JP5331837B2 - Photoelectric conversion connector and method of manufacturing photoelectric conversion connector - Google Patents

Photoelectric conversion connector and method of manufacturing photoelectric conversion connector Download PDF

Info

Publication number
JP5331837B2
JP5331837B2 JP2011039352A JP2011039352A JP5331837B2 JP 5331837 B2 JP5331837 B2 JP 5331837B2 JP 2011039352 A JP2011039352 A JP 2011039352A JP 2011039352 A JP2011039352 A JP 2011039352A JP 5331837 B2 JP5331837 B2 JP 5331837B2
Authority
JP
Japan
Prior art keywords
optical
resin
semiconductor element
connector
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011039352A
Other languages
Japanese (ja)
Other versions
JP2012177732A (en
Inventor
義昭 佐野
武史 山崎
修司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirose Electric Co Ltd
Original Assignee
Hirose Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Electric Co Ltd filed Critical Hirose Electric Co Ltd
Priority to JP2011039352A priority Critical patent/JP5331837B2/en
Publication of JP2012177732A publication Critical patent/JP2012177732A/en
Application granted granted Critical
Publication of JP5331837B2 publication Critical patent/JP5331837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion connector and a method for manufacturing the same by which optical positioning between an optical semiconductor element and an optical waveguide member is automatically performed, and the optical semiconductor element is sealed as that positions of both are certainly maintained without increasing the number of components and the number of processes. <P>SOLUTION: In a connector 1, a first resin member 60 has: a strand wire support part 62 which is made of a translucent resin and supports an optical fiber strand wire C1 of an optical fiber cable C for transmitting an optical signal; and a reflection surface 63A for transmitting the optical signal between the optical fiber cable C and a light receiving element 10 by reflecting the optical signal to turn an optical path. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、光電気変換コネクタおよび光電気変換コネクタの製造方法に関する。   The present invention relates to a photoelectric conversion connector and a method for manufacturing a photoelectric conversion connector.

光信号と電気信号とを変換する光電気変換コネクタとして、例えば、特許文献1ないし特許文献3に開示されているコネクタが知られている。   As an opto-electric conversion connector that converts an optical signal and an electric signal, for example, connectors disclosed in Patent Documents 1 to 3 are known.

特許文献1のコネクタは、回路基板上に配された相手コネクタと嵌合するコネクタであって、該回路基板に対して平行に延びる光ファイバケーブルの前端部が接続されている。該コネクタは、相手コネクタに向けて上方に開口した凹部が形成されたハウジングを有している。該凹部内にて、該凹部の底壁上に固定して配された取付部材(ステージ)によって光半導体が所定の位置・姿勢で取付保持されていて、該光半導体の受発光面が上記底壁に対して直角な方向をなす後方に向いている。また、上記凹部の底壁上には、上記取付部材よりも後方の位置にグランド板が配されており、該グランド板の板面上に形成されたガイド溝で上記光ファイバの前端部が支持されている。   The connector of Patent Document 1 is a connector that fits with a mating connector disposed on a circuit board, and is connected to a front end portion of an optical fiber cable that extends in parallel to the circuit board. The connector has a housing in which a concave portion opened upward toward the mating connector is formed. An optical semiconductor is mounted and held at a predetermined position and posture in the recess by a mounting member (stage) fixedly disposed on the bottom wall of the recess, and the light receiving and emitting surface of the optical semiconductor is the bottom. It faces backwards making a direction perpendicular to the wall. A ground plate is disposed on the bottom wall of the recess at a position behind the mounting member, and the front end portion of the optical fiber is supported by a guide groove formed on the plate surface of the ground plate. Has been.

上記特許文献1のコネクタでは、上記ガイド溝の高さを調整して、光半導体と光ファイバ素線とを光学的に位置合わせしてから、その状態で、ハウジングの凹部内に液状樹脂を流し込むことにより光半導体および光ファイバ前端部が固定される。   In the connector of Patent Document 1, the height of the guide groove is adjusted, the optical semiconductor and the optical fiber are optically aligned, and in that state, the liquid resin is poured into the recess of the housing. As a result, the optical semiconductor and the front end of the optical fiber are fixed.

特許文献2は、基板と、受光面が上方に向いた姿勢で該基板上に配された光半導体素子と、該基板上に配されて光ファイバケーブルを所定位置で保持するレセプタクルとを有する光モジュールを開示しており、該光モジュールに、光ファイバケーブルの前端部が接続されている。上記レセプタクルは、透光樹脂で成形されていて、基板に向けて下方へ開口した収容部と、光信号の光路を変向するための反射面と、光ファイバケーブルの前端部が基板と平行に挿入される挿入孔と、下方へ延びる基板取付用の突起とを有している。該レセプタクルは、複数の突起が該基板の取付孔に挿入係止されることにより該基板に取り付けられており、基板上に配された半導体素子は該レセプタクルの上記収容凹部内に収容され、光ファイバケーブルの前端部は挿入孔に挿入されて支持される。上記反射面は、半導体素子の上方かつ光ファイバケーブルの前端部に対して前方に位置していて、光信号を反射して光路を直角に屈曲する。   Patent Document 2 discloses a light having a substrate, an optical semiconductor element disposed on the substrate with a light receiving surface facing upward, and a receptacle disposed on the substrate and holding an optical fiber cable at a predetermined position. A module is disclosed, and a front end portion of an optical fiber cable is connected to the optical module. The receptacle is formed of a light-transmitting resin, and includes a receiving portion that opens downward toward the substrate, a reflecting surface for changing the optical path of the optical signal, and a front end portion of the optical fiber cable parallel to the substrate. It has an insertion hole to be inserted and a board mounting protrusion extending downward. The receptacle is attached to the substrate by inserting and locking a plurality of protrusions in the mounting holes of the substrate, and the semiconductor element disposed on the substrate is received in the receiving recess of the receptacle, The front end of the fiber cable is inserted into the insertion hole and supported. The reflection surface is located above the semiconductor element and in front of the front end portion of the optical fiber cable, reflects an optical signal and bends the optical path at a right angle.

上記特許文献2の光モジュールでは、上記レセプタクルの各突起と取付孔との間には若干クリアランスが設けられており、光モジュールの組立時において、別途用意された受光装置および光量モニタで光量を確認しながら、クリアランスの範囲内でレセプタクルを移動させて、光半導体素子との位置合わせを光学的に行う。   In the optical module disclosed in Patent Document 2, a slight clearance is provided between each projection of the receptacle and the mounting hole, and the amount of light is checked with a separately prepared light receiving device and light amount monitor when the optical module is assembled. However, the receptacle is moved within the clearance range to optically align with the optical semiconductor element.

特許文献3は、基板と、該基板上に配された受発光素子と、該フィルム光導波路の高さ位置を定める高さ補償部材と、該高さ補償部材の上に前端部が配されたフィルム光導波路とを有する光ケーブルモジュールを開示している。上記高さ補償部材は枠状をなしていて、その内部が上下方向に貫通した空間を形成しており、受発光素子が該空間内で基板上に位置している。該受発光素子は受光面が上方に向いており、該受発光素子の上方には、フィルム光導波路の前端が位置している。該フィルム光導波路の前端面は45度の傾斜面として加工されており、該傾斜面が光信号の光路を直角に変向する反射面としての役割を果たす。上記高さ補償部材の上記空間内には、受発光素子の配置後に封止材が注入され、該空間内に位置する受発光素子が封止されている。特許文献3の光ケーブルモジュールの組立時において、受発光素子とフィルム光導波路とは、別途用意された画像認識装置を用いて光学的に位置合わせされる。   In Patent Document 3, a substrate, a light emitting / receiving element disposed on the substrate, a height compensation member that determines the height position of the film optical waveguide, and a front end portion are disposed on the height compensation member. An optical cable module having a film optical waveguide is disclosed. The height compensation member has a frame shape and forms a space penetrating in the vertical direction, and the light emitting / receiving element is located on the substrate in the space. The light receiving / emitting element has a light receiving surface facing upward, and the front end of the film optical waveguide is located above the light receiving / emitting element. The front end face of the film optical waveguide is processed as an inclined surface of 45 degrees, and the inclined surface serves as a reflecting surface that changes the optical path of the optical signal at a right angle. A sealing material is injected into the space of the height compensation member after the light emitting / receiving element is arranged, and the light receiving / emitting element located in the space is sealed. At the time of assembling the optical cable module of Patent Document 3, the light emitting / receiving element and the film optical waveguide are optically aligned using an image recognition device prepared separately.

特開2010−135109JP 2010-135109 A 特開2007−264411JP2007-264411A 特開2008−256870JP2008-256870

特許文献1では、取付部材を基板上に設ける必要があるのでこの取付部材の分だけ、部品点数が増加する。また、光学的な位置合わせが自動的に行われる機構がないので、光学的に位置合わせをガイド溝の高さを調整しながら行う必要があり、その調整によって工程数が増加する。該部品点数および工程数の増加は製造コストの増大につながる。さらには、光半導体と光ファイバ前端部との間の光学的な位置合わせの後、ハウジングの凹部内に液状樹脂を流し込むので、調整済の光半導体や光ファイバ前端部が該液体樹脂に押されて光半導体および光ファイバ前端部の位置がずれるおそれがある。   In patent document 1, since it is necessary to provide an attachment member on a board | substrate, the number of parts increases by the part of this attachment member. Further, since there is no mechanism for automatically performing optical alignment, it is necessary to perform optical alignment while adjusting the height of the guide groove, which increases the number of processes. The increase in the number of parts and the number of processes leads to an increase in manufacturing cost. Furthermore, after optical alignment between the optical semiconductor and the front end of the optical fiber, the liquid resin is poured into the recess of the housing, so that the adjusted optical semiconductor and the front end of the optical fiber are pushed by the liquid resin. The positions of the optical semiconductor and the front end of the optical fiber may be shifted.

特許文献2では、別途用意された受光装置および光量モニタによって光量を確認しながら、光半導体素子とレセプタクルの位置合わせをする必要がある分、工程数が増加するので、製造コストが増大する。また、特許文献2のような光モジュールでは、レセプタクルの収容凹部に樹脂を充填して光半導体を封止することも考えられるが、その場合、収容凹部から該樹脂が漏れてレセプタクルの反射面に付着するおそれがあるので、これを回避しての封止作業が困難である。そこで、樹脂の漏れおよび付着を回避するために、レセプタクルの形状の加工や、精密な充填装置を用いた樹脂の充填が必要となるので、このことも製造コストの増大につながる。   In Patent Document 2, the number of processes increases because it is necessary to align the optical semiconductor element and the receptacle while checking the amount of light using a separately prepared light receiving device and light amount monitor, and thus the manufacturing cost increases. In addition, in an optical module such as that disclosed in Patent Document 2, it is conceivable to seal the optical semiconductor by filling a resin in the receptacle recess, but in this case, the resin leaks from the recess and enters the reflecting surface of the receptacle. Since there exists a possibility of adhering, the sealing operation | work which avoids this is difficult. Therefore, in order to avoid leakage and adhesion of the resin, it is necessary to process the shape of the receptacle and to fill the resin using a precise filling device. This also increases the manufacturing cost.

また、特許文献3では、別途用意した画像認識装置を用いて光学的に位置合わせをする必要がある分、工程数が増加するので、製造コストが増大する。また、受発光素子の封止の際、高さ補償部材の空間が上方に開口したままなので、漏れた封止材がフィルム光導波路の反射面に付着するおそれがあり、これを回避した封止作業を困難にする。そこで、封止材の漏れおよび付着を回避するために、高さ補償部材の形状の加工や、精密な注入装置を用いた樹脂の注入が必要となるので、このことも製造コストの増大につながる。   Further, in Patent Document 3, since the number of steps is increased by the necessity of optical alignment using a separately prepared image recognition device, the manufacturing cost increases. Also, when sealing the light emitting / receiving element, the space of the height compensation member remains open upward, so that the leaked sealing material may adhere to the reflective surface of the film optical waveguide, and the sealing avoiding this Make work difficult. Therefore, in order to avoid leakage and adhesion of the sealing material, it is necessary to process the shape of the height compensation member and to inject the resin using a precise injection device, which also increases the manufacturing cost. .

このような事情に鑑みて、本発明は、部品点数や工程数を増やすことなく、光半導体素子と光導波路部材との光学的な位置合わせが自動的になされ、両者の位置が確実に維持されたまま光半導体素子が封止される光電気変換コネクタを提供することを目的とする。   In view of such circumstances, the present invention automatically performs optical alignment between the optical semiconductor element and the optical waveguide member without increasing the number of parts and the number of processes, and the positions of both are reliably maintained. An object of the present invention is to provide a photoelectric conversion connector in which an optical semiconductor element is sealed.

<第一発明>
本発明に係る光電気変換コネクタは、光信号と電気信号とを変換するための光半導体素子と、該光半導体素子を支持する支持部材と、上記光半導体素子に接続されるとともに、相手コネクタの相手接点と接触する接点部材と、上記光半導体素子、支持部材および接点部材を一体成形により保持しているとともに、少なくとも該光半導体素子を封止する第一樹脂部材とを有する。
<First invention>
The photoelectric conversion connector according to the present invention is an optical semiconductor element for converting an optical signal and an electrical signal, a support member that supports the optical semiconductor element, and connected to the optical semiconductor element. A contact member that comes into contact with the mating contact, and holds the optical semiconductor element, the support member, and the contact member by integral molding, and at least a first resin member that seals the optical semiconductor element.

かかる光電気変換コネクタにおいて、該光電気変換コネクタは、上記第一樹脂部材の外面に一体成形される第二樹脂部材を有しており、上記第一樹脂部材は、透光樹脂で作られていて、光信号を伝送するための光導波路部材を支持する導波路支持部と、光信号を反射して光路を変向することにより光導波路部材と光半導体素子との間で該光信号を伝送させる反射面とを有していることを特徴としている。   In this photoelectric conversion connector, the photoelectric conversion connector has a second resin member integrally formed on the outer surface of the first resin member, and the first resin member is made of a light-transmitting resin. A waveguide support for supporting the optical waveguide member for transmitting the optical signal, and transmitting the optical signal between the optical waveguide member and the optical semiconductor element by reflecting the optical signal and turning the optical path And a reflecting surface to be used.

本発明では、コネクタ製造過程にて、第一樹脂部材を光半導体素子、支持部材および接点部材と一体成形することにより、第一樹脂部材が少なくとも光半導体素子を封止するのと同時に、該第一樹脂部材の導波路支持部および反射面が形成される。したがって、第一樹脂部材が成形される時点で、光半導体素子と導波路支持部とが位置合わせされている。その結果、光導波路部材を導波路支持部に配置するだけで、光導波路部材と光半導体素子との光学的な位置合わせが自動的に行われる。   In the present invention, in the connector manufacturing process, the first resin member is integrally formed with the optical semiconductor element, the support member, and the contact member, so that the first resin member seals at least the optical semiconductor element, and at the same time, A waveguide support portion and a reflecting surface of one resin member are formed. Therefore, when the first resin member is molded, the optical semiconductor element and the waveguide support portion are aligned. As a result, the optical alignment between the optical waveguide member and the optical semiconductor element is automatically performed only by arranging the optical waveguide member on the waveguide support portion.

また、第一樹脂部材の成形時にて、光半導体素子の封止と同時に、光半導体素子と導波路支持部との位置合わせがなされるので、従来のように、成形の前段階で位置合わせされていた光半導体素子と光導波路の相対位置が、樹脂の充填によってずれるという事態が起こらない。さらに、本発明では、上記位置合わせのために用いられる部品や装置は必要なく、また、位置合わせのみを行う工程も必要ないので、その分、コストの増大を抑制できる。   In addition, since the optical semiconductor element and the waveguide support portion are aligned at the same time as the optical semiconductor element is sealed when the first resin member is molded, the alignment is performed before the molding as in the conventional case. A situation in which the relative position of the optical semiconductor element and the optical waveguide that has been shifted due to filling of the resin does not occur. Furthermore, in the present invention, the parts and devices used for the above alignment are not necessary, and a process for performing only the alignment is not necessary, so that an increase in cost can be suppressed accordingly.

支持部材と接点部材は、金属製のリードフレームで一部材として作られて、第一樹脂部材で一体成形された後に互いに分離されて形成されており、上記接点部材は、複数の細条片として形成された端子であることとしてもよい。   The support member and the contact member are formed as a single member with a metal lead frame, are formed integrally with the first resin member, and are separated from each other. The contact member is formed as a plurality of strips. It may be a formed terminal.

支持部材と接点部材とをリードフレームで一部材として作ることにより、第一樹脂部材の成形後に支持部材と接点部材とを分離するだけで端子を設けることができるので、第一樹脂部材の成形後に、別部材としての端子を取り付ける作業が不要である。したがって、工程が簡単となり、端子の位置精度が向上する。   By making the support member and the contact member as one member with the lead frame, the terminal can be provided by simply separating the support member and the contact member after the molding of the first resin member. The operation | work which attaches the terminal as another member is unnecessary. Therefore, the process becomes simple and the positional accuracy of the terminals is improved.

支持部材は、樹脂製またはセラミック製の基板で作られており、接点部材は、上記支持部材に印刷されていることしてもよい。   The support member may be made of a resin or ceramic substrate, and the contact member may be printed on the support member.

光電気変換コネクタは、光半導体素子に加えて、該光半導体素子をも駆動する駆動デバイスを有しており、該駆動デバイスは、光半導体素子および接点部材に接続されことにより、該駆動デバイスを介して光半導体素子と接点部材とが間接的に接続されていることとしてもよい。   The photoelectric conversion connector includes a driving device that drives the optical semiconductor element in addition to the optical semiconductor element, and the driving device is connected to the optical semiconductor element and the contact member to thereby connect the driving device. The optical semiconductor element and the contact member may be indirectly connected via each other.

<第二発明>
本発明に係る光電気変換コネクタの製造方法は、光信号と電気信号とを変換するための光半導体素子を支持する支持部材あるいは該支持部材に連結している部材に形成された基準孔の位置を基準として上記支持部材に対する上記光半導体素子の位置決めをして、該光半導体素子を支持部材に配置する素子配置工程と、相手コネクタの相手接点と接触する接点部材を光半導体素子に導電材で接続する導電材接続工程と、上記基準孔の位置を基準として、光信号を伝送するための光導波路部材を支持する導波路支持部と光信号を反射して光路を変向することにより光導波路部材と光半導体素子との間で該光信号を伝送させる反射面とを、上記支持部材に対して位置決めした状態で透光樹脂により上記光半導体素子、支持部材および接点部材を一体成形するとともに、少なくとも光半導体素子を上記透光樹脂で封止する第一樹脂成形工程と、上記第一樹脂成形工程で成形された透光樹脂の外面に、該透光樹脂とは異なる樹脂を一体成形する第二樹脂成形工程とを有していることを特徴としている。
<Second invention>
The method of manufacturing the photoelectric conversion connector according to the present invention includes a position of a reference hole formed in a support member that supports an optical semiconductor element for converting an optical signal and an electrical signal, or a member connected to the support member. The optical semiconductor element is positioned with respect to the support member with reference to the element, the element placement step of placing the optical semiconductor element on the support member, and the contact member contacting the mating contact of the mating connector with the conductive material. Conductive material connecting step for connecting, waveguide support for supporting optical waveguide member for transmitting optical signal based on position of said reference hole, and optical waveguide by reflecting optical signal and turning optical path The optical semiconductor element, the support member, and the contact member are integrated with a light-transmitting resin in a state where a reflection surface for transmitting the optical signal between the member and the optical semiconductor element is positioned with respect to the support member. And forming a resin different from the translucent resin on the outer surface of the translucent resin molded in the first resin molding step and at least a first resin molding step of sealing the optical semiconductor element with the translucent resin And a second resin molding step of integrally molding.

本発明では、第一樹脂成形工程にて、透光樹脂が光半導体素子、支持部材および接点部材に一体成形されていて、該透光樹脂は、少なくとも光半導体素子を封止するとともに、導波路支持部および反射面が形成されている。すなわち、第一樹脂成形工程では、透光樹脂が光半導体素子に一体成形されるのと同時に、該透光樹脂の導波路支持部および反射面が形成される。また、素子配置工程における光半導体素子の位置決めと、第一樹脂成形工程における、透光樹脂の成形のための金型の位置決めは、同じ基準孔の位置を基準として行われる。したがって、第一樹脂成形工程で透光樹脂を成形することにより、光半導体素子と透光樹脂の導波路支持部との位置合わせが正確になされる。この結果、光導波路部材を導波路支持部に配置するだけで、光導波路部材と光半導体素子との光学的な位置合わせが自動的に行われる。   In the present invention, in the first resin molding step, the translucent resin is integrally formed with the optical semiconductor element, the support member, and the contact member, and the translucent resin seals at least the optical semiconductor element and the waveguide. A support part and a reflective surface are formed. That is, in the first resin molding step, the light transmitting resin is integrally formed with the optical semiconductor element, and at the same time, the waveguide support portion and the reflecting surface of the light transmitting resin are formed. In addition, the positioning of the optical semiconductor element in the element arranging step and the positioning of the mold for molding the translucent resin in the first resin molding step are performed with reference to the position of the same reference hole. Therefore, by aligning the optical semiconductor element and the waveguide support portion of the translucent resin, the translucent resin is molded in the first resin molding step. As a result, the optical alignment between the optical waveguide member and the optical semiconductor element is automatically performed only by arranging the optical waveguide member on the waveguide support portion.

また、第一樹脂成形工程にて、透光樹脂の成形による光半導体素子の封止と同時に、光半導体素子と透光樹脂の導波路支持部との位置合わせがなされるので、従来のように、透光樹脂の成形の前段階で位置合わせされていた光半導体素子と光導波路の相対位置が、樹脂の充填によってずれるという事態が起こらない。さらに、本発明では、上記位置合わせのために用いられる部品や装置は必要なく、また、位置合わせのみを行う工程も必要ないので、その分、コストの増大を抑制できる。   In the first resin molding step, the optical semiconductor element and the waveguide support portion of the translucent resin are aligned at the same time as the optical semiconductor element is sealed by molding the translucent resin. The situation where the relative positions of the optical semiconductor element and the optical waveguide, which have been aligned in the previous stage of molding of the translucent resin, are not shifted due to the filling of the resin does not occur. Furthermore, in the present invention, the parts and devices used for the above alignment are not necessary, and a process for performing only the alignment is not necessary, so that an increase in cost can be suppressed accordingly.

支持部材と接点部材は、金属製のキャリア付リードフレームで一部材として作られていて、該キャリア付リードフレームのキャリアに基準孔が形成されており、接点部材は、複数の細条片として形成された端子であり、第一樹脂成形工程の後に、上記接点部材を透光樹脂より延出する部分でキャリアから切り離す切断分離工程と、上記切断分離工程の後に、接点部材を屈曲して所定の端子形状を形成する屈曲工程とを有していてもよい。   The support member and the contact member are made of a metal lead frame with a carrier, and a reference hole is formed in the carrier of the lead frame with the carrier, and the contact member is formed as a plurality of strips. A cutting and separating step of separating the contact member from the carrier at a portion extending from the translucent resin after the first resin molding step; And a bending step of forming a terminal shape.

支持部材と接点部材とをキャリア付リードフレームで一部材として作ることにより、第一樹脂成形工程の後に支持部材と接点部材とを分離するだけで端子を設けることができるので、別部材としての端子を取り付ける工程が不要になるとともに、端子の位置精度が向上する。 By making the support member and the contact member as a single member with a lead frame with a carrier, the terminal can be provided only by separating the support member and the contact member after the first resin molding step. The process of attaching the terminal becomes unnecessary, and the positional accuracy of the terminals is improved.

支持部材は、樹脂製またはセラミック製の基板で作られていて、該基板に基準孔が形成されており、接点部材は、上記支持部材に印刷されていてもよい。   The support member may be made of a resin or ceramic substrate, a reference hole may be formed in the substrate, and the contact member may be printed on the support member.

導電材接続工程の前に、光半導体素子を駆動する駆動デバイスを支持部材あるいは該支持部材に連結している部材に配置するデバイス配置工程を有し、上記導電材接続工程にて、駆動デバイスを光半導体素子および接点部材に接続することにより、該駆動デバイスを介して光半導体素子と接点部材とを間接的に接続することとしてもよい。   Prior to the conductive material connecting step, the device has a device placement step of placing a drive device for driving the optical semiconductor element on the support member or a member connected to the support member. It is good also as connecting an optical semiconductor element and a contact member indirectly via this drive device by connecting to an optical semiconductor element and a contact member.

以上のように、本発明では、第一樹脂部材(透光樹脂)が光半導体素子に一体成形されるのと同時に、該第一樹脂部材の導波路支持部および反射面が形成されるので、第一樹脂部材が成形された時点で、光半導体素子と導波路支持部との光学的な位置合わせが可能になる。したがって、一体成形により得られたコネクタでは、光導波路部材を導波路支持部に配置するだけで、光導波路部材と光半導体素子との光学的な位置合わせを自動的に行うことができる。また、第二発明のように、光半導体素子の位置決めと、透光樹脂の成形のための位置決めを、同じ基準孔の位置を基準として行うことにより、一体成形と同時に光半導体素子と光導波路支持部との位置合わせが高精度で行われるようになる。   As described above, in the present invention, since the first resin member (translucent resin) is integrally formed with the optical semiconductor element, the waveguide support portion and the reflection surface of the first resin member are formed. When the first resin member is molded, the optical alignment between the optical semiconductor element and the waveguide support portion becomes possible. Therefore, in the connector obtained by integral molding, the optical alignment between the optical waveguide member and the optical semiconductor element can be automatically performed only by arranging the optical waveguide member on the waveguide support portion. In addition, as in the second invention, the positioning of the optical semiconductor element and the positioning for molding the translucent resin are performed based on the position of the same reference hole, so that the optical semiconductor element and the optical waveguide are supported simultaneously with the integral molding. Positioning with the part is performed with high accuracy.

また、本発明では、光半導体素子の封止と同時に、光半導体素子と透光樹脂の導波路支持部との位置合わせがなされるので、従来のように、透光樹脂の成形の前段階で位置合わせされていた光半導体素子と光導波路の相対位置が、樹脂の充填によってずれるという事態の発生を防止できる。   In the present invention, since the optical semiconductor element and the waveguide support portion of the light-transmitting resin are aligned at the same time as the sealing of the optical semiconductor element, as in the prior art, before the light-transmitting resin is molded. Occurrence of a situation in which the relative positions of the optical semiconductor element and the optical waveguide that have been aligned are shifted due to the filling of the resin can be prevented.

さらに、本発明では、上記位置合わせのために用いられる部品や装置は必要なく、また、位置合わせのみを行う工程も必要ないので、その分、コストの増大を抑制できる。   Furthermore, in the present invention, the parts and devices used for the above alignment are not necessary, and a process for performing only the alignment is not necessary, so that an increase in cost can be suppressed accordingly.

第一実施形態に係る光電気変換コネクタを相手コネクタとともに示す斜視図である。It is a perspective view which shows the photoelectric conversion connector which concerns on 1st embodiment with the other party connector. 図1のコネクタを上下反転させた姿勢で示した斜視図である。It is the perspective view shown in the attitude | position which turned the connector of FIG. 1 upside down. (A)は図2のコネクタの光導波路の延出方向に対して平行な面での縦断面図であり、(B)は光半導体素子近傍を示す(A)の一部拡大図である。(A) is a longitudinal cross-sectional view in a plane parallel to the extending direction of the optical waveguide of the connector of FIG. 2, and (B) is a partially enlarged view of (A) showing the vicinity of the optical semiconductor element. 図2のコネクタの光導波路部材の延出方向に対して直角な面での縦断面図であり、(A)は信号端子の位置での断面を示し、(B)はグランド端子の位置での断面を示す。FIG. 3 is a longitudinal sectional view taken along a plane perpendicular to the extending direction of the optical waveguide member of the connector of FIG. 2, (A) shows a cross section at the position of the signal terminal, and (B) shows at the position of the ground terminal. A cross section is shown. キャリア付リードフレームを示す斜視図である。It is a perspective view which shows a lead frame with a carrier. 図5のキャリア付リードフレームに光半導体素子および駆動デバイスが実装された状態を示す斜視図である。FIG. 6 is a perspective view showing a state in which an optical semiconductor element and a driving device are mounted on the lead frame with a carrier in FIG. 5. 図6のキャリア付リードフレームに第一樹脂部材が一体成形された状態を示す斜視図である。It is a perspective view which shows the state by which the 1st resin member was integrally molded by the lead frame with a carrier of FIG. 図7のキャリア付リードフレームの端子およびロック部がキャリアから切断され、屈曲形成された状態を示す斜視図である。FIG. 8 is a perspective view showing a state in which a terminal and a lock portion of the lead frame with a carrier in FIG. 7 are cut from the carrier and bent. 図8の第一樹脂部材の外面に第二樹脂部材が一体成形された状態を示す斜視図である。It is a perspective view which shows the state by which the 2nd resin member was integrally molded by the outer surface of the 1st resin member of FIG. 第二実施形態に係る光電気変換コネクタを相手コネクタとともに示す斜視図である。It is a perspective view which shows the photoelectric conversion connector which concerns on 2nd embodiment with the other party connector. 図10のコネクタを上下反転させた姿勢で示した斜視図である。It is the perspective view shown in the attitude | position which turned the connector of FIG. 10 upside down. 図11のコネクタの光導波路部材の延出方向に対して平行な面での縦断面図である。It is a longitudinal cross-sectional view in a surface parallel to the extending direction of the optical waveguide member of the connector of FIG. 基板を示す斜視図である。It is a perspective view which shows a board | substrate. 図13の基板に光半導体素子および駆動デバイスが実装された状態を示す斜視図である。FIG. 14 is a perspective view showing a state where an optical semiconductor element and a driving device are mounted on the substrate of FIG. 13. 図14の基板に第一樹脂部材が一体成形された状態を示す斜視図である。It is a perspective view which shows the state by which the 1st resin member was integrally molded by the board | substrate of FIG. 図15の基板が切断された状態を示す斜視図である。FIG. 16 is a perspective view illustrating a state where the substrate of FIG. 15 is cut. 図16の第一樹脂部材の外面に第二樹脂部材が一体成形された状態を示す斜視図である。It is a perspective view which shows the state by which the 2nd resin member was integrally molded by the outer surface of the 1st resin member of FIG.

以下、添付図面に基づいて本発明に係る光電気変換コネクタの実施形態を説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a photoelectric conversion connector according to the present invention will be described based on the accompanying drawings.

[コネクタの構成]
図1は、本実施形態に係る光電気変換コネクタ1を相手コネクタ2とともに示す斜視図であり、コネクタ嵌合前の状態を示している。図2は、図1のコネクタ1を上下反転させた姿勢で示した斜視図である。図3(A)は図2のコネクタ1の光導波路部材(光ファイバケーブルC)の延出方向に対して平行な面での縦断面図であり、図3(B)は光半導体素子(受光素子10)近傍を示す(A)の一部拡大図である。図4は、図2のコネクタ1の光導波路部材の延出方向に対して直角な面での縦断面図であり、(A)は信号端子41の位置での断面を示し、(B)はグランド端子42の位置での断面を示す。
[Connector configuration]
FIG. 1 is a perspective view showing the photoelectric conversion connector 1 according to this embodiment together with the mating connector 2, and shows a state before the connector is fitted. FIG. 2 is a perspective view showing the connector 1 of FIG. FIG. 3A is a longitudinal sectional view in a plane parallel to the extending direction of the optical waveguide member (optical fiber cable C) of the connector 1 in FIG. 2, and FIG. It is a partial enlarged view of (A) which shows the element 10) vicinity. 4 is a longitudinal sectional view taken along a plane perpendicular to the extending direction of the optical waveguide member of the connector 1 of FIG. 2, wherein (A) shows a section at the position of the signal terminal 41, and (B) A cross section at the position of the ground terminal 42 is shown.

図1に見られるように、本実施形態に係る光電気変換コネクタ1(以下、単に「コネクタ1」という)は、前後方向(図1での左右方向)へ向け延びる光導波路部材たる光ファイバケーブルCの前端部(図1での左端部)が接続されるコネクタであり、回路基板(図示せず)上に実装された相手コネクタ2と嵌合接続される。該コネクタ1は、光信号を電気信号に変換するコネクタであり、相手コネクタ2と接続された状態で、光ファイバケーブルCから伝送された光信号が、コネクタ1で電気信号に変換されて、相手コネクタ2が実装されている上記回路基板の回路部へ該電気信号が伝送される。   As shown in FIG. 1, the photoelectric conversion connector 1 according to this embodiment (hereinafter simply referred to as “connector 1”) is an optical fiber cable that is an optical waveguide member extending in the front-rear direction (left-right direction in FIG. 1). A connector to which a front end portion (left end portion in FIG. 1) of C is connected, and is fitted and connected to a mating connector 2 mounted on a circuit board (not shown). The connector 1 is a connector that converts an optical signal into an electrical signal. The optical signal transmitted from the optical fiber cable C while being connected to the mating connector 2 is converted into an electrical signal by the connector 1, and The electrical signal is transmitted to the circuit portion of the circuit board on which the connector 2 is mounted.

コネクタ1に接続される光ファイバケーブルC自体は、公知であり、図3(A)に見られるように、ガラス製のコアをガラス製のクラッドで覆って作られた光ファイバ素線C1(以下、「素線C1」という)と、該素線C1を覆う樹脂等から成る被覆C2とを有している。本実施形態では、図3(A)に見られるように、上記光ファイバケーブルCは、前端部にて被覆C2が除去されており、上記素線C1が露呈している。   The optical fiber cable C itself connected to the connector 1 is known, and as shown in FIG. 3A, an optical fiber strand C1 (hereinafter referred to as an optical fiber strand C1 made by covering a glass core with a glass cladding). , “Element wire C1”) and a coating C2 made of resin or the like covering the element C1. In this embodiment, as shown in FIG. 3A, the optical fiber cable C has the coating C2 removed at the front end, and the bare wire C1 is exposed.

図3(A),(B)に見られるように、上記コネクタ1は、光信号を電気信号に変換するための光半導体素子としての受光素子10と、受光素子10を駆動する駆動デバイス20と、該受光素子10および駆動デバイス20を支持する支持部材30と、後述する相手コネクタ2の相手端子90と接触する接点部材としての複数の端子40(図1,2参照)と、上記受光素子10を上記駆動デバイス20に接続するとともに、該駆動デバイス20を該端子40に接続する導電材としてのワイヤ50(図4(A),(B)参照)と、上記受光素子10、駆動デバイス20、支持部材30、端子40およびワイヤ50を一体成形により保持する第一樹脂部材60と、該第一樹脂部材60の外面に一体成形される第二樹脂部材70とを有している。本実施形態では、該第一樹脂部材60および第二樹脂部材70は、コネクタ1のハウジングを形成している。   As shown in FIGS. 3A and 3B, the connector 1 includes a light receiving element 10 as an optical semiconductor element for converting an optical signal into an electric signal, and a drive device 20 for driving the light receiving element 10. , A support member 30 that supports the light receiving element 10 and the driving device 20, a plurality of terminals 40 (see FIGS. 1 and 2) as contact members that contact a mating terminal 90 of the mating connector 2 described later, and the light receiving element 10 Are connected to the drive device 20, and a wire 50 (see FIGS. 4A and 4B) as a conductive material for connecting the drive device 20 to the terminal 40, the light receiving element 10, the drive device 20, It has the 1st resin member 60 which hold | maintains the support member 30, the terminal 40, and the wire 50 by integral molding, and the 2nd resin member 70 integrally molded by the outer surface of this 1st resin member 60. FIG. In the present embodiment, the first resin member 60 and the second resin member 70 form a housing of the connector 1.

受光素子10は、光信号を電気信号に変換する面受光型の受光素子(例えば、フォトダイオード(PD))である。図3(A),(B)に見られるように、該受光素子10は、受光面が上方を向いた姿勢で、後述する支持部材30の支持板部31上に実装されている。駆動デバイス20は、上記受光素子10を駆動するデバイス(例えば、トランスインピーダンスアンプ/リミッティングアンプ(TIA/LA))である。該駆動デバイス20は、後述する支持部材30の支持板部31上に実装され、上記受光素子10の前方に位置しており、該受光素子10とワイヤ50で接続されている(図6参照)。   The light receiving element 10 is a surface-receiving type light receiving element (for example, a photodiode (PD)) that converts an optical signal into an electric signal. As seen in FIGS. 3A and 3B, the light receiving element 10 is mounted on a support plate portion 31 of a support member 30 described later with the light receiving surface facing upward. The drive device 20 is a device that drives the light receiving element 10 (for example, a transimpedance amplifier / limiting amplifier (TIA / LA)). The drive device 20 is mounted on a support plate portion 31 of a support member 30 to be described later, is positioned in front of the light receiving element 10, and is connected to the light receiving element 10 with a wire 50 (see FIG. 6). .

本実施形態では、コネクタ1は、既述のように、光信号を電気信号に変換するコネクタであり、光半導体素子として受光素子10を有していることとしたが、該コネクタ1は、電気信号を光信号に変換するコネクタとすることも可能である。この場合、コネクタ1には、該受光素子10に代えて、例えば、光半導体素子としての面発光型の発光素子(例えば、垂直共振器面発光(VCSEL)レーザ型の発光素子)が設けられる。この場合、駆動デバイスとしては、上記発光素子を駆動するためのデバイス(例えば、VCSELドライバ)が設けられる。   In the present embodiment, the connector 1 is a connector that converts an optical signal into an electrical signal as described above, and has the light receiving element 10 as an optical semiconductor element. A connector that converts a signal into an optical signal is also possible. In this case, instead of the light receiving element 10, the connector 1 is provided with, for example, a surface emitting light emitting element as an optical semiconductor element (for example, a vertical cavity surface emitting (VCSEL) laser type light emitting element). In this case, a device (for example, a VCSEL driver) for driving the light emitting element is provided as the driving device.

支持部材30は、金属板を打抜加工して作られており、前後方向(図3(A)にて左右方向)に延びて設けられている。該支持部材30の前半部(図3(A)に表れている部分)は、上下方向に対して直角な板面をもつ帯板状の支持板部31として形成されている。該支持板部31は、既述のように、その板面(図3(A)での上面)に該受光素子10および駆動デバイス20が実装されていて、該受光素子10および駆動デバイス20を支持している。   The support member 30 is made by punching a metal plate, and is provided to extend in the front-rear direction (left-right direction in FIG. 3A). The front half of the support member 30 (the part shown in FIG. 3A) is formed as a belt-like support plate portion 31 having a plate surface perpendicular to the vertical direction. As described above, the light receiving element 10 and the drive device 20 are mounted on the plate surface (the upper surface in FIG. 3A) of the support plate portion 31, and the light receiving element 10 and the drive device 20 are mounted. I support it.

該支持部材30の後半部(図3(A)には表れず)は、図8に見られるように、上記支持板部31よりもコネクタ1の幅方向で大きく形成されており、該幅方向での両端位置で、該幅方向に対して直角に屈曲された板面をもつ被ロック部32が設けられている。該被ロック部32は、コネクタ幅方向に貫通する孔部を有していて、図1に見られるように、該孔部の下縁(図2での上縁)が、後述する相手コネクタ2のロック片101Aと係止する被ロック縁部32Aとして機能する。   The rear half of the support member 30 (not shown in FIG. 3A) is formed larger in the width direction of the connector 1 than the support plate 31 as seen in FIG. At both end positions, a locked portion 32 having a plate surface bent at right angles to the width direction is provided. The locked portion 32 has a hole penetrating in the connector width direction. As seen in FIG. 1, the lower edge of the hole (upper edge in FIG. 2) is a mating connector 2 described later. Functions as a locked edge 32A that engages with the lock piece 101A.

端子40は、金属板製の細条片を板厚方向で屈曲して作られており、図1および図2に見られるように、コネクタ1の両方の側面で前後方向に配列されている。支持部材30と端子40は、後述するように、コネクタ製造前においては、金属製のキャリアF1付のリードフレームF(図5,6参照)で一部材として作られている。そして、上記端子40は、第一樹脂部材60の成形後に、キャリアF1から切り離され、上記支持部材30は、第二樹脂部材70の成形後にキャリアF1から切り離されるようになっている。   The terminals 40 are made by bending strips made of a metal plate in the thickness direction, and are arranged in the front-rear direction on both sides of the connector 1 as seen in FIGS. As will be described later, the support member 30 and the terminal 40 are made as a single member by a lead frame F (see FIGS. 5 and 6) with a metal carrier F1 before manufacturing the connector. The terminal 40 is separated from the carrier F1 after the first resin member 60 is molded, and the support member 30 is separated from the carrier F1 after the second resin member 70 is molded.

複数の端子40は、信号端子41およびグランド端子42を有している。図4(A),(B)に見られるように、該信号端子41およびグランド端子42は、第一樹脂部材60およびこの第一樹脂部材60を覆う第二樹脂部材70で一体成形により二重に保持されており、各端子40が駆動デバイス20にワイヤ50で接続されている。図4(A)に見られるように、信号端子41は、上記支持部材30と別体をなしており、図4(B)に見られるように、グランド端子42は、上記支持部材30に連結されている(図5,6をも参照)。   The plurality of terminals 40 have a signal terminal 41 and a ground terminal 42. As shown in FIGS. 4A and 4B, the signal terminal 41 and the ground terminal 42 are doubled by integral molding with the first resin member 60 and the second resin member 70 covering the first resin member 60. Each terminal 40 is connected to the drive device 20 by a wire 50. As shown in FIG. 4A, the signal terminal 41 is separate from the support member 30, and as shown in FIG. 4B, the ground terminal 42 is connected to the support member 30. (See also FIGS. 5 and 6).

信号端子41は、図4(A)によく見られるように、上下方向で支持部材30と同位置にてコネクタ幅方向(図4(A)での左右方向)に延びる上腕部41Aと、該上腕部41Aから屈曲して下方へ延び相手コネクタ2の相手信号端子91の対応接触部91A−1と接触する接触腕部41Bと、該接触腕部41Bから屈曲してコネクタ1の下面に沿って上記幅方向で内方へ延びる下腕部41Cとを有し、略横U字状をなしている。   As is often seen in FIG. 4A, the signal terminal 41 has an upper arm portion 41A extending in the connector width direction (left-right direction in FIG. 4A) at the same position as the support member 30 in the vertical direction, Bending from the upper arm portion 41A and extending downward, contacting the corresponding contact portion 91A-1 of the mating signal terminal 91 of the mating connector 2, and bending from the contacting arm portion 41B along the lower surface of the connector 1 The lower arm portion 41 </ b> C extending inward in the width direction has a substantially horizontal U shape.

上記上腕部41Aは、第一樹脂部材60および第二樹脂部材70に保持されていて、上記幅方向での内方側の端部、すなわち支持部材30寄りの端部は、駆動デバイス20とワイヤ50で接続される接続部41A−1として形成されている。また、上記接触腕部41Bは、第二樹脂部材70に保持されており、上記幅方向で外方を向いた板面が露呈して相手コネクタ2の上記対応接触部91A−1と接触するようになっている。   41 A of said upper arms are hold | maintained at the 1st resin member 60 and the 2nd resin member 70, and the inner side edge part in the said width direction, ie, the edge part near the support member 30, is a drive device 20 and a wire. 50 is formed as a connection portion 41A-1 connected at 50. Further, the contact arm portion 41B is held by the second resin member 70 so that the plate surface facing outward in the width direction is exposed and contacts the corresponding contact portion 91A-1 of the mating connector 2. It has become.

グランド端子42は、支持部材30と連結されていることを除き、信号端子41と同じ形状なので、該グランド端子42の構成については、図4(B)に示されているように、信号端子41の各部分の符号に「1」を加えた符号を付して、説明を省略する。   Since the ground terminal 42 has the same shape as the signal terminal 41 except that it is connected to the support member 30, the configuration of the ground terminal 42 is as shown in FIG. The reference numerals obtained by adding “1” to the reference numerals of the respective parts of FIG.

第一樹脂部材60は、透光樹脂で作られており、光ファイバケーブルCからの光信号が該第一樹脂部材60の内部を進行することが可能となっている。図3(A),(B)および図4(A),(B)に見られるように、該第一樹脂部材60は、受光素子10、駆動デバイス20、ワイヤ50および支持部材30に一体成形されており、該受光素子10および駆動デバイス20を封止している。   The first resin member 60 is made of a translucent resin, and an optical signal from the optical fiber cable C can travel inside the first resin member 60. As seen in FIGS. 3A and 3B and FIGS. 4A and 4B, the first resin member 60 is integrally formed with the light receiving element 10, the drive device 20, the wire 50, and the support member 30. The light receiving element 10 and the driving device 20 are sealed.

上記第一樹脂部材60は、前後方向を長手方向とする略直方体外形をなしており、図2および図3(A)に示されているように、前後方向での略後半部の上面で、コネクタ幅方向における中央位置で没して前後方向に延びる溝部61が形成されている。図3(A)に見られるように、上記溝部61は、前方寄り位置から後端にわたる範囲に、前後方向に対して直角な面での断面がV字状をなすV字溝が素線支持部62として形成されている。該素線支持部62は、光ファイバケーブルCの前端部で露呈した素線C1が配置され、該素線C1を支持する。   The first resin member 60 has a substantially rectangular parallelepiped outer shape with the front-rear direction as the longitudinal direction, and as shown in FIGS. 2 and 3A, on the upper surface of the substantially rear half part in the front-rear direction, A groove portion 61 is formed which sunk at the center position in the connector width direction and extends in the front-rear direction. As shown in FIG. 3 (A), the groove 61 has a V-shaped groove having a V-shaped cross section in a plane perpendicular to the front-rear direction in a range extending from the front position to the rear end. It is formed as a part 62. The element wire support portion 62 is arranged with the element wire C1 exposed at the front end of the optical fiber cable C, and supports the element wire C1.

図3(A),(B)に示されているように、溝部61内には、上記素線支持部62の前方に、上記素線支持部62の最下部よりも上方へ隆起した隆起部63が形成されている。該隆起部63の後端面は、前後方向に対して直角な面となっていて、上記素線支持部62上に配された素線C1の前端面が接面している。   As shown in FIGS. 3 (A) and 3 (B), in the groove portion 61, a raised portion that protrudes in front of the strand support portion 62 and above the lowermost portion of the strand support portion 62. 63 is formed. The rear end surface of the raised portion 63 is a surface perpendicular to the front-rear direction, and the front end surface of the strand C1 disposed on the strand support portion 62 is in contact with it.

また、該隆起部63の前端部は、前方かつ上方にわたる範囲で凸湾曲して形成されていて、この凸湾曲の内面、すなわち凹湾曲する内面が、光ファイバケーブルCからの光信号を反射して光路を変向するための反射面63Aとして機能する。図3(A),(B)に見られるように、該反射面63Aは、受光素子10の上方に位置していて、図3(B)にて破線で光路が示されるように、光ファイバケーブルCの素線C1の前端面から上記隆起部63内を前方へ進行した光信号は、上記反射面63Aで反射されて光路が下方へ変向し、受光素子10の受光面(上面)に集光される。   Further, the front end portion of the raised portion 63 is formed to be convexly curved in a range extending forward and upward, and the inner surface of this convex curve, that is, the concavely curved inner surface reflects the optical signal from the optical fiber cable C. It functions as a reflecting surface 63A for changing the optical path. As seen in FIGS. 3A and 3B, the reflecting surface 63A is located above the light receiving element 10, and the optical path is shown by a broken line in FIG. 3B. The optical signal traveling forward in the raised portion 63 from the front end surface of the strand C1 of the cable C is reflected by the reflecting surface 63A and its optical path is changed downward, and is reflected on the light receiving surface (upper surface) of the light receiving element 10. Focused.

図1および図2に見られるように、第二樹脂部材70は、非透光性の樹脂で作られており、略直方体外形をなしていて、図3(A)に見られるように、第一樹脂部材60よりも後方にまで及んでいる。該第二樹脂部材70の略前半部では、コネクタ幅方向に対して直角をなし前後方向に延びる側面が端子40と対応する位置で没していて、上下方向に延びる端子溝71が形成されている。該端子溝71内には、信号端子41およびグランド端子42のそれぞれの接触腕部41B,42Bが収容されており、該接触腕部41B,42Bの板面が露呈している。図4(A),(B)に見られるように、該端子溝71は、コネクタ嵌合状態において、相手端子90の対応接触部91A−1,92A−1の進入を許容する。   As seen in FIGS. 1 and 2, the second resin member 70 is made of a non-translucent resin, has a substantially rectangular parallelepiped outer shape, and as seen in FIG. One resin member 60 extends rearward. In a substantially front half portion of the second resin member 70, a side surface that is perpendicular to the connector width direction and extends in the front-rear direction is submerged at a position corresponding to the terminal 40, and a terminal groove 71 extending in the vertical direction is formed. Yes. In the terminal groove 71, the contact arm portions 41B and 42B of the signal terminal 41 and the ground terminal 42 are accommodated, and the plate surfaces of the contact arm portions 41B and 42B are exposed. 4A and 4B, the terminal groove 71 allows the corresponding contact portions 91A-1 and 92A-1 of the mating terminal 90 to enter in the connector fitting state.

図1,2に見られるように、上記第二樹脂部材70の略後半部は、コネクタ幅方向で上記略前半部よりも狭く形成されている。該略後半部の側面は、該コネクタ幅方向で支持部材30の被ロック部32の外面(被ロック部32に関しては図8を参照)と同位置にあり、該外面とともに同一面を形成している。上記側面は、被ロック部32の孔部に対応する位置で該被ロック部32の板厚分だけ没した凹部が形成されている。コネクタ嵌合状態にて、相手コネクタ2のロック片101Aが上記凹部内に進入して、コネクタ嵌合方向(上下方向)でコネクタ1の被ロック縁部32Aと係止可能となっている。   As seen in FIGS. 1 and 2, the substantially second half of the second resin member 70 is formed narrower than the substantially first half in the connector width direction. The side surface of the substantially rear half is in the same position as the outer surface of the locked portion 32 of the support member 30 in the connector width direction (see FIG. 8 for the locked portion 32), and forms the same surface together with the outer surface. Yes. The side surface is formed with a recess that is recessed by the thickness of the locked portion 32 at a position corresponding to the hole of the locked portion 32. In the connector fitting state, the lock piece 101A of the mating connector 2 enters the recess and can be locked with the locked edge portion 32A of the connector 1 in the connector fitting direction (vertical direction).

図2および図3(A)に見られるように、上記第二樹脂部材70は、上記略後半部の上面で、コネクタ幅方向における中央位置、すなわち第一樹脂部材60の素線支持部62と対応する位置で没していて、前後方向に延びる溝部が被覆支持部72として形成されている。該被覆支持部72は、前後方向に対して直角な面での断面がV字状をなすV字溝をなしており、図2および図3(A)によく見られるように、上記素線支持部62の延長上に位置し該素線支持部62と相俟って一つの溝部を形成している。該被覆支持部72は、光ファイバケーブルCの前端部での被覆C2で覆われた部分を支持する。本実施形態では、上記素線支持部62および上記被覆支持部72で形成される一つの溝部は、光ファイバケーブルCの前端部を支持する導波路支持部として機能する。   As seen in FIGS. 2 and 3A, the second resin member 70 is located at the center position in the connector width direction on the upper surface of the substantially second half portion, that is, the wire support portion 62 of the first resin member 60. A groove portion that is submerged at a corresponding position and extends in the front-rear direction is formed as a covering support portion 72. The covering support portion 72 has a V-shaped groove having a V-shaped cross section in a plane perpendicular to the front-rear direction. As can be seen in FIG. 2 and FIG. It is located on the extension of the support part 62 and forms one groove part together with the strand support part 62. The covering support portion 72 supports a portion covered with the covering C2 at the front end portion of the optical fiber cable C. In the present embodiment, one groove formed by the strand support 62 and the covering support 72 functions as a waveguide support that supports the front end of the optical fiber cable C.

[コネクタの製造工程]
以下、コネクタ1の製造工程を図5ないし図9にもとづいて説明する。まず、図5に示されるように、金属板の打抜加工により、支持部材30と複数の端子40とが一つの板状部材をなすように作られたキャリアF1付きのリードフレームFを用意する。本実施形態では、該リードフレームFは、複数のコネクタ1から成るコネクタ群に対応しており、各コネクタ1にそれぞれ対応する支持部材30および端子40が、該端子40の延出方向に配列された状態で、一つのキャリアF1に連結されている。
[Manufacturing process of connector]
Hereinafter, the manufacturing process of the connector 1 will be described with reference to FIGS. First, as shown in FIG. 5, a lead frame F with a carrier F1 is prepared by punching a metal plate so that the support member 30 and the plurality of terminals 40 form one plate-like member. . In the present embodiment, the lead frame F corresponds to a connector group including a plurality of connectors 1, and support members 30 and terminals 40 corresponding to the connectors 1 are arranged in the extending direction of the terminals 40. In this state, it is connected to one carrier F1.

上記キャリアF1は、支持部材30の前端および後端が連結され端子40の延出方向に延びる二つの縦キャリア部F2と、該延出方向で隣接し合う支持部材30同士間の位置で前後方向(上記延出方向に対して直角な方向)に延び上記縦キャリア部F2同士を連結する複数の横キャリア部F3とを有している。図5に見られるように、端子40および被ロック部32は、上記横キャリア部F3に直接的に連結されている。また、複数の端子40のうち、グランド端子42は、支持部材30の支持板部31にも直接的に連結されているが、信号端子41は、上記支持板部31に直接的には連結されておらず、キャリアF1を介して間接的に連結されている。また、上記縦キャリア部F2は、該縦キャリア部F2が延びる縦方向での支持部材30と対応する位置に基準孔F2Aが形成されている。   The carrier F1 has a front-rear direction at a position between two longitudinal carrier portions F2 connected to the front end and the rear end of the support member 30 and extending in the extending direction of the terminal 40, and the supporting members 30 adjacent to each other in the extending direction. A plurality of horizontal carrier portions F3 extending in the direction perpendicular to the extending direction and connecting the vertical carrier portions F2 to each other are provided. As seen in FIG. 5, the terminal 40 and the locked portion 32 are directly connected to the lateral carrier portion F3. Of the plurality of terminals 40, the ground terminal 42 is directly connected to the support plate portion 31 of the support member 30, but the signal terminal 41 is directly connected to the support plate portion 31. It is not connected via the carrier F1. The vertical carrier portion F2 has a reference hole F2A formed at a position corresponding to the support member 30 in the vertical direction in which the vertical carrier portion F2 extends.

次に、図6に見られるように、支持部材30の支持板部31上に、受光素子10および駆動デバイス20を、基準孔F2Aを基準として上記支持板部31に対して位置決めして実装する。該受光素子10および駆動デバイス20の位置決めは、例えば、上記リードフレームFの上方に設置されたカメラ(図示せず)で撮影された画像にもとづいて、基準孔F2Aの位置を画像処理装置(図示せず)で認識することにより行われる。   Next, as shown in FIG. 6, the light receiving element 10 and the driving device 20 are positioned and mounted on the support plate portion 31 of the support member 30 with respect to the support plate portion 31 with reference to the reference hole F2A. . The light receiving element 10 and the driving device 20 are positioned by, for example, determining the position of the reference hole F2A based on an image taken by a camera (not shown) installed above the lead frame F (see FIG. (Not shown).

さらに、ワイヤ50によって、該受光素子10と駆動デバイス20とを接続するとともに、該駆動デバイス20と各端子40とを接続する。該ワイヤ50の接続は、公知のワイヤボンディングによって行われる。   Further, the light receiving element 10 and the driving device 20 are connected by the wire 50, and the driving device 20 and each terminal 40 are connected. The wire 50 is connected by known wire bonding.

次に、図7に示されるように、受光素子10、駆動デバイス20、支持部材30、端子40およびワイヤ50を透光樹脂により一体成形して第一樹脂部材60を成形する。該第一樹脂部材60の成形は、キャリアF1の基準孔F2Aを基準として支持部材30に対して位置決めした状態で行われる。具体的には、例えば、該第一樹脂部材60の成形のための金型(図示せず)に設けられた位置決めピンを上記基準孔F2Aに挿通させて、該金型を支持部材30に対して位置決めした状態で、該金型の内部に透光樹脂を充填する。上記第一樹脂部材60を成形する結果、第一樹脂部材60で受光素子10、駆動デバイス20およびワイヤ50が封止されるとともに、該第一樹脂部材60の素線支持部62および反射面63Aが形成される。   Next, as shown in FIG. 7, the light receiving element 10, the driving device 20, the support member 30, the terminal 40, and the wire 50 are integrally formed with a light-transmitting resin to form the first resin member 60. The molding of the first resin member 60 is performed in a state where the first resin member 60 is positioned with respect to the support member 30 with reference to the reference hole F2A of the carrier F1. Specifically, for example, a positioning pin provided in a mold (not shown) for molding the first resin member 60 is inserted into the reference hole F2A, and the mold is attached to the support member 30. Then, the mold is filled with translucent resin. As a result of molding the first resin member 60, the light receiving element 10, the driving device 20, and the wire 50 are sealed by the first resin member 60, and the strand support portion 62 and the reflecting surface 63A of the first resin member 60 are sealed. Is formed.

上記第一樹脂部材60をなす透光樹脂は、伝送する光信号の波長に対して透過率が高いものが使用されることが好ましい。また、第一樹脂部材60はトランスファー成形で成形されることが好ましい。トランスファー成形で成形することにより、成形時におけるワイヤ50の破断等の悪影響を回避できる。   As the translucent resin constituting the first resin member 60, it is preferable to use a resin having a high transmittance with respect to the wavelength of the optical signal to be transmitted. The first resin member 60 is preferably formed by transfer molding. By forming by transfer molding, adverse effects such as breakage of the wire 50 during molding can be avoided.

次に、図8に見られるように、端子40および被ロック部32を第一樹脂部材60から延出している部分で上記キャリアF1の横キャリア部F3から切り離した後、該端子40および被ロック部32を屈曲させてそれぞれの形状を形成する。具体的には、上記端子40および被ロック部32は、上記第一樹脂部材60からの延出部分の第一樹脂部材60寄り位置で上方に向け屈曲し、さらに該延出部分の自由端寄り位置でコネクタ幅方向内方に屈曲して形成される。   Next, as shown in FIG. 8, after the terminal 40 and the locked part 32 are separated from the lateral carrier part F3 of the carrier F1 at the portion extending from the first resin member 60, the terminal 40 and the locked part are separated. The portions 32 are bent to form respective shapes. Specifically, the terminal 40 and the locked portion 32 are bent upward at a position near the first resin member 60 of the extended portion from the first resin member 60, and further near the free end of the extended portion. It is bent at the position inward in the connector width direction.

次に、図9に見られるように、第一樹脂部材60の外面に第二樹脂部材70を一体成形する。該第二樹脂部材70の成形は、第一樹脂部材60の場合と同様に、キャリアF1の基準孔F2Aを基準として、該第二樹脂部材70の成形のための金型(図示せず)を支持部材30に対して位置決めした状態で、該金型の内部に樹脂を充填することにより行われる。上記第二樹脂部材70を成形する結果、第二樹脂部材70で第一樹脂部材60が覆われるとともに、該第二樹脂部材70の端子溝71および被覆支持部72が形成される。第二樹脂部材70は、例えば射出成形により容易に成形することができる。第二樹脂部材70の成形後、支持部材30をキャリアF1の縦キャリア部F2から切り離すことにより、コネクタ1が完成する。その後、光ファイバケーブルCの前端部を、該コネクタ1の素線支持部62および被覆支持部72に配置した状態で接着剤等によって固定して、コネクタ1を光ファイバケーブルCの前端部に接続する。   Next, as seen in FIG. 9, the second resin member 70 is integrally formed on the outer surface of the first resin member 60. The molding of the second resin member 70 is performed by using a mold (not shown) for molding the second resin member 70 on the basis of the reference hole F2A of the carrier F1 as in the case of the first resin member 60. This is performed by filling the mold with resin while being positioned with respect to the support member 30. As a result of molding the second resin member 70, the first resin member 60 is covered with the second resin member 70, and the terminal grooves 71 and the covering support portions 72 of the second resin member 70 are formed. The second resin member 70 can be easily molded by, for example, injection molding. After molding the second resin member 70, the connector 1 is completed by separating the support member 30 from the vertical carrier portion F2 of the carrier F1. Thereafter, the front end portion of the optical fiber cable C is fixed to the front end portion of the optical fiber cable C by fixing the front end portion of the optical fiber cable C to the front end portion of the optical fiber cable C by fixing the front end portion of the optical fiber cable C with an adhesive. To do.

本実施形態では、第一樹脂部材60の成形時にて、該第一樹脂部材60が受光素子10に一体成形されるのと同時に、該第一樹脂部材60の素線支持部62および反射面63Aが形成される。また、受光素子10の位置決めと、第一樹脂部材60の成形のための金型の位置決めとは、同じ基準孔F2Aの位置を基準として行われる。したがって、第一樹脂部材60を成形することにより、受光素子10と上記素線支持部62および反射面63Aとの位置合わせを正確に行うことができる。   In the present embodiment, at the time of molding the first resin member 60, the first resin member 60 is integrally molded with the light receiving element 10, and at the same time, the wire support portion 62 and the reflecting surface 63A of the first resin member 60 are used. Is formed. Further, the positioning of the light receiving element 10 and the positioning of the mold for molding the first resin member 60 are performed with reference to the position of the same reference hole F2A. Therefore, by molding the first resin member 60, it is possible to accurately align the light receiving element 10 with the strand support 62 and the reflection surface 63A.

また、第二樹脂部材70の成形時にて、該第二樹脂部材70が第一樹脂部材60の外面に一体成形されるのと同時に、該第二樹脂部材70の被覆支持部72が形成される。また、第二樹脂部材70の成形のための金型の位置決めも、上記受光素子10の位置決めや第一樹脂部材60の成形のための金型の位置決めと同様に、基準孔F2Aの位置を基準として行われる。したがって、該第二樹脂部材70を成形することにより、上記受光素子10、上記素線支持部62および反射面63Aと、上記被覆支持部72との位置合わせを正確に行うことができる。その結果、素線支持部62および被覆支持部72から成る導波路支持部に光ファイバケーブルCを配置するだけで、該光ファイバケーブルCと受光素子10との光学的な位置合わせが自動的に行われる。   Further, at the time of molding the second resin member 70, the second resin member 70 is integrally molded on the outer surface of the first resin member 60, and at the same time, the covering support portion 72 of the second resin member 70 is formed. . In addition, the positioning of the mold for molding the second resin member 70 is performed using the position of the reference hole F2A as a reference, similarly to the positioning of the light receiving element 10 and the positioning of the mold for molding the first resin member 60. As done. Therefore, by molding the second resin member 70, the light receiving element 10, the strand support 62 and the reflection surface 63A, and the covering support 72 can be accurately aligned. As a result, the optical alignment between the optical fiber cable C and the light receiving element 10 is automatically performed only by arranging the optical fiber cable C on the waveguide support portion including the strand support portion 62 and the covering support portion 72. Done.

また、第一樹脂部材60の成形時にて、受光素子10の封止と同時に、該受光素子10と素線支持部62との位置合わせがなされるので、従来のように、成形の前段階で位置合わせされていた受光素子と光ファイバケーブルの相対位置が、樹脂の充填によってずれるという事態が起こらない。さらに、本実施形態では、上記位置合わせのために用いられる部品や装置は必要なく、また、位置合わせのみを行う工程も必要ないので、その分、コストの増大を抑制できる。   Further, when the first resin member 60 is molded, the light receiving element 10 and the strand support 62 are aligned at the same time as the light receiving element 10 is sealed. The relative position between the aligned light receiving element and the optical fiber cable does not shift due to the resin filling. Furthermore, in this embodiment, parts and devices used for the above alignment are not necessary, and a process for performing only alignment is not necessary, and accordingly, an increase in cost can be suppressed.

また、本実施形態では、支持部材30と端子40とをリードフレームFで一部材として作ることにより、第一樹脂部材60の成形後に支持部材30と端子40とを分離するだけでよいので、第一樹脂部材60の成形後に、別部材としての端子を取り付ける作業が不要である。したがって、工程が簡単となり、端子40の位置精度が向上する。   In the present embodiment, since the support member 30 and the terminal 40 are made as one member by the lead frame F, it is only necessary to separate the support member 30 and the terminal 40 after the molding of the first resin member 60. The operation | work which attaches the terminal as another member after the shaping | molding of the one resin member 60 is unnecessary. Therefore, the process is simplified and the positional accuracy of the terminal 40 is improved.

[相手コネクタの構成]
次に、相手コネクタ2の構成を説明する。図1に見られるように、相手コネクタ2は、略直方体外形の合成樹脂製のハウジング80と、該ハウジング80に配列保持される複数の金属製の端子90(以下、「相手端子90」という)と、該ハウジング80に保持されコネクタ1の被ロック部32に係止するロック部材100とを有している。
[Configuration of mating connector]
Next, the configuration of the mating connector 2 will be described. As shown in FIG. 1, the mating connector 2 includes a synthetic resin housing 80 having a substantially rectangular parallelepiped outer shape, and a plurality of metal terminals 90 arranged and held in the housing 80 (hereinafter referred to as “mating terminals 90”). And a locking member 100 that is held by the housing 80 and engages with the locked portion 32 of the connector 1.

ハウジング80は、回路基板(図示せず)に対面して配される底壁81と、該底壁81から起立し互いに対向して前後方向に延びる二つの側壁82と、コネクタ幅方向(二つの側壁82同士の対向方向)に延び該側壁82の前端部同士を連結する前壁83とを有している。該二つの側壁82および前壁83によって囲まれ上方そして後方に開口する凹部は、コネクタ1を上方から受け入れるための受入凹部84として形成されている。   The housing 80 includes a bottom wall 81 that faces a circuit board (not shown), two side walls 82 that stand up from the bottom wall 81 and extend in the front-rear direction, and a connector width direction (two It has a front wall 83 that extends in the opposite direction of the side walls 82 and connects the front ends of the side walls 82 to each other. A recess surrounded by the two side walls 82 and the front wall 83 and opening upward and rearward is formed as a receiving recess 84 for receiving the connector 1 from above.

図1に見られるように、上記側壁82の略前半部は、相手端子90に対応する位置で該側壁82の内面、上面および外面が没していて、相手端子90を保持するための端子保持溝82Aが形成されている(図4(A),(B)をも参照)。換言すると、図4(A),(B)に見られるように、前後方向(図4(A),(B)の紙面に対して直角な方向)で対向する端子保持溝82Aの対向内壁面同士が、端子保持溝82A内で上下方向に延びる連結壁部82Bによって連結されている。また、図1に見られるように、上記側壁82は、後端寄り位置にて、該側壁82の内面、上面および外面が没していて、上記ロック部材100を保持するためのロック部材保持溝82Cが形成されている。   As shown in FIG. 1, the substantially first half of the side wall 82 has a terminal holding for holding the mating terminal 90 with the inner surface, the upper surface and the outer surface of the side wall 82 submerged at a position corresponding to the mating terminal 90. A groove 82A is formed (see also FIGS. 4A and 4B). In other words, as seen in FIGS. 4A and 4B, the opposing inner wall surfaces of the terminal holding grooves 82A that oppose in the front-rear direction (the direction perpendicular to the paper surface of FIGS. 4A and 4B). The two are connected by a connecting wall portion 82B extending in the vertical direction in the terminal holding groove 82A. As shown in FIG. 1, the side wall 82 has a lock member holding groove for holding the lock member 100, with the inner surface, the upper surface, and the outer surface of the side wall 82 submerged at a position near the rear end. 82C is formed.

図4(A),(B)に見られるように、相手端子90は、金属板の細条片を板厚方向に屈曲して作られており、略横S字状をなしている。複数の相手端子90は、コネクタ1の信号端子41と接触する相手信号端子91と(図4(A)参照)、コネクタ1のグランド端子42と接触する相手グランド端子92と(図4(B)参照)とを有している。   As can be seen in FIGS. 4A and 4B, the mating terminal 90 is made by bending a strip of metal plate in the thickness direction, and has a substantially horizontal S shape. The plurality of mating terminals 90 include a mating signal terminal 91 that contacts the signal terminal 41 of the connector 1 (see FIG. 4A), and a mating ground terminal 92 that contacts the ground terminal 42 of the connector 1 (see FIG. 4B). Reference).

相手信号端子91は、コネクタ幅方向(図4(A),(B)の左右方向)にて、連結壁部82Bよりも受入凹部84側に位置する略U字状部91Aと、該略U字状部91Aの二つの脚部のうち上記連結壁部82B寄りに位置する一方の脚部の上端で折り返されて該連結壁部82Bの外面に沿って下方へ向けて延びる被保持部91Bと、該被保持部91Bの下端から直角に屈曲され端子保持溝82A外へ延出する接続部91Cとを有している。   The mating signal terminal 91 includes a substantially U-shaped portion 91A positioned on the receiving recess 84 side of the connecting wall portion 82B in the connector width direction (left and right direction in FIGS. 4A and 4B), and the substantially U-shaped portion 91A. A held portion 91B that is folded back at the upper end of one of the two leg portions of the character-shaped portion 91A and located near the connecting wall portion 82B and extends downward along the outer surface of the connecting wall portion 82B; And a connecting portion 91C that is bent at a right angle from the lower end of the held portion 91B and extends out of the terminal holding groove 82A.

上記略U字状部91Aの二つの脚部のうち受入凹部84寄りに位置する他方の脚部は、自由端たる上端部が受入凹部84へ向けて凸湾曲するように屈曲されており、コネクタ1の信号端子41の接触腕部41Bと接触する対応接触部91A−1として形成されている。図4(A),(B)に見られるように、該対応接触部91A−1は、受入凹部84へ向けて突出している。上記略U字状部91Aは、コネクタ1との嵌合状態において、信号端子41の接触腕部41Bによって上記対応接触部91A−1がコネクタ幅方向で連結壁部82Bへ向けて押圧されることにより、該コネクタ幅方向で弾性変位するようになっている。   Of the two legs of the substantially U-shaped portion 91A, the other leg located near the receiving recess 84 is bent so that the upper end as a free end is convexly curved toward the receiving recess 84. It is formed as a corresponding contact portion 91A-1 that comes into contact with the contact arm portion 41B of one signal terminal 41. As can be seen in FIGS. 4A and 4B, the corresponding contact portion 91 </ b> A- 1 protrudes toward the receiving recess 84. When the substantially U-shaped portion 91A is engaged with the connector 1, the corresponding contact portion 91A-1 is pressed toward the connecting wall portion 82B in the connector width direction by the contact arm portion 41B of the signal terminal 41. Thus, the elastic displacement is achieved in the connector width direction.

被保持部91Bは、上下方向に延びる両側縁で端子保持溝82Aへ上方から圧入され、この結果、相手信号端子91が該端子保持溝82A内に保持される。接続部91Cは、その下面がハウジング80の底壁81の下面よりも若干下方に位置しており、回路基板の対応回路部に半田接続されるようになっている。   The held portion 91B is press-fitted from above into the terminal holding groove 82A at both side edges extending in the vertical direction. As a result, the counterpart signal terminal 91 is held in the terminal holding groove 82A. The lower surface of the connection portion 91C is located slightly below the lower surface of the bottom wall 81 of the housing 80, and is connected to the corresponding circuit portion of the circuit board by soldering.

相手グランド端子92は、上記相手信号端子91と同じ形状なので、該相手グランド端子92の構成については、図4(B)に示されているように、相手信号端子91の各部分の符号に「1」を加えた符号を付して、説明を省略する。   Since the counterpart ground terminal 92 has the same shape as that of the counterpart signal terminal 91, the configuration of the counterpart ground terminal 92 is indicated by the reference numerals of the parts of the counterpart signal terminal 91 as shown in FIG. Reference numerals with “1” added are attached, and description thereof is omitted.

ロック部材100は、前後方向に見て略逆U字状をなすように、金属板を板厚方向に屈曲して作られていて、コネクタ幅方向で対面する二つの板状部を有している。図1に見られるように、該二つの板状部のうち、コネクタ幅方向での側壁82の内面側に位置する内板部101は、その下端が受入凹部84側へ延びるように切り起こされたロック片101Aが形成されており、コネクタ嵌合方向で上記被ロック部32と係止可能となっている。   The lock member 100 is formed by bending a metal plate in the plate thickness direction so as to form a substantially inverted U shape when viewed in the front-rear direction, and has two plate-like portions facing each other in the connector width direction. Yes. As shown in FIG. 1, of the two plate-like portions, the inner plate portion 101 located on the inner surface side of the side wall 82 in the connector width direction is cut and raised so that the lower end thereof extends to the receiving recess 84 side. The lock piece 101A is formed and can be locked to the locked portion 32 in the connector fitting direction.

また、上記二つの板状部のうち、コネクタ幅方向での側壁82の外面側に位置する外板部102は、両側縁でロック部材保持溝82Cへ上方から圧入される被保持部としての機能を有している。該外板部102の下端には、ロック部材保持溝82Cの外方へ向けて延びる固定部102Aが形成されており、該固定部102Aの下面が回路基板の対応部に半田接続されることにより、該コネクタ1が回路基板上に固定される。ここで、上記固定部102Aが半田接続される上記回路基板の対応部としてグランド回路(図示せず)を形成することにより、接地構造とすることも可能である。   Of the two plate-like parts, the outer plate part 102 located on the outer surface side of the side wall 82 in the connector width direction functions as a held part that is press-fitted from above into the lock member holding groove 82C at both side edges. have. A fixing portion 102A extending outward from the lock member holding groove 82C is formed at the lower end of the outer plate portion 102, and the lower surface of the fixing portion 102A is soldered to a corresponding portion of the circuit board. The connector 1 is fixed on the circuit board. Here, a ground circuit (not shown) may be formed as a corresponding portion of the circuit board to which the fixing portion 102A is solder-connected, thereby providing a ground structure.

[コネクタの嵌合接続動作]
以下、コネクタ1と相手コネクタ2との嵌合接続動作について説明する。まず、図1に見られるように、受入凹部84が上方に開口した姿勢で回路基板(図示せず)上に相手コネクタ2を実装するとともに、光ファイバケーブルCの前端部に接続されたコネクタ1を、素線支持部62および被覆支持部72が下方を向いた姿勢で、上記相手コネクタ2の上方位置にもたらす。
[Connector connection operation]
Hereinafter, the fitting and connecting operation between the connector 1 and the mating connector 2 will be described. First, as shown in FIG. 1, the mating connector 2 is mounted on a circuit board (not shown) with the receiving recess 84 opened upward, and the connector 1 connected to the front end of the optical fiber cable C. Is brought to an upper position of the mating connector 2 in a posture in which the wire support portion 62 and the covering support portion 72 face downward.

次に、上記コネクタ1を下方へ移動して、相手コネクタ2の受入凹部84内へ嵌入させる。この結果、コネクタ1の信号端子41およびグランド端子42が、相手コネクタ2の相手信号端子91の対応接触部91A−1および相手グランド端子92の対応接触部92A−1と弾性接触する。また、相手コネクタ2のロック片101Aの下端部がコネクタ1の被ロック部32の孔部内に進入して、該被ロック縁部32Aと係止して、コネクタ同士の不用意な抜けが防止され、コネクタ嵌合接続が完了する。   Next, the connector 1 is moved downward to fit into the receiving recess 84 of the mating connector 2. As a result, the signal terminal 41 and the ground terminal 42 of the connector 1 are in elastic contact with the corresponding contact portion 91A-1 of the counterpart signal terminal 91 of the counterpart connector 2 and the corresponding contact portion 92A-1 of the counterpart ground terminal 92. Further, the lower end portion of the lock piece 101A of the mating connector 2 enters the hole of the locked portion 32 of the connector 1 and engages with the locked edge portion 32A, thereby preventing the connectors from being accidentally pulled out. The connector fitting connection is completed.

コネクタ嵌合状態において、光ファイバケーブルC内を伝送した光信号は、第一樹脂部材60の反射面63Aで反射されて光路が下方へ変向し、受光素子10の受光面に集光される。そして、該受光素子10で光信号が電気信号に変換され、上記電気信号は、端子40および相手端子90を介して、相手コネクタ2が実装されている回路基板の対応回路部へ伝送される。   In the connector fitting state, the optical signal transmitted through the optical fiber cable C is reflected by the reflecting surface 63A of the first resin member 60, the optical path is changed downward, and is condensed on the light receiving surface of the light receiving element 10. . Then, the light signal is converted into an electric signal by the light receiving element 10, and the electric signal is transmitted to the corresponding circuit portion of the circuit board on which the mating connector 2 is mounted via the terminal 40 and the mating terminal 90.

本実施形態では、第一樹脂部材に素線支持部を形成し、第二支持部材に被覆支持部を形成することとしたが、これに代えて、例えば、第一樹脂部材に素線支持部と被覆支持部の両方を形成してもよい。   In the present embodiment, the wire support portion is formed on the first resin member and the covering support portion is formed on the second support member. Instead, for example, the wire support portion is formed on the first resin member. And the covering support part may be formed.

<第二実施形態>
本実施形態は、支持部材が樹脂製の基板であり、接点部材が該基板の板面上で該基板と一体に形成される印刷配線である点で、支持部材が金属板部材であり、接点部材が該支持部材とは別部材として形成される端子である第一実施形態と異なっている。
<Second embodiment>
In the present embodiment, the support member is a resin substrate, the contact member is a printed wiring formed integrally with the substrate on the plate surface of the substrate, and the support member is a metal plate member. This is different from the first embodiment in which the member is a terminal formed as a separate member from the support member.

[コネクタの構成]
図10は、本実施形態に係る光電気変換コネクタ3を相手コネクタ4とともに示す斜視図であり、コネクタ嵌合接続前の状態を示している。図11は、図10のコネクタ3を上下反転させた姿勢で示した斜視図である。図12は図11のコネクタの光導波路部材(光ファイバケーブルC)の延出方向に対して平行な面での縦断面図である。
[Connector configuration]
FIG. 10 is a perspective view showing the photoelectric conversion connector 3 according to this embodiment together with the mating connector 4, and shows a state before the connector fitting connection. FIG. 11 is a perspective view showing the connector 3 of FIG. 12 is a longitudinal sectional view of a plane parallel to the extending direction of the optical waveguide member (optical fiber cable C) of the connector of FIG.

図10および図11に見られるように、本実施形態に係る光電気変換コネクタ3(以下、単に「コネクタ3」という)は、第一実施形態のコネクタ1と同様に、前後方向(図10および図11での左右方向)へ向け延びる光導波路部材たる光ファイバケーブルCの前端部(図10での左端部)が接続されるコネクタであり、回路基板(図示せず)上に実装された相手コネクタ4と嵌合接続される。本実施形態の光ファイバケーブルC自体は、第一実施形態の光ファイバケーブルCと同一の構成である。   As shown in FIGS. 10 and 11, the photoelectric conversion connector 3 (hereinafter simply referred to as “connector 3”) according to this embodiment is similar to the connector 1 of the first embodiment in the front-rear direction (see FIGS. 10 and 11). 11 is a connector to which a front end portion (left end portion in FIG. 10) of an optical fiber cable C that is an optical waveguide member extending in the left-right direction in FIG. 11 is connected, and is a counterpart mounted on a circuit board (not shown) The connector 4 is fitted and connected. The optical fiber cable C itself of this embodiment has the same configuration as the optical fiber cable C of the first embodiment.

図12に見られるように、上記コネクタ3は、光半導体素子としての受光素子110と、受光素子110を駆動する駆動デバイス120と、該受光素子110および駆動デバイス120を支持する支持部材としての基板130と、該基板130の板面状に形成され後述の相手コネクタ4の相手端子190と接触する接点部材としての配線140と、上記受光素子110を上記駆動デバイス120に接続するとともに、該駆動デバイス120を上記配線140に接続する導電材としてのワイヤ150(図14参照)と、上記受光素子110、駆動デバイス120、基板130、配線140およびワイヤ150を一体成形により保持する第一樹脂部材160と、該第一樹脂部材160の外面に一体成形される第二樹脂部材170とを有している。上述したように、本実施形態では、支持部材を基板130としている点に特徴を有している。   As shown in FIG. 12, the connector 3 includes a light receiving element 110 as an optical semiconductor element, a driving device 120 that drives the light receiving element 110, and a substrate as a support member that supports the light receiving element 110 and the driving device 120. 130, wiring 140 as a contact member that is formed in a plate shape of the substrate 130 and contacts a mating terminal 190 of the mating connector 4 described later, and the light receiving element 110 are connected to the driving device 120, and the driving device Wire 150 (see FIG. 14) as a conductive material that connects 120 to the wiring 140, and a first resin member 160 that holds the light receiving element 110, the driving device 120, the substrate 130, the wiring 140, and the wire 150 by integral molding; The second resin member 170 is integrally formed on the outer surface of the first resin member 160. As described above, this embodiment is characterized in that the support member is the substrate 130.

本実施形態では、該第一樹脂部材160および第二樹脂部材170は、第一実施形態と同様に、コネクタ3のハウジングを形成している。また、本実施形態では、光半導体素子として受光素子110を実装することとしたが、これに代えて、発光素子を実装してもよいことは第一実施形態と同様である。   In the present embodiment, the first resin member 160 and the second resin member 170 form the housing of the connector 3 as in the first embodiment. In the present embodiment, the light receiving element 110 is mounted as an optical semiconductor element. However, instead of this, a light emitting element may be mounted as in the first embodiment.

受光素子110および駆動デバイス120は、その構成および互いの位置関係が、第一実施形態の受光素子10および駆動デバイス20と同じであるので説明を省略する。図12に見られるように、基板130は、樹脂製の板状部材であり(図13をも参照)、その上面に上記配線140が印刷配線として形成されている。すなわち、本実施形態では、基板130と配線140とは、一部材として一体に成形されており、第一実施形態のように、コネクタ製造工程にて分離されることがない。上記配線140は、前後方向に延びていて、その前端部の上面が、相手コネクタ4の相手端子190と接触するための接点141として形成されている。複数の該接点141には信号用接点およびグランド用接点が含まれており、図11に見られるように、複数の接点141はコネクタ幅方向で一定間隔をもって配列されている。本実施形態では、基板130は樹脂製であるが、基板130の材料はこれに限られず、例えばセラミック製であってもよい。   The light receiving element 110 and the driving device 120 are the same in configuration and mutual positional relationship as the light receiving element 10 and the driving device 20 of the first embodiment, and thus description thereof is omitted. As shown in FIG. 12, the substrate 130 is a resin plate-like member (see also FIG. 13), and the wiring 140 is formed as a printed wiring on the upper surface thereof. That is, in this embodiment, the board | substrate 130 and the wiring 140 are integrally shape | molded as one member, and are not isolate | separated in a connector manufacturing process like 1st embodiment. The wiring 140 extends in the front-rear direction, and the upper surface of the front end portion is formed as a contact 141 for contacting the mating terminal 190 of the mating connector 4. The plurality of contacts 141 include a signal contact and a ground contact. As seen in FIG. 11, the plurality of contacts 141 are arranged at regular intervals in the connector width direction. In the present embodiment, the substrate 130 is made of resin, but the material of the substrate 130 is not limited to this, and may be made of ceramic, for example.

ワイヤ150は、第一実施形態のワイヤ50と同じ部材であるので説明を省略する(図14参照)。第一樹脂部材160は、透光樹脂製であり、基板130の板面で薄型の略直方体外形をもって成形されている(図15参照)。また、該第一樹脂部材160の前端部は、図12に見られるように、上記配線140の接点141よりも後方に位置していて、該接点141が露呈している。   Since the wire 150 is the same member as the wire 50 of the first embodiment, description thereof is omitted (see FIG. 14). The first resin member 160 is made of a translucent resin, and is formed with a thin, substantially rectangular parallelepiped outer shape on the plate surface of the substrate 130 (see FIG. 15). Further, as shown in FIG. 12, the front end portion of the first resin member 160 is located behind the contact 141 of the wiring 140, and the contact 141 is exposed.

上記第一樹脂部材160は、第一実施形態と同様に、溝部161、素線支持部162、隆起部163および反射面163Aを有している。これらの構成は、それぞれ第一実施形態の溝部61、素線支持部62、隆起部63および反射面63Aと同じであるので説明を省略する。   The said 1st resin member 160 has the groove part 161, the strand support part 162, the protruding part 163, and reflective surface 163A similarly to 1st embodiment. Since these structures are the same as the groove part 61, the strand support part 62, the protruding part 63, and the reflective surface 63A of 1st embodiment, respectively, description is abbreviate | omitted.

第二樹脂部材170は、図11および図12に見られるように、第一樹脂部材160の外面に一体成形され、配線140の接点141を露呈したまま略直方体外形をなしている。また、図11および図12に見られるように、該第二樹脂部材170の前端部は、同図にてコネクタ幅方向(図12の紙面に対して直角な方向)全域にわたって上半部が切り欠かれていて、下半部は、上記接点141が上面に露呈して配列された接点配列部173として形成されている。   As shown in FIGS. 11 and 12, the second resin member 170 is integrally formed on the outer surface of the first resin member 160 and has a substantially rectangular parallelepiped outer shape with the contact 141 of the wiring 140 exposed. 11 and 12, the front end portion of the second resin member 170 is cut in the upper half over the entire connector width direction (direction perpendicular to the paper surface of FIG. 12). The lower half portion is formed as a contact arrangement portion 173 in which the contact points 141 are exposed and arranged on the upper surface.

図11および図12に見られるように、第二樹脂部材170は、同図にて略後半部の上面がコネクタ幅方向中央位置で没していて、前後方向で中間部から後方へ延びる溝部171が形成されている。該溝部171内の前半部には、第一樹脂部材160の後半部が位置している。該溝部171の後半部は、V字溝をなしており、被覆支持部172として形成されている。   As shown in FIGS. 11 and 12, the second resin member 170 has a groove portion 171 extending substantially rearward from the intermediate portion in the front-rear direction, with the upper surface of the substantially rear half portion submerged at the center position in the connector width direction. Is formed. The rear half of the first resin member 160 is located in the front half of the groove 171. The rear half of the groove portion 171 forms a V-shaped groove and is formed as a covering support portion 172.

図10に見られるように、第二樹脂部材170の上面(図12では下面)は、前端寄り位置から後端にわたる範囲でコネクタ幅方向での略中央域が没して被圧部174が形成されている。該被圧部174は、後述するように、図10に示される相手コネクタ4の回動可能な蓋部203の上板部204に設けられた弾性片204Aによって上方から押圧されるようになっている。   As shown in FIG. 10, the upper surface (the lower surface in FIG. 12) of the second resin member 170 has a substantially central region in the connector width direction in the range extending from the position near the front end to the rear end to form the pressure-receiving portion 174. Has been. As will be described later, the pressure-receiving portion 174 is pressed from above by an elastic piece 204A provided on the upper plate portion 204 of the rotatable lid portion 203 of the mating connector 4 shown in FIG. Yes.

また、図10に見られるように、第二樹脂部材170の側面は、前後方向での中間位置にて略下半部(図12では略上半部)が切り欠かれていて、下方に開放した角形の被案内凹部175が形成されている。該被案内凹部175は、後述するように、コネクタ嵌合過程で相手コネクタ4の案内突部182Aに案内される。   Further, as seen in FIG. 10, the side surface of the second resin member 170 has a substantially lower half portion (substantially upper half portion in FIG. 12) cut out at an intermediate position in the front-rear direction, and is opened downward. A rectangular guided recess 175 is formed. The guided recess 175 is guided to the guide protrusion 182A of the mating connector 4 in the connector fitting process, as will be described later.

[コネクタの製造工程]
以下、コネクタ3の製造工程を図13ないし図17にもとづいて説明する。まず、図13に示されるように、複数のコネクタ3のそれぞれに対応する複数の基板130が一部材として作られた基板素材Pを用意する。該基板素材Pは、コネクタの幅方向で複数の基板130を連結したような形状で作られていて、互いに隣接する基板130同士間に対応する位置に、位置決め孔としての基準孔P1が形成されている。また、基板素材Pは、各コネクタ3に対応する配線140(図12参照)が上面に形成されている。図13では、配線140は、接点141のみが図示されており、他の部分の図示が省略されている。
[Manufacturing process of connector]
Hereinafter, the manufacturing process of the connector 3 will be described with reference to FIGS. First, as shown in FIG. 13, a substrate material P is prepared in which a plurality of substrates 130 corresponding to the plurality of connectors 3 are made as one member. The substrate material P is formed in a shape in which a plurality of substrates 130 are connected in the width direction of the connector, and a reference hole P1 as a positioning hole is formed at a position corresponding to between the substrates 130 adjacent to each other. ing. Moreover, the wiring 140 (refer FIG. 12) corresponding to each connector 3 is formed in the board | substrate material P on the upper surface. In FIG. 13, only the contact 141 is shown in the wiring 140, and the other parts are not shown.

次に、図14に見られるように、基板素材Pに含まれる基板130の上面に、受光素子110および駆動デバイス120を、基準孔P1を基準として基板130に対して位置決めして実装する。該位置決めは、第一実施形態と同様に、カメラ(図示せず)および画像処理装置(図示せず)を用いて行う。さらに、公知のワイヤボンディングにより、該受光素子110と駆動デバイス120とをワイヤ150で接続するとともに、該駆動デバイス120と配線140とを該ワイヤ150で接続する。   Next, as shown in FIG. 14, the light receiving element 110 and the driving device 120 are positioned and mounted on the upper surface of the substrate 130 included in the substrate material P with respect to the substrate 130 with reference to the reference hole P1. The positioning is performed using a camera (not shown) and an image processing device (not shown) as in the first embodiment. Further, the light receiving element 110 and the driving device 120 are connected by a wire 150 by well-known wire bonding, and the driving device 120 and the wiring 140 are connected by the wire 150.

次に、図15に示されるように、受光素子110、駆動デバイス120、基板130、配線140およびワイヤ150を透光樹脂により一体成形して第一樹脂部材160を成形する。該第一樹脂部材160の成形は、基板素材Pの基準孔P1を基準として基板130に対して位置決めした状態で行われる。この位置決めは、第一実施形態と同様に、例えば、該第一樹脂部材160の成形のための金型(図示せず)の位置決めピンを上記基準孔P1に挿通して行われる。該第一樹脂部材160を成形する結果、第一実施形態と同様に、第一樹脂部材160で受光素子110、駆動デバイス120およびワイヤ150が封止されるとともに、該第一樹脂部材160の素線支持部162および反射面163Aが位置決めされた状態で形成される。   Next, as shown in FIG. 15, the light receiving element 110, the driving device 120, the substrate 130, the wiring 140, and the wire 150 are integrally formed with a translucent resin to form the first resin member 160. The molding of the first resin member 160 is performed in a state where the first resin member 160 is positioned with respect to the substrate 130 with reference to the reference hole P1 of the substrate material P. This positioning is performed, for example, by inserting a positioning pin of a mold (not shown) for molding the first resin member 160 into the reference hole P1 as in the first embodiment. As a result of molding the first resin member 160, the light receiving element 110, the drive device 120, and the wire 150 are sealed by the first resin member 160, and the element of the first resin member 160 is formed, as in the first embodiment. The line support portion 162 and the reflection surface 163A are formed in a positioned state.

次に、図16に見られるように、基板素材Pを、コネクタ幅方向における基準孔P1の位置で切断する。この結果、一つのコネクタ3に対応する、第二樹脂部材170の成形前の中間部品が得られる。次に、例えば基板130の前端を基準として該基板130に対して位置決めした状態で、図17に見られるように、第一樹脂部材160の外面に第二樹脂部材170を一体成形する。第二樹脂部材170の成形により、第一樹脂部材160および基板130が該第二樹脂部材170で覆われるとともに、該第二樹脂部材170の溝部171、被覆支持部172、接点配列部173、被圧部174および被案内凹部175が形成され、コネクタ3が完成する。その後、光ファイバケーブルCの前端部を、該コネクタ1の素線支持部162および被覆支持部172に配置した状態で接着剤等によって固定して、コネクタ3を光ファイバケーブルCの前端部に接続する。   Next, as seen in FIG. 16, the substrate material P is cut at the position of the reference hole P1 in the connector width direction. As a result, an intermediate part before molding the second resin member 170 corresponding to one connector 3 is obtained. Next, for example, the second resin member 170 is integrally formed on the outer surface of the first resin member 160 in a state where the front end of the substrate 130 is positioned with respect to the substrate 130 as seen in FIG. By molding the second resin member 170, the first resin member 160 and the substrate 130 are covered with the second resin member 170, and the groove portion 171, covering support portion 172, contact arrangement portion 173, The pressure part 174 and the guided recessed part 175 are formed, and the connector 3 is completed. Thereafter, the front end portion of the optical fiber cable C is fixed to the front end portion of the optical fiber cable C by fixing the front end portion of the optical fiber cable C to the front end portion of the optical fiber cable C by fixing the front end portion of the optical fiber cable C with an adhesive or the like. To do.

本実施形態においても、第一樹脂部材160の成形時に、該第一樹脂部材160が受光素子110に一体成形されるのと同時に、該第一樹脂部材160の素線支持部162および反射面163Aが形成される。また、受光素子110の位置決めと、第一樹脂部材160の成形のための金型の位置決めとが、同じ基準孔P1の位置を基準として行われる。したがって、本実施形態においても、第一実施形態と同様に、第一樹脂部材160を成形することにより、受光素子110と上記素線支持部162および反射面163Aとの位置合わせを正確に行うことができる。したがって、光ファイバケーブルCの素線C1を素線支持部62に配置するだけで、該光ファイバケーブルCの素線C1と受光素子10との光学的な位置合わせが自動的に行われる。   Also in the present embodiment, at the time of molding the first resin member 160, the first resin member 160 is integrally formed with the light receiving element 110, and at the same time, the wire support portion 162 and the reflecting surface 163A of the first resin member 160 are formed. Is formed. Further, the positioning of the light receiving element 110 and the positioning of the mold for molding the first resin member 160 are performed based on the position of the same reference hole P1. Therefore, also in the present embodiment, as in the first embodiment, the first resin member 160 is molded to accurately align the light receiving element 110 with the strand support portion 162 and the reflecting surface 163A. Can do. Therefore, the optical alignment between the strand C1 of the optical fiber cable C and the light receiving element 10 is automatically performed only by arranging the strand C1 of the optical fiber cable C on the strand support 62.

また、従来のように、成形の前段階で位置合わせされていた受光素子と光ファイバケーブルの相対位置が、樹脂の充填によってずれるという事態が起こらないことや、上記位置合わせのために用いられる部品や装置が必要なく、また、位置合わせのみを行う工程も必要ない分、コストの増大を抑制できることも第一実施形態と同様である。   Further, unlike the conventional case, the relative position between the light receiving element and the optical fiber cable that have been aligned in the previous stage of molding does not shift due to resin filling, and the parts used for the above alignment Similarly to the first embodiment, it is possible to suppress an increase in cost because no process or device is required and a process for performing only alignment is not required.

[相手コネクタの構成]
図10に示される相手コネクタ4は、回路基板(図示せず)上に配されるコネクタであり、コネクタ3を受け入れるハウジング180と、該ハウジング180に配列保持される複数の端子190(以下、「相手端子190」という)と、該ハウジング180を覆う金属製のシェル部材200とを有している。
[Configuration of mating connector]
The mating connector 4 shown in FIG. 10 is a connector disposed on a circuit board (not shown), and includes a housing 180 that receives the connector 3 and a plurality of terminals 190 (hereinafter, “ And a metal shell member 200 that covers the housing 180.

ハウジング180は、前後方向を長手方向とする略直方体外形をなし、回路基板に平行な底壁181と、該底壁181から起立し互いに対向して前後方向に延びる二つの側壁182と、コネクタ幅方向(二つの側壁182同士の対向方向)に延び該側壁182の前端部同士を連結する前壁183とを有している。該二つの側壁182および前壁183によって囲まれ上方そして後方に開口する凹部は、コネクタ3を上方から受け入れるための受入凹部184として形成されている。   The housing 180 has a substantially rectangular parallelepiped shape whose longitudinal direction is the front-rear direction, a bottom wall 181 parallel to the circuit board, two side walls 182 that stand up from the bottom wall 181 and extend in the front-rear direction, and a connector width. It has a front wall 183 that extends in the direction (opposite direction between the two side walls 182) and connects the front ends of the side walls 182 to each other. A recess surrounded by the two side walls 182 and the front wall 183 and opening upward and rearward is formed as a receiving recess 184 for receiving the connector 3 from above.

上記前壁183は、略下半部が後方へ向けて、すなわち受入凹部184側へ向けて突出していて、この突出部分が突出壁部183Aとして形成されている。また、該前壁183は、略下半部にて前後方向で貫通するスリット状の端子保持溝183Bが複数形成されており、該端子保持溝183Bで相手端子190を収容保持するようになっている。該端子保持溝183Bは、上記突出壁部183Aの位置にて上方および後方に開放されている。該突出壁部183Aの上方に形成された空間(受入凹部184の一部)は、コネクタ嵌合状態にて、コネクタ3の接点配列部173を受け入れるようになっている。   The front wall 183 has a substantially lower half projecting rearward, that is, toward the receiving recess 184, and this projecting portion is formed as a projecting wall 183A. Further, the front wall 183 is formed with a plurality of slit-like terminal holding grooves 183B penetrating in the front-rear direction in a substantially lower half portion, and the mating terminal 190 is received and held by the terminal holding groove 183B. Yes. The terminal holding groove 183B is opened upward and rearward at the position of the protruding wall portion 183A. A space (a part of the receiving recess 184) formed above the protruding wall portion 183A receives the contact arrangement portion 173 of the connector 3 in the connector fitting state.

二つの側壁182は、互いに対向する内側面の前後方向中間位置における下半部で受入凹部184側へ突出する案内突部182Aを有している。該案内突部182Aは、コネクタ3の被案内凹部175と適合した角形に形成されていて、コネクタ嵌合過程にて、該被案内凹部175内に進入しながら該コネクタ3を受入凹部184の正規位置へ案内するようになっている。   The two side walls 182 have a guide protrusion 182A that protrudes toward the receiving recess 184 at the lower half of the inner surfaces facing each other at the middle position in the front-rear direction. The guide protrusion 182A is formed in a square shape that matches the guided recess 175 of the connector 3, and the connector 3 is inserted into the guided recess 175 during the connector fitting process. Guide to the position.

相手端子190は、金属板製の細条片を板厚方向に屈曲して作られており、ハウジング180の端子保持溝183B内で圧入保持されている。該相手端子190は、一端側部分が突出壁部183Aの位置で端子保持溝183B内に収容されており、他端側部分が前壁183の下方位置で前方へ延びて位置している。上記一端側部分は、コネクタ3の接点141と接触するための対応接点部191が、上方へ向けて凸湾曲して形成されており、図10に見られるように、該対応接点部191の頂部が上記突出壁部183Aよりも上方へ突出している。   The mating terminal 190 is made by bending a strip made of a metal plate in the thickness direction, and is press-fitted and held in a terminal holding groove 183B of the housing 180. The mating terminal 190 has one end side portion accommodated in the terminal holding groove 183B at the position of the protruding wall portion 183A, and the other end side portion positioned to extend forward at a position below the front wall 183. A corresponding contact portion 191 for contacting the contact 141 of the connector 3 is formed on the one end side portion so as to protrude upward, and as shown in FIG. 10, the top portion of the corresponding contact portion 191 is formed. Protrudes above the protruding wall portion 183A.

シェル部材200は、ハウジング180に取り付けられ、該ハウジング180の二つの側壁182の外側面および前壁183の前面を覆う箱部201と、該箱部201に対して回動可能に取り付けられ、コネクタ嵌合状態にてコネクタ3の上面を覆う蓋部203とを有している。上記箱部201は、ハウジング180の側壁182の外側面を覆う側壁カバー部202と、二つの側壁カバー部202の前端部を連結しハウジング180の前壁183の前面を覆う前壁カバー部(図示せず)とを有している。   The shell member 200 is attached to the housing 180, the box part 201 covering the outer side surface of the two side walls 182 and the front surface of the front wall 183 of the housing 180, and attached to the box part 201 so as to be rotatable. And a lid 203 that covers the upper surface of the connector 3 in the fitted state. The box portion 201 is connected to the side wall cover portion 202 that covers the outer surface of the side wall 182 of the housing 180 and the front end portion of the front wall 183 of the housing 180 by connecting the front end portions of the two side wall cover portions 202 (see FIG. Not shown).

上記側壁カバー部202の前部には、後述の蓋部203の軸部を回動可能に支持する軸支持部202Aが、板厚方向に貫通した孔部として形成されている。また、側壁カバー部202は、その後部に、側壁カバー部202の一部をコネクタ幅方向外方に切り起こして形成された係止部202Bを有している。該係止部202Bは、その板面が前後方向に対して直角をなしており、後述するように、該係止部202Bの下端縁で蓋部203の被係止部206Aと係止可能となっている。   A shaft support portion 202A that rotatably supports a shaft portion of a lid portion 203 (to be described later) is formed in the front portion of the side wall cover portion 202 as a hole portion that penetrates in the plate thickness direction. Moreover, the side wall cover part 202 has a locking part 202B formed by cutting and raising a part of the side wall cover part 202 outward in the connector width direction at the rear part. The locking portion 202B has a plate surface that is perpendicular to the front-rear direction, and can be locked to the locked portion 206A of the lid 203 at the lower edge of the locking portion 202B, as will be described later. It has become.

上記蓋部203は、図10に示されるように上下方向に延びた姿勢をなし受入凹部184へのコネクタ3の受入れを可能とする開位置と、前後方向に延びた姿勢をなしコネクタ3の上面を覆う閉位置との間で回動可能となっている。蓋部203は、閉位置でコネクタ3の上面を覆う上板部204と、該上板部204の側縁部の前部(図10での下部)で屈曲形成された前方側板部205と、該上板部204の側縁部の後部(図10での上部)で屈曲形成された後方側板部206とを有している。   As shown in FIG. 10, the lid portion 203 has a posture extending in the vertical direction and has an open position enabling the connector 3 to be received in the receiving recess 184, and a posture extending in the front-rear direction. It is possible to rotate between the closed position covering the. The lid portion 203 includes an upper plate portion 204 that covers the upper surface of the connector 3 in the closed position, a front side plate portion 205 that is bent at the front portion (lower portion in FIG. 10) of the side edge portion of the upper plate portion 204, And a rear side plate portion 206 that is bent at the rear portion (upper portion in FIG. 10) of the side edge portion of the upper plate portion 204.

上記前方側板部205は、例えばエンボス加工等により、コネクタ幅方向内方へ向けて突出するように形成された軸部(図示せず)を有している。本実施形態では、該軸部が上記箱部201の軸支持部202Aで支持されることにより、上記蓋部203が開位置と閉位置との間を回動可能となっている。また、上記後方側板部206は、閉位置にて箱部201の係止部202Bと係止する腕状の被係止部206Aが、前方(図10での下方)へ延びて形成されている。   The front side plate portion 205 has a shaft portion (not shown) formed so as to protrude inward in the connector width direction, for example, by embossing or the like. In the present embodiment, the cover 203 can be rotated between an open position and a closed position by the shaft being supported by the shaft support 202A of the box 201. Further, the rear side plate portion 206 is formed such that an arm-like locked portion 206A that locks with the locking portion 202B of the box portion 201 in the closed position extends forward (downward in FIG. 10). .

上記上板部204は、閉位置にてコネクタ3の被圧部174を押圧する二つの弾性片204Aが、前後方向(図10にて上下方向)に延びて形成されている。該弾性片204Aは、該上板部204を切り起こして形成されていて、前端(図10での下端)が自由端をなす片持ち梁状となっている。また、該弾性片204Aは、図10に見られるように、後端(図10での上端)で屈曲され図10での後方へ向けて若干傾斜している。   The upper plate portion 204 is formed by extending in the front-rear direction (vertical direction in FIG. 10) two elastic pieces 204A that press the pressed portion 174 of the connector 3 in the closed position. The elastic piece 204A is formed by cutting and raising the upper plate portion 204, and has a cantilever shape with a front end (lower end in FIG. 10) forming a free end. Further, as shown in FIG. 10, the elastic piece 204A is bent at the rear end (upper end in FIG. 10) and is slightly inclined toward the rear in FIG.

[コネクタ同士の嵌合接続動作]
以下、コネクタ3と相手コネクタ4との嵌合接続動作について説明する。まず、図10に見られるように、受入凹部184が上方に開口した姿勢で回路基板(図示せず)上に相手コネクタ2を実装するとともに、シェル部材200の蓋部203を開位置にもたらす。そして、図10に見られるように、光ファイバケーブルCの前端部に接続されたコネクタ3を、溝部171が下方を向いた姿勢で、上記相手コネクタ4の上方に位置させる。
[Mating and connecting operation between connectors]
Hereinafter, the fitting and connecting operation between the connector 3 and the mating connector 4 will be described. First, as shown in FIG. 10, the mating connector 2 is mounted on a circuit board (not shown) with the receiving recess 184 opened upward, and the lid 203 of the shell member 200 is brought to the open position. Then, as seen in FIG. 10, the connector 3 connected to the front end of the optical fiber cable C is positioned above the mating connector 4 with the groove 171 facing downward.

次に、上記コネクタ3を下方へ移動して、相手コネクタ4の受入凹部184内に収容する。該コネクタ3の収容過程において、コネクタ1の被案内凹部175内に相手コネクタ4の案内突部182Aが下方から進入することにより、該コネクタ1が受入凹部184内の正規位置へ案内される。また、コネクタ3の接点配列部173が相手コネクタ4の突出壁部183Aの上方に位置して、該接点配列部173の下面で配列された接点141が、それぞれ対応する相手コネクタ4の対応接点部191と接触する。   Next, the connector 3 is moved downward and accommodated in the receiving recess 184 of the mating connector 4. In the housing process of the connector 3, when the guide protrusion 182 </ b> A of the mating connector 4 enters the guided recess 175 of the connector 1 from below, the connector 1 is guided to the normal position in the receiving recess 184. Further, the contact arrangement part 173 of the connector 3 is positioned above the protruding wall part 183A of the mating connector 4, and the contacts 141 arranged on the lower surface of the contact arrangement part 173 correspond to the corresponding contact parts of the mating connector 4 respectively. 191 contacts.

コネクタ3を相手コネクタ4の受入凹部184内に収容した後、シェル部材200の蓋部203を回動させて閉位置にもたらす。閉位置にて、蓋部203の弾性片204Aがコネクタ3の上面の被圧部174を下方へ押圧することにより、コネクタ3の接点141が相手コネクタ4の対応接点部191に上方から押し付けられ、両者が弾性接触する。また、閉位置にて、上記蓋部203の被係止部206Aが箱部201の係止部202Bの下方に位置し、該被係止部206Aの上縁が該係止部202Bの下縁と係止して、上記蓋部203が閉位置で維持される。この結果、上記接点141と対応接点部191との弾性接触状態が維持され、コネクタ3と相手コネクタ4との嵌合接続が完了する。   After housing the connector 3 in the receiving recess 184 of the mating connector 4, the lid 203 of the shell member 200 is rotated to bring it to the closed position. In the closed position, the elastic piece 204A of the lid portion 203 presses the pressure-receiving portion 174 on the upper surface of the connector 3 downward, whereby the contact 141 of the connector 3 is pressed against the corresponding contact portion 191 of the mating connector 4 from above. Both are in elastic contact. In the closed position, the locked portion 206A of the lid portion 203 is positioned below the locking portion 202B of the box portion 201, and the upper edge of the locked portion 206A is the lower edge of the locking portion 202B. And the lid 203 is maintained in the closed position. As a result, the elastic contact state between the contact 141 and the corresponding contact portion 191 is maintained, and the fitting connection between the connector 3 and the mating connector 4 is completed.

コネクタ同士が嵌合接続された状態において、光ファイバケーブルC内を伝送した光信号は、第一樹脂部材160の反射面163Aで反射されて光路が下方へ変向し、受光素子110の受光面に集光される。そして、該受光素子110で光信号が電気信号に変換され、上記電気信号は、配線140および相手端子190を介して、相手コネクタ2が実装されている回路基板の対応回路部へ伝送される。   In a state where the connectors are fitted and connected, the optical signal transmitted through the optical fiber cable C is reflected by the reflecting surface 163A of the first resin member 160 and the optical path is changed downward, and the light receiving surface of the light receiving element 110 It is focused on. Then, the light signal is converted into an electric signal by the light receiving element 110, and the electric signal is transmitted to the corresponding circuit portion of the circuit board on which the mating connector 2 is mounted via the wiring 140 and the mating terminal 190.

1 コネクタ 120 駆動デバイス
2 相手コネクタ 130 基板(支持部材)
3 コネクタ 140 配線(接点部材)
4 相手コネクタ 160 第一樹脂部材
10 受光素子(光半導体素子) 162 素線支持部(導波路支持部)
20 駆動デバイス 163A 反射面
30 支持部材 170 第二樹脂部材
40 端子(接点部材) 172 被覆支持部(導波路支持部)
60 第一樹脂部材 190 相手端子(相手接点)
62 素線支持部(導波路支持部) C 光ファイバケーブル(光導波路部材)
63A 反射面 F リードフレーム
70 第二樹脂部材 F1 キャリア
72 被覆支持部(導波路支持部) F2A 基準孔
90 相手端子(相手接点) P 基板素材
110 受光素子(光半導体素子) P1 基準孔
1 Connector 120 Drive Device 2 Mating Connector 130 Substrate (Support Member)
3 Connector 140 Wiring (Contact member)
4 mating connector 160 first resin member 10 light receiving element (optical semiconductor element) 162 strand support part (waveguide support part)
20 Drive Device 163A Reflecting Surface 30 Support Member 170 Second Resin Member 40 Terminal (Contact Member) 172 Cover Support Portion (Waveguide Support Portion)
60 First resin member 190 Mating terminal (mating contact)
62 Wire support (waveguide support) C Optical fiber cable (optical waveguide member)
63A Reflective surface F Lead frame 70 Second resin member F1 Carrier 72 Cover support part (waveguide support part) F2A Reference hole 90 Counter terminal (part of contact) P Substrate material 110 Light receiving element (Optical semiconductor element) P1 Reference hole

Claims (8)

光信号と電気信号とを変換するための光半導体素子と、該光半導体素子を支持する支持部材と、上記光半導体素子に接続されるとともに、相手コネクタの相手接点と接触する接点部材と、上記光半導体素子、支持部材および接点部材を一体成形により保持しているとともに、少なくとも該光半導体素子を封止する第一樹脂部材とを有する光電気変換コネクタにおいて、
該光電気変換コネクタは、上記第一樹脂部材の外面に一体成形される第二樹脂部材を有しており、上記第一樹脂部材は、透光樹脂で作られていて、光信号を伝送するための光導波路部材を支持する導波路支持部と、光信号を反射して光路を変向することにより光導波路部材と光半導体素子との間で該光信号を伝送させる反射面とを有していることを特徴とする光電気変換コネクタ。
An optical semiconductor element for converting an optical signal and an electrical signal; a support member that supports the optical semiconductor element; a contact member that is connected to the optical semiconductor element and contacts a mating contact of the mating connector; In the photoelectric conversion connector that holds the optical semiconductor element, the support member, and the contact member by integral molding, and has at least a first resin member that seals the optical semiconductor element.
The photoelectric conversion connector has a second resin member integrally formed on the outer surface of the first resin member, and the first resin member is made of a light-transmitting resin and transmits an optical signal. And a waveguide support for supporting the optical waveguide member, and a reflecting surface for transmitting the optical signal between the optical waveguide member and the optical semiconductor element by reflecting the optical signal and redirecting the optical path. A photoelectric conversion connector characterized by comprising:
支持部材と接点部材は、金属製のリードフレームで一部材として作られて、第一樹脂部材で一体成形された後に互いに分離されて形成されており、上記接点部材は、複数の細条片として形成された端子であることとする請求項1に記載の光電気変換コネクタ。   The support member and the contact member are formed as a single member with a metal lead frame, are formed integrally with the first resin member, and are separated from each other. The contact member is formed as a plurality of strips. The photoelectric conversion connector according to claim 1, wherein the photoelectric conversion connector is a formed terminal. 支持部材は、樹脂製またはセラミック製の基板で作られており、接点部材は、上記支持部材に印刷されていることとする請求項1に記載の光電気変換コネクタ。   The photoelectric conversion connector according to claim 1, wherein the support member is made of a resin or ceramic substrate, and the contact member is printed on the support member. 光電気変換コネクタは、光半導体素子に加えて、該光半導体素子を駆動する駆動デバイスをも有しており、該駆動デバイスは、光半導体素子および接点部材に接続されことにより、該駆動デバイスを介して光半導体素子と接点部材とが間接的に接続されていることとする請求項1ないし請求項3のいずれかに記載の光電気変換コネクタ。 Photoelectric conversion connector, in addition to the optical semiconductor element, also has a drive device for driving the optical semiconductor element, the drive device, by that it will be connected to the optical semiconductor element and the contact member, the driving device The photoelectric conversion connector according to any one of claims 1 to 3, wherein the optical semiconductor element and the contact member are indirectly connected via each other. 光信号と電気信号とを変換するための光半導体素子を支持する支持部材あるいは該支持部材に連結している部材に形成された基準孔の位置を基準として上記支持部材に対する上記光半導体素子の位置決めをして、該光半導体素子を支持部材に配置する素子配置工程と、
相手コネクタの相手接点と接触する接点部材を光半導体素子に導電材で接続する導電材接続工程と、
上記基準孔の位置を基準として、光信号を伝送するための光導波路部材を支持する導波路支持部と光信号を反射して光路を変向することにより光導波路部材と光半導体素子との間で該光信号を伝送させる反射面を形成すると共に、上記支持部材に対して位置決めした状態で上記光半導体素子と接点部材そして導電材を透光樹脂により支持部材一体成形して、少なくとも光半導体素子を上記透光樹脂で封止する第一樹脂成形工程と、
上記第一樹脂成形工程で成形された透光樹脂の外面に、該透光樹脂とは異なる樹脂を一体成形する第二樹脂成形工程とを有していることを特徴とする光電気変換コネクタの製造方法。
Positioning of the optical semiconductor element with respect to the support member based on the position of a reference hole formed in a support member supporting the optical semiconductor element for converting an optical signal and an electric signal or a member connected to the support member And an element arranging step of arranging the optical semiconductor element on the support member;
A conductive material connecting step of connecting a contact member in contact with the mating contact of the mating connector to the optical semiconductor element with a conductive material;
Using the position of the reference hole as a reference, a waveguide support part for supporting an optical waveguide member for transmitting an optical signal, and an optical waveguide member and an optical semiconductor element by reflecting the optical signal and turning the optical path to form a reflecting surface for transmitting the optical signal between the said optical semiconductor element and the contact member and a conductive material in a state of being positioned with respect to the support member, and integrally molded with the support member by translucent resin, at least A first resin molding step of sealing the optical semiconductor element with the translucent resin;
A photoelectric conversion connector comprising: a second resin molding step for integrally molding a resin different from the translucent resin on an outer surface of the translucent resin molded in the first resin molding step. Production method.
支持部材と接点部材は、金属製のキャリア付リードフレームで一部材として作られていて、該キャリア付リードフレームのキャリアに基準孔が形成されており、接点部材は、複数の細条片として形成された端子であり、第一樹脂成形工程の後に、上記接点部材を透光樹脂より延出する部分でキャリアから切り離す切断分離工程と、上記切断分離工程の後に、接点部材を屈曲して所定の端子形状を形成する屈曲工程とを有していることとする請求項5に記載の光電気変換コネクタの製造方法。   The support member and the contact member are made of a metal lead frame with a carrier, and a reference hole is formed in the carrier of the lead frame with the carrier, and the contact member is formed as a plurality of strips. A cutting and separating step of separating the contact member from the carrier at a portion extending from the translucent resin after the first resin molding step; 6. The method of manufacturing a photoelectric conversion connector according to claim 5, further comprising a bending step of forming a terminal shape. 支持部材は、樹脂製またはセラミック製の基板で作られていて、該基板に基準孔が形成されており、接点部材は、上記支持部材に印刷されていることとする請求項5に記載の光電気変換コネクタの製造方法。   6. The light according to claim 5, wherein the support member is made of a resin or ceramic substrate, a reference hole is formed in the substrate, and the contact member is printed on the support member. Manufacturing method of electrical conversion connector. 導電材接続工程の前に、光半導体素子を駆動する駆動デバイスを支持部材あるいは該支持部材に連結している部材に配置するデバイス配置工程を有し、上記導電材接続工程にて、駆動デバイスを光半導体素子および接点部材に接続することにより、該駆動デバイスを介して光半導体素子と接点部材とを間接的に接続することとする請求項5ないし請求項7のいずれかひとつに記載の光電気変換コネクタの製造方法。   Prior to the conductive material connecting step, the device has a device placement step of placing a drive device for driving the optical semiconductor element on the support member or a member connected to the support member. 8. The photoelectric device according to claim 5, wherein the optical semiconductor element and the contact member are indirectly connected via the driving device by being connected to the optical semiconductor element and the contact member. Manufacturing method of conversion connector.
JP2011039352A 2011-02-25 2011-02-25 Photoelectric conversion connector and method of manufacturing photoelectric conversion connector Active JP5331837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011039352A JP5331837B2 (en) 2011-02-25 2011-02-25 Photoelectric conversion connector and method of manufacturing photoelectric conversion connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039352A JP5331837B2 (en) 2011-02-25 2011-02-25 Photoelectric conversion connector and method of manufacturing photoelectric conversion connector

Publications (2)

Publication Number Publication Date
JP2012177732A JP2012177732A (en) 2012-09-13
JP5331837B2 true JP5331837B2 (en) 2013-10-30

Family

ID=46979633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039352A Active JP5331837B2 (en) 2011-02-25 2011-02-25 Photoelectric conversion connector and method of manufacturing photoelectric conversion connector

Country Status (1)

Country Link
JP (1) JP5331837B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200720A (en) * 2015-04-10 2016-12-01 ヒロセ電機株式会社 Photoelectric conversion connector and method of manufacturing the same
US9746619B2 (en) 2015-04-10 2017-08-29 Hirose Electric Co., Ltd. Optical fiber attachment device, and photoelectric conversion device using same
JP2019135558A (en) * 2019-04-19 2019-08-15 ヒロセ電機株式会社 Photoelectric conversion connector and method for manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014002594A5 (en) * 2013-05-31 2016-04-21 Silicon Line Gmbh Device for coupling and / or decoupling optical signals
JP6278826B2 (en) * 2014-05-14 2018-02-14 ホシデン株式会社 Optical transmission module
JP6784542B2 (en) 2016-09-01 2020-11-11 ヒロセ電機株式会社 Manufacturing method of photoelectric conversion connector, photo-electric conversion connector and photo-electric conversion connector device using it
JP7076410B2 (en) 2019-08-02 2022-05-27 ヒロセ電機株式会社 Connector assembly
JP7076411B2 (en) 2019-08-02 2022-05-27 ヒロセ電機株式会社 Connector assembly
JP6992137B2 (en) * 2020-08-31 2022-01-13 ヒロセ電機株式会社 Manufacturing method of opto-electric conversion connector, opto-electric conversion connector and opto-electric conversion connector device using it

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258467A (en) * 1998-03-16 1999-09-24 Sumitomo Electric Ind Ltd Lead frame for optical module, manufacture of optical module and optical module
JP2000110176A (en) * 1998-10-02 2000-04-18 Fujitsu Ltd Optical module and manufacture thereof
JP2001033665A (en) * 1999-07-21 2001-02-09 Hitachi Ltd Optical module
JP4505849B2 (en) * 2001-03-28 2010-07-21 住友電気工業株式会社 Manufacturing method of optical communication module
JP2002359426A (en) * 2001-06-01 2002-12-13 Hitachi Ltd Optical module and optical communication system
JP2008009098A (en) * 2006-06-29 2008-01-17 Namiki Precision Jewel Co Ltd Optical connection device and mounting method
JP2010267512A (en) * 2009-05-15 2010-11-25 Hirose Electric Co Ltd Photoelectric compound connector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200720A (en) * 2015-04-10 2016-12-01 ヒロセ電機株式会社 Photoelectric conversion connector and method of manufacturing the same
US9746619B2 (en) 2015-04-10 2017-08-29 Hirose Electric Co., Ltd. Optical fiber attachment device, and photoelectric conversion device using same
US9869834B2 (en) 2015-04-10 2018-01-16 Hirose Electric Co., Ltd. Photoelectric conversion connector and method for manufacturing same
US9874707B2 (en) 2015-04-10 2018-01-23 Hirose Electric Co., Ltd. Photoelectric conversion connector and method for manufacturing same
JP2019135558A (en) * 2019-04-19 2019-08-15 ヒロセ電機株式会社 Photoelectric conversion connector and method for manufacturing the same

Also Published As

Publication number Publication date
JP2012177732A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5331837B2 (en) Photoelectric conversion connector and method of manufacturing photoelectric conversion connector
US8961039B2 (en) Optical-electric conversion connector
JP4903120B2 (en) Optical path changing member
US7441965B2 (en) Connector
TWI507753B (en) Lens parts and light modules with their light
JP2007212564A (en) Optical connector
JP2007310083A (en) Optical transmission module and method for manufacturing the same
US9625663B2 (en) Optical connector
KR20150143444A (en) Opto-electric hybrid module
JP6568698B2 (en) Optical module manufacturing method, optical module receptacle, and optical module
JP2010267512A (en) Photoelectric compound connector
CN103513343B (en) The manufacture method of photoelectric conversion connector and photoelectric conversion connector
CA2676381C (en) Photoelectric conversion/connection device
WO2010095312A1 (en) Optical transmission module
JP2008292962A (en) Optical connector fixation structure and optical connector
JP5085580B2 (en) Optical connector
JP4203837B2 (en) Optical transmission module
JP3926722B2 (en) Single-core bidirectional optical transceiver connector
JP5109087B2 (en) Optical module
JP6514048B2 (en) Optical module and method of manufacturing optical module
JP6083437B2 (en) Positioning member, receptacle, and optical transmission module
EP3872546B1 (en) Optical connector and optical connector device
WO2018105370A1 (en) Connector
US10884200B2 (en) Optical path converting component
JP5457913B2 (en) Optical module device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250