JP2019135558A - Photoelectric conversion connector and method for manufacturing the same - Google Patents

Photoelectric conversion connector and method for manufacturing the same Download PDF

Info

Publication number
JP2019135558A
JP2019135558A JP2019079919A JP2019079919A JP2019135558A JP 2019135558 A JP2019135558 A JP 2019135558A JP 2019079919 A JP2019079919 A JP 2019079919A JP 2019079919 A JP2019079919 A JP 2019079919A JP 2019135558 A JP2019135558 A JP 2019135558A
Authority
JP
Japan
Prior art keywords
resin member
photoelectric conversion
conversion connector
resin
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019079919A
Other languages
Japanese (ja)
Other versions
JP6732999B2 (en
Inventor
義昭 佐野
Yoshiaki Sano
義昭 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirose Electric Co Ltd
Original Assignee
Hirose Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Electric Co Ltd filed Critical Hirose Electric Co Ltd
Priority to JP2019079919A priority Critical patent/JP6732999B2/en
Publication of JP2019135558A publication Critical patent/JP2019135558A/en
Application granted granted Critical
Publication of JP6732999B2 publication Critical patent/JP6732999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

To provide a photoelectric conversion connector and a method for manufacturing the same that enable an improvement in a degree of freedom in a design of a photoelectric conversion connector.SOLUTION: A photoelectric conversion connector comprises: a support medium 68; a photoelectric conversion element 69 that is provided on the support medium and can be connected through an optical signal to an optical fiber; a first resin member 66 that is molded on an upper part of the photoelectric conversion element; and a second resin member 67 that is molded on an upper part of the first resin member. It is configured that the optical signal transmitted between the photoelectric conversion element and the optical fiber passes through both the first resin member and the second resin member.SELECTED DRAWING: Figure 4

Description

本発明は、光電気変換コネクタ、更に言えば、2種類(以上)の樹脂部材によって成形された光電気変換コネクタと、その製造方法に関する。   The present invention relates to a photoelectric conversion connector, more specifically, a photoelectric conversion connector formed by two (or more) types of resin members, and a manufacturing method thereof.

特許文献1に光電気変換コネクタとその製造方法の一例が示されている。光電気変換コネクタは、光信号と電気信号の間の変換機能を有するものであり、相手コネクタである電気コネクタと組み合わされて光電気変換装置を構成する。光電気変換コネクタを用いることにより、光電気変換コネクタに接続された光ファイバからの光信号を電気信号に変換して電気コネクタに伝達することができ、逆に、電気コネクタからの電気信号を光信号に変換して光ファイバに伝達することもできる。   Patent Document 1 discloses an example of a photoelectric conversion connector and a manufacturing method thereof. The photoelectric conversion connector has a function of converting between an optical signal and an electric signal, and constitutes a photoelectric conversion device in combination with an electrical connector which is a mating connector. By using the photoelectric conversion connector, an optical signal from an optical fiber connected to the photoelectric conversion connector can be converted into an electric signal and transmitted to the electric connector, and conversely, the electric signal from the electric connector is converted into an optical signal. It can also be converted into a signal and transmitted to an optical fiber.

特許文献1に開示された光電気変換コネクタには、光信号を電気信号に変換する光半導体素子としての受光素子又は電気信号を光信号に変換する発光素子と、これら受光素子及び発光素子(以下、受光素子と発光素子をまとめて「受発光素子」)を駆動する駆動デバイス、受発光素子および駆動デバイスを支持する支持部材、相手コネクタである電気コネクタの端子と接触し得る端子接点としての複数の端子、更に、受発光素子を駆動デバイスに接続するとともに駆動デバイスを端子に接続する導電材としてのワイヤボンディングが含まれる。   The photoelectric conversion connector disclosed in Patent Document 1 includes a light receiving element as an optical semiconductor element that converts an optical signal into an electric signal, or a light emitting element that converts an electric signal into an optical signal, and the light receiving element and the light emitting element (hereinafter referred to as “light receiving element”) , A drive device for driving the light receiving element and the light emitting element together to drive the “light receiving / emitting element”), a support member for supporting the light receiving / emitting element and the drive device, and a plurality of terminal contacts that can come into contact with the terminals of the electrical connector as the mating connector Furthermore, wire bonding as a conductive material for connecting the light emitting / receiving element to the driving device and connecting the driving device to the terminal is included.

特許文献1に開示された光電気変換コネクタでは、受発光素子等は全て、第一樹脂部材のみによって一体成形されており、少なくとも受発光素子は、第一樹脂部材によって封止されている。
また、特許文献1に開示された光電気変換コネクタでは、第一樹脂部材のみに、光信号の挙動、例えば、光軸を調整するための反射面を備えた隆起部が設けられており、また、第一樹脂部材のみを通じて、光ファイバと受発光素子の間で光信号が伝達されるようになっている。尚、第一樹脂部材の外面は、第二樹脂部材によって一体成形されているが、第二樹脂部材は、単に、第一樹脂部材を覆っているだけで、この第二樹脂部材を用いて封止や挙動調整が行われるわけではない。
In the photoelectric conversion connector disclosed in Patent Document 1, all of the light receiving and emitting elements are integrally formed only by the first resin member, and at least the light receiving and emitting elements are sealed by the first resin member.
In the photoelectric conversion connector disclosed in Patent Document 1, only the first resin member is provided with a raised portion having a reflection surface for adjusting the behavior of an optical signal, for example, the optical axis, and The optical signal is transmitted between the optical fiber and the light emitting / receiving element only through the first resin member. Although the outer surface of the first resin member is integrally formed with the second resin member, the second resin member simply covers the first resin member and is sealed using the second resin member. There is no stop or behavior adjustment.

特許文献1の光電気変換コネクタは、このように、第一樹脂部材のみによって受発光素子の封止を行い、また、第一樹脂部材のみによって挙動調整を行い、更に、第一樹脂部材のみを通じて光ファイバと受発光素子との間で光信号による通信を行うものである。   In this way, the photoelectric conversion connector of Patent Document 1 seals the light emitting / receiving element only by the first resin member, adjusts the behavior only by the first resin member, and further only through the first resin member. Communication using an optical signal is performed between an optical fiber and a light emitting / receiving element.

特許第5331837号公報Japanese Patent No. 5331737

受発光素子のような半導体は化学的に変化し易いことが知られている。このため、受発光素子の封止を行うにあたっては、一般には、受発光素子を化学的に破壊させないように、例えば、不純物イオン含有量を極力抑える等、封止材料の選択には細心の注意が必要となる。従って、例えば、特許文献1における第一樹脂部材の材料には、封止との関係で大きな制約が課されることになる。   It is known that a semiconductor such as a light emitting / receiving element is easily changed chemically. For this reason, when sealing the light emitting / receiving element, in general, careful attention should be paid to the selection of the sealing material, for example, to suppress the impurity ion content as much as possible so as not to cause chemical destruction of the light receiving / emitting element. Is required. Therefore, for example, the material of the first resin member in Patent Document 1 is subject to great restrictions in relation to sealing.

また、挙動調整を行うには、高精度な成形や微細な形状が必要とされるところ、トラスファー成型を行うには高精度な金型が必要となるため、この結果、製造コストが増大し、また、高密度な成形(多数個取り)は困難となる。また、射出成型では成形時における樹脂流れや圧力が比較的大きいことから、受発光素子やその周辺に配置された比較的強度が弱いワイヤボンディングを破壊、変形させてしまう危険が大きい。このため、第一樹脂部材には、成形との関係でも大きな制約が課されることになる。   In addition, high-precision molding and fine shapes are required to adjust the behavior, but high-precision molds are required to perform transfer molding, resulting in increased manufacturing costs. In addition, high-density molding (multiple production) becomes difficult. Moreover, since the resin flow and pressure at the time of molding are relatively large in injection molding, there is a high risk that the light receiving and emitting elements and the wire bonding disposed at the periphery thereof will be broken and deformed. For this reason, a great restriction is imposed on the first resin member even in relation to molding.

更に、特許文献1に開示された光電気変換コネクタでは、第一樹脂部材のみを通じて光ファイバと受発光素子の間で光信号が伝達されるから、例えば、第二樹脂部材を利用した挙動調整を行うことはできず、光学設計の観点からも、大きな制約が課されることになる。   Furthermore, in the photoelectric conversion connector disclosed in Patent Document 1, since an optical signal is transmitted between the optical fiber and the light emitting / receiving element only through the first resin member, for example, behavior adjustment using the second resin member is performed. This cannot be done, and a great restriction is imposed from the viewpoint of optical design.

このように、第一樹脂部材のみによって受発光素子の封止を行い、また、第一樹脂部材のみによって挙動調整を行い、更に、第一樹脂部材のみを通じて光ファイバと受発光素子との間で光信号による通信を行う、特許文献1の構成では、特に、第一樹脂部材に関して様々な制約が課されることになり、この結果、光電気変換コネクタの設計の自由度が減少することになる。   As described above, the light emitting / receiving element is sealed only by the first resin member, the behavior is adjusted only by the first resin member, and further, only between the optical fiber and the light emitting / receiving element through the first resin member. In the configuration of Patent Document 1 that performs communication using optical signals, various restrictions are imposed on the first resin member in particular, and as a result, the degree of freedom in designing the photoelectric conversion connector is reduced. .

本願特許発明は、これら従来の問題点を解決するためになされたものであり、光電気変換コネクタの設計の自由度を高めることを目的とする。   The patented invention of the present application has been made to solve these conventional problems, and aims to increase the degree of freedom in designing the photoelectric conversion connector.

本発明の態様による光電気変換コネクタは、支持体と、該支持体の上に設けられ、光信号を通じて光ファイバと接続され得る光電気変換素子と、を備え、前記光電気変換素子の上部に成形された第一樹脂部材と、前記第一樹脂部材の上部に成形された第二樹脂部材と、前記光電気変換素子と前記光ファイバの間で伝達される光信号が第一樹脂部材と前記第二樹脂部材の双方を通ずる。
本実施形態によれば、光電気変換素子と光ファイバの間で伝達される光信号が、第一樹脂部材と第二樹脂部材といった2種類(以上)の樹脂部材を通ずることから、例えば、第二樹脂部材によって高精度な成形を行い、第一樹脂部材については高精度な加工や微細な形状を不要にする等して、光電気変換コネクタの設計の自由度を高めることができる。
An photoelectric conversion connector according to an aspect of the present invention includes a support and a photoelectric conversion element that is provided on the support and can be connected to an optical fiber through an optical signal, and is provided above the photoelectric conversion element. A molded first resin member, a second resin member molded on top of the first resin member, an optical signal transmitted between the photoelectric conversion element and the optical fiber, and the first resin member and the optical fiber It passes through both of the second resin members.
According to this embodiment, an optical signal transmitted between the photoelectric conversion element and the optical fiber passes through two (or more) resin members such as the first resin member and the second resin member. The degree of freedom in designing the photoelectric conversion connector can be increased by performing high-precision molding using two resin members and eliminating the need for high-precision processing and fine shapes for the first resin member.

上記態様の光電気変換コネクタにおいて、前記光電気変換素子は、前記第一樹脂部材によって封止されてもよい。
本実施形態では、第一樹脂部材と第二樹脂部材といった2種類(以上)の樹脂部材を用いることから、第一樹脂部材については封止に特化させることができる。更に言えば、第一樹脂部材については、例えば、光電気変換素子のような内蔵する半導体を化学的に破壊しないように樹脂材料として不純物イオン含有量を極力抑えた材料を用いることができ、また、射出成型ではなくトランスファー成形を用いることができる。
In the photoelectric conversion connector of the above aspect, the photoelectric conversion element may be sealed with the first resin member.
In this embodiment, since two types (or more) of resin members such as the first resin member and the second resin member are used, the first resin member can be specialized in sealing. Furthermore, for the first resin member, for example, a material having a content of impurity ions suppressed as much as possible can be used as a resin material so as not to chemically destroy a built-in semiconductor such as a photoelectric conversion element. Instead of injection molding, transfer molding can be used.

また、上記態様の光電気変換コネクタにおいて、前記支持体の上に設けられたワイヤボンディングを更に有し、該ワイヤボンディングは、前記光学変換素子とともに前記第一樹脂部材によって封止されてもよい。
一般の射出成型を用いた場合、配線、例えば、ワイヤボンディングは、光学変換素子と同様に、成形時の樹脂流れや圧力によって変形してしまう可能性があるが、本実施形態では、第一樹脂部材と第二樹脂部材といった2種類(以上)の樹脂を用いることから、第一樹脂部材については、射出成型ではなくトランスファー成形を用いることにより、そのようなワイヤボンディングについても、光学変換素子とともに、第一樹脂部材によって封止することができる。
The photoelectric conversion connector according to the aspect described above may further include wire bonding provided on the support, and the wire bonding may be sealed together with the optical conversion element by the first resin member.
When general injection molding is used, wiring, for example, wire bonding, may be deformed by the resin flow and pressure during molding, as in the case of the optical conversion element, but in this embodiment, the first resin Because two types (or more) of resin, such as a member and a second resin member, are used, the first resin member uses transfer molding instead of injection molding, and for such wire bonding, along with the optical conversion element, The first resin member can be sealed.

更に、上記態様の光電気変換コネクタにおいて、前記第一樹脂部材の屈折率と前記第二樹脂部材の屈折率は互いに相違するものとしてもよい。
本実施形態では、第一樹脂部材と第二樹脂部材といった2種類(以上)の樹脂部材を用いることから、第一樹脂部材と第二樹脂部材に、互いに異なる屈折率を設定することができ、これら少なくとも2種類の屈折率の組み合わせにより、光学設計の自由度を大きくすることができる。
Furthermore, in the photoelectric conversion connector of the above aspect, the refractive index of the first resin member and the refractive index of the second resin member may be different from each other.
In this embodiment, since two types (or more) of resin members such as a first resin member and a second resin member are used, different refractive indexes can be set for the first resin member and the second resin member, The combination of these at least two types of refractive indexes can increase the degree of freedom in optical design.

また、上記態様の光電気変換コネクタにおいて、前記第二樹脂部材にのみ、又は、前記第一樹脂部材及び前記第二樹脂部材の双方に、前記光信号の光軸を調整する手段を設けてもよい。
本実施形態では、第一樹脂部材と第二樹脂部材といった2種類(以上)の樹脂を用いることから、第一樹脂部材についてはトランスファー成形を用い、第二樹脂部材については射出成型を用いることも可能である。この結果、第二樹脂部材については、高精度な成形や微細な形状に適した射出成型によって、挙動調整手段を形成することが容易となる。また、第一樹脂部材と第二樹脂部材は、共に、成形品であるから、高精度な成形や微細な形状を要求しないのであれば、第一樹脂部材に挙動調整手段を設けることも可能であり、これら少なくとも2種類の挙動調整手段の組み合わせによって、光学設計上の自由度を大きくすることができる。
In the photoelectric conversion connector according to the aspect described above, means for adjusting the optical axis of the optical signal may be provided only on the second resin member or on both the first resin member and the second resin member. Good.
In this embodiment, since two types (or more) of resins, such as a first resin member and a second resin member, are used, transfer molding is used for the first resin member, and injection molding is used for the second resin member. Is possible. As a result, for the second resin member, the behavior adjusting means can be easily formed by high-precision molding or injection molding suitable for a fine shape. In addition, since the first resin member and the second resin member are both molded products, it is possible to provide a behavior adjusting means on the first resin member if high-precision molding or a fine shape is not required. The degree of freedom in optical design can be increased by a combination of at least two kinds of behavior adjusting means.

更に、上記態様の光電気変換コネクタにおいて、前記第一樹脂部材の前記挙動調整手段は、前記光ファイバの先端に対向して配置された受光面を含み、該受光面は、前記光ファイバからの光の進行方向に対して鋭角又は鈍角に設定されていてもよい。
光ファイバからの光の進行方向に対して受光面を鋭角又は鈍角に設定していることから、光ファイバに対する、受光面からの反射戻り光を減少させることができる。
更にまた、上記態様の光電気変換コネクタにおいて、前記第二樹脂部材の前記挙動調整手段は、前記光電気変換素子に対向して配置された受光面を含み、該受光面は、前記光電気変換素子からの光の進行方向に対して鋭角又は鈍角に設定されていてもよい。
光電気変換素子からの光の進行方向に対して受光面を鋭角又は鈍角に設定していることから、光電気変換素子に対する、受光面からの反射戻り光を減少させることができる。
Furthermore, in the photoelectric conversion connector according to the above aspect, the behavior adjusting means of the first resin member includes a light receiving surface disposed to face a tip of the optical fiber, and the light receiving surface is formed from the optical fiber. An acute angle or an obtuse angle may be set with respect to the traveling direction of light.
Since the light receiving surface is set at an acute angle or an obtuse angle with respect to the traveling direction of the light from the optical fiber, reflected return light from the light receiving surface to the optical fiber can be reduced.
Furthermore, in the photoelectric conversion connector of the above aspect, the behavior adjusting means of the second resin member includes a light receiving surface disposed to face the photoelectric conversion element, and the light receiving surface is the photoelectric conversion device. An acute angle or an obtuse angle may be set with respect to the traveling direction of light from the element.
Since the light receiving surface is set at an acute angle or an obtuse angle with respect to the traveling direction of the light from the photoelectric conversion element, the reflected return light from the light receiving surface with respect to the photoelectric conversion element can be reduced.

また、上記態様の光電気変換コネクタにおいて、前記第一樹脂部材は、透明熱硬化性エポキシ、又は、透明シリコーン樹脂であり、前記第二樹脂部材は、ポリエーテルイミド、又は、ポリカーボネートであってもよい。
本実施形態では、第一樹脂部材と第二樹脂部材といった2種類(以上)の樹脂部材を用いることから、各樹脂部材について、それぞれに適した樹脂部材を選択することができる。
In the photoelectric conversion connector of the above aspect, the first resin member may be a transparent thermosetting epoxy or a transparent silicone resin, and the second resin member may be a polyetherimide or a polycarbonate. Good.
In this embodiment, since two types (or more) of resin members such as the first resin member and the second resin member are used, a resin member suitable for each resin member can be selected.

また、上記態様の光電気変換コネクタと該光電気変換コネクタと接続される電気コネクタとを含む光電気変換装置が提供される。   Moreover, the photoelectric conversion apparatus containing the photoelectric conversion connector of the said aspect and the electrical connector connected with this photoelectric conversion connector is provided.

本発明の態様による光電気変換コネクタの製造方法は、支持体の上に設けた光学変換素子の上部を第一樹脂部材によって成形するステップと、前記第一樹脂部材の上部を第二樹脂部材によって成形するステップと、を備え、前記光電気変換素子と前記光ファイバの間で伝達される光信号が第一樹脂部材と前記第二樹脂部材の双方を通ずる。
本構成によれば、光電気変換素子と光ファイバとの間の光信号を利用した通信を、第一樹脂部材と第二樹脂部材といった2種類(以上)の樹脂部材を通じて行う光電気変換コネクタのための新規な製造方法が提供される。
According to an aspect of the present invention, there is provided a method of manufacturing an optical / electrical conversion connector, the step of forming an upper portion of an optical conversion element provided on a support with a first resin member, and an upper portion of the first resin member with a second resin member. And an optical signal transmitted between the photoelectric conversion element and the optical fiber passes through both the first resin member and the second resin member.
According to this configuration, the photoelectric conversion connector performs communication using the optical signal between the photoelectric conversion element and the optical fiber through two types (or more) of resin members such as the first resin member and the second resin member. A novel manufacturing method is provided.

本発明の態様による光電気変換コネクタの製造方法は、前記第一樹脂部材の成形はトランスファー成形によって行い、前記第二樹脂部材の成形は射出成型によって行うものであってもよい。
本実施形態では、第一樹脂部材と第二樹脂部材といった2種類(以上)の樹脂部材を用いることから、第一樹脂部材についてはトランスファー成形を用い、第二樹脂部材については射出成型を用いることも可能である。
In the method of manufacturing an optoelectric conversion connector according to an aspect of the present invention, the first resin member may be molded by transfer molding, and the second resin member may be molded by injection molding.
In this embodiment, since two types (or more) of resin members such as a first resin member and a second resin member are used, transfer molding is used for the first resin member, and injection molding is used for the second resin member. Is also possible.

また、本発明の態様による光電気変換コネクタの製造方法は、前記第一樹脂部材の硬化時間は、前記第二樹脂部材の硬化時間に比べて長いものとしてもよい。
本実施形態では、第一樹脂部材と第二樹脂部材といった2種類(以上)の樹脂部材を用いることから、例えば、第一樹脂部材については、第二樹脂部材よりも硬化時間の長い部材を選択することによって、特に、第一樹脂部材については、成形時に高密度化(多数個取り)を図ることで製造時の工程時間のバランスを取ることができる。
In the method for manufacturing an optoelectric conversion connector according to the aspect of the present invention, the curing time of the first resin member may be longer than the curing time of the second resin member.
In this embodiment, since two types (or more) of resin members such as the first resin member and the second resin member are used, for example, a member having a longer curing time than the second resin member is selected for the first resin member. By doing so, especially about the 1st resin member, the balance of the process time at the time of manufacture can be taken by aiming at high density (multiple picking) at the time of shaping | molding.

更に、本発明の態様による光電気変換コネクタの製造方法において、前記第一樹脂部材は、透明熱硬化性エポキシ、又は、透明シリコーン樹脂であり、前記第二樹脂部材は、ポリエーテルイミド、又は、ポリカーボネートであってもよい。   Furthermore, in the manufacturing method of the photoelectric conversion connector according to the aspect of the present invention, the first resin member is a transparent thermosetting epoxy or a transparent silicone resin, and the second resin member is a polyetherimide, or Polycarbonate may be used.

本発明によれば、光電気変換コネクタの設計の自由度を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the freedom degree of design of a photoelectric conversion connector can be raised.

本発明の一実施形態による光電気変換コネクタの上側斜視図と底側斜視図である。It is the upper side perspective view and bottom side perspective view of the photoelectric conversion connector by one Embodiment of this invention. 図1の光電気変換コネクタと嵌合され得る電気コネクタの斜視図である。It is a perspective view of the electrical connector which can be fitted with the photoelectric conversion connector of FIG. 図1の光電気変換コネクタの分解斜視図である。It is a disassembled perspective view of the photoelectric conversion connector of FIG. 図1の光電気変換コネクタの中心線断面図である。It is a centerline sectional view of the photoelectric conversion connector of FIG. 光軸調整方法を説明する図である。It is a figure explaining the optical axis adjustment method. 挙動調整手段の変形例を示す図である。It is a figure which shows the modification of a behavior adjustment means.

以下、添付図面を参照しつつ、本発明の好適な一つの実施形態による光電気変換コネクタ及びその製造方法を説明する。   Hereinafter, a photoelectric conversion connector and a manufacturing method thereof according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

図1の(a)、(b)に、それぞれ、本発明の一実施形態による光電気変換コネクタ20の上側斜視図と底側斜視図を示し、更に、図2に、この光電気変換コネクタ20と嵌合され得る電気コネクタ90の斜視図を示す。光電気変換コネクタ20は、電気コネクタ90と嵌合することにより光電気変換装置を構成し得る。   FIGS. 1A and 1B show a top perspective view and a bottom perspective view of a photoelectric conversion connector 20 according to an embodiment of the present invention, respectively, and FIG. 2 shows the photoelectric conversion connector 20. FIG. 6 shows a perspective view of an electrical connector 90 that can be mated with The photoelectric conversion connector 20 can constitute a photoelectric conversion device by fitting with the electrical connector 90.

電気コネクタ90は、樹脂等の絶縁材で形成されたハウジング96と、このハウジング96の底部に設けた端子91を含む。ハウジング96の中央には、光電気変換コネクタ20を嵌合させるための嵌合凹部92が形成されている。端子91の一方の端部側は、基板(図示されていない)に固定される接続部91aとして形成されており、他方の端部は、上部に向って山型に突出した接触部91bとして形成されている。
光電気変換コネクタ20と電気コネクタ90の嵌合時には、電気コネクタ90の端子91の接触部91bと、光電気変換コネクタ20の底部に露出した端子接点68’との接触を通じて、光電気変換装置、更に言えば、これに接続される光ファイバ10(後述する図5)と、基板と、の間で電気信号を通じた通信が行われる。
The electrical connector 90 includes a housing 96 formed of an insulating material such as resin, and a terminal 91 provided at the bottom of the housing 96. A fitting recess 92 for fitting the photoelectric conversion connector 20 is formed in the center of the housing 96. One end portion side of the terminal 91 is formed as a connection portion 91a fixed to a substrate (not shown), and the other end portion is formed as a contact portion 91b protruding in a mountain shape toward the top. Has been.
When the photoelectric conversion connector 20 and the electrical connector 90 are fitted, the photoelectric conversion device, through the contact between the contact portion 91b of the terminal 91 of the electrical connector 90 and the terminal contact 68 ′ exposed at the bottom of the photoelectric conversion connector 20, Furthermore, communication through an electrical signal is performed between the optical fiber 10 (FIG. 5 described later) connected thereto and the substrate.

図3に、光電気変換コネクタ20の分解斜視図を、図4に、光電気変換コネクタ20の中心線断面図を、更に示す。光電気変換コネクタ20は、本体部としての樹脂部材(第二樹脂部材)67と、樹脂部材67の底側65に配置された支持体68、更に、支持体68を覆う樹脂部材(第一樹脂部材)66を有する。支持体68は、通常の基板は勿論、リードフレームであってもよい。基板には、コネクタ接点用のパッドを設けるのが好ましい。また、リードフレームの場合は、後工程でフレームをコネクタ接点にするように形成する。   3 is an exploded perspective view of the photoelectric conversion connector 20, and FIG. 4 is a further sectional view of the center line of the photoelectric conversion connector 20. The photoelectric conversion connector 20 includes a resin member (second resin member) 67 as a main body, a support 68 disposed on the bottom side 65 of the resin member 67, and a resin member (first resin) covering the support 68. Member) 66. The support 68 may be a lead frame as well as a normal substrate. The board is preferably provided with a connector contact pad. In the case of a lead frame, the frame is formed as a connector contact in a later process.

樹脂部材67には、光ファイバの軸線方向(図示矢印「A」方向)に沿って上下に貫通した、位置決め溝56が設けてある。光ファイバの心線は、軸線方向「A」に沿って位置決め溝56に挿入されてもよい。挿入を容易にするため、心線の挿入側は幅広に形成してもよい。同様の理由により、位置決め溝56の最奥に向って緩やかに傾斜する案内用のテーパー58を設けてもよい。位置決め溝56の最奥には、樹脂部材67に溝56’を設けることによって形成された、側面視略三角形状の反射部60が設けられている。反射部60の背面には、光信号の挙動、例えば、光軸を調整する手段としての光軸調整ミラー63が形成されている。光軸調整ミラー63は球面状に形成されているため、反射機能に加え、集光機能をも有するものとなっている。   The resin member 67 is provided with a positioning groove 56 penetrating vertically along the axial direction of the optical fiber (the direction of the arrow “A” in the drawing). The core of the optical fiber may be inserted into the positioning groove 56 along the axial direction “A”. In order to facilitate the insertion, the insertion side of the core wire may be formed wide. For the same reason, a guide taper 58 that is gently inclined toward the innermost part of the positioning groove 56 may be provided. At the innermost position of the positioning groove 56, there is provided a reflective portion 60 having a substantially triangular shape in side view, which is formed by providing the resin member 67 with the groove 56 '. On the back surface of the reflection unit 60, an optical axis adjustment mirror 63 is formed as means for adjusting the behavior of the optical signal, for example, the optical axis. Since the optical axis adjusting mirror 63 is formed in a spherical shape, it has a condensing function in addition to a reflecting function.

光信号と電気信号の間の変換は、支持体68の上に設けた光電気変換素子69によって行うことができる。ここでいう光電気変換素子69には、例えば、光信号を電気信号に変換するための光半導体素子としての受光素子(例えば、フォトダイオード(PD))、及び、光半導体素子としての面発光型の発光素子(例えば、垂直共振器面発光(VCSEL)レーザ型の発光素子)の双方が含まれる。状況に応じて、いずれを選択してもよい。より具体的には、例えば、LED、半導体レーザ、フォトダイオード等が含まれる。   Conversion between the optical signal and the electric signal can be performed by a photoelectric conversion element 69 provided on the support 68. The photoelectric conversion element 69 here includes, for example, a light receiving element (for example, a photodiode (PD)) as an optical semiconductor element for converting an optical signal into an electric signal, and a surface emitting type as an optical semiconductor element. Of light emitting elements (for example, vertical cavity surface emitting (VCSEL) laser type light emitting elements). Either may be selected according to the situation. More specifically, for example, an LED, a semiconductor laser, a photodiode, and the like are included.

支持体68の上には、光電気変換素子69に加え、光電気変換素子69を駆動するための駆動デバイス69aと、例えば、ワイヤボンディングやリード線のような配線69b、その他の配線69cが実装される。尚、ここでいう駆動デバイス69aは、光電気変換素子69が受光素子の場合は、例えば、トランスインピーダンスアンプ/リミッティングアンプ(TIA/LA)を含み、また、光電気変換素子69が発光素子の場合は、例えば、VCSELドライバを含み、いずれの場合であっても、端子接点68’と電気的に接続され得る。電気コネクタと接触する端子接点68’としての複数の端子は支持体68に埋め込まれていてもよい。また、これらの端子は、駆動デバイス69aの一部であってもよい。ワイヤボンディング69bは、例えば、光電気変換素子69を駆動デバイス69aに接続するとともに、駆動デバイス69aを端子やその他の配線69cに接続する導電材として利用される。   On the support 68, in addition to the photoelectric conversion element 69, a drive device 69a for driving the photoelectric conversion element 69, a wiring 69b such as wire bonding or a lead wire, and other wiring 69c are mounted. Is done. The drive device 69a here includes, for example, a transimpedance amplifier / limiting amplifier (TIA / LA) when the photoelectric conversion element 69 is a light receiving element, and the photoelectric conversion element 69 is a light emitting element. The case includes, for example, a VCSEL driver and in any case can be electrically connected to the terminal contact 68 '. A plurality of terminals as terminal contacts 68 ′ that contact the electrical connector may be embedded in the support 68. These terminals may be part of the drive device 69a. For example, the wire bonding 69b is used as a conductive material that connects the photoelectric conversion element 69 to the drive device 69a and connects the drive device 69a to a terminal or other wiring 69c.

支持体68の上の各素子は、樹脂部材(第一樹脂部材)66によって保護されている。配線69cを除く、光電気変換素子69、駆動デバイス69a、及びワイヤボンディング69bは、樹脂部材66によって完全に封止されるのが好ましい。支持体68の底面には、支持体68に設けた端子接点68’が露出した状態で設けられている。これらの端子接点68’は、例えば、支持体68に設けたビアを通じて、支持体68の表側に配置された配線69cと導通している。   Each element on the support 68 is protected by a resin member (first resin member) 66. The photoelectric conversion element 69, the drive device 69a, and the wire bonding 69b except for the wiring 69c are preferably completely sealed by the resin member 66. A terminal contact 68 ′ provided on the support 68 is exposed on the bottom surface of the support 68. These terminal contacts 68 ′ are electrically connected to a wiring 69 c disposed on the front side of the support 68 through, for example, a via provided in the support 68.

樹脂部材66の上面には、内部に向って突出した窪み66”を設けることによって、光信号の挙動、例えば、光軸を調整することができる凸レンズ66’が形成されている。凸レンズ66’の表面は球面状とされているため、凸レンズ66’は、樹脂部材67の挙動調整手段である、例えば、光軸調整ミラー63と同様に集光機能を有する。これら凸レンズ66’と光軸調整ミラー63は、協働して光信号の挙動、例えば、光軸を調整する手段として機能する。尚、本実施形態では、窪み66”を使用することとしているが、使用態様によっては、窪みの代わりに、外部に向って突出する凸部を設けてもよい。同様に、凸レンズ66’の表面は必ずしも球面とする必要はなく、使用態様によっては、非球面としてもよい。   On the upper surface of the resin member 66, a convex lens 66 ′ capable of adjusting the behavior of the optical signal, for example, the optical axis, is formed by providing a recess 66 ″ projecting inward. Since the surface is spherical, the convex lens 66 ′ has a light collecting function, for example, similar to the optical axis adjustment mirror 63, which is a behavior adjustment unit of the resin member 67. These convex lens 66 ′ and the optical axis adjustment mirror 63 cooperates to function as a means for adjusting the behavior of the optical signal, for example, the optical axis. In the present embodiment, the depression 66 ″ is used. In addition, a convex portion projecting outward may be provided. Similarly, the surface of the convex lens 66 'does not necessarily have to be a spherical surface, and may be an aspherical surface depending on the usage.

図5を参照して、凸レンズ66’と光軸調整ミラー63を用いた光軸調整方法の一例を説明する。
尚、図5の例では、図1等に示したものと異なり、光電気変換コネクタ20を覆うカバー52を示しているが、カバー52は必ずしも必要ではない。カバー52を設ける場合には、心線11の挿入を容易にするため、位置決め溝56と同様に、心線11の挿入側を幅広にし、また、テーパー58の対応部分にテーパー58’を設けるのが好ましい。
An example of the optical axis adjustment method using the convex lens 66 ′ and the optical axis adjustment mirror 63 will be described with reference to FIG.
In the example of FIG. 5, unlike the one shown in FIG. 1 and the like, a cover 52 that covers the photoelectric conversion connector 20 is shown, but the cover 52 is not necessarily required. When the cover 52 is provided, in order to facilitate the insertion of the core wire 11, the insertion side of the core wire 11 is made wide like the positioning groove 56, and a taper 58 ′ is provided at a corresponding portion of the taper 58. Is preferred.

光電気変換コネクタ20に設置された光ファイバ10は、一般に使用されているものと同様のものと考えてよい。即ち、中心にコア12とクラッド13から成る心線11を有し、更に、心線11の外周を覆う被覆14を有する。光ファイバ10はマルチモードファイバであるのが好ましく、材質はプラスチックであってもよいし、石英であってもよい。光ファイバ10から電気コネクタの端子への信号の伝達は、以下の手順で行われる。
心線11の先端11’から射出された光信号は、光軸61として示されているように、先ず、進行方向において多少拡がりつつ、心線11の先端11’に対向して配置された界面(受光面)57を通じて反射部60に取り込まれる。反射部60に取り込まれた光信号は、樹脂部材67に形成された光軸調整ミラー63によって、略直角に方向変換されるとともに、凸レンズ66’へ向けて集光される。凸レンズ66’によって集光された光信号は、その後、光電気変換素子69へ入射する。入射した光信号は、光電気変換素子69で電気信号に変換された後、電気コネクタの端子と光電気変換コネクタ20の支持体68の底部に露出した端子接点68’との接触を通じて、外部に取り出される。尚、反射部60の界面57は、光ファイバ10からの光の進行方向(図示矢印「A」))に対して鋭角又は鈍角に設定されているため、光ファイバ10に対する、界面57からの反射戻り光を減少させることができる。
The optical fiber 10 installed in the photoelectric conversion connector 20 may be considered to be the same as that generally used. That is, it has a core wire 11 composed of a core 12 and a clad 13 at the center, and further has a coating 14 covering the outer periphery of the core wire 11. The optical fiber 10 is preferably a multimode fiber, and the material may be plastic or quartz. Signal transmission from the optical fiber 10 to the terminals of the electrical connector is performed in the following procedure.
The optical signal emitted from the tip 11 ′ of the core wire 11, as indicated by the optical axis 61, first spreads slightly in the traveling direction, and is an interface disposed facing the tip 11 ′ of the core wire 11. The light is taken into the reflecting portion 60 through the (light receiving surface) 57. The optical signal taken into the reflecting part 60 is converted into a substantially right angle by the optical axis adjusting mirror 63 formed on the resin member 67 and is condensed toward the convex lens 66 ′. The optical signal collected by the convex lens 66 ′ then enters the photoelectric conversion element 69. The incident optical signal is converted into an electrical signal by the photoelectric conversion element 69 and then exposed to the outside through contact between the terminal of the electrical connector and the terminal contact 68 ′ exposed at the bottom of the support 68 of the photoelectric conversion connector 20. It is taken out. The interface 57 of the reflecting portion 60 is set at an acute angle or an obtuse angle with respect to the traveling direction of light from the optical fiber 10 (the arrow “A” in the figure), and therefore, the reflection from the interface 57 with respect to the optical fiber 10. Return light can be reduced.

逆に、電気コネクタの端子から光電気変換コネクタ20に設置された光ファイバ10への信号の伝達は、上とは逆の手順で行われる。
電気コネクタの端子と、光電気変換コネクタ20の支持体68の底部に露出した端子接点68’と、の接触を通じて取り込まれた電気信号は、光軸61として示されているように、先ず、光電気変換素子69を通じて光信号に変換された後、進行方向において多少拡がりつつ、光電気変換素子69に対向して配置された凸レンズ66’へ案内される。その後、凸レンズ66’の界面(発光面)を通じて光軸調整ミラー63へ向けて集光される。その後、光信号は、樹脂部材67に形成された光軸調整ミラー63によって、略直角に方向変換されるとともに、界面57に向けて集光され、界面57を通過した後に、界面57に対向配置された心線11の先端11’から光ファイバ10へと伝達される。尚、凸レンズ66’の界面は、湾曲を伴うものではるものの、反射部60の界面57と同様に、全体としては光電気変換素子69からの光の進行方向(図示矢印「B」)に対して鋭角又は鈍角に設定されていることから、光電気変換素子69に対する、界面からの反射戻り光を減少させることができる。
Conversely, signal transmission from the terminal of the electrical connector to the optical fiber 10 installed in the photoelectric conversion connector 20 is performed in the reverse order of the above.
The electrical signal captured through the contact between the terminal of the electrical connector and the terminal contact 68 ′ exposed at the bottom of the support 68 of the photoelectric conversion connector 20 is first shown as an optical axis 61 as shown in FIG. After being converted into an optical signal through the electric conversion element 69, it is guided to a convex lens 66 'disposed opposite to the photoelectric conversion element 69 while slightly expanding in the traveling direction. Thereafter, the light is condensed toward the optical axis adjusting mirror 63 through the interface (light emitting surface) of the convex lens 66 ′. Thereafter, the optical signal is redirected to a substantially right angle by an optical axis adjusting mirror 63 formed on the resin member 67, condensed toward the interface 57, passes through the interface 57, and is disposed opposite to the interface 57. It is transmitted from the tip 11 ′ of the core wire 11 to the optical fiber 10. Although the interface of the convex lens 66 ′ is accompanied by a curve, as with the interface 57 of the reflecting portion 60, the entire surface is directed to the traveling direction of light from the photoelectric conversion element 69 (arrow “B” in the figure). Therefore, the reflected return light from the interface with respect to the photoelectric conversion element 69 can be reduced.

このように、本実施形態によれば、樹脂部材66の凸レンズ66’や樹脂部材67の光軸調整ミラー63といった、複数の光軸調整手段が設けられていることから、これらの手段に集光、屈折、反射といった光学的な機能を持たせて、光学設計の自由度を高めることができる。   As described above, according to the present embodiment, a plurality of optical axis adjusting means such as the convex lens 66 ′ of the resin member 66 and the optical axis adjusting mirror 63 of the resin member 67 are provided. In addition, optical functions such as refraction and reflection can be provided to increase the degree of freedom in optical design.

また、光電気変換素子69と光ファイバ10の間で伝達される光信号が、樹脂部材66と樹脂部材67といった2種類(以上)の樹脂部材を通ずることから、例えば、樹脂部材67によって高精度な成形を行い、樹脂部材66については高精度な加工や微細な形状を不要にする等して、光電気変換コネクタの設計の自由度を高めることができる。   In addition, since an optical signal transmitted between the photoelectric conversion element 69 and the optical fiber 10 passes through two types (or more) of resin members such as the resin member 66 and the resin member 67, for example, the resin member 67 provides high accuracy. Thus, the degree of freedom in designing the photoelectric conversion connector can be increased by, for example, eliminating the need for high-precision processing and fine shapes for the resin member 66.

上に説明した光電気変換コネクタは、例えば、以下の方法で製造することができる。
1. 先ず、支持体68を準備する。支持体68の上には、光電気変換素子69に加え、駆動デバイス69a、ワイヤボンディング69b、その他の配線69cが含まれる。
2. 次に、これらの素子の上部を樹脂部材(第一樹脂部材)66によって成形、好ましくは一体成形する。
3. 最後に、樹脂部材66の上部を樹脂部材(第二樹脂部材)67によって成形、好ましくは一体成形する。
The photoelectric conversion connector described above can be manufactured, for example, by the following method.
1. First, the support body 68 is prepared. On the support 68, in addition to the photoelectric conversion element 69, a drive device 69a, wire bonding 69b, and other wiring 69c are included.
2. Next, the upper parts of these elements are formed by a resin member (first resin member) 66, preferably integrally formed.
3. Finally, the upper part of the resin member 66 is molded by a resin member (second resin member) 67, preferably integrally molded.

ここで樹脂部材66による成形は、支持体68の上の素子に直接的に行われてもよいし、例えば、空気層を介して間接的に行われてもよい。また、樹脂部材67による成形も、樹脂部材66に対して直接的に行われてもよいし、他の層(図示されていない)を介して間接的に行われてもよい。
但し、光電気変換素子69やワイヤボンディング69b(更に、ワイヤボンディング69bの周辺に位置する駆動デバイス69a)については、直接的な成形によって完全に封止するのが好ましい。換言すれば、樹脂部材(第一樹脂部材)66については封止に特化させるのが好ましい。封止に特化させることにより、樹脂部材66については、光電気変換素子69のような内蔵する半導体を化学的に破壊しないよう樹脂材料として不純物イオン含有量を極力抑えた材料を用いることができる。
Here, the molding by the resin member 66 may be performed directly on the element on the support 68, or may be performed indirectly through an air layer, for example. Further, the molding by the resin member 67 may be performed directly on the resin member 66 or indirectly through another layer (not shown).
However, it is preferable that the photoelectric conversion element 69 and the wire bonding 69b (further, the driving device 69a positioned around the wire bonding 69b) be completely sealed by direct molding. In other words, the resin member (first resin member) 66 is preferably specialized for sealing. By specializing in sealing, the resin member 66 can be made of a material that suppresses impurity ions as much as possible as a resin material so as not to chemically destroy a built-in semiconductor such as the photoelectric conversion element 69. .

また、封止のために一般の射出成型を用いた場合には、例えば、ワイヤボンディングのような配線69bを、成形時の樹脂流れや圧力によって変形させてしまう危険があるが、樹脂部材66についてはトランスファー成形を用いることとして、そのような問題を解消することもできる。   Further, when general injection molding is used for sealing, for example, there is a risk that the wiring 69b such as wire bonding may be deformed by the resin flow or pressure during molding. Can solve such problems by using transfer molding.

このように、樹脂部材66と樹脂部材67といった2種類(以上)の樹脂部材を用いて成形を行うことにより、光電気変換コネクタの設計の自由度は飛躍的に向上することになる。
例えば、樹脂部材66についてはトランスファー成形を用い、樹脂部材67については射出成型を用いることにより、樹脂部材67については、高精度な成形や微細な形状に適した射出成型によって挙動調整手段を形成することができる。ここで樹脂部材66のトランスファー成形には、例えば、透明熱硬化性エポキシや透明シリコーン樹脂を、一方、樹脂部材67の射出成形には、例えば、透明な熱可塑性樹脂である、ポリエーテルイミドやポリカーボネートを、それぞれ用いることができる。尚、ここでの「透明」は、伝達される光信号の波長との関係において透明であれば足り、人間の視覚の上では着色されているようなものであってもよい。従って、樹脂部材66及び樹脂部材67は透明であることは要するものの、それらに着色することもできる。
Thus, by performing molding using two types (or more) of resin members such as the resin member 66 and the resin member 67, the degree of freedom in designing the photoelectric conversion connector is dramatically improved.
For example, by using transfer molding for the resin member 66 and using injection molding for the resin member 67, the behavior adjusting means is formed by high-precision molding or injection molding suitable for a fine shape for the resin member 67. be able to. Here, for the transfer molding of the resin member 66, for example, a transparent thermosetting epoxy or transparent silicone resin is used. For the injection molding of the resin member 67, for example, a transparent thermoplastic resin such as polyetherimide or polycarbonate is used. Can be used respectively. Here, “transparent” is sufficient if it is transparent in relation to the wavelength of the transmitted optical signal, and may be colored on human vision. Therefore, although the resin member 66 and the resin member 67 need to be transparent, they can also be colored.

また、樹脂部材66と樹脂部材67といった2種類(以上)の樹脂部材を用いて成形を行うことにより、樹脂部材66については樹脂部材67よりも硬化時間の長い部材を選択して、樹脂部材67については、成形時に高密度化(多数個取り)を図ることで製造時の工程時間のバランスをとることができる。
更に、樹脂部材66と樹脂部材67に、互いに異なる屈折率を設定して、これら少なくとも2種類の屈折率の組み合わせにより、光学設計の自由度を向上させることができる。
In addition, by performing molding using two types (or more) of resin members such as the resin member 66 and the resin member 67, a member having a curing time longer than that of the resin member 67 is selected for the resin member 66. With respect to, by increasing the density during molding (multiple picking), it is possible to balance the manufacturing process time.
Furthermore, by setting different refractive indexes for the resin member 66 and the resin member 67 and combining these at least two types of refractive indexes, the degree of freedom in optical design can be improved.

尚、樹脂部材66と樹脂部材67はいずれも、ジェル等の不定形のものではなく、所定の硬度を有した成形品であるから、これらの双方に挙動調整手段を設けることができる。この結果、これら少なくとも2種類の挙動調整手段の組み合わせによって、光学設計上の自由度を向上させることができる。但し、樹脂部材67に高精度な成形や微細な形状を設けることができるのであれば、必ずしも樹脂部材66に挙動調整手段を設ける必要はない。   Since both the resin member 66 and the resin member 67 are not an indefinite shape such as a gel but a molded product having a predetermined hardness, behavior adjusting means can be provided on both of them. As a result, the degree of freedom in optical design can be improved by combining these at least two types of behavior adjusting means. However, if the resin member 67 can be formed with high precision or a fine shape, the behavior adjusting means is not necessarily provided on the resin member 66.

図6に、挙動調整手段の変形例を示す。ここでは、樹脂部材66の上面に、凸レンズ66’の代わりに平坦な傾斜面70が形成されている。光軸61’として示されているように、この場合、傾斜面70は凸レンズ66’のような集光機能は有しないが、凸レンズ66’と同様に、光電気変換素子69からの光の進行方向(図示矢印「B」)に対して鋭角又は鈍角に設定されていることから、これによって、光電気変換素子69に対する、受光面からの反射戻り光を減少させることができる。   FIG. 6 shows a modification of the behavior adjusting means. Here, a flat inclined surface 70 is formed on the upper surface of the resin member 66 instead of the convex lens 66 ′. As shown as the optical axis 61 ′, in this case, the inclined surface 70 does not have a light collecting function like the convex lens 66 ′. However, like the convex lens 66 ′, the light from the photoelectric conversion element 69 proceeds. Since the angle is set at an acute angle or an obtuse angle with respect to the direction (shown arrow “B”), reflected light from the light receiving surface with respect to the photoelectric conversion element 69 can thereby be reduced.

尚、本発明は、上述した実施の形態に限定されるわけではなく、その他種々の変更が可能である。例えば、上に示した好ましい一つの実施形態では、樹脂部材66の材質等と樹脂部材67の材質等は互いに異なるものとして説明したが、例えば、樹脂部材66、67を別々の成形過程で製造したことによって屈折率の相異や成分の相異が生ずるのであれば、それらの材質等は同じであってもよい。
従って、ここに開示された実施形態は例示であって制限的なものではなく、本発明の範囲は上記した説明ではなく特許請求の範囲によって定められるべきであり、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
Note that the present invention is not limited to the above-described embodiment, and various other modifications are possible. For example, in the preferred embodiment shown above, the material of the resin member 66 and the material of the resin member 67 are described as different from each other. For example, the resin members 66 and 67 are manufactured by separate molding processes. As long as the difference in refractive index and the difference in components occur, the materials may be the same.
Accordingly, the embodiments disclosed herein are illustrative and not restrictive, and the scope of the present invention should be defined by the appended claims rather than the above description, and has the same meaning as the appended claims. And all changes within the scope.

光電気変換コネクタに広く用いることができる。   It can be widely used for photoelectric conversion connectors.

10 光ファイバ
20 光電気変換コネクタ
56 位置決め溝
57 界面
60 反射部
61 光軸
63 光軸調整ミラー(反射面)
66 樹脂部材(第一樹脂部材)
66’ 反射面
67 本体部(第二樹脂部材)
68 支持体
69 光電気変換素子
69b ワイヤボンディング
DESCRIPTION OF SYMBOLS 10 Optical fiber 20 Photoelectric conversion connector 56 Positioning groove 57 Interface 60 Reflection part 61 Optical axis 63 Optical axis adjustment mirror (reflection surface)
66 Resin member (first resin member)
66 'reflective surface 67 main body (second resin member)
68 Support 69 Photoelectric Conversion Element 69b Wire Bonding

Claims (13)

支持体と、
該支持体の上に設けられ、光信号を通じて光ファイバと接続され得る光電気変換素子と、
前記光電気変換素子の上部に成形された第一樹脂部材と、
前記第一樹脂部材の上部に成形された第二樹脂部材と、
を備え、
前記光電気変換素子と前記光ファイバの間で伝達される光信号が第一樹脂部材と前記第二樹脂部材の双方を通ずる、光電気変換コネクタ。
A support;
A photoelectric conversion element provided on the support and capable of being connected to an optical fiber through an optical signal;
A first resin member molded on top of the photoelectric conversion element;
A second resin member molded on top of the first resin member;
With
The photoelectric conversion connector in which the optical signal transmitted between the photoelectric conversion element and the optical fiber passes through both the first resin member and the second resin member.
前記光電気変換素子は、前記第一樹脂部材によって封止される請求項1に記載の光電気変換コネクタ。   The photoelectric conversion connector according to claim 1, wherein the photoelectric conversion element is sealed by the first resin member. 前記支持体の上に設けられたワイヤボンディングを更に有し、該ワイヤボンディングは、前記光学変換素子とともに前記第一樹脂部材によって封止される、請求項2に記載の光電気変換コネクタ。   The photoelectric conversion connector according to claim 2, further comprising wire bonding provided on the support, wherein the wire bonding is sealed by the first resin member together with the optical conversion element. 前記第一樹脂部材の屈折率と前記第二樹脂部材の屈折率は互いに相違する、請求項1乃至3のいずれかに記載の光電気変換コネクタ。   The photoelectric conversion connector according to claim 1, wherein a refractive index of the first resin member and a refractive index of the second resin member are different from each other. 前記第二樹脂部材にのみ、又は、前記第一樹脂部材及び前記第二樹脂部材の双方に、前記光信号の挙動を調整する手段が設けられている、請求項1乃至4のいずれかに記載の光電気変換コネクタ。   The means for adjusting the behavior of the optical signal is provided only in the second resin member or in both the first resin member and the second resin member. The photoelectric conversion connector. 前記第一樹脂部材の前記挙動調整手段は、前記光ファイバの先端に対向して配置された受光面を含み、該受光面は、前記光ファイバからの光の進行方向に対して鋭角又は鈍角に設定されている、請求項5に記載の光電気変換コネクタ。   The behavior adjusting means of the first resin member includes a light receiving surface disposed to face the tip of the optical fiber, and the light receiving surface is at an acute angle or an obtuse angle with respect to a traveling direction of light from the optical fiber. The photoelectric conversion connector according to claim 5, which is set. 前記第二樹脂部材の前記挙動調整手段は、前記光電気変換素子に対向して配置された受光面を含み、該受光面は、前記光電気変換素子からの光の進行方向に対して鋭角又は鈍角に設定されている、請求項5又は6に記載の光電気変換コネクタ。   The behavior adjusting means of the second resin member includes a light receiving surface arranged to face the photoelectric conversion element, and the light receiving surface has an acute angle with respect to a traveling direction of light from the photoelectric conversion element or The photoelectric conversion connector according to claim 5 or 6, which is set to an obtuse angle. 前記第一樹脂部材は、透明熱硬化性エポキシ、又は、透明シリコーン樹脂であり、前記第二樹脂部材は、ポリエーテルイミド、又は、ポリカーボネートである、請求項1乃至7のいずれかに記載の光電気変換コネクタ。   The light according to claim 1, wherein the first resin member is a transparent thermosetting epoxy or a transparent silicone resin, and the second resin member is a polyetherimide or a polycarbonate. Electrical conversion connector. 請求項1乃至8のいずれかに記載の光電気変換コネクタと、該光電気変換コネクタと接続される電気コネクタと、から成る光電気変換装置。   A photoelectric conversion apparatus comprising the photoelectric conversion connector according to claim 1 and an electrical connector connected to the photoelectric conversion connector. 支持体の上に設けた光学変換素子の上部を第一樹脂部材によって成形するステップと、 前記第一樹脂部材の上部を第二樹脂部材によって成形するステップと、
を備え、
前記光電気変換素子と前記光ファイバの間で伝達される光信号が第一樹脂部材と前記第二樹脂部材の双方を通ずる、光電気変換コネクタの製造方法。
Molding the upper part of the optical conversion element provided on the support with the first resin member; molding the upper part of the first resin member with the second resin member;
With
The manufacturing method of the photoelectric conversion connector with which the optical signal transmitted between the said photoelectric conversion element and the said optical fiber passes both the 1st resin member and said 2nd resin member.
前記第一樹脂部材の成形はトランスファー成形によって行い、前記第二樹脂部材の成形は射出成型によって行う、請求項10に記載の光電気変換コネクタの製造方法。   The method of manufacturing an optoelectric conversion connector according to claim 10, wherein the molding of the first resin member is performed by transfer molding, and the molding of the second resin member is performed by injection molding. 前記第一樹脂部材の硬化時間は、前記第二樹脂部材の硬化時間に比べて長い、請求項10又は11に記載の光電気変換コネクタの製造方法。   The method for manufacturing an optoelectric conversion connector according to claim 10 or 11, wherein the curing time of the first resin member is longer than the curing time of the second resin member. 前記第一樹脂部材は、透明熱硬化性エポキシ、又は、透明シリコーン樹脂であり、前記第二樹脂部材は、ポリエーテルイミド、又は、ポリカーボネートである、請求項10乃至12のいずれかに記載の光電気変換コネクタの製造方法。   The light according to any one of claims 10 to 12, wherein the first resin member is a transparent thermosetting epoxy or a transparent silicone resin, and the second resin member is a polyetherimide or a polycarbonate. Manufacturing method of electrical conversion connector.
JP2019079919A 2019-04-19 2019-04-19 Photoelectric conversion connector and manufacturing method thereof Active JP6732999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079919A JP6732999B2 (en) 2019-04-19 2019-04-19 Photoelectric conversion connector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079919A JP6732999B2 (en) 2019-04-19 2019-04-19 Photoelectric conversion connector and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015080795A Division JP6518113B2 (en) 2015-04-10 2015-04-10 Opto-electrical conversion connector and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2019135558A true JP2019135558A (en) 2019-08-15
JP6732999B2 JP6732999B2 (en) 2020-07-29

Family

ID=67624163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079919A Active JP6732999B2 (en) 2019-04-19 2019-04-19 Photoelectric conversion connector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6732999B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291627A (en) * 1992-04-10 1993-11-05 Iwasaki Electric Co Ltd Light emitting diode
JP2000056154A (en) * 1998-08-05 2000-02-25 Seiko Epson Corp Optical module and its manufacture
JP2007036019A (en) * 2005-07-28 2007-02-08 Sharp Corp Optical semiconductor device and electronic equipment
US7268368B1 (en) * 2003-08-29 2007-09-11 Standard Microsystems Corporation Semiconductor package having optical receptacles and light transmissive/opaque portions and method of making same
JP2009047738A (en) * 2007-08-13 2009-03-05 Sony Corp Optical module and method of manufacturing the same
JP2010114141A (en) * 2008-11-04 2010-05-20 Sharp Corp Light reception/light emission integrated type semiconductor device, and electronic equipment
JP5331837B2 (en) * 2011-02-25 2013-10-30 ヒロセ電機株式会社 Photoelectric conversion connector and method of manufacturing photoelectric conversion connector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291627A (en) * 1992-04-10 1993-11-05 Iwasaki Electric Co Ltd Light emitting diode
JP2000056154A (en) * 1998-08-05 2000-02-25 Seiko Epson Corp Optical module and its manufacture
US7268368B1 (en) * 2003-08-29 2007-09-11 Standard Microsystems Corporation Semiconductor package having optical receptacles and light transmissive/opaque portions and method of making same
JP2007036019A (en) * 2005-07-28 2007-02-08 Sharp Corp Optical semiconductor device and electronic equipment
JP2009047738A (en) * 2007-08-13 2009-03-05 Sony Corp Optical module and method of manufacturing the same
JP2010114141A (en) * 2008-11-04 2010-05-20 Sharp Corp Light reception/light emission integrated type semiconductor device, and electronic equipment
JP5331837B2 (en) * 2011-02-25 2013-10-30 ヒロセ電機株式会社 Photoelectric conversion connector and method of manufacturing photoelectric conversion connector

Also Published As

Publication number Publication date
JP6732999B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6518113B2 (en) Opto-electrical conversion connector and method of manufacturing the same
US9182551B2 (en) Lens component and optical module provided with the same
KR100411577B1 (en) Fiber optic connection and method for using same
US6731882B1 (en) Leadframe-based optoelectronic bidirectional transmitting and receiving module
US8422838B2 (en) Cover for covering a reflection-surface-formation recess of an optical path changing member
EP2831652B1 (en) Misalignment-tolerant total-internal-reflection fiber optic interface modules and assemblies with high coupling efficiency
JP2513880B2 (en) Manufacturing method of optical parts
US6453091B2 (en) Optical system unit for optical transceiver
US8265487B2 (en) Half-duplex, single-fiber (S-F) optical transceiver module and method
US9581772B2 (en) Optical electrical module used for optical communication
US20040026757A1 (en) Modular semiconductor die package and method of manufacturing thereof
JP2003329892A (en) Optical transmission/reception module and optical communication system using the same
JP2004177985A (en) Photoelectronic interface device having reflecting surface and its manufacturing method
JP2014502363A (en) Optoelectronic parts
US9103999B2 (en) Optical data communication module having EMI cage
US20140341506A1 (en) Plastic optical fiber data communication links
US8337098B2 (en) Optical connector
US7268368B1 (en) Semiconductor package having optical receptacles and light transmissive/opaque portions and method of making same
EP0053482A2 (en) Module for a fiber optic link
JP4433730B2 (en) Optical filter holding member and optical transmission / reception module
JP5605382B2 (en) Optical module
JP6732999B2 (en) Photoelectric conversion connector and manufacturing method thereof
CN113835165A (en) Light emitting component, chip, optical module and optical communication equipment
US20050008303A1 (en) Optical module, an optical communication apparatus and a optical transceiver module
JP2002350654A (en) Plastic optical fiber and its manufacturing method, and optical mount body and optical wiring device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6732999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250