JP5333179B2 - Refractometer - Google Patents

Refractometer Download PDF

Info

Publication number
JP5333179B2
JP5333179B2 JP2009271408A JP2009271408A JP5333179B2 JP 5333179 B2 JP5333179 B2 JP 5333179B2 JP 2009271408 A JP2009271408 A JP 2009271408A JP 2009271408 A JP2009271408 A JP 2009271408A JP 5333179 B2 JP5333179 B2 JP 5333179B2
Authority
JP
Japan
Prior art keywords
light
sample
incident
prism
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009271408A
Other languages
Japanese (ja)
Other versions
JP2011112598A (en
Inventor
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009271408A priority Critical patent/JP5333179B2/en
Publication of JP2011112598A publication Critical patent/JP2011112598A/en
Application granted granted Critical
Publication of JP5333179B2 publication Critical patent/JP5333179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、液体の糖度や濃度などを測定するために用いられる屈折計に関し、特に外乱光の影響を軽減する技術に関する。   The present invention relates to a refractometer used for measuring the sugar content and concentration of a liquid, and more particularly to a technique for reducing the influence of ambient light.

液体の糖度や濃度などを測定する従来の屈折計は、図4に示すとおり、プリズム4上に滴下される液体の試料Sを保護する試料部1と、試料Sとプリズム4の境界面への入射光Roを出射する光源2と、反射角の増減方向に配列される受光素子列で構成され該境界面で全反射した光等を受光する光電検出器3と、光電検出器3への光入射側に配設されP偏光をカットする偏光板25で構成される。   As shown in FIG. 4, the conventional refractometer for measuring the sugar content and concentration of the liquid has a sample portion 1 that protects the liquid sample S dropped on the prism 4, and a boundary surface between the sample S and the prism 4. A light source 2 that emits incident light Ro, a light-receiving element array that is arranged in the increasing / decreasing direction of the reflection angle, a photoelectric detector 3 that receives light totally reflected at the boundary surface, and light to the photoelectric detector 3 The polarizing plate 25 is disposed on the incident side and cuts P-polarized light.

光電検出器3の各受光素子の出力信号から、全反射光Rcと全反射が生起する臨界角θcを読み取り、試料Sの屈折率nを次式より算出する。
n=no×sinθc ・・・・・・・・ 式(1)
ただし、noはプリズム4の屈折率である。
The total reflected light Rc and the critical angle θc at which total reflection occurs are read from the output signals of the respective light receiving elements of the photoelectric detector 3, and the refractive index n of the sample S is calculated from the following equation.
n = no × sin θc (1)
Here, no is the refractive index of the prism 4.

しかし、このタイプの屈折計は、主に野外や作業場で果物や野菜の搾り汁を測定するなど簡易な測定に使用されることが多く、試料Sの状態を外から目視できるのが好ましいため、試料部1は外部に対して開放されている。このため、測定すべき全反射光Rcの他に、プリズム4に外部から入射した余分な外乱光が光電検出器3に入射し、屈折率の正確な測定の妨げとなる。   However, this type of refractometer is often used for simple measurements such as measuring the juice of fruits and vegetables mainly in the field or workplace, and it is preferable that the state of the sample S can be visually observed from the outside. The sample part 1 is open to the outside. For this reason, in addition to the total reflected light Rc to be measured, extra disturbing light incident on the prism 4 from the outside enters the photoelectric detector 3, which hinders accurate measurement of the refractive index.

プリズム4と光電検出器3の間に配設された偏光板25は、外乱光のうち割合の多いP偏光Rpをカットする。媒質に斜めに光が入射した場合、P偏光Rpの方がS偏光Rsよりも透過率が高く、偏光板25でP偏光Rpをカットすることにより、外乱光を大幅に減らすことができ、屈折率の正確な測定が可能である(例えば特許文献1参照)。   The polarizing plate 25 disposed between the prism 4 and the photoelectric detector 3 cuts the P-polarized light Rp having a large proportion of disturbance light. When light is incident obliquely on the medium, the transmittance of the P-polarized light Rp is higher than that of the S-polarized light Rs. By cutting the P-polarized light Rp by the polarizing plate 25, disturbance light can be greatly reduced, The rate can be accurately measured (see, for example, Patent Document 1).

特開2004−271360号公報JP 2004-271360 A

図4に示す従来の屈折計では、例えば、プリズム4の構成材料をBK7ガラスとし、プリズム4に入射する外乱光を、入射角56°で入射する波長589nmの無偏光光とすると、P偏光成分は100%、S偏光成分は84.9%プリズム4内に入ってしまうことがフレネルの公知の計算式より算出できる。光電検出器3の直前でP偏光Rpはカットされるが、外乱光がプリズム4内部で乱反射し散乱を繰り返すと、強度の強いP偏光RpがS偏光成分を持つ光に変換され、偏光板25を透過し光電検出器3にノイズ光として入射する。プリズム4内に入ってくる外乱光の絶対量に比例して光電検出器3に入射するノイズ光も増え、正確な屈折率を求める際の妨害となる。   In the conventional refractometer shown in FIG. 4, for example, if the constituent material of the prism 4 is BK7 glass and the disturbance light incident on the prism 4 is non-polarized light having a wavelength of 589 nm incident at an incident angle of 56 °, the P-polarized component It can be calculated from Fresnel's well-known formula that 100% and S-polarized light components enter the prism 4. The P-polarized light Rp is cut immediately before the photoelectric detector 3. However, when disturbance light is diffusely reflected and repeatedly scattered inside the prism 4, the strong P-polarized light Rp is converted into light having an S-polarized component, and the polarizing plate 25. And enters the photoelectric detector 3 as noise light. The amount of noise light that enters the photoelectric detector 3 increases in proportion to the absolute amount of disturbance light that enters the prism 4, which is an obstacle to obtaining an accurate refractive index.

本発明は、液体試料が滴下される貫通孔を有する試料部と、前記貫通孔の下面開口部が接触する試料面と、光源からの光を前記試料面に向けて入射させる入射面と、前記試料面からの反射光を検出する光電検出器が配設される検出面を備えたプリズムと、前記試料面に向けて入射させる光を出射する前記光源と、前記試料面からの反射光を検出する前記光電検出器とで構成される屈折計において、前記貫通孔の上面開口部に開閉可能にP偏光をカットする偏光板を配設したものである。さらに、前記光電検出器と検出面との間にS偏光をカットする偏光板を配設してもよい。したがって光電検出器に入射するノイズ光は少なく、かつ滴下された液体試料の状態を観察できる。   The present invention includes a sample portion having a through-hole into which a liquid sample is dropped, a sample surface in contact with a lower surface opening of the through-hole, an incident surface on which light from a light source is incident on the sample surface, A prism having a detection surface on which a photoelectric detector for detecting reflected light from the sample surface is disposed, the light source for emitting light incident on the sample surface, and detecting reflected light from the sample surface In the refractometer including the photoelectric detector, a polarizing plate that cuts P-polarized light so as to be openable and closable is disposed at the upper surface opening of the through hole. Furthermore, a polarizing plate that cuts S-polarized light may be disposed between the photoelectric detector and the detection surface. Therefore, there is little noise light incident on the photoelectric detector, and the state of the dropped liquid sample can be observed.

プリズムに入射する外乱光は、強度の強いP偏光が取り除かれ、強度の弱いS偏光だけになり、プリズム内部での散乱光も大幅に減少し、光電検出器に入射するノイズ光が減少し精度の良い屈折率の測定が可能である。しかも、偏光板を透過するS偏光により滴下された試料の状態観察が従来どおり可能である。さらに、光電検出器とプリズムの検出面との間にS偏光をカットする偏光板を配設することにより、外乱光のS偏光成分を除去することができ、より精度の良い屈折率の測定ができる。この場合、光電検出器に入射する光はプリズムと試料の界面で反射されたP偏光とプリズムに入射したS偏光の乱反射の繰り返しで生じたP偏光成分を持つ光であるが、該P偏光成分を持つ光は強度の弱いS偏光より生じた弱い光であり、精度への悪影響は少ない。   The disturbance light incident on the prism is removed from the strong P-polarized light and becomes only the weak S-polarized light, the scattered light inside the prism is also greatly reduced, and the noise light incident on the photoelectric detector is reduced and accuracy is reduced. A good refractive index can be measured. In addition, it is possible to observe the state of the sample dropped by the S-polarized light that passes through the polarizing plate as before. Furthermore, by disposing a polarizing plate that cuts S-polarized light between the photoelectric detector and the detection surface of the prism, the S-polarized component of the disturbance light can be removed, and the refractive index can be measured with higher accuracy. it can. In this case, the light incident on the photoelectric detector is light having P-polarized light component generated by repeated irregular reflection of P-polarized light reflected by the prism-sample interface and S-polarized light incident on the prism. The light having is weak light generated from weakly polarized S-polarized light and has little adverse effect on accuracy.

本発明の実施例による屈折計の概略構成を示す図である。It is a figure which shows schematic structure of the refractometer by the Example of this invention. 光電検出器の出力信号より得られる光量分布曲線である。It is a light quantity distribution curve obtained from the output signal of a photoelectric detector. 本発明の実施例による屈折計の変形例の概略構成を示す図である。It is a figure which shows schematic structure of the modification of the refractometer by the Example of this invention. 従来の屈折計の概略構成を示す図である。It is a figure which shows schematic structure of the conventional refractometer.

本発明の実施例による屈折計は、滴下された液体試料と接する試料面と、光源からの光を前記試料面に向けて入射させる入射面と、前記試料面からの反射光を検出する光電検出器が配設される検出面を備えたプリズムと、上面にP偏光をカットする偏光板を開閉可能に配設し、下面が前記試料面と接し、前記液体試料の滴下部に貫通孔が形成された試料部と、光電検出器の出力信号より屈折率を算出する演算制御系で構成される。   A refractometer according to an embodiment of the present invention includes a sample surface in contact with a dropped liquid sample, an incident surface that allows light from a light source to enter the sample surface, and photoelectric detection that detects reflected light from the sample surface. A prism having a detection surface on which a vessel is disposed and a polarizing plate that cuts P-polarized light on the upper surface are disposed to be openable and closable. And a calculation control system for calculating the refractive index from the output signal of the photoelectric detector.

本発明の実施例について図1、図2を参照して説明する。図1は、本発明の実施例による屈折計の概略構成を示す図である。図2は、光電検出器3の出力信号より得られる光量分布曲線Vpである。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of a refractometer according to an embodiment of the present invention. FIG. 2 is a light amount distribution curve Vp obtained from the output signal of the photoelectric detector 3.

本発明の実施例による屈折計は、図1に示すとおり、滴下された液体の試料Sと接する試料面4bと、光源2からの光を試料面4bに向けて入射光Roとして入射させる入射面4aと、試料面4bからの全反射光Rcなどを受光する光電検出器3が配設される検出面4cを備えたプリズム4と、下面が試料面4bと接し、液体の試料Sの滴下部にすり鉢状の貫通孔が形成された試料部1と、光電検出器3の出力信号より屈折率を算出する演算制御系で構成される。なお、noはプリズム4の、nは試料Sの屈折率である。臨界角θcは全反射が生起する臨界角度である。   As shown in FIG. 1, the refractometer according to the embodiment of the present invention includes a sample surface 4b in contact with the dropped liquid sample S, and an incident surface on which light from the light source 2 enters the sample surface 4b as incident light Ro. 4a, a prism 4 having a detection surface 4c on which a photoelectric detector 3 for receiving total reflection light Rc from the sample surface 4b, and the like are in contact with the sample surface 4b, and a dropping portion of the liquid sample S It comprises a sample part 1 in which a mortar-shaped through-hole is formed and an arithmetic control system for calculating a refractive index from the output signal of the photoelectric detector 3. Note that no is the refractive index of the prism 4 and n is the refractive index of the sample S. The critical angle θc is a critical angle at which total reflection occurs.

試料部1の上面には、P偏光Rpをカットする偏光板5が開閉可能に蝶番6を介して保持されている。開閉可能とは、操作者が、試料部1の開口部上面を偏光板5で覆う状態と覆わない状態とを切り替えることができることを言い、着脱可能な構成をも含む。光電検出器3は、反射角の増減方向に配列される受光素子列で構成される。演算制御系は、受光素子列の受光素子を順次選択する受光素子切替手段10と、選択された受光素子に入射する光量をデジタル化し各受光素子番号別に保存する光量読出記憶手段11と、保存された受光素子番号に対応した光量の分布より臨界角θcを検出する臨界角点検出手段12と、検出された臨界角θcを式(1)に適用して屈折率を算出する屈折率算出手段13で構成される。   A polarizing plate 5 that cuts P-polarized light Rp is held on a top surface of the sample unit 1 via a hinge 6 so as to be opened and closed. “Openable / closable” means that the operator can switch between a state in which the upper surface of the opening of the sample unit 1 is covered with the polarizing plate 5 and a state in which the sample is not covered. The photoelectric detector 3 is composed of a light receiving element array arranged in the increasing / decreasing direction of the reflection angle. The arithmetic control system is stored with a light receiving element switching means 10 for sequentially selecting the light receiving elements in the light receiving element array, and a light quantity reading storage means 11 for digitizing the amount of light incident on the selected light receiving elements and storing it for each light receiving element number. The critical angle point detecting means 12 for detecting the critical angle θc from the distribution of the amount of light corresponding to the light receiving element number, and the refractive index calculating means 13 for calculating the refractive index by applying the detected critical angle θc to the equation (1). Consists of.

図2において、受光素子番号(I)に対応して保存された光量(V)の関係が光量分布曲線Vpで示されている。臨界角点検出手段12は、光量分布曲線Vpの微分曲線Vdを求め、微分曲線Vdのピーク値が所定値を超える場合、該ピーク値に対応する受光素子番号を臨界角点Icとする。全反射が生起する臨界角θcが既知の液体試料を測定したときの臨界角点Icより、臨界角点Icと臨界角θcの関係が特定でき、臨界角点Icを臨界角θcに換算する換算式を求める。換算式で算出された未知試料の臨界角θcは屈折率算出手段13へ送信され、未知試料の屈折率が式(1)より算出される。   In FIG. 2, the relationship of the light quantity (V) stored corresponding to the light receiving element number (I) is shown by a light quantity distribution curve Vp. The critical angle point detection means 12 obtains a differential curve Vd of the light quantity distribution curve Vp, and when the peak value of the differential curve Vd exceeds a predetermined value, the light receiving element number corresponding to the peak value is set as the critical angle point Ic. The relationship between the critical angle point Ic and the critical angle θc can be specified from the critical angle point Ic when a liquid sample having a known critical angle θc at which total reflection occurs is measured, and conversion for converting the critical angle point Ic to the critical angle θc Find the formula. The critical angle θc of the unknown sample calculated by the conversion formula is transmitted to the refractive index calculating means 13, and the refractive index of the unknown sample is calculated from the formula (1).

本発明は以上の構成であるから、プリズム4に入射する外乱光は、強度の強いP偏光Rpが取り除かれ、強度の弱いS偏光Rsだけになり、プリズム4内部での散乱光も大幅に減少し、光電検出器3に入射するノイズ光が減少し、光量分布曲線Vpは臨界角点Ic前後で低値から高値に明確に分離され、明確なピークを有する微分曲線Vdが得られ、精度の良い屈折率の測定が可能である。しかも、偏光板5を透過するS偏光Rsにより外側から試料Sの状態観察が従来どおり可能である。   Since the present invention has the above-described configuration, the disturbance light incident on the prism 4 is removed from the high-intensity P-polarized light Rp, and becomes only the low-intensity S-polarized light Rs, and the scattered light inside the prism 4 is also greatly reduced. Then, the noise light incident on the photoelectric detector 3 is reduced, the light quantity distribution curve Vp is clearly separated from the low value to the high value around the critical angle point Ic, and the differential curve Vd having a clear peak is obtained. A good refractive index can be measured. Moreover, the state observation of the sample S can be performed from the outside by the S-polarized light Rs transmitted through the polarizing plate 5 as usual.

図1に示す実施例では、S偏光をカットする偏光板は配設されていないが、図3に示すとおり、光電検出器3とプリズム4の検出面4cとの間にS偏光をカットする偏光板15を配設してもよい。偏光板15で外乱光のS偏光成分を除去することによりさらに精度の良い屈折率の測定が期待できる。この場合、光電検出器3に入射する光はプリズム4と試料Sの界面で反射されたP偏光とプリズム4に入射したS偏光の乱反射の繰り返しで生じたP偏光成分を持つ光であるが、該P偏光成分を持つ光は強度の弱いS偏光より生じた弱い光であり、精度への悪影響は少ない。なお図3において図1と同じ符号で示す部品は図1と同じものなので説明は省略する。上述のように本発明は図示例に限定されるものではなく種々の変形例を包含する。   In the embodiment shown in FIG. 1, a polarizing plate that cuts S-polarized light is not provided, but as shown in FIG. 3, polarized light that cuts S-polarized light between the photoelectric detector 3 and the detection surface 4c of the prism 4. A plate 15 may be provided. By removing the S-polarized light component of the disturbance light with the polarizing plate 15, it is possible to expect a more accurate refractive index measurement. In this case, the light incident on the photoelectric detector 3 is light having P-polarized light components generated by repeated irregular reflection of the P-polarized light reflected at the interface between the prism 4 and the sample S and the S-polarized light incident on the prism 4. The light having the P-polarized light component is weak light generated by the weak S-polarized light, and has little adverse effect on accuracy. 3 are the same as those in FIG. 1 and are not described here. As described above, the present invention is not limited to the illustrated examples and includes various modifications.

本発明は、液体の糖度や濃度などを測定するために用いられる屈折計に関し、特に外乱光の影響を軽減する技術に利用の可能性がある。   The present invention relates to a refractometer used for measuring the sugar content, concentration, and the like of a liquid, and may be used particularly for a technique for reducing the influence of ambient light.

1 試料部
2 光源
3 光電検出器
4 プリズム
4a 入射面
4b 試料面
4c 検出面
5 偏光板
6 蝶番
10 受光素子切替手段
11 光量読出記憶手段
12 臨界角点検出手段
13 屈折率算出手段
15 偏光板
25 偏光板
θc 臨界角
Ic 臨界角点
Rc 全反射光
Ro 入射光
Rp P偏光
Rs S偏光
S 試料
Vd 微分曲線
Vp 光量分布曲線
DESCRIPTION OF SYMBOLS 1 Sample part 2 Light source 3 Photoelectric detector 4 Prism 4a Incidence surface 4b Sample surface 4c Detection surface 5 Polarizing plate 6 Hinge 10 Light receiving element switching means 11 Light quantity reading storage means 12 Critical angle point detection means 13 Refractive index calculation means 15 Polarizing index 25 Polarizing plate θc Critical angle Ic Critical angle point Rc Total reflected light Ro Incident light Rp P-polarized light Rs S-polarized light S Sample Vd Differential curve Vp Light distribution curve

Claims (2)

液体試料が滴下される貫通孔を有する試料部と、前記貫通孔の下面開口部が接触する試料面と、光源からの光を前記試料面に向けて入射させる入射面と、前記試料面からの反射光を検出する光電検出器が配設される検出面を備えたプリズムと、前記試料面に向けて入射させる光を出射する前記光源と、前記試料面からの反射光を検出する前記光電検出器とで構成される屈折計において、前記貫通孔の上面開口部に開閉可能にP偏光をカットする偏光板を配設したことを特徴とする屈折計。   A sample portion having a through-hole into which a liquid sample is dropped, a sample surface in contact with a lower surface opening of the through-hole, an incident surface on which light from a light source is incident on the sample surface, and from the sample surface A prism having a detection surface provided with a photoelectric detector for detecting reflected light, the light source for emitting light incident on the sample surface, and the photoelectric detection for detecting reflected light from the sample surface A refractometer comprising: a polarizing plate that cuts P-polarized light so as to be openable and closable at an upper surface opening of the through hole. 前記光電検出器と検出面との間にS偏光をカットする偏光板を配設したことを特徴とする請求項1記載の屈折計。   2. The refractometer according to claim 1, wherein a polarizing plate for cutting S-polarized light is disposed between the photoelectric detector and the detection surface.
JP2009271408A 2009-11-30 2009-11-30 Refractometer Expired - Fee Related JP5333179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271408A JP5333179B2 (en) 2009-11-30 2009-11-30 Refractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271408A JP5333179B2 (en) 2009-11-30 2009-11-30 Refractometer

Publications (2)

Publication Number Publication Date
JP2011112598A JP2011112598A (en) 2011-06-09
JP5333179B2 true JP5333179B2 (en) 2013-11-06

Family

ID=44235030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271408A Expired - Fee Related JP5333179B2 (en) 2009-11-30 2009-11-30 Refractometer

Country Status (1)

Country Link
JP (1) JP5333179B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959990B1 (en) * 2017-11-09 2019-07-15 (주)에이치엠디지털 기미상궁 Apparatus and method for measuring refractive index
WO2024122581A1 (en) * 2022-12-06 2024-06-13 株式会社山本金属製作所 Density monitoring system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212840A (en) * 1985-07-10 1987-01-21 Morioka Shoji Kk Method and instrument for measuring concentration of liquid to be examined
JPH08114546A (en) * 1994-10-13 1996-05-07 Shiroki Corp Liquid concentration measuring device
JP4094972B2 (en) * 2003-03-10 2008-06-04 株式会社アタゴ Refractometer
JP4467933B2 (en) * 2003-09-16 2010-05-26 株式会社アタゴ Refractometer

Also Published As

Publication number Publication date
JP2011112598A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP4911606B2 (en) Total reflection attenuation optical probe and aqueous solution spectrometer using the same
CN102216784B (en) Automatic analysis device
US7288766B2 (en) Infrared gas detector and method of the same
CN101008611A (en) Portable fruit sugar content non-destructive detection device capable of weighing
EP2846161A1 (en) Device for optically determining the concentration of alcohol and carbohydrates in a liquid sample
KR20120012391A (en) Sample inspection device and sample inspection method
JP5333179B2 (en) Refractometer
JPH06504845A (en) Simultaneous multiple angle/multiple wavelength elliptical polarizer and method
JP2007232456A (en) Optical element, refraction index sensor, and chemical sensor
WO2015186655A1 (en) Device for measuring optical rotation and refractive index
JP6260971B2 (en) Non-destructive sugar acidity meter for fruits and vegetables and method of using the same
EP3497617A1 (en) Skinprint analysis method and apparatus
JP5170379B2 (en) Sugar content measuring apparatus and sugar content measuring method for fruit vegetables
JP4467933B2 (en) Refractometer
JP2005156414A (en) Apparatus for measuring surface plasmon resonance
Mutanen et al. Measurement of color, refractive index, and turbidity of red wines
JP6600842B2 (en) Optical rotation and refractive index measuring device
JP5550521B2 (en) Total reflection spectrometer
TW201440903A (en) Fruit classification selection detector
JP4094972B2 (en) Refractometer
JP2016061585A (en) Blood coagulation detection device, blood coagulation detection method, and blood coagulation detection program
JP3576773B2 (en) Non-destructive measuring device using reflected light
JP2004271472A (en) Portable water examination device
JP2021124417A (en) Concentration and radiation dose measuring instrument
CN207351891U (en) A kind of fruit soluble matter detection analysis instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees