。また、正極集電体の厚さの下限値は、3μmにすることが望ましい。
d = 2 (S / π) 1/2 (B)
The thickness of the negative electrode current collector is preferably 20 μm or less in order to increase the capacity. A more preferable range is 12 μm or less. Further, the lower limit value of the thickness of the negative electrode current collector is desirably 3 μm. On the other hand, the thickness of the positive electrode current collector is preferably 20 μm or less in order to increase the capacity. A more preferable range is 15 μm or less. Moreover, it is desirable that the lower limit value of the thickness of the positive electrode current collector be 3 μm.

負極活物質については、例えば、Nb25、LiTi24、Li4Ti512やLi含有珪素酸化物の様な酸化物、Li含有窒化物などが適用可能である。 As the negative electrode active material, for example, an oxide such as Nb 2 O 5 , LiTi 2 O 4 , Li 4 Ti 5 O 12 or Li-containing silicon oxide, Li-containing nitride, or the like is applicable.

一方、正極活物質については限定されるものではなく、MnO2、V25、Nb25、LiTi24、Li4Ti512、LiFe24、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、ニッケルマンガン酸リチウム、ニッケルコバルト酸リチウム、コバルトマンガン酸リチウム、ニッケルコバルトマンガン酸リチウムなどの金属酸化物、あるいはフッ化黒鉛、FeS2などの無機化合物、あるいはポリアニリンやポリアセン構造体などの有機化合物などあらゆる物が適用可能である。ただし、この中で作動電位が高く、サイクル特性に優れるという点でコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムやそれらの混合物やそれらの元素の一部を他の金属元素で置換したリチウム含有酸化物がより好ましく、長期間に渡り使用されることもある非水電解質電池においては高容量で電解液や水分との反応性が低く化学的に安定であるという点でコバルト酸リチウムがさらに好ましい。 On the other hand, the positive electrode active material is not limited. MnO 2 , V 2 O 5 , Nb 2 O 5 , LiTi 2 O 4 , Li 4 Ti 5 O 12 , LiFe 2 O 4 , lithium cobaltate, nickel acid lithium, lithium manganate, lithium nickel manganese oxide, nickel cobalt oxide, lithium cobalt manganese, metal oxides such as lithium nickel cobalt manganese oxide, or fluorinated graphite, inorganic compounds such as FeS 2, or polyaniline or polyacene structure Any material such as an organic compound is applicable. However, lithium-containing oxides in which lithium cobaltate, lithium nickelate, lithium manganate, mixtures thereof, or some of these elements are substituted with other metal elements are high in terms of operating potential and excellent cycle characteristics. In a non-aqueous electrolyte battery that may be used for a long period of time, lithium cobaltate is more preferable in terms of high capacity, low reactivity with the electrolyte and moisture, and chemical stability.

以上説明した正極3、負極6及びセパレータ8を用いて電極群を作製する方法を以下に説明する。   A method for producing an electrode group using the positive electrode 3, the negative electrode 6, and the separator 8 described above will be described below.

図2に示すように、複数の正極3及び負極6をその間にセパレータ8を介在させながら交互に積層する。積層方法を具体的に説明する。正極3及び負極6のうち一方の電極を袋状のセパレータ8に収納する。図2の場合、負極6を電流導出部4がセパレータ8の開口端から突出するように収納する。セパレータ8に収納された負極6に正極3を積層する。この際、正極3の正極活物質含有層2をセパレータ8を介して負極活物質含有層5と対向させる。また、正極3の電流導出部1を、電流導出部4が突出しているセパレータ短辺とは反対側に位置するセパレータ短辺(セパレータ8の底部)から突出させる。このようにして負極6と正極3とをセパレータ8を介して交互に積層した後、必要に応じて絶縁テープ9を用いて積層体を一つに束ねることにより、図3に示す積層型電極群10を得る。得られた積層型電極群10の一方の短辺から正極3の電流導出部1が負極6及びセパレータ8よりも突出しており、他方の短辺から負極6の電流導出部4が正極3及びセパレータ8よりも突出している。   As shown in FIG. 2, a plurality of positive electrodes 3 and negative electrodes 6 are alternately stacked with a separator 8 interposed therebetween. The lamination method will be specifically described. One of the positive electrode 3 and the negative electrode 6 is accommodated in a bag-shaped separator 8. In the case of FIG. 2, the negative electrode 6 is accommodated so that the current deriving portion 4 protrudes from the opening end of the separator 8. The positive electrode 3 is laminated on the negative electrode 6 accommodated in the separator 8. At this time, the positive electrode active material-containing layer 2 of the positive electrode 3 is opposed to the negative electrode active material-containing layer 5 through the separator 8. Further, the current deriving portion 1 of the positive electrode 3 is protruded from the separator short side (the bottom portion of the separator 8) located on the side opposite to the separator short side from which the current deriving portion 4 protrudes. Thus, after laminating | stacking the negative electrode 6 and the positive electrode 3 alternately via the separator 8, the laminated body group shown in FIG. 3 is bundled together using the insulating tape 9 as needed. Get 10. The current lead-out part 1 of the positive electrode 3 protrudes from the negative electrode 6 and the separator 8 from one short side of the obtained laminated electrode group 10, and the current lead-out part 4 of the negative electrode 6 projects from the short side of the positive electrode 3 and the separator from the other short side. It protrudes more than 8.

正極3の電流導出部1を溶接により一体化することにより、正極端子を得る。また、負極6の電流導出部4を溶接により一体化することにより、負極端子を得る。溶接方法は、電流導出部間の電気的接続が良好になる手法であれば特に限定されるものではないが、例えば、レーザ溶接、抵抗溶接、超音波溶接などを採用することができる。   A positive electrode terminal is obtained by integrating the current deriving portion 1 of the positive electrode 3 by welding. Moreover, the negative electrode terminal is obtained by integrating the current deriving portion 4 of the negative electrode 6 by welding. The welding method is not particularly limited as long as the electrical connection between the current deriving portions is good. For example, laser welding, resistance welding, ultrasonic welding, or the like can be employed.

得られた積層型電極群10に非水電解質を保持させた後、この電極群10を容器内に正極端子及び負極端子が容器の外部に引き出されるように収納することにより、非水電解質電池を得る。   After the non-aqueous electrolyte is held in the obtained laminated electrode group 10, the electrode group 10 is housed in a container so that the positive electrode terminal and the negative electrode terminal are drawn out of the container, whereby a non-aqueous electrolyte battery is obtained. obtain.

第1の実施形態に係る方法によると、正極及び負極をセパレータもしくは電解質層を介して積層する際、相対する二辺から集電体の活物質非形成部(電流導出部)が突出するように積層し、その後、活物質非形成部を溶接により一体化して正負極端子を形成しているため、平均結晶粒子径が50μm以下のアルミニウムもしくは平均結晶粒子径が50μm以下のアルミニウム合金からなる正負極端子の製造時の折れ曲がりや切断を回避することができる。その結果、製造歩留まりを向上することができ、量産性を改善することができる。また、正極端子と負極端子の幅が十分に広いため、急速充電時及び急速放電時の出力特性も改善することができる。   According to the method according to the first embodiment, when the positive electrode and the negative electrode are stacked via the separator or the electrolyte layer, the active material non-formation part (current deriving part) of the current collector protrudes from two opposite sides. Since the positive and negative electrode terminals are formed by laminating and then integrating the non-active material formed part by welding, the positive and negative electrode ends made of aluminum having an average crystal particle diameter of 50 μm or less or an aluminum alloy having an average crystal particle diameter of 50 μm or less Bending and cutting during manufacturing of the child can be avoided. As a result, the manufacturing yield can be improved and the mass productivity can be improved. In addition, since the positive electrode terminal and the negative electrode terminal are sufficiently wide, the output characteristics at the time of rapid charge and rapid discharge can also be improved.

(第2の実施形態)
第2の実施形態に係る電池の製造方法を図4〜図6を参照して説明する。なお、図1〜3と同様な部材は同符号を付して説明を省略する。図4の(a)は、正極及び負極の電流導出部を裁断する工程を示す模式図で、図4の(b)は、正極及び負極の電流導出部を溶接により一体化する工程を示す模式図である。図5は、図4の積層型電極群が収納される容器を示した斜視図である。図6は、第2の実施形態に係る方法で製造された非水電解質電池を示す斜視図である。
(Second Embodiment)
A battery manufacturing method according to the second embodiment will be described with reference to FIGS. Members similar to those shown in FIGS. 4A is a schematic diagram illustrating a process of cutting the current deriving portion of the positive electrode and the negative electrode, and FIG. 4B is a schematic diagram illustrating a process of integrating the current deriving portion of the positive electrode and the negative electrode by welding. FIG. FIG. 5 is a perspective view showing a container in which the stacked electrode group of FIG. 4 is accommodated. FIG. 6 is a perspective view showing a nonaqueous electrolyte battery manufactured by the method according to the second embodiment.

まず、第1の実施形態で説明したのと同様にして正極、負極及びセパレータを作製した後、これらを第1の実施形態で説明したのと同様にして積層し、積層型電極群10を得る。次いで、図4の(a)に示す通り、正極3の電流導出部1を帯状に裁断すると共に、負極6の電流導出部4を帯状に裁断する。その後、図4の(b)に示す通り、正極3の電流導出部1を溶接により一体化して正極端子11を形成する。また、負極6の電流導出部4を溶接により一体化して負極端子12を形成する。溶接方法は、第1の実施形態で説明した通りである。   First, after producing a positive electrode, a negative electrode, and a separator in the same manner as described in the first embodiment, these are laminated in the same manner as described in the first embodiment to obtain a laminated electrode group 10. . Next, as shown in FIG. 4A, the current deriving portion 1 of the positive electrode 3 is cut into a strip shape, and the current deriving portion 4 of the negative electrode 6 is cut into a strip shape. Thereafter, as shown in FIG. 4B, the current deriving portion 1 of the positive electrode 3 is integrated by welding to form the positive electrode terminal 11. Further, the current lead-out portion 4 of the negative electrode 6 is integrated by welding to form the negative electrode terminal 12. The welding method is as described in the first embodiment.

得られた積層型電極群が収納される容器を図5に示す。図5に示すように、容器13は、ラミネートフィルムに例えば深絞り加工あるいはプレス加工を施すことにより形成された矩形状の凹部からなる電極群収納部14と、ラミネートフィルムのうちの加工が施されていない平板部からなる矩形状の蓋体15とを有する。ラミネートフィルムを点線に沿って容器側に折り返すと、電極群収納部14に蓋体15を被せることができる。蓋体15の内面は、電極群収納部14の開口部周縁の三辺16a〜16cと例えば熱融着により接合される。図6は、蓋体15が電極群収納部14の開口部周縁の三辺16a〜16cに接合され、蓋体15を下にして配置された状態を示している。ラミネートフィルムには、例えば、熱可塑性樹脂層と樹脂層との間に金属層が配置されたラミネートフィルムを使用することができる。熱可塑性樹脂層が電極群収納部14及び蓋体15の内面に位置することによって、電極群収納部14に蓋体15を熱融着により接合することができる。熱可塑性樹脂層は、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等から形成される。金属層は、アルミニウム箔もしくはアルミニウム合金箔であることが好ましい。また、樹脂層は、金属層を補強するためのものであり、ナイロン、ポリエチレンテレフタレート(PET)などの高分子から形成することができる。   A container in which the obtained stacked electrode group is stored is shown in FIG. As shown in FIG. 5, the container 13 is formed by subjecting the laminate film to an electrode group storage portion 14 formed of a rectangular recess formed by, for example, deep drawing or pressing, and processing of the laminate film. And a rectangular lid 15 made of a flat plate portion. When the laminate film is folded back along the dotted line toward the container, the electrode group storage portion 14 can be covered with the lid 15. The inner surface of the lid 15 is joined to the three sides 16a to 16c at the periphery of the opening of the electrode group storage portion 14 by, for example, heat fusion. FIG. 6 shows a state in which the lid body 15 is joined to the three sides 16 a to 16 c at the periphery of the opening of the electrode group housing portion 14 and is arranged with the lid body 15 facing down. As the laminate film, for example, a laminate film in which a metal layer is disposed between a thermoplastic resin layer and a resin layer can be used. Since the thermoplastic resin layer is positioned on the inner surfaces of the electrode group housing portion 14 and the lid body 15, the lid body 15 can be joined to the electrode group housing portion 14 by thermal fusion. The thermoplastic resin layer is made of, for example, polypropylene (PP) or polyethylene (PE). The metal layer is preferably an aluminum foil or an aluminum alloy foil. The resin layer is used to reinforce the metal layer and can be formed from a polymer such as nylon or polyethylene terephthalate (PET).

積層型電極群10は非水電解質を保持した状態で容器13の電極群収納部14に収納される。図6に示すように、正極端子11は、電極群収納部14の開口部周縁の短辺16aと蓋体15との間から外部に引き出され、負極端子12は、電極群収納部14の開口部周縁の反対側の短辺16bと蓋体15との間から外部に引き出される。電極群収納部14の開口部周縁の長辺16cと蓋体15は、熱融着により接合された後、ほぼ垂直に折り曲げられている。   The stacked electrode group 10 is accommodated in the electrode group accommodating portion 14 of the container 13 while holding the nonaqueous electrolyte. As shown in FIG. 6, the positive electrode terminal 11 is drawn out from between the short side 16 a at the periphery of the opening of the electrode group housing portion 14 and the lid 15, and the negative electrode terminal 12 is opened to the electrode group housing portion 14. It is pulled out from between the short side 16b on the opposite side of the peripheral edge of the part and the lid 15 to the outside. The long side 16c at the periphery of the opening of the electrode group housing portion 14 and the lid 15 are joined by heat fusion and then bent substantially vertically.

第2の実施形態に係る方法によると、正極及び負極をセパレータもしくは電解質層を介して積層する際、相対する二辺から集電体の活物質非形成部(電流導出部)が突出するように積層し、その後、活物質非形成部を裁断後、溶接により一体化して正負極端子を形成しているため、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる正負極端子の製造時の折れ曲がりや切断を回避することができる。また、活物質非形成部中に正負極端子として使用しない部分が含まれており、積層工程中、この部分を持って作業を行うだけで正負極端子への異物の付着や活物質の脱落を回避することができ、積層工程中の正負極の取り扱いをより容易にすることも可能である。これらの結果、製造歩留まりを向上することができ、量産性を改善することができるのである。   According to the method according to the second embodiment, when the positive electrode and the negative electrode are stacked via the separator or the electrolyte layer, the active material non-formation part (current deriving part) of the current collector protrudes from the two opposite sides. Since the positive and negative electrode terminals are formed by laminating and then cutting the active material non-forming portion and then integrated by welding, the positive and negative electrode terminals made of aluminum or aluminum alloy having an average crystal particle diameter of 50 μm or less are produced. Bending and cutting can be avoided. In addition, the active material non-formation part includes a part that is not used as a positive / negative electrode terminal. During the laminating process, it is possible to attach foreign substances to the positive / negative electrode terminal or drop off the active material simply by holding this part. This can be avoided, and the handling of the positive and negative electrodes during the lamination process can be made easier. As a result, the manufacturing yield can be improved and the mass productivity can be improved.

また、活物質非形成部を帯状に裁断した後、溶接により一体化しているため、重ね合わされた活物質非形成部間の位置ずれを少なくすることができ、急速充電時及び急速放電時の出力特性に優れた電池を実現することができる。   In addition, since the active material non-formation part is cut into a strip shape and integrated by welding, it is possible to reduce misalignment between the superimposed active material non-formation parts, and output during quick charge and rapid discharge A battery having excellent characteristics can be realized.

裁断工程は、正極端子11が容器13から引き出される方向L1と直交する方向の長さで規定される正極端子の幅A1及び負極端子12が容器13から引き出される方向L2と直交する方向の長さで規定される負極端子の幅A2が下記(1)、(2)式を満たすように行われることが望ましい。 In the cutting step, the width A 1 of the positive electrode terminal defined by the length in the direction orthogonal to the direction L 1 in which the positive electrode terminal 11 is extracted from the container 13 and the direction orthogonal to the direction L 2 in which the negative electrode terminal 12 is extracted from the container 13. It is preferable that the width A 2 of the negative electrode terminal defined by the length satisfies the following expressions (1) and (2).

0.1≦(A1/B1)<1 (1)
0.1≦(A2/B2)<1 (2)
但し、B1は、正極端子11の幅A1と平行な電極群10の幅で、B2は負極端子12の幅A2と平行な電極群10の幅である。図4の場合、電極群の幅B1と電極群の幅B2は等しい値となる。
0.1 ≦ (A 1 / B 1 ) <1 (1)
0.1 ≦ (A 2 / B 2 ) <1 (2)
However, B 1 is a width of A 1 and parallel to the electrode group 10 of the positive terminal 11, B 2 is the width of A 2 parallel to the electrode group 10 of the negative electrode terminal 12. In the case of FIG. 4, the width B 1 of the electrode group is equal to the width B 2 of the electrode group.

(第3の実施形態)
前述した第2の実施形態では、電流導出部を帯状に裁断した後、溶接を行ったが、電流導出部を溶接により一体化した後、帯状に裁断しても良い。第3の実施形態に係る方法によると、第2の実施形態と同様に、正負極端子の製造時の折れ曲がりや切断を回避することができると共に、積層工程中の正負極の取り扱いをより容易にすることが可能である。さらに、電流導出部を溶接により一体化した後に裁断しているため、裁断をより簡単に行うことができる。
(Third embodiment)
In the second embodiment described above, the current deriving portion is cut into a strip shape and then welded. However, the current deriving portion may be integrated by welding and then cut into a strip shape. According to the method according to the third embodiment, similarly to the second embodiment, bending and cutting during manufacturing of the positive and negative electrode terminals can be avoided, and handling of the positive and negative electrodes during the laminating process can be performed more easily. Is possible. Furthermore, since the current deriving portion is cut after being integrated by welding, the cutting can be performed more easily.

第1〜第3の実施形態では、セパレータの代わりに電解質層を使用しても、セパレータに電解質層を併用しても良い。電解質層として固体電解質を用いた場合には、正極/固体電解質/セパレータ/負極、正極/セパレータ/固体電解質/負極、正極/固体電解質/セパレータ/固体電解質/負極などの応用が可能である。   In the first to third embodiments, an electrolyte layer may be used instead of the separator, or an electrolyte layer may be used in combination with the separator. When a solid electrolyte is used as the electrolyte layer, applications such as positive electrode / solid electrolyte / separator / negative electrode, positive electrode / separator / solid electrolyte / negative electrode, positive electrode / solid electrolyte / separator / solid electrolyte / negative electrode are possible.

セパレータは、正極活物質含有層との対向面積または負極活物質含有層との対向面積の1.01倍以上、1.1倍以下の面積を有することが望ましい。   The separator desirably has an area that is 1.01 times or more and 1.1 times or less the area facing the positive electrode active material-containing layer or the area facing the negative electrode active material-containing layer.

また、電解質層のセパレータに対する面積比は、0.85以上、1以下であることが望ましい。   The area ratio of the electrolyte layer to the separator is desirably 0.85 or more and 1 or less.

[実施例]
以下、本発明の実施例について図面を参照して詳細に説明する。
[Example]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
LiCoO2からなる正極活物質と、炭素からなる導電補助材と、ポリフッ化ビニリデン(PVdF)からなる結着剤とを溶媒を用いて混合し、スラリーを調製した。厚さ15μmで平均結晶粒子径が50μmのシート状のアルミニウム箔(純度99.99%)からなる正極集電体の両面にスラリーを塗布することにより、正極集電体の両面に正極活物質含有層が形成された正極を作製した。得られた正極を、矩形のシート状に裁断した。なお、正極集電体の短辺方向の一辺にはスラリーを塗布せず、電流導出部とした。
Example 1
A positive electrode active material made of LiCoO 2 , a conductive auxiliary material made of carbon, and a binder made of polyvinylidene fluoride (PVdF) were mixed using a solvent to prepare a slurry. A positive electrode active material is contained on both sides of the positive electrode current collector by applying slurry to both sides of the positive electrode current collector made of a sheet-like aluminum foil (purity 99.99%) having a thickness of 15 μm and an average crystal particle diameter of 50 μm A positive electrode having a layer formed thereon was produced. The obtained positive electrode was cut into a rectangular sheet. In addition, slurry was not applied to one side in the short side direction of the positive electrode current collector, and a current derivation unit was formed.

Li4Ti512からなる負極活物質と、炭素からなる導電補助材と、ポリフッ化ビニリデン(PVdF)からなる結着剤とを溶媒を用いて混合し、スラリーを調製した。厚さ15μmで平均結晶粒子径が50μmのシート状のアルミニウム箔(純度99.99%)からなる負極集電体の両面にスラリーを塗布することにより、負極活物質含有層が形成された負極を作製した。得られた負極を矩形のシート状に裁断した。なお、負極集電体の短辺方向の一辺にはスラリーを塗布せず、電流導出部とした。 A negative electrode active material made of Li 4 Ti 5 O 12 , a conductive auxiliary material made of carbon, and a binder made of polyvinylidene fluoride (PVdF) were mixed using a solvent to prepare a slurry. A negative electrode on which a negative electrode active material-containing layer is formed by applying slurry on both sides of a negative electrode current collector made of a sheet-like aluminum foil (purity 99.99%) having a thickness of 15 μm and an average crystal particle diameter of 50 μm Produced. The obtained negative electrode was cut into a rectangular sheet. In addition, slurry was not applied to one side in the short side direction of the negative electrode current collector, and a current deriving unit was formed.

次に、ポリエチレン多孔質フィルムからなる袋状のセパレータを用意し、この袋状セパレータに負極を収納した。袋状セパレータに収納された負極と正極を負極/セパレータ/正極の順で平行に重ね、絶縁テープで固定した。このとき負極活物質含有層および正極活物質含有層の面積は同じで、活物質を形成しない電流導出部の面積も同じとした。また、セパレータの幅は正・負活物質を全て覆うのには十分であるが、活物質を形成しない部分については全て覆うことのないようにした。正負極集電体とセパレータは平行であるものの、積層物の一方の短辺において正極の電流導出部を負極及びセパレータよりも突出させ、反対側の短辺において負極の電流導出部を正極及びセパレータよりも突出させた。   Next, a bag-shaped separator made of a polyethylene porous film was prepared, and the negative electrode was housed in the bag-shaped separator. The negative electrode and the positive electrode housed in the bag-like separator were stacked in parallel in the order of negative electrode / separator / positive electrode, and fixed with an insulating tape. At this time, the areas of the negative electrode active material-containing layer and the positive electrode active material-containing layer were the same, and the area of the current deriving portion that did not form the active material was also the same. In addition, the width of the separator is sufficient to cover all the positive and negative active materials, but all the portions not forming the active material are not covered. Although the positive and negative electrode current collector and the separator are parallel, the current deriving part of the positive electrode protrudes from the negative electrode and the separator on one short side of the laminate, and the negative electrode current deriving part is formed on the opposite short side of the positive electrode and the separator. Than protruding.

正極の電流導出部をレーザ溶接により一体化し、正極端子を形成した。また、負極の電流導出部をレーザ溶接により一体化し、負極端子を形成した。以上の工程により、前述した図3に示す電極群を得た。   The current lead-out portion of the positive electrode was integrated by laser welding to form a positive electrode terminal. Further, the current lead-out portion of the negative electrode was integrated by laser welding to form a negative electrode terminal. Through the above steps, the above-described electrode group shown in FIG. 3 was obtained.

このようにして得られた電極群に非水電解質を含浸させた後、容器内に密閉することにより、設計電池容量が300mAhのリチウムイオン二次電池を製造した。   The electrode group thus obtained was impregnated with a non-aqueous electrolyte and then sealed in a container to produce a lithium ion secondary battery with a designed battery capacity of 300 mAh.

(実施例2〜3)
前述した実施例1の電極群製造工程において正負極の電流導出部をレーザ溶接により一体化する前に、正極の電流導出部を帯状に裁断し、また、負極の電流導出部を帯状に裁断した。次いで、正極の電流導出部をレーザ溶接により一体化し、正極端子を形成した。また、負極の電流導出部をレーザ溶接により一体化し、負極端子を形成した。以上の工程により、前述した図4(b)に示す電極群を得た。
(Examples 2-3)
Before the positive and negative current deriving portions were integrated by laser welding in the electrode group manufacturing process of Example 1, the positive current deriving portion was cut into a strip shape, and the negative current deriving portion was cut into a strip shape. . Next, the current lead-out part of the positive electrode was integrated by laser welding to form a positive electrode terminal. Further, the current lead-out portion of the negative electrode was integrated by laser welding to form a negative electrode terminal. Through the above steps, the electrode group shown in FIG. 4B was obtained.

このようにして得られた電極群に非水電解質を含浸させた後、容器内に密閉することにより、前述した図6に示す構造を有し、設計電池容量が300mAhのリチウムイオン二次電池を製造した。   After impregnating the electrode group obtained in this manner with a non-aqueous electrolyte, the lithium ion secondary battery having the structure shown in FIG. 6 and having a design battery capacity of 300 mAh is sealed by sealing in a container. Manufactured.

(実施例4)
前述した実施例1の電極群製造工程において正負極の電流導出部をレーザ溶接により一体化した後、正極の電流導出部を帯状に裁断して正極端子を形成した。また、負極の電流導出部を帯状に裁断して負極端子を形成した。
Example 4
In the electrode group manufacturing process of Example 1 described above, the positive and negative current deriving portions were integrated by laser welding, and then the positive current deriving portion was cut into a strip shape to form a positive electrode terminal. Moreover, the negative electrode current lead-out portion was cut into a strip shape to form a negative electrode terminal.

以上の工程により得られた電極群に非水電解質を含浸させた後、容器内に密閉することにより、前述した図6に示す構造を有し、設計電池容量が300mAhのリチウムイオン二次電池を製造した。   After impregnating the electrode group obtained by the above steps with a non-aqueous electrolyte, the lithium ion secondary battery having the structure shown in FIG. 6 and having a design battery capacity of 300 mAh is sealed by sealing in a container. Manufactured.

(比較例)
図7の(a)に示すように、厚さ15μmで平均結晶粒子径が50μmのシート状のアルミニウム箔(純度99.99%)からなる正極集電体17の両端部18を除いた両面に、実施例1と同様にして調製したスラリーを塗布することにより、正極集電体17の両面に正極活物質含有層19が形成された正極を作製した。
(Comparative example)
As shown in FIG. 7A, on both surfaces excluding both ends 18 of a positive electrode current collector 17 made of a sheet-like aluminum foil (purity 99.99%) having a thickness of 15 μm and an average crystal particle diameter of 50 μm. By applying the slurry prepared in the same manner as in Example 1, a positive electrode in which the positive electrode active material-containing layer 19 was formed on both surfaces of the positive electrode current collector 17 was produced.

次いで、図7の(b)、(c)に示すように、短辺にタブ20を有する短冊状の正極21を打ち抜き加工により形成した。   Next, as shown in FIGS. 7B and 7C, a strip-shaped positive electrode 21 having tabs 20 on the short sides was formed by punching.

また、図8の(a)に示すように、厚さ15μmで平均結晶粒子径が50μmのシート状のアルミニウム箔(純度99.99%)からなる負極集電体22の両端部23を除いた両面に、実施例1と同様にして調製したスラリーを塗布することにより、負極集電体22の両面に負極活物質含有層24が形成された負極を作製した。   Further, as shown in FIG. 8A, both end portions 23 of the negative electrode current collector 22 made of a sheet-like aluminum foil (purity 99.99%) having a thickness of 15 μm and an average crystal particle diameter of 50 μm were excluded. By applying the slurry prepared in the same manner as in Example 1 on both surfaces, a negative electrode in which the negative electrode active material-containing layer 24 was formed on both surfaces of the negative electrode current collector 22 was produced.

次いで、図8の(b)、(c)に示すように、短辺にタブ25を有する短冊状の負極26を打ち抜き加工により形成した。   Next, as shown in FIGS. 8B and 8C, a strip-shaped negative electrode 26 having tabs 25 on the short sides was formed by punching.

次いで、図9に示すように、ポリエチレン多孔質フィルムからなる袋状のセパレータ27に、負極26をタブ25がセパレータ27の開口部から突出するように収納した。このセパレータ27に収納済みの負極26と、正極21とを交互に積層した。その際、積層物の一方の短辺において負極26のタブ25を正極21よりも突出させ、反対側の短辺において正極21のタブ20を負極26よりも突出させた。   Next, as shown in FIG. 9, the negative electrode 26 was stored in a bag-like separator 27 made of a polyethylene porous film so that the tab 25 protruded from the opening of the separator 27. The negative electrodes 26 already stored in the separator 27 and the positive electrodes 21 were alternately stacked. At that time, the tab 25 of the negative electrode 26 protruded from the positive electrode 21 on one short side of the laminate, and the tab 20 of the positive electrode 21 protruded from the negative electrode 26 on the other short side.

ひきつづき、正極21のタブ20をレーザ溶接により一体化し、また、負極26のタブ25をレーザ溶接により一体化した。得られた電極群は、絶縁テープ28により固定した。   Subsequently, the tab 20 of the positive electrode 21 was integrated by laser welding, and the tab 25 of the negative electrode 26 was integrated by laser welding. The obtained electrode group was fixed with an insulating tape 28.

このようにして得られた電極群に非水電解質を含浸させた後、容器内に密閉することにより、設計電池容量が300mAhのリチウムイオン二次電池を製造した。   The electrode group thus obtained was impregnated with a non-aqueous electrolyte and then sealed in a container to produce a lithium ion secondary battery with a designed battery capacity of 300 mAh.

得られた二次電池について、25±3℃、相対湿度70%以下の恒温室で1C電流で充放電を1回実施後、20C電流で急速放電し、そのときに放電された電気容量の対初期充電電気量との相対値を求めた。その結果を下記表1に示す。表中の評価結果は電池をそれぞれ6個ずつ作製したときの平均値である。   The obtained secondary battery was charged and discharged once at 1 C current in a constant temperature room at 25 ± 3 ° C. and a relative humidity of 70% or less, then rapidly discharged at 20 C current, and the pair of electric capacities discharged at that time. A relative value with respect to the initial charge electricity amount was obtained. The results are shown in Table 1 below. The evaluation results in the table are average values when six batteries are produced.

また、電池製造中に端子やタブの切断を生じ、電池を製造することができなかった製造不良数を下記表1に併記する(母数が100個)。さらに、長さ比(A1/B1)及び(A2/B2)を下記表1に併記する。なお、電極群の幅B1は、電極群の幅B2と等しい値であった。

Figure 0005134781
In addition, the number of manufacturing defects in which terminals and tabs were cut during battery manufacture and the battery could not be manufactured is also shown in Table 1 below (the parameter is 100). Further, the length ratios (A 1 / B 1 ) and (A 2 / B 2 ) are also shown in Table 1 below. The width B 1 of the electrode group was equal to the width B 2 of the electrode group.
Figure 0005134781

表1から明らかなように、実施例1〜3の製造方法では、正極と負極を積層した後に集電体の活物質非形成部を溶接により一体化して端子を形成しているため、製造中に正負極端子が変形・切断される不良が少なく、量産性に優れていることがわかる。これに対し、比較例の製造方法では、打ち抜き加工により正負極タブを形成した後、正極及び負極を積層して電極群を作製しているため、製造中に正負極タブが折れ曲がったり、千切れたりする不良が多発した。   As is apparent from Table 1, in the manufacturing methods of Examples 1 to 3, since the positive electrode and the negative electrode were laminated, the active material non-formation part of the current collector was integrated by welding to form a terminal. In addition, it can be seen that the positive and negative terminals are less likely to be deformed and cut, and the mass productivity is excellent. On the other hand, in the manufacturing method of the comparative example, after forming the positive and negative electrode tabs by punching, the positive and negative electrode tabs are laminated to produce an electrode group. Many failures occurred.

また、実施例2,4の比較から、集電体の活物質非形成部を帯状に裁断した後、溶接により一体化して端子を形成する実施例2の方が、初期充電電気量に対する相対値が高く、大電流特性に優れていることがわかった。   In addition, from the comparison between Examples 2 and 4, Example 2 in which the active material non-formation part of the current collector is cut into a strip shape and then integrated by welding to form the terminal is relative to the initial charge electricity amount. It was found that the high current characteristics were excellent.

以上説明のとおり、本発明によれば製造生産効率がよく、しかも高出力密度を向け電池の電極構造を提供できる。   As described above, according to the present invention, it is possible to provide a battery electrode structure with good production and production efficiency and high power density.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

正極、セパレータ及び負極の製造過程を示す模式図。The schematic diagram which shows the manufacturing process of a positive electrode, a separator, and a negative electrode. 正極、セパレータ及び負極を積層する工程を示す模式図。The schematic diagram which shows the process of laminating | stacking a positive electrode, a separator, and a negative electrode. 第1の実施形態に係る方法で製造された積層型電極群を示す斜視図。The perspective view which shows the laminated electrode group manufactured by the method which concerns on 1st Embodiment. 正負極端子を形成する工程を示す模式図。The schematic diagram which shows the process of forming a positive / negative electrode terminal. 図4の積層型電極群が収納される容器を示した斜視図。The perspective view which showed the container in which the laminated electrode group of FIG. 4 is accommodated. 第2の実施形態に係る方法で製造された非水電解質電池を示す斜視図。The perspective view which shows the nonaqueous electrolyte battery manufactured by the method which concerns on 2nd Embodiment. 比較例の電池における正極の製造過程を示す斜視図。The perspective view which shows the manufacturing process of the positive electrode in the battery of a comparative example. 比較例の電池における負極の製造過程を示す斜視図。The perspective view which shows the manufacturing process of the negative electrode in the battery of a comparative example. 比較例の電池における電極群の作製工程を示す斜視図。The perspective view which shows the preparation process of the electrode group in the battery of a comparative example.

符号の説明Explanation of symbols

1,4…電流導出部、2…正極活物質含有層、3…正極、5…負極活物質含有層、6…負極、8…セパレータ、9…絶縁テープ、10…積層型電極群、11…正極端子、12…負極端子、13…容器、14…電極群収納部、15…蓋体。   DESCRIPTION OF SYMBOLS 1,4 ... Current derivation | leading-out part, 2 ... Positive electrode active material containing layer, 3 ... Positive electrode, 5 ... Negative electrode active material containing layer, 6 ... Negative electrode, 8 ... Separator, 9 ... Insulating tape, 10 ... Multilayer electrode group, 11 ... Positive terminal 12, negative electrode terminal 13, container 14, electrode group storage unit 15, lid.

Claims (5)

一端に電流導出部が形成され、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる厚さが20μm以下の正極集電体及び前記正極集電体の少なくとも前記電流導出部を除いて形成された正極活物質含有層を含む複数の正極と、一端に電流導出部が形成され、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる厚さが20μm以下の負極集電体及び前記負極集電体の少なくとも前記電流導出部を除いて形成された負極活物質含有層を含む複数の負極とを、前記正極活物質含有層と前記負極活物質含有層の間にセパレータ及び電解質層のうちの少なくとも一方の部材が介在されるように積層し、積層物の一辺において前記正極の前記電流導出部を前記負極及び前記部材よりも突出させ、かつ前記積層物の反対側の辺において前記負極の前記電流導出部を前記正極及び前記部材よりも突出させる工程と、
前記正極の前記電流導出部を溶接により一体化して正極端子を形成すると共に、前記負極の前記電流導出部を溶接により一体化して負極端子を形成する工程と、
前記正極端子及び前記負極端子それぞれを帯状に裁断する工程と、
得られた電極群を容器内に前記正極端子と前記負極端子が前記容器の外部に引き出されるように収納する工程と
を具備することを特徴とする電池の製造方法。
A current lead-out portion is formed at one end, and is formed excluding at least the current lead-out portion of the positive electrode current collector made of aluminum or aluminum alloy having an average crystal particle diameter of 50 μm or less and a thickness of 20 μm or less and the positive electrode current collector. A plurality of positive electrodes including a positive electrode active material-containing layer, a negative electrode current collector having an average crystal particle diameter of 50 μm or less and a thickness of 20 μm or less, a negative electrode current collector having a current lead-out portion formed at one end, and the negative electrode collector A plurality of negative electrodes including a negative electrode active material-containing layer formed excluding at least the current deriving portion of an electric body, and a separator and an electrolyte layer between the positive electrode active material-containing layer and the negative electrode active material-containing layer. Laminating so that at least one member is interposed, and projecting the current deriving portion of the positive electrode from the negative electrode and the member on one side of the laminate, A step of also protrudes from the positive electrode and the member of the current lead portion of the negative electrode at the opposite side edges of the laminate One,
Integrating the current deriving portion of the positive electrode by welding to form a positive electrode terminal, and integrating the current deriving portion of the negative electrode by welding to form a negative electrode terminal;
Cutting each of the positive terminal and the negative terminal into strips;
A method of manufacturing a battery comprising: storing the obtained electrode group in a container so that the positive electrode terminal and the negative electrode terminal are drawn out of the container.
一端に電流導出部が形成され、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる厚さが20μm以下の正極集電体及び前記正極集電体の少なくとも前記電流導出部を除いて形成された正極活物質含有層を含む複数の正極と、一端に電流導出部が形成され、平均結晶粒子径が50μm以下のアルミニウムもしくはアルミニウム合金からなる厚さが20μm以下の負極集電体及び前記負極集電体の少なくとも前記電流導出部を除いて形成された負極活物質含有層を含む複数の負極とを、前記正極活物質含有層と前記負極活物質含有層の間にセパレータ及び電解質層のうちの少なくとも一方の部材が介在されるように積層し、積層物の一辺において前記正極の前記電流導出部を前記負極及び前記部材よりも突出させ、かつ前記積層物の反対側の辺において前記負極の前記電流導出部を前記正極及び前記部材よりも突出させる工程と、
前記突出させた前記正極の前記電流導出部及び前記突出させた前記負極の前記電流導出部それぞれを帯状に裁断する工程と、
前記裁断後、前記正極の前記電流導出部を溶接により一体化して正極端子を形成すると共に、前記負極の前記電流導出部を溶接により一体化して負極端子を形成する工程と、
得られた電極群を容器内に前記正極端子と前記負極端子が前記容器の外部に引き出されるように収納する工程と
を具備することを特徴とする電池の製造方法。
A current lead-out portion is formed at one end, and is formed excluding at least the current lead-out portion of the positive electrode current collector made of aluminum or aluminum alloy having an average crystal particle diameter of 50 μm or less and a thickness of 20 μm or less and the positive electrode current collector. A plurality of positive electrodes including a positive electrode active material-containing layer, a negative electrode current collector having an average crystal particle diameter of 50 μm or less and a thickness of 20 μm or less, a negative electrode current collector having a current lead-out portion formed at one end, and the negative electrode collector A plurality of negative electrodes including a negative electrode active material-containing layer formed excluding at least the current deriving portion of an electric body, and a separator and an electrolyte layer between the positive electrode active material-containing layer and the negative electrode active material-containing layer. Laminating so that at least one member is interposed, and projecting the current deriving portion of the positive electrode from the negative electrode and the member on one side of the laminate, A step of also protrudes from the positive electrode and the member of the current lead portion of the negative electrode at the opposite side edges of the laminate One,
A step of cutting the respective said current deriving unit of the current deriving unit and the negative electrode obtained by the projection of the is protruded the positive electrode strip,
After the cutting, forming the positive electrode terminal by integrating the current deriving portion of the positive electrode by welding, and integrating the current deriving portion of the negative electrode by welding to form a negative electrode terminal;
A method of manufacturing a battery comprising: storing the obtained electrode group in a container so that the positive electrode terminal and the negative electrode terminal are drawn out of the container.
前記裁断工程は、前記正極端子が前記容器から引き出される方向と直交する方向の長さで規定される前記正極端子の幅A1及び前記負極端子が前記容器から引き出される方向と直交する方向の長さで規定される前記負極端子の幅A2が下記(1)、(2)式を満たすように行われることを特徴とする請求項または記載の電池の製造方法。
0.1≦(A1/B1)<1 (1)
0.1≦(A2/B2)<1 (2)
但し、B1は前記正極端子の幅A1と平行な前記電極群の幅で、B2は前記負極端子の幅A2と平行な前記電極群の幅である。
The cutting step, the direction in which the positive electrode terminal width A 1 and the negative terminal of said positive terminal defined by the length of the direction perpendicular to the direction drawn from the container perpendicular to the direction drawn from the vessel length the negative terminal of the width a 2 is the following (1), (2) method for producing a battery according to claim 1 or 2, wherein the performed so as to satisfy the formula specified in of.
0.1 ≦ (A 1 / B 1 ) <1 (1)
0.1 ≦ (A 2 / B 2 ) <1 (2)
Where B 1 is the width of the electrode group parallel to the width A 1 of the positive terminal, and B 2 is the width of the electrode group parallel to the width A 2 of the negative terminal.
前記セパレータは、前記正極活物質含有層との対向面積または前記負極活物質含有層との対向面積の1.01倍以上、1.1倍以下の面積を有することを特徴とする請求項1〜いずれか1項記載の電池の製造方法。 The separator has an area that is 1.01 times or more and 1.1 times or less of an area facing the positive electrode active material-containing layer or an area facing the negative electrode active material-containing layer. 3. The method for producing a battery according to any one of 3 above. 前記電解質層の前記セパレータに対する面積比が0.85以上、1以下であることを特徴とする請求項1〜いずれか1項記載の電池の製造方法。 The area ratio with respect to the separator of the electrolyte layer is 0.85 or higher, according to claim 1-4 method of manufacturing a battery according to any one of the preceding, wherein the 1 or less.
JP2006131709A 2006-05-10 2006-05-10 Battery manufacturing method Expired - Fee Related JP5134781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131709A JP5134781B2 (en) 2006-05-10 2006-05-10 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131709A JP5134781B2 (en) 2006-05-10 2006-05-10 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2007305383A JP2007305383A (en) 2007-11-22
JP5134781B2 true JP5134781B2 (en) 2013-01-30

Family

ID=38839149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131709A Expired - Fee Related JP5134781B2 (en) 2006-05-10 2006-05-10 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5134781B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080058772A (en) * 2006-12-22 2008-06-26 에스케이에너지 주식회사 Manufacturing method of electrode for battery
EP2385571A1 (en) * 2009-01-30 2011-11-09 Panasonic Corporation Nonaqueous electrolyte secondary battery, and method for manufacturing same
JP7084299B2 (en) * 2018-12-27 2022-06-14 三洋電機株式会社 Secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715309B2 (en) * 1988-09-20 1998-02-18 宇部興産株式会社 Semi-solid polymer electrolyte membrane and lithium battery using the same
JPH11162516A (en) * 1997-11-25 1999-06-18 Fuji Photo Film Co Ltd Lithium ion battery and its manufacture
JP2000100414A (en) * 1998-09-24 2000-04-07 Toyota Motor Corp Collecting structure of electrode
JP2000195494A (en) * 1998-10-21 2000-07-14 Seiko Instruments Inc Non-aqueous electrolyte secondary battery
JP2001338686A (en) * 2000-05-26 2001-12-07 Mitsubishi Chemicals Corp Unit cell element and flat laminated cell
JP4428905B2 (en) * 2002-02-01 2010-03-10 日本電気株式会社 Flat battery and battery pack using the same
JP3866740B2 (en) * 2003-09-26 2007-01-10 株式会社東芝 Non-aqueous electrolyte secondary battery, assembled battery and battery pack
JP3769291B2 (en) * 2004-03-31 2006-04-19 株式会社東芝 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2007305383A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP3743781B2 (en) Nonaqueous electrolyte secondary battery
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP5558265B2 (en) battery
JP4416770B2 (en) Assembled battery
JP5242364B2 (en) Flat secondary battery
JP6250921B2 (en) battery
JP4293501B2 (en) Electrochemical devices
WO2011002064A1 (en) Laminated battery
WO2015147066A1 (en) Multilayer battery and manufacturing method therefor
JP4945189B2 (en) Electrode manufacturing method
US20110070477A1 (en) Stack type battery
JP2009110751A (en) Secondary battery
JP2002252023A (en) Laminating type secondary battery
JP4976174B2 (en) Sealed secondary battery
JP5483587B2 (en) Battery and manufacturing method thereof
JP4928827B2 (en) battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP2008262788A (en) Nonaqueous electrolyte battery
JP2011129446A (en) Laminated type battery
JP5134781B2 (en) Battery manufacturing method
JP2009245709A (en) Energy storage device module
JP5334429B2 (en) Lithium secondary battery
JP5472941B2 (en) Non-aqueous electrolyte battery
JP2019160544A (en) Power storage element
JP2016039041A (en) Power storage element and manufacturing method for the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees