JP6239222B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6239222B2
JP6239222B2 JP2011237320A JP2011237320A JP6239222B2 JP 6239222 B2 JP6239222 B2 JP 6239222B2 JP 2011237320 A JP2011237320 A JP 2011237320A JP 2011237320 A JP2011237320 A JP 2011237320A JP 6239222 B2 JP6239222 B2 JP 6239222B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode current
negative electrode
current collecting
collecting tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011237320A
Other languages
Japanese (ja)
Other versions
JP2013097903A (en
Inventor
匡史 森田
匡史 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011237320A priority Critical patent/JP6239222B2/en
Publication of JP2013097903A publication Critical patent/JP2013097903A/en
Application granted granted Critical
Publication of JP6239222B2 publication Critical patent/JP6239222B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、外部短絡に対して安全性に優れ、しかも耐振動性も良好な非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery that is excellent in safety against external short circuits and also has good vibration resistance.

今日の携帯電話機、携帯型パーソナルコンピューター、携帯型音楽プレイヤー等の携帯型電子機器の駆動電源として、さらには、ハイブリッド電気自動車(HEV、PHEV)や電気自動車(EV)用の電源として、高エネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解液二次電池が広く利用されている。   High energy density as a driving power source for portable electronic devices such as today's mobile phones, portable personal computers, portable music players, as well as power sources for hybrid electric vehicles (HEV, PHEV) and electric vehicles (EV) Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries having a high capacity are widely used.

非水電解液二次電池は、例えば円筒形のものであれば、正極板と負極板とをセパレータを介して巻回した円筒状の巻回電極体を作製し、この円筒状の巻回電極体を円筒状の電池外装体内に挿入すると共に非水電解液を注入し、正極端子ないし負極端子を、絶縁体によって絶縁された状態となるように、円筒状の電池外装体の開口部に密閉状態に取り付けることによって作製されている。   If the nonaqueous electrolyte secondary battery is, for example, a cylindrical one, a cylindrical wound electrode body in which a positive electrode plate and a negative electrode plate are wound via a separator is produced, and this cylindrical wound electrode The body is inserted into the cylindrical battery casing and a non-aqueous electrolyte is injected, and the positive terminal or the negative terminal is sealed in the opening of the cylindrical battery casing so as to be insulated by the insulator. It is made by attaching to the state.

また、角形のものであれば、正極板と負極板とをセパレータを介して積層ないし偏平状に巻回した偏平状の電極体を作製し、この偏平状の電極体を角形の電池外装体内に挿入し、正極端子及び負極端子の少なくとも一方が設けられた封口体を角形の電池外装体の開口部に嵌合させた後、嵌合部をレーザ溶接し、その後電解液注入孔から各種電解液を注入してこの電解液注入孔を封止することにより作製されている。   Also, if it is rectangular, a flat electrode body in which a positive electrode plate and a negative electrode plate are laminated or flatly wound via a separator is produced, and this flat electrode body is placed in a rectangular battery outer body. After inserting and sealing the sealing body provided with at least one of the positive electrode terminal and the negative electrode terminal into the opening of the rectangular battery exterior body, the fitting part is laser welded, and then various electrolyte solutions from the electrolyte injection hole And the electrolyte solution injection hole is sealed.

これらの円筒形非水電解液二次電池や角形非水電解液二次電池は、例えば内部短絡や外部短絡等に際する熱暴走を抑制するため、正極集電タブないし負極集電タブとして幅が他の部分よりも狭い部分が形成されたものを用いた例が知られている(下記特許文献1〜3参照)。このような正極集電タブないし負極集電タブに幅が狭い部分が形成された非水電解液二次電池の一例を、図4及び図5を用いて説明する。なお、図4Aは下記特許文献1に開示されている円筒形非水電解液二次電池の部分縦断面図であり、図4Bは正極板ないし負極板の展開図であり、図4Cは巻回電極体の斜視図であり、図4Dは正極集電タブの斜視図である。また、図5は図4AのV部分の拡大図である。   These cylindrical non-aqueous electrolyte secondary batteries and prismatic non-aqueous electrolyte secondary batteries have a width as a positive current collector tab or a negative current collector tab in order to suppress thermal runaway during, for example, an internal short circuit or an external short circuit. There are known examples in which a narrower portion is formed than other portions (see Patent Documents 1 to 3 below). An example of a non-aqueous electrolyte secondary battery in which a narrow portion is formed on such a positive electrode current collecting tab or a negative electrode current collecting tab will be described with reference to FIGS. 4A is a partial longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery disclosed in Patent Document 1 below, FIG. 4B is a development view of a positive electrode plate or a negative electrode plate, and FIG. 4C is a winding. 4D is a perspective view of an electrode body, and FIG. 4D is a perspective view of a positive electrode current collecting tab. FIG. 5 is an enlarged view of a portion V in FIG. 4A.

この円筒形の非水電解液二次電池50は、正極板51と負極板52とをセパレータ(図示省略)を介して重ね合わせて巻回させた巻回電極体53を非水電解液(図示省略)と共に円筒状の電池外装缶54内に収容した構成を備えている。正極板51及び負極板52には各々正極集電タブ55ないし負極集電タブ56が接続されている。円筒状の電池外装缶54の開口部は、絶縁部材57によって絶縁された状態で、正極端子58によって密閉されている。正極集電タブ55は、通常はアルミニウム又はアルミニウム合金製であり、S字状に折り曲げられ、正極端子58に接続されている。また、負極集電タブ56は、通常は銅又は銅合金製であり、円筒状の電池外装缶54の底部に接続されている。   The cylindrical non-aqueous electrolyte secondary battery 50 includes a wound electrode body 53 in which a positive electrode plate 51 and a negative electrode plate 52 are overlapped and wound via a separator (not shown). And a configuration housed in a cylindrical battery outer can 54. A positive electrode current collecting tab 55 or a negative electrode current collecting tab 56 is connected to the positive electrode plate 51 and the negative electrode plate 52, respectively. The opening of the cylindrical battery outer can 54 is sealed by a positive electrode terminal 58 while being insulated by an insulating member 57. The positive electrode current collecting tab 55 is usually made of aluminum or an aluminum alloy, is bent in an S shape, and is connected to the positive electrode terminal 58. The negative electrode current collecting tab 56 is usually made of copper or a copper alloy, and is connected to the bottom of the cylindrical battery outer can 54.

この正極集電タブ55には、巻回電極体53の外方、即ち巻回電極体53の正極端子58に接続されている部位よりも巻回電極体53側に、切り欠き部55a(図4D参照)が形成されている。この切り欠き部55aは、切り欠き部55aにおける電流密度が切り欠き部55a以外の正極集電タブ55の電流密度より高くなるように設けられるものである。   The positive electrode current collecting tab 55 has a notch 55 a (see FIG. 5) on the outer side of the wound electrode body 53, that is, on the wound electrode body 53 side than the portion connected to the positive electrode terminal 58 of the wound electrode body 53. 4D) is formed. The notch 55a is provided so that the current density in the notch 55a is higher than the current density of the positive electrode current collecting tab 55 other than the notch 55a.

特開平05−121064号公報JP 05-121064 A 特開2001−202946号公報JP 2001-202946 A 特表2004−119383号公報Special table 2004-119383 gazette

上述の特許文献1に開示されている非水電解液二次電池50によれば、外部短絡や釘刺し等による内部短絡が生じた場合には、正極集電タブ55の切り欠き部55aの電流密度が増大し、切り欠き部55aが発熱して溶断するので、大電流が集中することで生じる熱暴走を防止することができるという効果を奏する。   According to the non-aqueous electrolyte secondary battery 50 disclosed in Patent Document 1 described above, when an internal short circuit occurs due to an external short circuit or a nail penetration, the current in the notch 55a of the positive electrode current collecting tab 55 is determined. Since the density increases and the notch 55a generates heat and melts, the thermal runaway caused by the concentration of a large current can be prevented.

一方、非水電解液二次電池の正極集電タブとして、S字状に折り曲げられているが、切り欠き部を有さず、一定の幅及び厚みを有するものが使用されることがある。このような場合でも、例えば外部短絡や釘刺し等による内部短絡が生じた場合には正極集電タブに大電流が流れて一部が溶断することがあるが、この溶断が生じる位置は、S字状折り曲げられた正極集電タブの屈曲部のうち、巻回電極体側、すなわち、図5に示すX部分で多く観察されている。   On the other hand, the positive electrode current collecting tab of the non-aqueous electrolyte secondary battery is bent in an S shape, but may have a notch portion and a certain width and thickness. Even in such a case, for example, when an internal short circuit due to an external short circuit or a nail stab occurs, a large current may flow through the positive electrode current collecting tab, and a part thereof may be melted. Of the bent portions of the positive electrode current collector tab bent in a letter shape, many are observed on the side of the wound electrode body, that is, in the X portion shown in FIG.

この理由は、必ずしも明確ではないが、X部分が、正極板51と正極集電タブ55との超音波溶接部と、円筒状の電池外装缶54の開口部に設けられた正極端子58と正極集電タブ55との超音波溶接部の中点であることが考えられる。このような溶断部が巻回電極体53に近ければ近い程、溶断に伴って巻回電極体53内での内部短絡を引き起こす可能性が大きくなる。そのために、正極集電タブ55に溶断が生じる場合には、この溶断部が必ず巻回電極体53から離間した位置で生じるようにする必要がある。   The reason for this is not necessarily clear, but the X portion includes an ultrasonic weld between the positive electrode plate 51 and the positive electrode current collecting tab 55, and a positive electrode terminal 58 and a positive electrode provided at the opening of the cylindrical battery outer can 54. It may be the midpoint of the ultrasonic weld with the current collecting tab 55. The closer the fusing part is to the wound electrode body 53, the greater the possibility of causing an internal short circuit in the wound electrode body 53 with fusing. Therefore, when the positive electrode current collecting tab 55 is melted, it is necessary for the melted portion to be generated at a position separated from the wound electrode body 53.

また、振動試験等のように、非水電解液二次電池50が激しく揺さぶられる外力が何度も加えられると、S字状折り曲げられた正極集電タブの屈曲部のうち、X部分だけでなく、正極端子58に近い屈曲点Y部分においても正極集電タブ55が破断することが多く観察されている。そのため、正極集電タブ55がS字状に折り曲げられて正極端子58に接続されている場合、大電流が流れることによる正極集電タブ55の溶断部が巻回電極体53から離れた位置となるだけでなく、上述したX点及びY点が振動による破断に耐えることができる強度を備えている必要がある。なお、負極集電タブについては、銅又は銅合金製のものが主であり、これらの銅又は銅合金はアルミニウム又はアルミニウム合金製の正極集電タブに比すると、機械的強度が強いので振動によって破断し難い。   Further, when an external force that shakes the nonaqueous electrolyte secondary battery 50 violently is applied many times, such as in a vibration test, only the X portion of the bent portion of the positive electrode current collecting tab that is bent in an S shape is used. In many cases, the positive electrode current collecting tab 55 is observed to break even at the bending point Y near the positive electrode terminal 58. Therefore, when the positive electrode current collecting tab 55 is bent in an S shape and connected to the positive electrode terminal 58, a position where the melted portion of the positive electrode current collecting tab 55 due to a large current flows is separated from the wound electrode body 53. In addition, the X point and the Y point described above need to be strong enough to withstand breakage due to vibration. The negative electrode current collecting tab is mainly made of copper or a copper alloy, and these copper or copper alloys have higher mechanical strength than the positive electrode current collecting tab made of aluminum or aluminum alloy. Hard to break.

本発明は、上述した従来技術の問題点を解決すべくなされたものであり、S字状に折り曲げられた正極集電タブの溶断点が巻回電極体から離間した位置に形成され、かつ、正極集電タブのS字状の屈曲点部分が振動による破断に耐える強度を備えた非水電解液二次電池を提供することを目的をする。   The present invention has been made to solve the above-described problems of the prior art, the fusing point of the positive electrode current collector tab bent in an S-shape is formed at a position separated from the wound electrode body, and An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which an S-shaped bending point portion of a positive electrode current collecting tab has a strength that can withstand breakage due to vibration.

上記目的を達成するため、本発明の非水電解液二次電池は、正極板及び負極板がセパレータによって電気的に絶縁された状態で巻回された巻回電極体と、非水電解液とが、円筒形の電池外装缶内に収納され、前記正極板に接続された正極集電タブが、S字状に折り曲げられて、前記円筒の電池外装缶の開口部に前記電池外装缶とは絶縁された状態で固定された正極端子に電気的に接続されている非水電解液二次電池において、
前記正極集電タブは、アルミニウム又はアルミニウム合金製であり、前記S字状に折り曲げられた2つの屈曲点の間に切り欠き部が形成され、前記切り欠き部の体積の割合は、長さ1.00mm当たり25.0〜37.5%であることを特徴とする。
In order to achieve the above object, a non-aqueous electrolyte secondary battery of the present invention comprises a wound electrode body wound with a positive electrode plate and a negative electrode plate electrically insulated by a separator, a non-aqueous electrolyte solution, Is housed in a cylindrical battery outer can, and the positive electrode current collecting tab connected to the positive electrode plate is bent into an S shape , and the battery outer can and the opening are formed in the cylindrical battery outer can. Is a non-aqueous electrolyte secondary battery electrically connected to a positive terminal fixed in an insulated state,
The positive electrode current collecting tab is made of aluminum or an aluminum alloy, a notch is formed between two bending points bent in the S shape, and the volume ratio of the notch is 1 in length. It is characterized by being 25.0 to 37.5% per 0.00 mm.

非水電解液二次電池は、通常は正極板としてアルミニウム箔又はアルミニウム合金箔の両面に正極活物質を含有する正極合剤層が形成されたものが使用されているので、それに合わせて正極集電タブとしてはアルミニウム又はアルミニウム合金製のものが使用される。本発明の非水電解液二次電池における正極集電タブは、S字状に折り曲げられた2つの屈曲点の間に切り欠き部が形成され、切り欠き部の体積の割合は、長さ1.00mm当たり25.0〜37.5%とされているので、正極集電タブの幅が広くてもそれに応じた切り欠き部が形成されていることになり、外部短絡ないし内部短絡時に大電流が流れても、切り欠き部以外では溶断せず、切り欠き部が正確に溶断するようにできる。また、この溶断部となる切り欠き部が巻回電極体から離間したS字状に折り曲げられた2つの屈曲点の間に形成されているので、正極集電タブの切り欠き部が溶断しても、更なる内部短絡に繋がる虞が抑制される。   A non-aqueous electrolyte secondary battery usually uses a positive electrode plate in which a positive electrode mixture layer containing a positive electrode active material is formed on both surfaces of an aluminum foil or an aluminum alloy foil. An electric tab made of aluminum or an aluminum alloy is used. The positive electrode current collector tab in the non-aqueous electrolyte secondary battery of the present invention has a notch formed between two bending points bent in an S shape, and the volume ratio of the notch is 1 in length. Since it is 25.0 to 37.5% per .00 mm, even if the width of the positive electrode current collecting tab is wide, a notch corresponding to that is formed, and a large current is generated during an external short circuit or an internal short circuit. Even if it flows, it is not melted except at the notch, and the notch can be melted accurately. Moreover, since the notch part used as this melt | fusion part is formed between two bending points bent in the S shape spaced apart from the winding electrode body, the notch part of a positive electrode current collection tab melted | fused. However, the possibility of a further internal short circuit is suppressed.

しかも、本発明の非水電解液二次電池では、正極集電タブの幅を十分に広くすることができるので、正極集電タブの破断強度を高くできるため、電池が激しく振動されても正極集電タブが破断する虞が抑制される。   Moreover, in the non-aqueous electrolyte secondary battery of the present invention, the width of the positive electrode current collecting tab can be made sufficiently wide, so that the breaking strength of the positive electrode current collecting tab can be increased. The possibility that the current collecting tab is broken is suppressed.

なお、本発明の非水電解液二次電池の正極板としては、公知のアルミニウム箔又はアルミニウム合金箔の両面に正極活物質を含有する正極合剤層が形成されたものをそのまま使用できる。この正極活物質としては、たとえばリチウムイオンを可逆的に吸蔵・放出することが可能なLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)、又はLiFePOなどを、一種単独もしくは複数種を混合して用いることができる。 In addition, as a positive electrode plate of the non-aqueous electrolyte secondary battery of this invention, what was formed with the positive mix layer containing a positive electrode active material on both surfaces of well-known aluminum foil or aluminum alloy foil can be used as it is. As the positive electrode active material, for example, a lithium transition metal represented by Li x MO 2 (wherein M is at least one of Co, Ni, and Mn) capable of reversibly occluding and releasing lithium ions. Complex oxides, that is, LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 , LiCo x Mn y Ni z O 2 (x + y + z) = 1), or LiFePO 4 can be used singly or in combination.

また、本発明の非水電解液二次電池の負極板としては、公知の銅箔又は銅合金箔の両面に負極活物質を含有する負極合剤層が形成されたものをそのまま使用できる。この負極活物質としては、たとえばリチウムイオンを可逆的に吸蔵放出可能な黒鉛、難黒鉛化性炭素及び易黒鉛化性炭素などの炭素原料、LiTiO及びTiOなどのチタン酸化物、ケイ素及びスズなどの半金属元素、又はSn−Co合金等が挙げられる。 Moreover, as a negative electrode plate of the non-aqueous electrolyte secondary battery of the present invention, a negative electrode mixture layer containing a negative electrode active material formed on both surfaces of a known copper foil or copper alloy foil can be used as it is. As this negative electrode active material, for example, graphite capable of reversibly occluding and releasing lithium ions, carbon raw materials such as non-graphitizable carbon and graphitizable carbon, titanium oxides such as LiTiO 2 and TiO 2 , silicon and tin Or a semi-metal element such as Sn—Co alloy.

また、本発明の非水電解液二次電池において使用し得る非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などの環状炭酸エステル、フッ素化された環状炭酸エステル、γ−ブチルラクトン(γ−BL)、γ−バレロラクトン(γ−VL)などの環状カルボン酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)などの鎖状炭酸エステル、フッ素化された鎖状炭酸エステル、ピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネートなどの鎖状カルボン酸エステル、N、N'−ジメチルホルムアミド、N−メチルオキサゾリジノンなどのアミド化合物、スルホランなどの硫黄化合物、テトラフルオロ硼酸1−エチル−3−メチルイミダゾリウムなどの常温溶融塩などが例示できる。これらは2種以上混合して用いることが望ましい。これらの中では、特に誘電率が大きく、非水電解液のイオン伝導度が大きい環状状炭酸エステル及び鎖状炭酸エステルを含むものが好ましい。さらに、本発明の非水電解液二次電池においては、非水電解液は液状のものだけでなく、ゲル化されているものであってもよい。   Examples of the nonaqueous solvent that can be used in the nonaqueous electrolyte secondary battery of the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), and fluorinated cyclic esters. Carbonic acid esters, cyclic carboxylic acid esters such as γ-butyllactone (γ-BL), γ-valerolactone (γ-VL), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl Chain carbonates such as carbonate (MPC) and dibutyl carbonate (DBC), chain carbonates such as fluorinated chain carbonates, methyl pivalate, ethyl pivalate, methyl isobutyrate, methyl propionate, etc. N, N'-dimethylformamide, - amide compounds such as methyl oxazolidinone, sulfur compounds such as sulfolane, etc. ambient temperature molten salt such as tetrafluoroboric acid 1-ethyl-3-methylimidazolium can be exemplified. It is desirable to use a mixture of two or more of these. Among these, those containing a cyclic carbonate and a chain carbonate having a particularly high dielectric constant and a high ionic conductivity of the non-aqueous electrolyte are preferable. Furthermore, in the non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte may not only be liquid but may be gelled.

なお、本発明の非水電解液二次電池で使用する非水電解液中には、電極の安定化用化合物として、さらに、ビニレンカーボネート(VC)、ビニルエチルカーボネート(VEC)、無水コハク酸(SUCAH)、無水マイレン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネート、ビフェニル(BP)、アジポニトリル、ピメロニトリル等のニトリル化合物などを添加してもよい。これらの化合物は、2種以上を適宜に混合して用いることもできる。   In the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention, vinylene carbonate (VC), vinyl ethyl carbonate (VEC), succinic anhydride ( SUCAH), maleic anhydride (MAAH), glycolic anhydride, ethylene sulfite (ES), divinyl sulfone (VS), vinyl acetate (VA), vinyl pivalate (VP), catechol carbonate, biphenyl (BP), adiponitrile, pimelonitrile A nitrile compound such as may be added. Two or more of these compounds can be appropriately mixed and used.

また、本発明の非水電解液二次電池で使用する非水溶媒中に溶解させる電解質塩としては、非水電解液二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が特に好ましい。前記非水溶媒に対する電解質塩の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 Moreover, as an electrolyte salt dissolved in the nonaqueous solvent used in the nonaqueous electrolyte secondary battery of the present invention, a lithium salt generally used as an electrolyte salt in the nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is particularly preferable. The amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

また、本発明の非水電解液二次電池においては、正極集電タブは、幅が3.00mm以上、厚さが0.15mm以上であることが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode current collector tab preferably has a width of 3.00 mm or more and a thickness of 0.15 mm or more.

正極集電タブが破断強度が低いアルミニウム又はアルミニウム合金製のものであっても、幅が3.00mm以上、厚さが0.15mm以上であれば、電池が激しく振動されても正極集電タブが破断する虞が実質的になくなる。   Even if the positive electrode current collecting tab is made of aluminum or aluminum alloy having a low breaking strength, the positive electrode current collecting tab can be used even if the battery is vibrated vigorously if the width is 3.00 mm or more and the thickness is 0.15 mm or more. The possibility of breaking is substantially eliminated.

また、本発明の非水電解液二次電池においては、正極集電タブは正極板の巻きめ側と巻き終わり側との中間に形成されており、負極集電タブは負極板の巻きめ側及び巻き終
わり側の両方に形成されており、巻き始め側の負極集電タブは、巻回電極体の巻回中心の空隙部に対応する位置で電池外装缶の内側底部に当接するように折り曲げられ、巻き終わり側の負極集電タブは電池外装缶の内側に沿って折り曲げられて巻きめ側の負極集電タブと共に電池外装缶の内側底部に接合されているものとすることが好ましい。
In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode current collector tab is formed in the middle of the side end winding the winding start because the side of the positive electrode plate, the negative electrode current collector tabs winding start of the negative electrode plate The negative electrode current collecting tab on both the winding side and the winding end side is in contact with the inner bottom of the battery outer can at a position corresponding to the gap at the winding center of the winding electrode body. bent, the negative electrode current collector tab of winding end side will be assumed to be bonded to the inner bottom of the battery outer can together with the negative electrode current collector tab of the winding start because side bent along the inside of the battery outer can preferable.

円筒状の巻回電極体には巻回中心に空隙部が形成されるが、電池の容量を大きくするにはこの空隙部の容積を小さくすることが必要である。また、負極集電タブとして銅又は銅合金のような硬質な金属からなるものを使用して負極板の巻きめ側に設ける場合、負極板と負極集電タブとの間の接触面積を大きくして内部抵抗を小さくするために、負極集電タブを弧状に成形して巻回電極体の巻回中心に配置する必要が生じる。しかしながら、本発明の非水電解液二次電池では、負極集電タブとして負極板の巻きめ側及び巻き終わり側の両方に形成されているものを使用しているので、巻きめ側の負極集電体の幅を狭くしても、巻き終わり側の負極集電体の幅を広くすることによって等価的に負極側の内部抵抗を小さくすることができるため、特に巻きめ側の負極集電タブを成形する必要がなくなる。 In the cylindrical wound electrode body, a gap is formed at the winding center. To increase the capacity of the battery, it is necessary to reduce the volume of the gap. Further, when the negative electrode current collector tabs using one made of a hard metal such as copper or a copper alloy is provided on the winding start order side of the negative electrode plate as, increase the contact area between the negative electrode plate and the negative electrode current collector tab In order to reduce the internal resistance, it is necessary to form the negative electrode current collecting tab in an arc shape and arrange it at the winding center of the wound electrode body. However, the present invention in a non-aqueous electrolyte secondary battery, because it uses what is formed on both of the negative electrode plate wound started because side and winding end side as a negative electrode current collector tab, the winding start because side even by narrowing the width of the negative electrode current collector, it is possible to reduce the equivalent internal resistance of the negative electrode side by the width of the negative electrode current collector winding end side, in particular the winding start because side of the negative electrode There is no need to form a current collecting tab.

図1Aは各実験に使用した正極板の展開図であり、図1Bは同じく負極板の展開図であり、図1Cは同じく円筒形非水電解液二次電池の縦断面図である。1A is a development view of the positive electrode plate used in each experiment, FIG. 1B is a development view of the negative electrode plate, and FIG. 1C is a longitudinal sectional view of the cylindrical non-aqueous electrolyte secondary battery. 各実験に使用する正極集電タブの各部の寸法を示す平面図である。It is a top view which shows the dimension of each part of the positive electrode current collection tab used for each experiment. 図3A〜図3Eはそれぞれ各実験に使用した正極集電タブの寸法を示す図である。3A to 3E are diagrams showing dimensions of the positive electrode current collecting tab used in each experiment. 図4Aは従来の円筒形非水電解液二次電池の部分縦断面図であり、図4Bは正極板ないし負極板の展開図であり、図4Cは巻回電極体の斜視図であり、図4Dは正極集電タブの斜視図である。4A is a partial longitudinal sectional view of a conventional cylindrical nonaqueous electrolyte secondary battery, FIG. 4B is a development view of a positive electrode plate or a negative electrode plate, and FIG. 4C is a perspective view of a wound electrode body. 4D is a perspective view of a positive electrode current collecting tab. 図4AのV部分の拡大図である。FIG. 4B is an enlarged view of a portion V in FIG. 4A.

以下、本発明の実施形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解液二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, embodiments of the present invention will be described in detail using examples and comparative examples. However, the following examples illustrate non-aqueous electrolyte secondary batteries for embodying the technical idea of the present invention, and are not intended to specify the present invention in this example. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.

最初に、各実施例及び比較例に共通する非水電解液二次電池の具体的製造方法について説明する。
[正極板の作製]
正極板11は次のようにして作製した。まず。正極活物質としてのコバルト酸リチウム(LiCoO)94質量部と、導電剤としてのアセチレンブラック3質量部と、結着剤としてのポリフッ化ビニリデン(PVdF)粉末3質量部とを、N−メチル−2ピロリドン(NMP)中で混合して正極合剤スラリーを調製した。次に、厚さ20μmのアルミニウム箔からなる正極芯体11aの両面に、正極芯体11aの中央部に中央芯体露出部11b及び巻き終わり側に巻き終わり側芯体露出部11cが形成されるようにして、正極合剤スラリーを塗工し、乾燥機内に通して有機溶剤を除去した後、ロールプレス機を用いて正極合剤層11dが形成された部分の厚さが100μmとなるように圧延した。
Initially, the specific manufacturing method of the nonaqueous electrolyte secondary battery common to each Example and a comparative example is demonstrated.
[Production of positive electrode plate]
The positive electrode plate 11 was produced as follows. First. 94 parts by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 3 parts by mass of acetylene black as a conductive agent, and 3 parts by mass of polyvinylidene fluoride (PVdF) powder as a binder were mixed with N-methyl- A positive electrode mixture slurry was prepared by mixing in 2 pyrrolidone (NMP). Next, on both surfaces of the positive electrode core 11a made of an aluminum foil having a thickness of 20 μm, a central core exposed portion 11b is formed at the center of the positive electrode core 11a, and a winding end side core exposed portion 11c is formed at the end of winding. In this way, after coating the positive electrode mixture slurry and passing through the dryer to remove the organic solvent, the thickness of the portion where the positive electrode mixture layer 11d is formed using a roll press machine is 100 μm. Rolled.

次いで、正極芯体11aの中央芯体露出部11bに、アルミニウム製の幅4mm、厚さ0.15mmの正極集電タブ22を超音波溶接により取り付け、正極板11を得た(図1A参照)。なお、各実験における正極集電タブ22部分の具体的構成及び切り欠きの具体的構成については後述する。   Next, a positive electrode current collecting tab 22 having a width of 4 mm and a thickness of 0.15 mm made of aluminum was attached to the central core exposed portion 11b of the positive electrode core 11a by ultrasonic welding, so that the positive electrode plate 11 was obtained (see FIG. 1A). . In addition, the specific structure of the positive electrode current collection tab 22 part in each experiment and the specific structure of a notch are mentioned later.

[負極板の作製]
負極板12は次のようにして作製した。まず、負極活物質としての人造黒鉛粉末98質量%と、結着剤としてのスチレン−ブタジエンゴム(SBR)及び増粘剤としてのカルボキシメチルセルロース(CMC)をそれぞれ1質量%ずつ混合し、水を加えて混練して負極合剤スラリーを調製した。次に、厚さが12μmの銅箔からなる負極芯体12aの両面に、負極芯体12aの巻き始め側の両面に巻き始め側芯体露出部12b及び巻き終わり側の両面に巻き終わり側芯体露出部12cが形成されるように、負極合剤スラリーを塗工し、次いで乾燥機内に通して乾燥した後、ロールプレス機を用いて負極合剤層12dの厚さが100μmとなるように圧延した。
[Production of negative electrode plate]
The negative electrode plate 12 was produced as follows. First, 98% by mass of artificial graphite powder as a negative electrode active material, 1% by mass of styrene-butadiene rubber (SBR) as a binder and carboxymethyl cellulose (CMC) as a thickener are mixed, and water is added. And kneaded to prepare a negative electrode mixture slurry. Next, on both sides of the negative electrode core 12a made of copper foil having a thickness of 12 μm, the winding start side core exposed portion 12b on both sides of the winding start side of the negative electrode core 12a and the winding end side core on both sides of the winding end side After coating the negative electrode mixture slurry so that the body exposed portion 12c is formed, and then passing it through a drier and drying it, the thickness of the negative electrode mixture layer 12d is set to 100 μm using a roll press machine. Rolled.

次いで、負極芯体12aの巻き始め側芯体露出部12b及び巻き終わり側芯体露出部12cに銅−ニッケルクラッド材(厚さ0.15mm)からなる負極集電タブ23a及び23bを、銅同士が対向するようにして、超音波溶接することにより、負極板12を得た(図1B参照)。この際、巻きめ部の負極集電タブ23aの溶接位置は、巻きめ端から約5mmの内側に溶接した。なお、負極合剤の塗布量は、設計基準となる充電電圧(4.2V)において、正極板11と負極板12の対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。 Next, the negative electrode current collecting tabs 23a and 23b made of a copper-nickel clad material (thickness 0.15 mm) are placed on the winding start side core exposed part 12b and the winding end side core exposed part 12c of the negative electrode core 12a. Were subjected to ultrasonic welding such that the negative electrode plate 12 was obtained (see FIG. 1B). In this case, welding position of the negative electrode current collector tab 23a of the winding start because part was welded from the winding start because end inside the approximately 5 mm. The application amount of the negative electrode mixture is such that the charge capacity ratio (negative electrode charge capacity / positive electrode charge capacity) at the portion where the positive electrode plate 11 and the negative electrode plate 12 face each other is 1 at the charge voltage (4.2 V) as the design standard. Adjusted to be .1.

[巻回電極体の作製]
上記のようにして作製された正極板11と負極板12とがポリエチレン樹脂からなる厚さ22μmの微多孔性セパレータ13によって互いに絶縁された状態よになるようにして、直径2mmの巻芯を用いて巻き取り機により巻回し、巻き終わり部に絶縁性の巻き止めテープを取り付け、実施例1、2及び比較例1〜3の非水電解液二次電池10で使用する円筒状巻回電極体14を完成させた。なお、最内周側の負極芯体の巻きめ側芯体露出部12bの長さは、空隙部18の外周の2周となるようにした。
[Production of wound electrode body]
Using a core having a diameter of 2 mm, the positive electrode plate 11 and the negative electrode plate 12 produced as described above are insulated from each other by a microporous separator 13 made of polyethylene resin and having a thickness of 22 μm. A cylindrical wound electrode body used in the non-aqueous electrolyte secondary battery 10 of Examples 1 and 2 and Comparative Examples 1 to 3; 14 was completed. The length of the winding start because side core exposed portion 12b of the negative electrode core member of the innermost peripheral side, was made to be two laps of the outer periphery of the void portion 18.

[非水電解液の調製]
非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを体積比で30:70(25℃、1気圧)となるように混合した混合溶媒に、電解質塩としてLiPFを1mol/Lとなるように溶解させて共通の非水電解液とした。
[Preparation of non-aqueous electrolyte]
As a non-aqueous solvent, ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 30:70 (25 ° C., 1 atm), and LiPF 6 as an electrolyte salt was 1 mol / L. It was made to melt | dissolve so that it might become, and it was set as the common nonaqueous electrolyte solution.

[電池の組み立て]
上記のようにして作製された巻回電極体14の上下に中央に穴が開けられた絶縁板15及び16を配置し、負極板12の巻き始め側の負極集電タブ23aを先端部が電池外装缶17の底部に平行になるように適切な位置でL字状に折り曲げた。また、負極板12の巻き終わり側の負極集電タブ23bは、L字形に折り曲げて、先端部が電池外装缶17の底部に平行になるようにかつ巻き始め側の集電タブ23aの先端部に重畳するように折り曲げた。このように折り曲げられた負極集電タブ23a及び23bを備えた巻回電極体14を、図1Cに示したように、円筒状の電池外装缶17内に挿入した。次いで、電池外装缶17の底部の内側に負極集電タブ23a及び23bを抵抗溶接することによって固定した。
[Battery assembly]
Insulating plates 15 and 16 having a hole in the center are arranged above and below the wound electrode body 14 produced as described above, and the negative electrode current collecting tab 23a on the winding start side of the negative electrode plate 12 is the tip of the battery. It was bent into an L shape at an appropriate position so as to be parallel to the bottom of the outer can 17. Further, the negative electrode current collecting tab 23b on the winding end side of the negative electrode plate 12 is bent in an L shape so that the front end portion is parallel to the bottom portion of the battery outer can 17 and the front end portion of the current collecting tab 23a on the winding start side Folded to overlap. The wound electrode body 14 provided with the negative electrode current collecting tabs 23a and 23b bent in this manner was inserted into the cylindrical battery outer can 17 as shown in FIG. 1C. Next, the negative electrode current collecting tabs 23a and 23b were fixed to the inside of the bottom of the battery outer can 17 by resistance welding.

更に、正極集電タブ22をS字状に折り曲げ、その先端部を絶縁性の封口板19に取り付けられた正極端子20に超音波抗溶接し、電池外装缶14内に上述した非水電解液を注入、真空含浸した後、封口板19の周囲をガスケット21で挟んで、電池外装缶17の開口端部をカシメて固定することにより各実験に使用する非水電解液二次電池10を作製した。この非水電解液二次電池10は、直径が18mm、長さが65mmであり、設計容量はMin1500mAhであった。   Further, the positive electrode current collecting tab 22 is bent into an S shape, and the tip portion thereof is ultrasonically welded to the positive electrode terminal 20 attached to the insulating sealing plate 19, and the above-described nonaqueous electrolytic solution is put in the battery outer can 14. Then, the non-aqueous electrolyte secondary battery 10 used for each experiment is manufactured by sandwiching the periphery of the sealing plate 19 with the gasket 21 and crimping and fixing the opening end of the battery outer can 17. did. This nonaqueous electrolyte secondary battery 10 had a diameter of 18 mm, a length of 65 mm, and a design capacity of Min 1500 mAh.

次に、各実験例で使用した正極板11の正極集電タブ22の構成を図2及び図3を用いて説明する。正極集電タブ22は、正極芯体の中央部11bに超音波溶接した後、絶縁用に超音波溶接した位置から更に巻回電極体14から突出する部分までを覆うように、両面に保護テープ24が載置されている。ここでは、正極集電タブ22の巻回電極体14からの出代を13.5mmとなるようにしている。そして、正極集電タブ22の先端部と正極端子20との間の溶接部の長さを2.00mmとし、それに引き続く屈曲部(Y部分)の長さを2.50mmとした。また、正極集電タブ22の巻回電極体14側の屈曲部(X部分)の長さを1.00mmとした。そうすると、正極集電タブ22の両側の屈曲部X部分及びY部分を除いた切り欠き形成可能領域(Z部分)の長さは8.00mmとなる。   Next, the configuration of the positive electrode current collecting tab 22 of the positive electrode plate 11 used in each experimental example will be described with reference to FIGS. The positive electrode current collecting tab 22 is a protective tape on both sides so as to cover from the ultrasonic welding to the central part 11b of the positive electrode core body to a portion protruding from the wound electrode body 14 from the position where ultrasonic welding is performed for insulation. 24 is placed. Here, the allowance of the positive electrode current collecting tab 22 from the wound electrode body 14 is set to 13.5 mm. And the length of the welding part between the front-end | tip part of the positive electrode current collection tab 22 and the positive electrode terminal 20 was 2.00 mm, and the length of the following bending part (Y part) was 2.50 mm. Further, the length of the bent portion (X portion) on the side of the wound electrode body 14 of the positive electrode current collecting tab 22 was set to 1.00 mm. If it does so, the length of the notch formation area (Z part) except the bending part X part and Y part of the both sides of the positive electrode current collection tab 22 will be 8.00 mm.

[実施例1、2及び比較例1〜3の正極集電タブ]
さらに、実施例1、2及び比較例1〜3の正極集電タブのZ部分の具体的構成を図3を用いて説明する。比較例1では、図3Aに示すように、幅4.00mmで厚さ0.15mmのアルミニウム製の部材を、切り欠きを形成することなく、そのまま正極集電タブとして使用した。なお、この幅4mmで厚さ0.15mmという正極集電タブは、振動試験によって破断することがないことが実験的に確認されているサイズのものである。
[Positive electrode current collecting tabs of Examples 1 and 2 and Comparative Examples 1 to 3]
Furthermore, the specific structure of Z part of the positive electrode current collection tab of Examples 1, 2 and Comparative Examples 1-3 is demonstrated using FIG. In Comparative Example 1, as shown in FIG. 3A, an aluminum member having a width of 4.00 mm and a thickness of 0.15 mm was directly used as a positive electrode current collecting tab without forming a notch. The positive electrode current collecting tab having a width of 4 mm and a thickness of 0.15 mm is of a size that has been experimentally confirmed to be not broken by a vibration test.

そして、比較例2では、図3Bに示すように、比較例1で使用した部材の両側面に対し、Z部分に長さ1.00mmにわたって幅0.25mmの切り欠きを形成したものを正極集電タブとして使用した。この比較例2の正極集電タブの長切り欠き面積は0.50mmであり、長さ1.00mm当たりの切り欠き体積の割合は12.5%となる。また、実施例1では、図3Cに示すように、比較例1で使用した部材の両側面に対し、Z部分に長さ1.00mmにわたって幅0.50mmの切り欠きを形成したものを正極集電タブとして使用した。この実施例1の正極集電タブの長切り欠き面積は1.00mmであり、長さ1.00mm当たりの切り欠き体積の割合は25.0%となる。 Then, in Comparative Example 2, as shown in FIG. 3B, a positive electrode current collector having notches having a width of 1.00 mm and a width of 1.00 mm formed in the Z portion on both side surfaces of the member used in Comparative Example 1 is used. Used as a power tab. The long notch area of the positive electrode current collecting tab of Comparative Example 2 is 0.50 mm 2 , and the ratio of the notch volume per 1.00 mm length is 12.5%. Further, in Example 1, as shown in FIG. 3C, a positive electrode current collector was formed by forming notches with a width of 1.00 mm and a width of 0.50 mm on both sides of the member used in Comparative Example 1. Used as a power tab. The long notch area of the positive electrode current collecting tab of Example 1 is 1.00 mm 2 , and the ratio of the notch volume per 1.00 mm length is 25.0%.

また、実施例2では、図3Dに示すように、比較例1で使用した部材の両側面に対し、Z部分に長さ1.00mmにわたって幅0.75mmの切り欠きを形成したものを正極集電タブとして使用した。この実施例2の正極集電タブの長切り欠き面積は1.50mmであり、長さ1.00mm当たりの切り欠き体積の割合は37.5%となる。さらに、比較例3では、図3Eに示すように、比較例1で使用した部材の両側面に対し、Z部分に長さ1.00mmにわたって幅1.00mmの切り欠きを形成したものを正極集電タブとして使用した。この比較例3の正極集電タブの長切り欠き面積は2.00mmであり、長さ1.00mm当たりの切り欠き体積の割合は50%となる。 Further, in Example 2, as shown in FIG. 3D, a positive electrode current collector was formed by forming notches with a width of 0.75 mm over a length of 1.00 mm in the Z portion on both side surfaces of the member used in Comparative Example 1. Used as a power tab. The long notch area of the positive electrode current collecting tab of Example 2 is 1.50 mm 2 , and the ratio of the notch volume per 1.00 mm length is 37.5%. Further, in Comparative Example 3, as shown in FIG. 3E, a positive electrode current collector in which notches having a width of 1.00 mm and a length of 1.00 mm are formed in the Z portion on both side surfaces of the member used in Comparative Example 1. Used as a power tab. The long notch area of the positive electrode current collecting tab of Comparative Example 3 is 2.00 mm 2 , and the ratio of the notch volume per length of 1.00 mm is 50%.

上述のようにして作製された正極集電タブを用いて実施例1、2及び比較例1〜3非水電解液二次電池をそれぞれ10個ずつ作製し、それぞれ1It=1500mAの定電流で電池電圧が4.20Vとなるまで充電し、電池電圧が4.20Vに達した後は4.20Vの低電圧で充電電流が1/50It=30mAになるまで充電し、満充電状態とした。この満充電状態の実施例1、2及び比較例1〜3の全ての非水電解液二次電池に対して1Itの定電流で電池電圧が2.75Vとなるまで放電させ、それぞれの電池の1It放電容量を求めた。   Ten non-aqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 were produced using the positive electrode current collecting tab produced as described above, and the batteries at a constant current of 1 It = 1500 mA. The battery was charged until the voltage reached 4.20 V, and after the battery voltage reached 4.20 V, the battery was charged at a low voltage of 4.20 V until the charging current reached 1/50 It = 30 mA, and the battery was fully charged. The fully charged non-aqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 were discharged at a constant current of 1 It until the battery voltage reached 2.75 V. The 1 It discharge capacity was determined.

ついで、1It放電容量を求めた全ての電池に対して、上述の充電条件で再度充電することにより満充電状態とし、次いで40Aの定電流で電池電圧が2.75Vとなるまで放電させ、その際の電池容量、平均電圧を測定し、電池容量についてはさらに1It放電容量との比(%)を求めた。測定結果は平均値として表1に纏めて示した。   Next, all the batteries for which the 1 It discharge capacity has been obtained are fully charged by charging them again under the above charging conditions, and then discharged until the battery voltage reaches 2.75 V at a constant current of 40 A. The battery capacity and average voltage were measured, and the battery capacity was further determined as a ratio (%) to the 1 It discharge capacity. The measurement results are shown in Table 1 as average values.

ついで、満充電状態とした実施例1、2及び比較例1〜3非水電解液二次電池をそれぞれ2個ずつ、外部短絡を想定して5mΩの抵抗で短絡させた。その後、それぞれの電池を分解し、正極集電タブの溶断の有無及び溶断位置を確認した。結果を纏めて表1に示した。   Next, two non-aqueous electrolyte secondary batteries in Examples 1 and 2 and Comparative Examples 1 to 3 in a fully charged state were short-circuited with a resistance of 5 mΩ assuming an external short circuit. Then, each battery was disassembled, and the presence or absence and fusing position of the positive electrode current collector tab were confirmed. The results are summarized in Table 1.

Figure 0006239222
Figure 0006239222

上記表1に示した結果から以下のことが分かる。すなわち、40A定電流放電時の放電容量、平均電圧及び放電容量比は、実施例1及び2共に比較例1及び比較例2とほぼ同等の結果が得られているが、比較例3では劣る結果となっている。このことは、比較例1、実施例1及び2の電池では、切り欠き部を形成しても、その長さ1.00mm当たりの切り欠き体積が小さいため、切り欠き部形成による内部抵抗の増加は実質的に無視できる程度のものであることを示している。これに対し、比較例3の電池では、切り欠き部の長さ1.00mm当たりの切り欠き体積が大きいため、この切り欠き部形成による内部抵抗の増大が無視できない大きさとなり、電池容量、平均電圧及び放電容量比の低下に繋がったものと考えられる。   The following can be understood from the results shown in Table 1 above. That is, the discharge capacity, the average voltage, and the discharge capacity ratio at the time of 40 A constant current discharge were almost the same as those in Comparative Example 1 and Comparative Example 2 in both Examples 1 and 2, but were inferior in Comparative Example 3. It has become. This is because in the batteries of Comparative Example 1, Examples 1 and 2, even when the notch portion is formed, the notch volume per length of 1.00 mm is small, so that the internal resistance increases due to the notch portion formation. Indicates that it is practically negligible. On the other hand, in the battery of Comparative Example 3, since the notch volume per 1.00 mm length of the notch portion is large, the increase in internal resistance due to this notch portion formation cannot be ignored, and the battery capacity, average This is thought to have led to a decrease in the voltage and discharge capacity ratio.

また、5mΩ外部短絡試験結果では、実施例1、2及び比較例1〜3の全ての電池において、正極集電タブの溶断が発生していた。しかしながら、比較例1及び2共に溶断箇所はX部分であり、特に比較例2においては、切り欠き部を設けたZ部分ではなく、X部分において溶断が生じている。それに対し、実施例1、2及び比較例3では、全て切り欠き部を設けたZ部分において溶断が生じている。   Further, in the results of the 5 mΩ external short circuit test, the positive electrode current collector tab was melted in all the batteries of Examples 1 and 2 and Comparative Examples 1 to 3. However, in Comparative Examples 1 and 2, the fusing part is the X part, and in Comparative Example 2, the fusing occurs in the X part, not in the Z part provided with the notch part. On the other hand, in Examples 1 and 2 and Comparative Example 3, fusing occurs in the Z portion where all the notches are provided.

このことは、比較例2の電池では、切り欠き部の長さ1.00mm当たりの切り欠き体積が小さすぎるために、切り欠き部が形成されているZ部分が溶断せず、Z部分以外のX部分出溶断したものと考えられるから、正極集電タブの切り欠き部の長さ1.00mm当たりの切り欠き体積は、実施例1の測定データに照らせば、25.0%以上が好ましいことが分かる。また、比較例3の電池では、切り欠き部の長さ1.00mm当たりの切り欠き体積が大きすぎるために、切り欠き部が形成されているZ部分で溶断するが、電池容量、平均電圧及び放電容量比の低下に繋がったものと考えられるから、正極集電タブの切り欠き部の長さ1.00mm当たりの切り欠き体積は、実施例2の測定データに照らせば、37.5%以下が好ましいことが分かる。   This is because, in the battery of Comparative Example 2, the notch volume per 1.00 mm length of the notch part is too small, so that the Z part where the notch part is formed does not melt and other than the Z part. In view of the measurement data of Example 1, it is preferable that the cutout volume per length of 1.00 mm of the cutout portion of the positive electrode current collecting tab is 25.0% or more because it is considered that X portion was melted out by melting. I understand. Further, in the battery of Comparative Example 3, the notch volume per 1.00 mm length of the notch part is too large, so that it melts out at the Z part where the notch part is formed. In view of the measurement data of Example 2, the notch volume per 1.00 mm length of the notch portion of the positive electrode current collecting tab is 37.5% or less because it is considered that the discharge capacity ratio is reduced. It turns out that is preferable.

以上述べたように、本発明に従う非水電解液二次電池によれば、電池容量、平均電圧及び放電容量が実質的に低下せず、また、外部短絡時の正極集電タブの溶断箇所が全て切り欠き部形成位置となるので電池の放電性能に悪影響を与えず、外部短絡に際してもより安全であり、しかも、振動試験時にも安全性を確保できる非水電解液二次電池が得られることが分かる。   As described above, according to the non-aqueous electrolyte secondary battery according to the present invention, the battery capacity, the average voltage and the discharge capacity are not substantially reduced, and the fusing location of the positive electrode current collecting tab at the time of external short circuit is not present. Since all the notch formation positions are provided, a non-aqueous electrolyte secondary battery that does not adversely affect the discharge performance of the battery, is safer even when externally short-circuited, and can ensure safety even during vibration tests is obtained. I understand.

10…非水電解液二次電池 11…正極板 11a…正極芯体 11b…(正極芯体の)中央芯体露出部 11c…(正極芯体の)巻き終わり側芯体露出部 11d…正極合剤層 12…負極板 12a…負極芯体 12b…(負極芯体の)巻き始め側芯体露出部 12c…(負極芯体の)巻き終わり側芯体露出部 12d…負極合剤層 13…セパレータ 14…巻回電極体 15、16…絶縁板 17…電池外装缶 18…空隙部 19…封口板 20…正極端子 21…ガスケット 22…正極集電タブ 22a…(正極集電タブの)切り欠き、23a、23b…負極集電タブ 24…保護テープ   DESCRIPTION OF SYMBOLS 10 ... Nonaqueous electrolyte secondary battery 11 ... Positive electrode plate 11a ... Positive electrode core body 11b ... Central core body exposed part (of positive electrode core body) 11c ... (Positive electrode core body) Winding end side core exposed part 11d ... Positive electrode combination Agent layer 12 ... Negative electrode plate 12a ... Negative electrode core 12b ... Winding start side core exposed part (of negative electrode core) 12c ... (Negative electrode core) winding end side core exposed part 12d ... Negative electrode mixture layer 13 ... Separator DESCRIPTION OF SYMBOLS 14 ... Winding electrode body 15, 16 ... Insulation board 17 ... Battery exterior can 18 ... Air gap part 19 ... Sealing board 20 ... Positive electrode terminal 21 ... Gasket 22 ... Positive electrode current collection tab 22a ... Notch (positive electrode current collection tab), 23a, 23b ... negative electrode current collecting tab 24 ... protective tape

Claims (3)

正極板及び負極板がセパレータによって電気的に絶縁された状態で巻回された巻回電極体と、非水電解液とが、円筒形の電池外装缶内に収納され、前記正極板に接続された正極集電タブが、S字状に折り曲げられて、前記円筒形の電池外装缶の開口部に前記電池外装缶とは絶縁された状態で固定された正極端子に電気的に接続されている非水電解液二次電池において、
前記正極集電タブは、
アルミニウム又はアルミニウム合金製であり、
前記S字状に折り曲げられた2つの屈曲点の間に切り欠き部が形成され、
前記切り欠き部の体積の割合は、長さ1.00mm当たり25.0〜37.5%であることを特徴とする非水電解液二次電池。
A wound electrode body wound in a state where the positive electrode plate and the negative electrode plate are electrically insulated by a separator, and a non-aqueous electrolyte are accommodated in a cylindrical battery outer can and connected to the positive electrode plate. The positive electrode current collecting tab is bent in an S shape and is electrically connected to a positive electrode terminal fixed to the opening of the cylindrical battery outer can in an insulated state from the battery outer can. In non-aqueous electrolyte secondary batteries,
The positive electrode current collecting tab is:
Made of aluminum or aluminum alloy,
A notch is formed between two bending points bent in the S shape,
The volume ratio of the notch is 25.0 to 37.5% per length of 1.00 mm.
前記正極集電タブは、幅が3.00mm以上、厚さが0.15mm以上であることを特徴とする請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode current collecting tab has a width of 3.00 mm or more and a thickness of 0.15 mm or more. 前記正極集電タブは前記正極板の巻きめ側及び巻き終わり側の中間に形成されており、負極集電タブは前記負極板の巻きめ側及び巻き終わり側の両方に形成されており、前記巻き始め側の負極集電タブは、前記巻回電極体の巻回中心の空隙部に対応する位置で前記電池外装缶の内側底部に当接するように折り曲げられ、前記巻き終わり側の負極集電タブは前記電池外装缶の内側に沿って折り曲げられて前記巻きめ側の負極集電タブと共に前記電池外装缶の内側底部に接合されていることを特徴とする請求項1又は2に記載の非水電解液二次電池。 The positive electrode current collector tabs are formed in the middle of the positive electrode plate winding start because side and winding end side of the negative electrode current collector tabs are formed on both of the winding start order side and the winding end side of the negative electrode plate The negative electrode current collecting tab on the winding start side is bent so as to contact the inner bottom portion of the battery outer can at a position corresponding to the gap at the winding center of the winding electrode body, and the negative electrode on the winding end side collector tabs to claim 1 or 2, characterized in that it is joined to the inner bottom portion of the battery outer can together with the negative electrode current collector tab of the battery is bent along the inside of the outer can the take started because side The nonaqueous electrolyte secondary battery as described.
JP2011237320A 2011-10-28 2011-10-28 Non-aqueous electrolyte secondary battery Expired - Fee Related JP6239222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011237320A JP6239222B2 (en) 2011-10-28 2011-10-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011237320A JP6239222B2 (en) 2011-10-28 2011-10-28 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013097903A JP2013097903A (en) 2013-05-20
JP6239222B2 true JP6239222B2 (en) 2017-11-29

Family

ID=48619663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011237320A Expired - Fee Related JP6239222B2 (en) 2011-10-28 2011-10-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6239222B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6528985B2 (en) * 2015-03-17 2019-06-12 株式会社Gsユアサ Method of manufacturing a storage element.
KR20190098495A (en) * 2018-02-14 2019-08-22 삼성에스디아이 주식회사 Electrode assembly and secondary battery comprising the same
WO2020071049A1 (en) * 2018-10-03 2020-04-09 パナソニック株式会社 Secondary battery
US20220200107A1 (en) * 2019-04-26 2022-06-23 Sanyo Electric Co., Ltd. Electrode plate, nonaqueous electrolyte secondary battery, and electrode plate manufacturing method
EP3996195A4 (en) * 2019-10-02 2022-08-24 LG Energy Solution, Ltd. Cylindrical battery and battery pack including same
CN113611986B (en) * 2021-07-30 2022-12-27 东莞新能德科技有限公司 Battery cell, battery and electronic equipment
CN116315489A (en) * 2023-03-27 2023-06-23 宁德新能源科技有限公司 Electrochemical device and electricity using device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497380B2 (en) * 1998-06-02 2004-02-16 日本碍子株式会社 Lithium secondary battery
JP2001202946A (en) * 2000-01-18 2001-07-27 Nec Corp Secondary battery with nonaqueous electrolytic solution
KR100477750B1 (en) * 2002-09-23 2005-03-18 삼성에스디아이 주식회사 Electorde assembly for lithium ion cell and lithium ion cell using the same
JP5334429B2 (en) * 2008-03-13 2013-11-06 日立ビークルエナジー株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2013097903A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP6058400B2 (en) Non-aqueous electrolyte secondary battery
JP6439838B2 (en) Nonaqueous electrolyte secondary battery
JP6208238B2 (en) Nonaqueous electrolyte secondary battery
JP6239222B2 (en) Non-aqueous electrolyte secondary battery
JP6439839B2 (en) Nonaqueous electrolyte secondary battery
WO2009150791A1 (en) Battery
JP6138436B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6165425B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US9559382B2 (en) Nonaqueous electrolyte secondary battery
JP6114515B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6097030B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20210135320A1 (en) Battery and battery pack
JP2014035939A (en) Non-aqueous electrolyte secondary battery
JP6037713B2 (en) Nonaqueous electrolyte secondary battery
JP5951404B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6346178B2 (en) Nonaqueous electrolyte secondary battery
JP6241529B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP6213615B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2015046243A (en) Lithium ion secondary battery
JP2012195122A (en) Nonaqueous electrolyte secondary battery
JP2014139865A (en) Nonaqueous electrolyte secondary battery
JP2019145467A (en) Sealed battery
JP2011181438A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140401

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161003

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171101

R150 Certificate of patent or registration of utility model

Ref document number: 6239222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees