JP2016061585A - Blood coagulation detection device, blood coagulation detection method, and blood coagulation detection program - Google Patents

Blood coagulation detection device, blood coagulation detection method, and blood coagulation detection program Download PDF

Info

Publication number
JP2016061585A
JP2016061585A JP2014187616A JP2014187616A JP2016061585A JP 2016061585 A JP2016061585 A JP 2016061585A JP 2014187616 A JP2014187616 A JP 2014187616A JP 2014187616 A JP2014187616 A JP 2014187616A JP 2016061585 A JP2016061585 A JP 2016061585A
Authority
JP
Japan
Prior art keywords
absorbance
blood
coagulation
light
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014187616A
Other languages
Japanese (ja)
Other versions
JP6328530B2 (en
Inventor
良 下北
Ryo Shimokita
良 下北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENIAL LIGHT CO Ltd
Original Assignee
GENIAL LIGHT CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENIAL LIGHT CO Ltd filed Critical GENIAL LIGHT CO Ltd
Priority to JP2014187616A priority Critical patent/JP6328530B2/en
Publication of JP2016061585A publication Critical patent/JP2016061585A/en
Application granted granted Critical
Publication of JP6328530B2 publication Critical patent/JP6328530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a blood coagulation detection device that can detect coagulation of blood only by irradiating the blood stored in a container with light without mechanical operations on the container, thus reducing a time to detection.SOLUTION: A blood coagulation detection device 100 comprises: a light source 3 for irradiating measured blood BL stored in a blood collection tube (a container) 1 with light; a light receiver 5 for receiving the transmission light through the measured blood BL; an absorbancy calculation part 8 for calculating absorbancy over a predetermined wavelength region according to the received transmission light; and a coagulation detection part 9 for performing secondary differential on the absorbancy at the wavelength and detecting coagulation of the measured blood BL in the blood collection tube 1 according to the measured secondary differential absorbancy, which is a result of the secondary differential.SELECTED DRAWING: Figure 1

Description

本発明は、吸光度を用いて採取した血液の凝固を検出するための血液凝固検出装置、血液凝固検出方法及び血液凝固検出プログラムに関するものである。   The present invention relates to a blood coagulation detection device, a blood coagulation detection method, and a blood coagulation detection program for detecting coagulation of blood collected using absorbance.

従来、血液検査において、例えば真空採血管(以下、採血管と称する)を用いて採血された血液は、採血管からその適量が血液検査装置のキュベットに分取される。分取は、採血管の内部にノズルを差し込み、ノズルの先が血液に達した状態で、採血管内の血液を吸引して行われる。この時、採血管内の血液が凝固していると、ノズル内に血液中の凝固分つまり血餅が吸引されてノズルが詰まる。このように、分取時にノズルが詰まると、その時点で分取が不可能になって多数の血液検査が中止を余議なくされることになるので、採血管内の血液が凝固していることを、血液を分取する前に確実に、採血管毎に検出しておかなければならない。   Conventionally, in blood tests, for example, an appropriate amount of blood collected using a vacuum blood collection tube (hereinafter referred to as a blood collection tube) is dispensed from the blood collection tube into a cuvette of the blood test apparatus. Sorting is performed by inserting a nozzle into the blood collection tube and sucking the blood in the blood collection tube with the tip of the nozzle reaching the blood. At this time, if the blood in the blood collection tube is coagulated, the nozzle clogs because the coagulated portion in the blood, that is, blood clot, is sucked into the nozzle. In this way, if the nozzle is clogged at the time of sorting, it becomes impossible to sort at that time, and many blood tests will be forced to stop, so that the blood in the blood collection tube is coagulated Must be detected for each blood collection tube before blood is collected.

採血管に収容された血液が凝固しているかどうかは、以前は人手によっていたが、近年においては各種の方法や装置が考えられている。例えば特許文献1のものでは、容器の内部の血液を撮像し、容器を垂直姿勢から水平に向かう方向に所定角度回転させて容器内で血液を移動させ、血液を移動させた状態で血液を撮像し、検体容器の回転の前と後との画像の面積を演算し、得られた面積の差分に基づいて血液の凝固を判定している。   Whether or not the blood contained in the blood collection tube has been coagulated has been manually determined before, but in recent years, various methods and apparatuses have been considered. For example, in Patent Document 1, blood inside a container is imaged, blood is moved in the container by rotating the container by a predetermined angle in the direction from the vertical posture to the horizontal, and blood is imaged in a state where the blood is moved. Then, the area of the image before and after the rotation of the specimen container is calculated, and the coagulation of blood is determined based on the difference between the obtained areas.

また特許文献2のものでは、容器の底部が、容器の蓋部よりも上方に位置するまで回転したのちその状態で保持し、保持された容器を撮像し、撮像画像における容器内の血液の液面から突出する凝集塊の有無に基づいて血液の凝固を判定している。   Further, in Patent Document 2, the container is rotated until the bottom of the container is positioned above the lid of the container, and held in that state. The held container is imaged, and the blood liquid in the container in the captured image is captured. Coagulation of blood is determined based on the presence or absence of aggregates protruding from the surface.

特許第3957864号公報Japanese Patent No. 3957864 特許第5139912号公報Japanese Patent No. 5139912

しかしながら、特許文献1や特許文献2のものでは、凝固を検出する前に、容器を所定角度回転しなければならず、装置構成や検査工程が複雑になる。また、被検査血液を収容した多数の容器を回転するのに要する時間と、それらを一つずつ撮像するのに要する時間とが必ず必要となるため、全数の凝固の検出までに時間を要した。その結果、検査を受ける容器が多くなるに従って、検査を受けるまでの間に、血液が凝固する可能性が高くなる場合が生じた。   However, in Patent Document 1 and Patent Document 2, the container must be rotated by a predetermined angle before solidification is detected, which complicates the apparatus configuration and the inspection process. In addition, the time required to rotate a large number of containers containing the blood to be examined and the time required to image them one by one are necessarily required, so it took time to detect the total number of coagulations. . As a result, as the number of containers to be examined increases, the possibility that blood will clot before the examination occurs may increase.

このように、従来、容器を傾けたり回転させたりして、結局は物理的に凝固の有無を検出していた理由は、凝固血液と非凝固血液とでは実質的に成分は同じであり、分光分析等の光学的検出方法では、両者の光スペクトルに差が出ず、凝固検知は不可能と考えられていたからである。   As described above, the reason for detecting the presence or absence of coagulation in the end by tilting or rotating the container is that the components of coagulated blood and non-coagulated blood are substantially the same. This is because, in the optical detection method such as analysis, there is no difference between the two optical spectra, and it is considered impossible to detect coagulation.

これに対し、本発明の発明者は、鋭意研究の結果、吸光度を波長で二次微分して分光分析することにより、二次微分分光スペクトルから血液の凝固を検出できることを知見した。   In contrast, as a result of intensive studies, the inventors of the present invention have found that blood coagulation can be detected from a secondary differential spectroscopic spectrum by subjecting the absorbance to a second derivative with respect to wavelength and performing spectroscopic analysis.

本発明は上記したような問題を鑑みてなされたものであり、容器に対する機械的な操作を加えることなく、容器に収納された血液に光を照射するのみで血液の凝固が検出でき、検出までの時間を短縮することができる血液凝固検出装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and blood coagulation can be detected only by irradiating light to blood stored in a container without adding mechanical operation to the container. An object of the present invention is to provide a blood coagulation detecting device capable of shortening the time.

すなわち本発明に係る血液凝固検出装置は、容器に収容された測定血液に対して光を照射する光源と、前記測定血液を透過した透過光を受光する受光器と、受光した前記透過光に基づいて所定波長域に亘る吸光度を演算する吸光度演算部と、前記吸光度を波長で二次微分し、その二次微分結果である測定二次微分吸光度に基づいて容器内の測定血液の凝固を検出する凝固検出部とを備えることを特徴とする。   That is, the blood coagulation detection apparatus according to the present invention is based on a light source that irradiates light to measurement blood stored in a container, a light receiver that receives transmitted light that has passed through the measurement blood, and the received transmitted light. An absorbance calculation unit for calculating the absorbance over a predetermined wavelength range, and second-order differentiation of the absorbance with respect to the wavelength, and detecting the coagulation of the measurement blood in the container based on the second-order differential absorbance as a result of the second-order differentiation And a coagulation detector.

このような構成によれば、光源が照射する光が容器内の測定血液を透過した透過光を受光器で受光し、その透過光に基づいて吸光度演算部で所定波長域に亘って演算した吸光度を、凝固検出部において波長で二次微分し、その二次微分結果である測定二次微分吸光度に基づいて血液の凝固を検出する。吸光度を二次微分することにより、吸光度演算部により演算された吸光度では検出が不可能な吸光度のピークを検出することが可能になり、その結果そのような吸光度のピークに基づいて血液の凝固を検出することが可能になる。   According to such a configuration, the light that the light emitted from the light source passes through the measurement blood in the container and is received by the light receiver, and the absorbance calculated by the absorbance calculation unit over a predetermined wavelength region based on the transmitted light. Is second-order differentiated by the wavelength in the coagulation detector, and blood coagulation is detected based on the measured second-order differential absorbance which is the second derivative result. It is possible to detect absorbance peaks that cannot be detected by the absorbance calculated by the absorbance calculation unit by second-order differentiation of the absorbance, and as a result, blood coagulation can be performed based on such absorbance peaks. It becomes possible to detect.

吸光度を高精度に演算するためには、前記吸光度演算部は、前記透過光の透過率を算出する透過率算出部と、算出した前記透過率に基づいて吸光度を算出する吸光度算出部とを備えてなり、前記凝固検出部は、前記吸光度を波長で二次微分する微分演算部と、前記測定二次微分吸光度が基準となる二次微分吸光度(以下、基準二次微分吸光度と言う)から所定の閾値以上離れている場合に前記測定血液が凝固していると判定する凝固判定部とを備えているものが望ましい。   In order to calculate the absorbance with high accuracy, the absorbance calculation unit includes a transmittance calculation unit that calculates the transmittance of the transmitted light, and an absorbance calculation unit that calculates the absorbance based on the calculated transmittance. The coagulation detection unit is predetermined from a differential operation unit that secondarily differentiates the absorbance with a wavelength, and a second derivative absorbance based on the measured second derivative absorbance (hereinafter referred to as a reference second derivative absorbance). It is desirable to include a coagulation determination unit that determines that the measured blood is coagulated when the measured blood is more than the threshold value.

ノイズの影響を軽減するためには、前記吸光度演算部は、前記吸光度の波長についての移動平均値を算出する平均値算出部をさらに備えてなり、前記微分演算部は、前記移動平均値を波長で二次微分するものが望ましい。   In order to reduce the influence of noise, the absorbance calculation unit further includes an average value calculation unit that calculates a moving average value for the wavelength of the absorbance, and the differential calculation unit uses the moving average value as a wavelength. It is desirable to use a second derivative.

迅速に血液の凝固を検出するためには、前記凝固検出部は、波長750〜1050nmにおいて前記測定二次微分吸光度が基準二次微分吸光度から所定の閾値以上離れている場合に血液の凝固を検出するものが望ましい。前記波長750〜1050nmの特定の波長域では、凝固していない血液の二次微分スペクトルが顕著な変化なく安定しているのに対して、凝固している血液の二次微分スペクトルは大きく変化するので、凝固を容易かつ正確に検出することが可能になる。しかも、容器にラベルが貼られている場合でも、前記特定の波長域の光はラベルを透過するので好ましい。   In order to quickly detect blood coagulation, the coagulation detector detects blood coagulation when the measured second derivative absorbance is more than a predetermined threshold from the reference second derivative absorbance at wavelengths of 750 to 1050 nm. What to do is desirable. In the specific wavelength range of 750 to 1050 nm, the second derivative spectrum of uncoagulated blood is stable without significant change, whereas the second derivative spectrum of coagulated blood changes greatly. Therefore, coagulation can be detected easily and accurately. Moreover, even when a label is attached to the container, the light in the specific wavelength region is preferable because it passes through the label.

本発明に係る血液凝固検出方法は、容器に収容された血液に対して光を照射する照射ステップと、前記血液を透過した透過光を受光する受光ステップと、受光した前記透過光に基づいて吸光度を演算する吸光度演算ステップと、前記吸光度を波長で二次微分して分光分析し、その分析結果に基づいて容器内の血液の凝固を検出する凝固検出ステップとを備えることを特徴とする。   The blood coagulation detection method according to the present invention includes an irradiation step of irradiating light stored in a container with light, a light receiving step of receiving transmitted light transmitted through the blood, and an absorbance based on the received transmitted light. And a clotting detection step of performing a second-order differentiation of the absorbance with respect to wavelength and performing spectral analysis, and detecting coagulation of blood in the container based on the analysis result.

このように本発明の血液凝固検出装置によれば、二次微分分光法を採用したことにより、光を照射するだけで血液の凝固を検出できるので、容器を傾けたり振動させたりするための機構や工程が不要になり、装置のコンパクト化や簡素化を促進できるとともに、迅速に血液の凝固を検出することができるようになる。   As described above, according to the blood coagulation detection device of the present invention, since the second derivative spectroscopy is employed, blood coagulation can be detected only by irradiating light, and therefore a mechanism for tilting or vibrating the container. This eliminates the need for a process and makes it possible to promote compactness and simplification of the apparatus and to quickly detect blood coagulation.

本発明の実施形態の全体構成を示すブロック図。The block diagram which shows the whole structure of embodiment of this invention. 同実施形態の情報処理装置の構成を示すブロック図。2 is an exemplary block diagram showing the configuration of the information processing apparatus of the embodiment. FIG. 同実施形態の凝固していない血液と凝固している血液とのそれぞれにおける二次微分吸光度の分光スペクトル図。The spectral spectrum figure of the 2nd derivative absorbance in each of the blood which has not coagulated and the blood coagulated of the embodiment. 本発明の実施形態における、採血管に対する光源と受光器との配置を模式的に示す第一変形例。The 1st modification which shows typically arrangement | positioning of the light source and light receiver with respect to the blood-collecting tube in embodiment of this invention. 本発明の実施形態における、採血管に対する光源と受光器との配置を模式的に示す第二変形例。The 2nd modification which shows typically arrangement | positioning of the light source and light receiver with respect to the blood-collecting tube in embodiment of this invention. 本発明の実施形態における、採血管に対する光源と受光器との配置を模式的に示す第三変形例。The 3rd modification which shows typically arrangement | positioning of the light source and light receiver with respect to the blood-collecting tube in embodiment of this invention. 本発明の実施形態における、採血管に対する光源と受光器との配置を模式的に示す第四変形例。The 4th modification which shows typically arrangement | positioning of the light source and light receiver with respect to the blood-collecting tube in embodiment of this invention. 本発明の実施形態における、採血管に対する光源と受光器との配置を模式的に示す第五変形例。The 5th modification which shows typically arrangement of a light source and a photoreceiver to a blood collection tube in an embodiment of the present invention.

本発明の一実施形態を、図面を参照して説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1〜図2に示す血液凝固検出装置100は、測定血液BLを収容した容器である採血管1を立てた状態で支持する支持台2と、支持台2に支持されている採血管1に収容されている測定血液BLに光を照射する光源3と、採血管1を透過した透過光を分光する分光器4と、分光器4で分光された透過光を受光する受光器5と、受光器5から出力される透過光の強度信号に基づいて吸光度を演算しその演算結果に基づいて測定血液BLの凝固を検出する情報処理装置6とを備えている。   The blood coagulation detecting device 100 shown in FIGS. 1 to 2 includes a support base 2 that supports a blood collection tube 1 that is a container containing measurement blood BL, and a blood collection tube 1 that is supported by the support base 2. A light source 3 that irradiates light to the measurement blood BL stored therein, a spectroscope 4 that splits the transmitted light that has passed through the blood collection tube 1, a light receiver 5 that receives the transmitted light dispersed by the spectroscope 4, and light reception And an information processing device 6 for calculating the absorbance based on the intensity signal of the transmitted light output from the vessel 5 and detecting the coagulation of the measured blood BL based on the calculation result.

支持台2は、垂直方向に長い凹部2aを中央部に備えるとともに、その凹部2aに連通して対向する位置に設けられる光源側開口2bと受光側開口2cとを備えている。支持台2は、採血管1が凹部2aに挿入されることによって採血管1を支持する。採血管1を支持した状態で、凹部2aには外部から光が入らないようになっている。この実施形態にあっては、凹部2aを挟んで光源側開口2bと受光側開口2cとは同一直線上に設けられている。また、支持台2が採血管1を支持している状態で、測定血液BLが凝固した場合に、図1に示すように、血餅CLが支持管1の下部に沈むことを考慮して、光源側開口2bと受光側開口2cとは凹部2aの下部に対応して設けられる。光源側開口2bは、光源3が射出した光、つまり一次光を通す。また受光側開口2cは、測定血液BL中を透過した透過光を通す。   The support base 2 includes a concave portion 2a that is long in the vertical direction in the center portion, and includes a light source side opening 2b and a light receiving side opening 2c that are provided at positions facing and communicating with the concave portion 2a. The support base 2 supports the blood collection tube 1 by inserting the blood collection tube 1 into the recess 2a. In a state where the blood collection tube 1 is supported, the concave portion 2a is prevented from entering light from the outside. In this embodiment, the light source side opening 2b and the light receiving side opening 2c are provided on the same straight line with the recess 2a interposed therebetween. In addition, in the state where the support 2 supports the blood collection tube 1 and the measurement blood BL coagulates, as shown in FIG. 1, considering that the clot CL sinks to the lower part of the support tube 1, The light source side opening 2b and the light receiving side opening 2c are provided corresponding to the lower part of the recess 2a. The light source side opening 2b transmits light emitted from the light source 3, that is, primary light. The light-receiving side opening 2c allows the transmitted light that has passed through the measurement blood BL to pass therethrough.

光源3は、少なくとも赤外光を含む一次光を、光源側開口2bを介して測定血液BLに照射する例えばハロゲンランプである。   The light source 3 is, for example, a halogen lamp that irradiates the measurement blood BL with primary light including at least infrared light through the light source side opening 2b.

分光器4は、受光側開口2cからの透過光を波長毎に分光するものであり、例えばプリズム、回折格子やスリット等を有する。   The spectroscope 4 separates the transmitted light from the light receiving side opening 2c for each wavelength, and includes, for example, a prism, a diffraction grating, and a slit.

受光器5は、分光器4により分光された波長毎の透過光の強度に対応した電流又は電圧を出力するもので、例えばフォトダイオード、フォトトランジスタや近赤外線まで感度分布を持つCCD等のセンサである。   The light receiver 5 outputs a current or a voltage corresponding to the intensity of transmitted light for each wavelength dispersed by the spectroscope 4, and is a sensor such as a photodiode, a phototransistor, or a CCD having a sensitivity distribution up to near infrared rays. is there.

情報処理装置6は、CPU6a、メモリ6b、入出力インターフェース6c、ディスプレイ6d、キーボード6e、マウス6f等を備える専用乃至汎用のコンピュータからなり、血液凝固検出プログラムを実行することにより、分光器4を介して受光器5で受光した波長毎の透過光に基づいて所定波長域に亘る吸光度を演算する吸光度演算部8と、吸光度を波長で二次微分し、その二次微分結果である測定二次微分吸光度に基づいて採血管1内の測定血液BLの凝固を検出する凝固検出部9を備える。所定波長域は例えば、500nm〜1100nmである。   The information processing apparatus 6 includes a dedicated or general-purpose computer including a CPU 6a, a memory 6b, an input / output interface 6c, a display 6d, a keyboard 6e, a mouse 6f, and the like. An absorbance calculation unit 8 that calculates the absorbance over a predetermined wavelength range based on the transmitted light for each wavelength received by the photoreceiver 5, and second-order differentiation of the absorbance with respect to the wavelength, and a second-order differential measurement result A coagulation detector 9 for detecting coagulation of the measurement blood BL in the blood collection tube 1 based on the absorbance is provided. The predetermined wavelength range is, for example, 500 nm to 1100 nm.

吸光度演算部8は、透過光の透過率を算出する透過率算出部8aと、算出した透過率に基づいて波長毎の吸光度を算出する吸光度算出部8bと、算出した吸光度の移動平均値を算出する平均値算出部8cとを備えている。   The absorbance calculation unit 8 calculates a transmittance calculation unit 8a that calculates the transmittance of transmitted light, an absorbance calculation unit 8b that calculates an absorbance for each wavelength based on the calculated transmittance, and a moving average value of the calculated absorbance. And an average value calculation unit 8c.

透過率算出部8aは、光源3から射出されて測定血液BLを透過するまでの一次光の各波長の強度と、測定血液BLを透過した透過光の各波長の強度との比率により、透過率を算出する。一次光の強度は例えば、支持台2に採血管1が支持されていない状態で一次光を受光して測定する。事前に一次光の強度を測定しない構成としては、光源部6から射出された光を例えばビームスプリッタで二つの光束に分割し、その一方を上記の一次光として使用し、残りの光束を測定血液BLに照射する装置構成にするものが挙げられる。なお、一次光の強度が、測定に必要な所定波長域に亘って同一値であったり、強度スペクトルが既知である場合は、一次光の強度の測定は不要である。   The transmittance calculating unit 8a determines the transmittance according to the ratio between the intensity of each wavelength of the primary light emitted from the light source 3 and transmitted through the measurement blood BL and the intensity of each wavelength of the transmitted light transmitted through the measurement blood BL. Is calculated. For example, the intensity of the primary light is measured by receiving the primary light in a state where the blood collection tube 1 is not supported by the support base 2. As a configuration in which the intensity of the primary light is not measured in advance, the light emitted from the light source unit 6 is divided into two light beams by, for example, a beam splitter, one of which is used as the primary light, and the remaining light beam is measured blood. An apparatus configuration for irradiating the BL can be mentioned. When the intensity of the primary light is the same value over a predetermined wavelength range necessary for the measurement or the intensity spectrum is known, it is not necessary to measure the intensity of the primary light.

吸光度算出部8bは、透過率算出部8aが算出した各波長の透過率の常用対数により波長毎の吸光度を算出する。   The absorbance calculation unit 8b calculates the absorbance for each wavelength based on the common logarithm of the transmittance of each wavelength calculated by the transmittance calculation unit 8a.

平均値算出部8cは、波長毎に算出された吸光度の、直近の所定個数により移動平均して移動平均値を算出する。この実施形態における移動平均は、単純移動平均である。   The average value calculation unit 8c calculates a moving average value by moving average using the nearest predetermined number of absorbances calculated for each wavelength. The moving average in this embodiment is a simple moving average.

凝固検出部9は、吸光度の移動平均値を波長で二次微分する微分演算部9aと、測定二次微分吸光度が基準となる二次微分吸光度(以下、基準二次微分吸光度とも言う)から所定の閾値以上離れている場合に測定血液BLが凝固していると判定する凝固判定部9bとを備える。凝固検出部9は、凝固判定部9bの判定結果をディスプレイ5dに表示させる。基準二次微分吸光度は、凝固していない非凝固血液の吸光度の移動平均値を波長で二次微分した吸光度である。この基準二次微分吸光度は、凝固検出に先だって予め算出しておき、メモリ5bの所定領域に設定した基準二次微分吸光度記憶部(以下、基準記憶部とも言う)10に記憶しておく。   The coagulation detection unit 9 is predetermined from a differential operation unit 9a that secondarily differentiates the moving average value of absorbance with a wavelength, and a secondary differential absorbance that is based on the measured second derivative absorbance (hereinafter also referred to as a reference second derivative absorbance). A coagulation determination unit 9b that determines that the measured blood BL is coagulated when the distance is greater than or equal to the threshold value. The coagulation detection unit 9 displays the determination result of the coagulation determination unit 9b on the display 5d. The standard second derivative absorbance is an absorbance obtained by secondarily differentiating the moving average value of the absorbance of non-coagulated blood that has not been coagulated with respect to wavelength. This reference second derivative absorbance is calculated in advance prior to detection of coagulation, and is stored in a reference second derivative absorbance storage unit (hereinafter also referred to as a reference storage unit) 10 set in a predetermined area of the memory 5b.

微分演算部9aは、平均値算出部8cから入力される吸光度の移動平均値を、波長で二次微分し、測定二次微分吸光度を演算する。微分は、いわゆる有限差分法に基づいて実行するもので、微小波長だけ離れた2つの波長の移動平均値の差分を、波長の微小差分で除して実行する。同様にして、二次微分は、一次微分で得られたスペクトルの一次微分吸光度の、微小波長だけ離れた2つの波長の差分を、波長の微小差分で除して実行する。この二次微分を、測定した所定波長域の一次微分吸光度に対して実行して、測定二次微分吸光度スペクトル(以下、測定スペクトルとも言う)を得るものである。そして、測定スペクトルにおいて、特定の波長域11内に吸光度のピークが存在して、測定二次微分吸光度が基準二次微分吸光度から所定の閾値以上離れている場合に、測定血液BLの凝固を検出する。特定の波長域11は、750〜1050nmである。   The differential calculation unit 9a secondarily differentiates the moving average value of the absorbance input from the average value calculation unit 8c by the wavelength, and calculates the measured secondary differential absorbance. The differentiation is performed based on a so-called finite difference method, and is performed by dividing the difference between the moving average values of two wavelengths separated by a minute wavelength by the minute difference in wavelength. Similarly, the second derivative is executed by dividing the difference between two wavelengths separated by a minute wavelength in the first derivative absorbance of the spectrum obtained by the first derivative by the minute difference in wavelength. This second derivative is performed on the measured first derivative absorbance in a predetermined wavelength range to obtain a measured second derivative absorbance spectrum (hereinafter also referred to as a measurement spectrum). Then, in the measurement spectrum, when a peak of absorbance exists in a specific wavelength range 11 and the measured second derivative absorbance is separated from the reference second derivative absorbance by a predetermined threshold or more, the coagulation of the measured blood BL is detected. To do. The specific wavelength region 11 is 750 to 1050 nm.

このような構成において、血液凝固検出プログラムを実行することにより、上記した情報処理装置6の各部が機能する。そして、採血管1に収容された測定血液BLの凝固は、次に説明する手順により検出される。なお、血液凝固検出プログラムにおいて、算出した透過率、吸光度、移動平均値及び二次微分吸光度は、必要に応じてメモリ5bに記憶され、不要となった際には消去される。   In such a configuration, by executing the blood coagulation detection program, each unit of the information processing apparatus 6 described above functions. And the coagulation | solidification of the measurement blood BL accommodated in the blood collection tube 1 is detected by the procedure demonstrated below. In the blood coagulation detection program, the calculated transmittance, absorbance, moving average value, and second derivative absorbance are stored in the memory 5b as necessary, and are deleted when they are no longer needed.

まず、支持台2に採血管1が支持されていない状態で、光源3からの一次光の強度を所定波長域に亘って計測する。計測は、所定波長域における各波長の強度に対して行う。計測した各波長の強度は、吸光度の算出の基礎となる透過率を算出するのに用いる。   First, in a state where the blood collection tube 1 is not supported by the support base 2, the intensity of the primary light from the light source 3 is measured over a predetermined wavelength range. Measurement is performed on the intensity of each wavelength in a predetermined wavelength region. The measured intensity of each wavelength is used to calculate the transmittance that is the basis for calculating the absorbance.

光源3からの一次光の強度を計測した後、採血された測定血液BLが収容されている採血管1を支持台2の凹部2aに挿入し、支持台2に支持された採血管1に収容された測定血液BLに対して光を照射する。   After measuring the intensity of the primary light from the light source 3, the blood collection tube 1 in which the collected measurement blood BL is accommodated is inserted into the recess 2 a of the support base 2 and accommodated in the blood collection tube 1 supported by the support base 2. The measured blood BL is irradiated with light.

受光器5が測定血液BLを透過した透過光を受光すると、波長毎の透過光の強度と一次光の強度とから透過率を算出する。次に、算出した透過率に基づいて透過率の常用対数を演算することで波長毎の吸光度を算出する。その後、算出した吸光度の所定個数により吸光度の移動平均値を算出する。   When the light receiver 5 receives the transmitted light that has passed through the measurement blood BL, the transmittance is calculated from the intensity of the transmitted light and the intensity of the primary light for each wavelength. Next, the absorbance for each wavelength is calculated by calculating the common logarithm of the transmittance based on the calculated transmittance. Thereafter, the moving average value of the absorbance is calculated from the predetermined number of calculated absorbances.

算出した移動平均値を波長で二次微分することにより、測定二次微分吸光度の測定スペクトルが得られる。測定スペクトルにおいて、特定の波長域11内にピークが存在し、それによって測定二次微分吸光度が基準記憶部11に記憶された基準二次微分吸光度から所定の閾値以上離れていることを判定した場合に、採血管1内の測定血液BLが凝固していることを検出する。   A measured spectrum of the measured second derivative absorbance is obtained by secondarily differentiating the calculated moving average value by wavelength. In the measurement spectrum, when it is determined that a peak exists in a specific wavelength range 11 and thereby the measured secondary differential absorbance is more than a predetermined threshold from the reference secondary differential absorbance stored in the reference storage unit 11 In addition, it is detected that the measurement blood BL in the blood collection tube 1 is coagulated.

凝固の検出は、具体的には、波長毎に測定二次微分吸光度と基準二次微分吸光度との偏差の絶対値である測定吸光度差を算出し、この測定吸光度差が所定の閾値以上である場合に、測定血液BLが凝固していると判定することにより行う。その具体例としては、(1)特定の波長域11におけるいずれかの波長の測定吸光度差が所定の閾値以上となった場合に凝固と判定する。(2)特定の波長域11内の全ての波長に対して測定吸光度差を算出し、その算出結果に基づいて測定吸光度差の平均値を算出し、測定吸光度差の平均値が所定の閾値以上である場合に、凝固を判定する。(3)特定の波長域11において、測定二次微分吸光度が基準二次微分吸光度から所定の閾値以上離れている回数が所定回数以上である場合に、凝固を判定する、などである。   Specifically, coagulation is detected by calculating a measured absorbance difference, which is the absolute value of the deviation between the measured second derivative absorbance and the reference second derivative absorbance for each wavelength, and the measured absorbance difference is equal to or greater than a predetermined threshold. In this case, it is determined by determining that the measurement blood BL is coagulated. As a specific example thereof, (1) it is determined that coagulation occurs when the measured absorbance difference at any wavelength in a specific wavelength region 11 is equal to or greater than a predetermined threshold. (2) Calculate the measured absorbance difference for all wavelengths within the specific wavelength range 11, calculate the average value of the measured absorbance difference based on the calculation result, and the average value of the measured absorbance difference is equal to or greater than a predetermined threshold value If so, solidification is determined. (3) In a specific wavelength range 11, when the number of times the measured second derivative absorbance is separated from the reference second derivative absorbance by a predetermined threshold or more is a predetermined number of times or more, coagulation is determined.

図3は、異なる三つの試料1〜3における、測定血液BLの内、凝固していない非凝固血液の測定二次微分吸光度スペクトルと、凝固している凝固血液の測定二次微分吸光度スペクトルとを示したスペクトル図である。図3において、各スペクトル図は、横軸が波長で、縦軸が二次微分吸光度である。   FIG. 3 shows measured second derivative absorbance spectra of non-coagulated noncoagulated blood and measured second derivative absorbance spectra of coagulated blood coagulated in three different samples 1-3. It is the shown spectrum figure. In FIG. 3, in each spectrum diagram, the horizontal axis represents the wavelength, and the vertical axis represents the second derivative absorbance.

図3のスペクトル図において、試料1〜3において共通して、非凝固血液の測定二次微分吸光度スペクトル(同図に一点鎖線で示す)では、特定の波長域(図3に点線の楕円で示す)10に顕著なピークは存在せず、ほぼ変化することなく安定した状態を呈している。これに対して、凝固血液の測定スペクトル(同図に実線で示す)では、特定の波長域11に上向き及び/又は下向きの顕著なピークが存在する。図3に示した試料1〜3では、特定の波長域11内の波長が900nmと940nmにおいて、これらのピークが確認される。これらのピークは、透過率に基づいて算出した原吸光度のスペクトルには現れず、原吸光度を波長で二次微分して初めて出現する。   In the spectrum diagram of FIG. 3, in common with samples 1 to 3, the measured second derivative absorbance spectrum of non-coagulated blood (indicated by a one-dot chain line in FIG. 3) is a specific wavelength region (indicated by a dotted ellipse in FIG. 3). ) There is no remarkable peak at 10 and it shows a stable state with almost no change. On the other hand, in the measurement spectrum of coagulated blood (shown by a solid line in the figure), there are significant upward and / or downward peaks in a specific wavelength region 11. In Samples 1 to 3 shown in FIG. 3, these peaks are confirmed when the wavelengths in the specific wavelength region 11 are 900 nm and 940 nm. These peaks do not appear in the spectrum of the original absorbance calculated based on the transmittance, but appear only when the original absorbance is second-order differentiated with respect to the wavelength.

これに対して、特定の波長域11以外の波長域では、非凝固血液の測定スペクトルと、凝固血液の測定スペクトルとがほぼ同じ傾向を示す。つまり、700nm近傍から特定の波長域11までにあっては、それぞれのスペクトルは、同様のピークやほぼ同じ値の変化の少ない安定した二次微分吸光度を示す。また、特定の波長域11より上の波長域では、ほぼ同じにピークが現れる。したがって、特定の波長域11以外の波長域では、測定血液BLの凝固を検出することが困難になる。   On the other hand, in a wavelength range other than the specific wavelength range 11, the measurement spectrum of non-coagulated blood and the measurement spectrum of coagulated blood show almost the same tendency. That is, in the range from around 700 nm to a specific wavelength region 11, each spectrum shows a stable second derivative absorbance with little change in the same peak or almost the same value. Moreover, in the wavelength range above the specific wavelength range 11, peaks appear almost the same. Therefore, it becomes difficult to detect the coagulation of the measurement blood BL in a wavelength range other than the specific wavelength range 11.

このような測定スペクトルの違いは、凝固血液の成分の分散状態が非凝固血液とは異なることに起因して生じるものと考えられる。すなわち、測定血液BLが凝固していない場合、赤血球や白血球等の血球成分が測定血液BL全体に分散しているため、光源3からの一次光は測定血液BL中で反射され、一部は吸収される。これに対して、測定血液BLが凝固していると、血球成分等が凝集して血餅CLが形成され、同時に形成される血清SRの部分において血球成分の分布状態が凝固する前と異なる。これにより、測定血液BL全体としては測定血液BLの成分自体が変化するわけではないので、光源3からの一次光は、血清SR部分での反射・拡散がわずかではあるが少なくなることで受光器5に到達しやすくなるとともに、血餅CLが生じることにより、血餅CLでの一次光の吸収が多くなる。この結果、血餅CLがある凝固血液と、血餅CLがない非凝固血液とでは、上記したような測定スペクトルにおける差異が生じるものではないかと考えられる。   Such a difference in the measurement spectrum is considered to be caused by the dispersion state of the components of the coagulated blood being different from that of the non-coagulated blood. That is, when the measurement blood BL is not coagulated, blood cell components such as red blood cells and white blood cells are dispersed throughout the measurement blood BL, so that the primary light from the light source 3 is reflected in the measurement blood BL and partly absorbed. Is done. On the other hand, when the measurement blood BL is coagulated, blood cell components and the like are aggregated to form a blood clot CL, and the distribution state of the blood cell components is different from that before coagulation in the portion of the serum SR formed at the same time. As a result, the component itself of the measurement blood BL does not change as a whole of the measurement blood BL, so that the primary light from the light source 3 is slightly reflected / diffused in the serum SR portion, but the light receiver 5 and the blood clot CL is generated, the primary light absorption in the clot CL increases. As a result, it is considered that the difference in the measurement spectrum as described above may occur between the coagulated blood with the clot CL and the non-coagulated blood without the clot CL.

したがって、上記したように、測定血液BLを収容した採血管1を支持台2に挿入して測定血液BLに所定波長域の光を照射するだけで、採血管1を縦方向に回転させるなどして位置を変化させることもなく測定血液BLの凝固を検出することができるので、検出に要する時間を可及的に短縮することができる。   Therefore, as described above, the blood collection tube 1 is rotated in the vertical direction only by inserting the blood collection tube 1 containing the measurement blood BL into the support 2 and irradiating the measurement blood BL with light in a predetermined wavelength range. Since the coagulation of the measurement blood BL can be detected without changing the position, the time required for detection can be shortened as much as possible.

また、この実施形態においては、原吸光度の移動平均値を波長で二次微分して測定二次微分吸光度を算出し、その測定二次微分吸光度に基づいて凝固検出を行っているので、ノイズ等の影響を最小限にすることができる。このため、凝固の検出精度を高くすることができる。移動平均値を算出するのではなく、カーブフィッティングや最小二乗法等によりノイズ除去を施してもよい。   In this embodiment, the moving average value of the original absorbance is second-order differentiated by the wavelength to calculate the measured second-derivative absorbance, and the coagulation detection is performed based on the measured second-derivative absorbance. Can be minimized. For this reason, the detection accuracy of coagulation can be increased. Instead of calculating the moving average value, noise removal may be performed by curve fitting, least squares, or the like.

加えて、赤外線を含む特定の波長域11における吸光度差により凝固判定をしているので、採血管1に検査を受ける測定血液BLに関する情報が書き込まれたラベルが採血管1表面に貼り付けてあっても、高精度に測定血液BLの凝固を検出することができる。   In addition, since the coagulation determination is performed based on the difference in absorbance in a specific wavelength region 11 including infrared rays, a label on which information on the measurement blood BL to be examined is written is attached to the surface of the blood collection tube 1. However, it is possible to detect the coagulation of the measurement blood BL with high accuracy.

なお、本発明は上記実施形態に限定されるものではない。   The present invention is not limited to the above embodiment.

上記実施形態にあっては、透過光を分光器4により分光して受光するものを説明したが、光源3と光源側開口2bとの間に分光器4を配置し、光源3が射出した一次光を分光器4により分光し、分光により得られる単色光を測定血液BLに照射するものであってもよい。この場合にあっても、所定波長域の波長毎に吸光度を二次微分し、得られたそれぞれの波長の測定二次微分吸光度により測定二次微分吸光度スペクトルを作成し、特定の波長域11における二次微分吸光度ピークに基づいて測定血液BLの凝固を検出する。   In the above embodiment, the transmitted light is split and received by the spectroscope 4, but the spectroscope 4 is disposed between the light source 3 and the light source side opening 2b, and the primary light emitted from the light source 3 is described. The light may be dispersed by the spectroscope 4 and the measurement blood BL may be irradiated with monochromatic light obtained by the spectroscopy. Even in this case, the absorbance is second-order differentiated for each wavelength in the predetermined wavelength region, and a measured second-derivative absorbance spectrum is created based on the measured second-derivative absorbance of each obtained wavelength. Coagulation of the measured blood BL is detected based on the second derivative absorbance peak.

上記実施形態では、原吸光度の移動平均値を二次微分して算出した測定二次微分吸光度に基づいて凝固検出をしたが、原吸光度を波長で二次微分して測定二次微分吸光度を算出し、算出した二次微分吸光度に基づいて凝固検出をするものであってよい。   In the above embodiment, coagulation was detected based on the measured second derivative absorbance calculated by second derivative of the moving average value of the original absorbance, but the measured second derivative absorbance was calculated by secondarily differentiating the original absorbance with the wavelength. Then, the coagulation may be detected based on the calculated second derivative absorbance.

上記実施形態において、所定の閾値を複数設定することで、測定血液BLが凝固している度合いを判定することが可能になる。例えば、所定の閾値を、値の小さい第一閾値、第一閾値より大なる第二閾値、及び第二閾値より大なる第三閾値で構成する。そして、測定二次微分吸光度が基準二次微分吸光度から第一閾値以上離れている場合に、凝固が始まったことを判定する。同様に、測定二次微分吸光度が基準二次微分吸光度から第二閾値以上離れている場合に、凝固が中程度まで進行したことを判定する。その後、測定二次微分吸光度が基準二次微分吸光度から第三閾値以上離れている場合に、完全に凝固したことを判定する。このように、凝固検出作業の開始からの時間経過に対する測定二次微分吸光度スペクトルの変化を第一〜第三閾値に基づいて判定することにより、凝固の度合いを検出することができる。   In the embodiment described above, it is possible to determine the degree to which the measurement blood BL is coagulated by setting a plurality of predetermined threshold values. For example, the predetermined threshold is configured by a first threshold having a small value, a second threshold greater than the first threshold, and a third threshold greater than the second threshold. Then, when the measured second derivative absorbance is separated from the reference second derivative absorbance by a first threshold or more, it is determined that coagulation has started. Similarly, when the measured second derivative absorbance is separated from the reference second derivative absorbance by a second threshold or more, it is determined that the coagulation has progressed to an intermediate level. Thereafter, when the measured second derivative absorbance is separated from the reference second derivative absorbance by a third threshold or more, it is determined that the coagulation is complete. Thus, the degree of coagulation can be detected by determining the change in the measured second derivative absorbance spectrum with respect to the passage of time from the start of the coagulation detection operation based on the first to third threshold values.

上記実施形態では、特定の波長域11を波長750〜1050nmで設定したが、波長500nm〜650nmに特定の波長域を設定するものであってよい。波長500nm〜650nmの波長域にあっても、図3から明らかなように、基準二次微分吸光度と測定二次微分吸光度との吸光度差が認められるので、実施形態同様に血液が凝固したことを検出することができる。   In the above embodiment, the specific wavelength range 11 is set at a wavelength of 750 to 1050 nm. However, the specific wavelength range may be set to a wavelength of 500 nm to 650 nm. Even in the wavelength range of 500 nm to 650 nm, as is apparent from FIG. 3, the difference in absorbance between the standard second derivative absorbance and the measured second derivative absorbance is recognized. Can be detected.

上記実施形態にあっては、光源3と受光器5とを、採血管1を挟む位置の同一直線状に配置したが、図4〜図8に示すように配置するものであってもよい。すなわち、図4〜図6に示すものは、一つの受光器5に対して、光源3を二個配置する変形例である。図4に示す第一変形例では、それぞれの光源3を、採血管1を挟んで受光器5の反対側に配置している。図5に示す第二変形例では、採血管1に対して受光器5と同じ側で、かつ受光器5の上下に光源3を配置している。図6に示す第三変形例は、第一変形例における光源3と受光器5の構成を、採血管1を挟む位置において採用した構成である。これらの構成にあっては、光源3と受光器5とが垂直方向の同一平面内に配置される。   In the above embodiment, the light source 3 and the light receiver 5 are arranged in the same straight line at the position where the blood collection tube 1 is sandwiched, but they may be arranged as shown in FIGS. That is, what is shown in FIGS. 4 to 6 is a modification in which two light sources 3 are arranged for one light receiver 5. In the first modification shown in FIG. 4, each light source 3 is disposed on the opposite side of the light receiver 5 with the blood collection tube 1 interposed therebetween. In the second modification shown in FIG. 5, the light source 3 is disposed on the same side as the light receiver 5 with respect to the blood collection tube 1 and above and below the light receiver 5. The third modified example shown in FIG. 6 is a configuration in which the configuration of the light source 3 and the light receiver 5 in the first modified example is adopted at a position sandwiching the blood collection tube 1. In these configurations, the light source 3 and the light receiver 5 are arranged in the same vertical plane.

次に、図7に示す第四変形例は、光源3と受光器5とを水平方向の同一平面内に配置するもので、受光器5に対して光源3を同一平面において90度回転した位置に配置するものである。図8に示す第五変形例は、第四変形例に対して光源3をさらに1つ増やし、光源3同士を対向して配置するものである。   Next, in the fourth modification shown in FIG. 7, the light source 3 and the light receiver 5 are arranged in the same horizontal plane, and the light source 3 is rotated by 90 degrees in the same plane with respect to the light receiver 5. Is to be placed. In the fifth modification shown in FIG. 8, the light source 3 is further increased by one with respect to the fourth modification, and the light sources 3 are arranged to face each other.

これら第一〜第五変形例に示す光源3と受光器5の配置構造にあっては、透過光以外に測定血液BLの凝固部分で発生する反射・散乱光(図4〜図8に破線矢印で示す)をも効率よく受光することができるので、分析精度をさらに向上させることができる。   In the arrangement structure of the light source 3 and the light receiver 5 shown in the first to fifth modified examples, the reflected / scattered light generated in the coagulation portion of the measurement blood BL in addition to the transmitted light (broken arrows in FIGS. 4 to 8) Can be efficiently received, so that the analysis accuracy can be further improved.

その他、本発明は上記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1・・・・・採血管(容器)
2・・・・・支持台
3・・・・・光源
5・・・・・受光器
6・・・・・情報処理装置
8・・・・・吸光度演算部
8a・・・・透過率算出部
8b・・・・吸光度算出部
8c・・・・平均値算出部
9・・・・・凝固検出部
9a・・・・微分演算部
10・・・・特定の波長域
100・・・血液凝固検出装置
BL・・・・測定血液
1 ... Blood collection tube (container)
2... Support stand 3... Light source 5... Receiver 6. Information processing device 8... Absorbance calculation unit 8 a. 8b ··· Absorbance calculation unit 8c ··· Average value calculation unit 9 ··· Coagulation detection unit 9a · · · Differential operation unit 10 · · · Specific wavelength range 100 · · · Blood coagulation detection Device BL ... Measurement blood

Claims (6)

容器に収容された測定血液に対して光を照射する光源と、
前記測定血液を透過した透過光を受光する受光器と、
受光した前記透過光に基づいて所定波長域に亘る吸光度を演算する吸光度演算部と、
前記吸光度を波長で二次微分し、その二次微分結果である測定二次微分吸光度に基づいて前記測定血液の凝固を検出する凝固検出部とを備えることを特徴とする血液凝固検出装置。
A light source for irradiating the measurement blood contained in the container with light;
A light receiver that receives the transmitted light that has passed through the measurement blood;
An absorbance calculation unit that calculates the absorbance over a predetermined wavelength range based on the received transmitted light; and
A blood coagulation detection apparatus comprising: a coagulation detection unit that secondarily differentiates the absorbance with a wavelength and detects coagulation of the measured blood based on a measured second derivative absorbance that is a second derivative result thereof.
前記吸光度演算部は、前記透過光の透過率を算出する透過率算出部と、算出した前記透過率に基づいて前記吸光度を算出する吸光度算出部とを備えてなり、
前記凝固検出部は、前記吸光度を波長で二次微分する微分演算部と、前記測定二次微分吸光度が基準となる二次微分吸光度(以下、基準二次微分吸光度と言う)から所定の閾値以上離れている場合に前記測定血液が凝固していると判定する凝固判定部とを備えている請求項1記載の血液凝固検出装置。
The absorbance calculation unit includes a transmittance calculation unit that calculates the transmittance of the transmitted light, and an absorbance calculation unit that calculates the absorbance based on the calculated transmittance.
The coagulation detector includes a differential operation unit that secondarily differentiates the absorbance with a wavelength, and a second derivative absorbance that is based on the measured second derivative absorbance (hereinafter referred to as a reference second derivative absorbance) that is a predetermined threshold value or more. The blood coagulation detection apparatus according to claim 1, further comprising a coagulation determination unit that determines that the measurement blood is coagulated when separated.
前記吸光度演算部は、前記吸光度の波長についての移動平均値を算出する平均値算出部をさらに備えてなり、
前記微分演算部は、前記移動平均値を波長で二次微分するものである請求項2記載の血液凝固検出装置。
The absorbance calculation unit further comprises an average value calculation unit for calculating a moving average value for the wavelength of the absorbance,
The blood coagulation detection apparatus according to claim 2, wherein the differential operation unit is a unit that secondarily differentiates the moving average value with a wavelength.
前記凝固検出部は、波長750〜1050nmにおいて前記測定二次微分吸光度が基準二次微分吸光度から所定の閾値以上離れている場合に血液の凝固を検出する請求項1、2又は3記載の血液凝固検出装置。   4. The blood coagulation according to claim 1, 2, or 3, wherein the coagulation detector detects blood coagulation when the measured second derivative absorbance is separated from a reference second derivative absorbance by a predetermined threshold or more at a wavelength of 750 to 1050 nm. Detection device. 容器に収容された測定血液に対して光を照射する照射ステップと、
前記測定血液を透過した透過光を受光する受光ステップと、
受光した前記透過光に基づいて所定波長域に亘る吸光度を演算する吸光度演算ステップと、
前記吸光度を波長で二次微分し、その二次微分結果である測定二次微分吸光度に基づいて容器内の測定血液の凝固を検出する凝固検出ステップとを備えることを特徴とする血液凝固検出方法。
An irradiation step for irradiating the measurement blood contained in the container with light;
A light receiving step for receiving the transmitted light that has passed through the measurement blood;
An absorbance calculation step for calculating an absorbance over a predetermined wavelength range based on the received transmitted light;
A blood coagulation detection method, comprising: a coagulation detection step of secondarily differentiating the absorbance with a wavelength and detecting coagulation of the measured blood in the container based on the measured second derivative absorbance which is the second derivative result thereof. .
採取された測定血液を透過した透過光に基づいて所定波長域に亘る吸光度を演算する吸光度演算部と、前記吸光度を波長で二次微分し、その二次微分結果である測定二次微分吸光度に基づいて容器内の測定血液の凝固を検出する凝固検出部としての機能をコンピュータに発揮させることを特徴とする血液凝固検出プログラム。   Based on the transmitted light that has passed through the collected measurement blood, an absorbance calculation unit that calculates the absorbance over a predetermined wavelength range, and the absorbance is second-order differentiated by wavelength, and the second-order derivative measurement result is the second-order derivative absorbance. A blood coagulation detection program which causes a computer to function as a coagulation detection unit for detecting coagulation of measured blood in a container based on the computer program.
JP2014187616A 2014-09-16 2014-09-16 Blood coagulation detection apparatus, blood coagulation detection method, and blood coagulation detection program Active JP6328530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187616A JP6328530B2 (en) 2014-09-16 2014-09-16 Blood coagulation detection apparatus, blood coagulation detection method, and blood coagulation detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187616A JP6328530B2 (en) 2014-09-16 2014-09-16 Blood coagulation detection apparatus, blood coagulation detection method, and blood coagulation detection program

Publications (2)

Publication Number Publication Date
JP2016061585A true JP2016061585A (en) 2016-04-25
JP6328530B2 JP6328530B2 (en) 2018-05-23

Family

ID=55795904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187616A Active JP6328530B2 (en) 2014-09-16 2014-09-16 Blood coagulation detection apparatus, blood coagulation detection method, and blood coagulation detection program

Country Status (1)

Country Link
JP (1) JP6328530B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211303A (en) * 2018-06-04 2019-12-12 株式会社日立ハイテクノロジーズ Analyzer
JPWO2021145461A1 (en) * 2020-01-17 2021-07-22

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030060692A1 (en) * 2001-08-03 2003-03-27 Timothy L. Ruchti Intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes
WO2010131713A1 (en) * 2009-05-13 2010-11-18 住友電気工業株式会社 Blood vessel inner wall analyzing device and blood vessel inner wall analyzing method
JP2014163933A (en) * 2013-02-21 2014-09-08 F Hoffmann-La Roche Ag Method and apparatus for detecting clot in liquid and laboratory automation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030060692A1 (en) * 2001-08-03 2003-03-27 Timothy L. Ruchti Intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes
WO2010131713A1 (en) * 2009-05-13 2010-11-18 住友電気工業株式会社 Blood vessel inner wall analyzing device and blood vessel inner wall analyzing method
JP2014163933A (en) * 2013-02-21 2014-09-08 F Hoffmann-La Roche Ag Method and apparatus for detecting clot in liquid and laboratory automation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211303A (en) * 2018-06-04 2019-12-12 株式会社日立ハイテクノロジーズ Analyzer
JP6999500B2 (en) 2018-06-04 2022-02-10 株式会社日立ハイテク Analysis equipment
JPWO2021145461A1 (en) * 2020-01-17 2021-07-22
WO2021145461A1 (en) 2020-01-17 2021-07-22 株式会社エイアンドティー Blood-clotting measurement device, blood-clotting time measurement method, method for determining completion of blood-clotting reaction, and automated centrifugal blood separator
JP7241209B2 (en) 2020-01-17 2023-03-16 株式会社エイアンドティー Blood Coagulation Measuring Device, Method for Measuring Blood Coagulation Time, Method for Determining Completion of Blood Coagulation Reaction, and Automated Blood Centrifuge

Also Published As

Publication number Publication date
JP6328530B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6005683B2 (en) Method and apparatus for determining interfering substances and physical dimensions in liquid samples and containers analyzed by a clinical analyzer
US10648905B2 (en) Systems, apparatus, and related methods for evaluating biological sample integrity
WO2018121799A1 (en) Raman spectrum detection device and detection safety monitoring method therefor
US10359416B2 (en) Method and device for assigning a blood plasma sample
US20140255254A1 (en) Blood coagulation analyzer
JP2017211288A5 (en)
EP2530454A1 (en) Analysis device
US11137290B2 (en) Accessory for infrared spectrophotometer
JP2008008794A (en) Analyzing device
JPH10510362A (en) Equipment for analyzing blood and other samples
JP6454211B2 (en) Sample analyzer, blood coagulation analyzer, sample analysis method, and computer program
JP2009168747A (en) Method of inspecting food and inspection apparatus implementing the same
JP6328530B2 (en) Blood coagulation detection apparatus, blood coagulation detection method, and blood coagulation detection program
JP2009281941A (en) Analyzing method and analyzer
RU2395073C2 (en) Method and equipment for quantitative analysis of solutions and dispersions using near-infrared spectroscopy
JP5946776B2 (en) Automatic analyzer
JP6999500B2 (en) Analysis equipment
JP5865713B2 (en) Automatic analyzer
JP2020024125A (en) Automatic analyzing apparatus, automatic analyzing method and program
KR102205900B1 (en) Analysis apparatus and method of checking cartridge installation of the analysis apparatus
JP7241209B2 (en) Blood Coagulation Measuring Device, Method for Measuring Blood Coagulation Time, Method for Determining Completion of Blood Coagulation Reaction, and Automated Blood Centrifuge
JP2012215467A (en) Biological substance analyzer and biological substance analysis method
GB2552823A (en) Skinprint analysis method and apparatus
JP2000329682A (en) Analyzer for simultaneous execution of raman spectroscopic analysis and particle size distribution measurement
JP5949613B2 (en) Spectrophotometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180418

R150 Certificate of patent or registration of utility model

Ref document number: 6328530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250