JP5331587B2 - Carbon dioxide recovery system - Google Patents

Carbon dioxide recovery system Download PDF

Info

Publication number
JP5331587B2
JP5331587B2 JP2009145041A JP2009145041A JP5331587B2 JP 5331587 B2 JP5331587 B2 JP 5331587B2 JP 2009145041 A JP2009145041 A JP 2009145041A JP 2009145041 A JP2009145041 A JP 2009145041A JP 5331587 B2 JP5331587 B2 JP 5331587B2
Authority
JP
Japan
Prior art keywords
absorption
carbon dioxide
tower
absorption liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009145041A
Other languages
Japanese (ja)
Other versions
JP2011000529A (en
Inventor
中 矢 山
橋 幸 夫 大
川 斗 小
田 東 彦 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Technology Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Technology Corp filed Critical Toshiba Corp
Priority to JP2009145041A priority Critical patent/JP5331587B2/en
Publication of JP2011000529A publication Critical patent/JP2011000529A/en
Application granted granted Critical
Publication of JP5331587B2 publication Critical patent/JP5331587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、二酸化炭素回収システムに関するものである。   The present invention relates to a carbon dioxide recovery system.

多量の化石燃料を使用する火力発電所等において、化石燃料を燃焼して生成された燃焼排ガスをアミン系吸収液と接触させ、燃焼排ガスから二酸化炭素を分離して回収し、この回収された二酸化炭素を大気中へ放出することなく貯蔵する方法が研究されている。   In a thermal power plant that uses a large amount of fossil fuel, the combustion exhaust gas generated by burning fossil fuel is brought into contact with an amine-based absorbent, and carbon dioxide is separated and recovered from the combustion exhaust gas. Research has been conducted on how to store carbon without releasing it into the atmosphere.

具体的には、燃焼排ガスに含まれる二酸化炭素をアミン系吸収液に吸収させる吸収塔と、二酸化炭素を吸収した吸収液(リッチ液)が吸収塔から供給され、リッチ液を加熱し、リッチ液から二酸化炭素ガスを放出させるとともに、吸収液を再生する再生塔と、を備えた二酸化炭素回収システムが知られている(例えば特許文献1参照)。   Specifically, an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas in an amine-based absorption liquid and an absorption liquid (rich liquid) that has absorbed carbon dioxide are supplied from the absorption tower, the rich liquid is heated, and the rich liquid A carbon dioxide recovery system including a regeneration tower for releasing carbon dioxide gas from the water and regenerating an absorbing solution is known (see, for example, Patent Document 1).

上記のような二酸化炭素回収システムでは、吸収液は、吸収塔において燃焼排ガス中の二酸化炭素を吸収する際に、燃焼排ガス中の水分も取り込む。そのため、時間の経過に伴い吸収液の水分比率が増加し、吸収液の二酸化炭素吸収性能が低下するという問題があった。   In the carbon dioxide recovery system as described above, the absorbing liquid also takes in moisture in the combustion exhaust gas when absorbing carbon dioxide in the combustion exhaust gas in the absorption tower. For this reason, there has been a problem in that the moisture ratio of the absorbent increases with time, and the carbon dioxide absorption performance of the absorbent decreases.

特開2005−254212号公報JP-A-2005-254212

本発明は、吸収液の二酸化炭素吸収性能の低下を防止することができる二酸化炭素回収システムを提供することを目的とする。   An object of this invention is to provide the carbon dioxide collection system which can prevent the fall of the carbon dioxide absorption performance of absorption liquid.

本発明の一態様による二酸化炭素回収システムは、燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させる吸収塔と、前記吸収塔から二酸化炭素を吸収した吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを排出し、当該吸収液を再生する再生塔と、前記吸収塔と前記再生塔との間に設けられ、前記再生塔から前記吸収塔に供給される再生された吸収液を熱源として、前記吸収塔から前記再生塔に供給される二酸化炭素を吸収した吸収液を加熱する再生熱交換器と、前記再生塔から排出された排出ガスを凝縮し、生成された凝縮液を分離する凝縮器と、外部への前記凝縮液の排出量を調整する調整弁と、前記吸収液の水分比率及び組成分析値の少なくともいずれか一方に基づいて前記排出量を求め、前記調整弁を制御する制御信号を出力する制御部と、を備えるものである。   A carbon dioxide recovery system according to an aspect of the present invention is provided with an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas into an absorption liquid, an absorption liquid that absorbs carbon dioxide from the absorption tower, and vapor from the absorption liquid. A regeneration tower that discharges carbon dioxide gas contained therein and regenerates the absorption liquid; and a regenerated absorption liquid that is provided between the absorption tower and the regeneration tower and that is supplied from the regeneration tower to the absorption tower. As described above, a regeneration heat exchanger that heats an absorption liquid that has absorbed carbon dioxide supplied from the absorption tower to the regeneration tower, and an exhaust gas discharged from the regeneration tower are condensed, and the generated condensate is separated. Based on at least one of a condenser, an adjustment valve for adjusting the discharge amount of the condensate to the outside, and a moisture ratio of the absorption liquid and a composition analysis value, the discharge amount is obtained and the adjustment valve is controlled. Control signal A control unit for outputting those with a.

本発明の一態様による二酸化炭素回収システムは、燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させるとともに、二酸化炭素が除去された燃焼排ガスを排出する吸収塔と、前記吸収塔から二酸化炭素を吸収した吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを排出し、当該吸収液を再生する再生塔と、前記吸収塔と前記再生塔との間に設けられ、前記再生塔から前記吸収塔に供給される再生された吸収液を熱源として、前記吸収塔から前記再生塔に供給される二酸化炭素を吸収した吸収液を加熱する再生熱交換器と、前記吸収塔から排出された燃焼排ガスを凝縮し、生成された凝縮液を分離する凝縮器と、外部への前記凝縮液の排出量を調整する調整弁と、前記吸収液の水分比率及び組成分析値の少なくともいずれか一方に基づいて前記排出量を求め、前記調整弁を制御する制御信号を出力する制御部と、を備えるものである。   A carbon dioxide recovery system according to an aspect of the present invention absorbs carbon dioxide contained in combustion exhaust gas in an absorption liquid and absorbs carbon dioxide from the absorption tower that discharges combustion exhaust gas from which carbon dioxide has been removed. The absorption liquid is supplied, the carbon dioxide gas containing the vapor is discharged from the absorption liquid, the regeneration tower that regenerates the absorption liquid, and is provided between the absorption tower and the regeneration tower. Using the regenerated absorption liquid supplied to the absorption tower as a heat source, a regenerative heat exchanger that heats the absorption liquid that has absorbed carbon dioxide supplied from the absorption tower to the regeneration tower, and combustion discharged from the absorption tower At least one of a condenser for condensing exhaust gas and separating the generated condensate, a regulating valve for adjusting the discharge amount of the condensate to the outside, a moisture ratio and composition analysis value of the absorption liquid Based obtains the emissions, in which and a control unit for outputting a control signal for controlling the regulator valve.

本発明の一態様による二酸化炭素回収システムは、燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させる吸収塔と、前記吸収塔から二酸化炭素を吸収した吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを排出し、当該吸収液を再生する再生塔と、前記吸収塔と前記再生塔との間に設けられ、前記再生塔から前記吸収塔に供給される再生された吸収液を熱源として、前記吸収塔から前記再生塔に供給される二酸化炭素を吸収した吸収液を加熱する再生熱交換器と、前記再生塔から排出された排出ガスを凝縮し、生成された凝縮液を分離する凝縮器と、外部への前記凝縮液の排出量を調整する調整弁と、前記吸収塔に供給される前記燃焼排ガスの温度、流量、及び湿度を計測する第1のセンサと、前記吸収塔から排出される燃焼排ガスの温度、流量、及び湿度を計測する第2のセンサと、前記凝縮器から排出されるガスの温度、流量、及び湿度を計測する第3のセンサと、前記第1、第2、及び第3のセンサの計測結果に基づいて前記排出量を算出し、前記調整弁を制御する制御信号を出力する演算制御部と、を備えるものである。   A carbon dioxide recovery system according to an aspect of the present invention is provided with an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas into an absorption liquid, an absorption liquid that absorbs carbon dioxide from the absorption tower, and vapor from the absorption liquid. A regeneration tower that discharges carbon dioxide gas contained therein and regenerates the absorption liquid; and a regenerated absorption liquid that is provided between the absorption tower and the regeneration tower and that is supplied from the regeneration tower to the absorption tower. As described above, a regeneration heat exchanger that heats an absorption liquid that has absorbed carbon dioxide supplied from the absorption tower to the regeneration tower, and an exhaust gas discharged from the regeneration tower are condensed, and the generated condensate is separated. A condenser, a regulating valve for adjusting the amount of the condensate discharged to the outside, a first sensor for measuring the temperature, flow rate, and humidity of the combustion exhaust gas supplied to the absorption tower, and the absorption tower Exhausted combustion A second sensor for measuring the temperature, flow rate and humidity of the gas; a third sensor for measuring the temperature, flow rate and humidity of the gas discharged from the condenser; and the first, second and second sensors. And an arithmetic control unit that calculates the discharge amount based on the measurement result of the sensor 3 and outputs a control signal for controlling the regulating valve.

本発明の一態様による二酸化炭素回収システムは、燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させる吸収塔と、前記吸収塔から二酸化炭素を吸収した吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを排出し、当該吸収液を再生する再生塔と、前記吸収塔と前記再生塔との間に設けられ、前記再生塔から前記吸収塔に供給される再生された吸収液を熱源として、前記吸収塔から前記再生塔に供給される二酸化炭素を吸収した吸収液を加熱する再生熱交換器と、前記再生塔から排出された排出ガスを凝縮し、生成された凝縮液を分離する凝縮器と、外部への前記凝縮液の排出量を調整する調整弁と、前記吸収液の温度を計測する第1のセンサと、前記吸収液の密度、粘度、表面張力、熱伝導度、及び比熱の少なくともいずれか1つの物性値を計測する第2のセンサと、所定濃度の吸収液における温度と前記物性値との対応関係と、前記第1及び第2のセンサの計測結果とに基づいて前記排出量を算出し、前記調整弁を制御する制御信号を出力する演算制御部と、を備えるものである。   A carbon dioxide recovery system according to an aspect of the present invention is provided with an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas into an absorption liquid, an absorption liquid that absorbs carbon dioxide from the absorption tower, and vapor from the absorption liquid. A regeneration tower that discharges carbon dioxide gas contained therein and regenerates the absorption liquid; and a regenerated absorption liquid that is provided between the absorption tower and the regeneration tower and that is supplied from the regeneration tower to the absorption tower. As described above, a regeneration heat exchanger that heats an absorption liquid that has absorbed carbon dioxide supplied from the absorption tower to the regeneration tower, and an exhaust gas discharged from the regeneration tower are condensed, and the generated condensate is separated. A condenser, a regulating valve for adjusting the discharge amount of the condensate to the outside, a first sensor for measuring the temperature of the absorbing liquid, the density, viscosity, surface tension, thermal conductivity of the absorbing liquid, and At least one of the specific heat The discharge amount is calculated based on a second sensor that measures one physical property value, a correspondence relationship between the temperature of the absorbing liquid having a predetermined concentration and the physical property value, and measurement results of the first and second sensors. And an arithmetic control unit that outputs a control signal for controlling the regulating valve.

本発明によれば、吸収液の二酸化炭素吸収性能の低下を防止することができる。   According to the present invention, it is possible to prevent a decrease in carbon dioxide absorption performance of the absorbing liquid.

本発明の第1の実施形態に係る二酸化炭素回収システムの概略構成図である。1 is a schematic configuration diagram of a carbon dioxide recovery system according to a first embodiment of the present invention. 変形例による二酸化炭素回収システムの概略構成図である。It is a schematic block diagram of the carbon dioxide collection system by a modification. 本発明の第2の実施形態に係る二酸化炭素回収システムの概略構成図である。It is a schematic block diagram of the carbon dioxide collection system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る二酸化炭素回収システムの概略構成図である。It is a schematic block diagram of the carbon dioxide recovery system which concerns on the 3rd Embodiment of this invention. 吸収液の温度と密度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature of an absorption liquid, and a density. 吸収液の温度と粘度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature of an absorption liquid, and a viscosity. 吸収液の温度と表面張力との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature of absorption liquid, and surface tension. 吸収液の温度と熱伝導度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature of absorption liquid, and thermal conductivity. 吸収液の温度と比熱との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature of absorption liquid, and a specific heat.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)図1に本発明の第1の実施形態に係る二酸化炭素回収システムの概略構成を示す。ここで二酸化炭素回収システムは、二酸化炭素を吸収可能な吸収液を用いて、化石燃料の燃焼により生成された燃焼排ガスに含まれる二酸化炭素を回収するものである。   (First Embodiment) FIG. 1 shows a schematic configuration of a carbon dioxide recovery system according to a first embodiment of the present invention. Here, the carbon dioxide recovery system recovers carbon dioxide contained in combustion exhaust gas generated by the combustion of fossil fuel using an absorbing liquid capable of absorbing carbon dioxide.

図1に示すように二酸化炭素回収システム1は、燃焼排ガス2aに含まれる二酸化炭素を吸収液に吸収させる吸収塔3と、吸収塔3から二酸化炭素を吸収した吸収液(以下、リッチ液4aと記す)が供給され、このリッチ液4aを加熱し、吸収液から蒸気を含む二酸化炭素ガスを放出させて、二酸化炭素ガスと蒸気とを含む排出ガス2cを排出するとともに吸収液を再生する再生塔5とを備える。例えば、火力発電所などの発電設備において生成された燃焼排ガス2aが吸収塔3の下部に供給され、吸収塔3の頂部から二酸化炭素が取り除かれた燃焼排ガス2bが排出されるようになっている。   As shown in FIG. 1, the carbon dioxide recovery system 1 includes an absorption tower 3 that absorbs carbon dioxide contained in the combustion exhaust gas 2a into an absorption liquid, and an absorption liquid that absorbs carbon dioxide from the absorption tower 3 (hereinafter, rich liquid 4a and A regenerating tower that heats the rich liquid 4a, releases carbon dioxide gas containing vapor from the absorbing liquid, discharges exhaust gas 2c containing carbon dioxide gas and steam, and regenerates the absorbing liquid 5. For example, the combustion exhaust gas 2a generated in a power generation facility such as a thermal power plant is supplied to the lower part of the absorption tower 3, and the combustion exhaust gas 2b from which carbon dioxide has been removed is discharged from the top of the absorption tower 3. .

吸収塔3は、吸収液が二酸化炭素を吸収することにより生成されたリッチ液4aを貯留する吸収塔タンク3aを有する。同様に、再生塔5は、リッチ液4aが二酸化炭素ガスを放出することにより再生された吸収液(以下、リーン液4bと記す)を貯留する再生塔タンク5aを有する。   The absorption tower 3 has an absorption tower tank 3a for storing the rich liquid 4a generated by the absorption liquid absorbing carbon dioxide. Similarly, the regeneration tower 5 has a regeneration tower tank 5a that stores an absorbing liquid regenerated by releasing the carbon dioxide gas from the rich liquid 4a (hereinafter referred to as a lean liquid 4b).

ここで、二酸化炭素を吸収可能な吸収液には、例えばアミン化合物を水に溶かしたアミン化合物水溶液が使用される。アミン化合物水溶液の濃度(水分比率)は二酸化炭素の分離回収に好適な値に設定されている。   Here, as the absorbing solution capable of absorbing carbon dioxide, for example, an amine compound aqueous solution in which an amine compound is dissolved in water is used. The concentration (water ratio) of the amine compound aqueous solution is set to a value suitable for the separation and recovery of carbon dioxide.

図1に示すように、再生塔5にはリボイラー6が設けられている。リボイラー6は、発電設備から供給されるプラント蒸気等を熱源として、再生塔タンク5aに貯留されていたリーン液4bの一部を加熱してその温度を上昇させて蒸気を生成し、再生塔5に供給する。なお、リボイラー6においてリーン液4bを加熱する際、リーン液4bから微量の二酸化炭素ガスが放出され、蒸気とともに再生塔5に供給される。そして、この蒸気により、再生塔5においてリッチ液4aが加熱されて二酸化炭素ガスが放出される。   As shown in FIG. 1, a reboiler 6 is provided in the regeneration tower 5. The reboiler 6 generates a steam by heating a part of the lean liquid 4b stored in the regeneration tower tank 5a by using plant steam or the like supplied from the power generation equipment as a heat source to increase the temperature thereof. To supply. When heating the lean solution 4b in the reboiler 6, a small amount of carbon dioxide gas is released from the lean solution 4b and supplied to the regeneration tower 5 together with the vapor. Then, the rich liquid 4a is heated in the regeneration tower 5 by this steam, and carbon dioxide gas is released.

再生塔5から排出された二酸化炭素ガスと蒸気とを含む排出ガス2cを凝縮(冷却)して、二酸化炭素ガスと生成された凝縮液(凝縮水)とを分離する凝縮器17が再生塔5に連結されている。凝縮器17から排出された二酸化炭素ガス2dは、貯蔵設備(図示せず)で貯蔵される。   A condenser 17 that condenses (cools) the exhaust gas 2c containing carbon dioxide gas and steam discharged from the regeneration tower 5 and separates the carbon dioxide gas and the generated condensate (condensed water) is provided in the regeneration tower 5. It is connected to. The carbon dioxide gas 2d discharged from the condenser 17 is stored in a storage facility (not shown).

再生塔5と凝縮器17との間に、再生塔5から排出された排出ガス2cを凝縮器17に供給するガス冷却ライン15が連結され、このガス冷却ライン15に、冷却水(冷却媒体)を用いて排出ガス2cを冷却するガス冷却器16が設けられている。また、凝縮器17と再生塔5との間に、凝縮器17からの凝縮液を再生塔5の上部に供給する凝縮液ライン18が連結され、この凝縮液ライン18に、凝縮器17からの凝縮液を再生塔5に送り込む凝縮液ポンプ19が設けられている。   A gas cooling line 15 for supplying the exhaust gas 2c discharged from the regeneration tower 5 to the condenser 17 is connected between the regeneration tower 5 and the condenser 17, and a cooling water (cooling medium) is connected to the gas cooling line 15. Is used to cool the exhaust gas 2c. A condensate line 18 for supplying the condensate from the condenser 17 to the upper part of the regenerator 5 is connected between the condenser 17 and the regenerator 5, and the condensate line 18 from the condenser 17 is connected to the condensate line 18. A condensate pump 19 for feeding the condensate to the regeneration tower 5 is provided.

また、凝縮液ライン18には凝縮液を外部へ排出することができる調整弁20が設けられている。   The condensate line 18 is provided with an adjusting valve 20 that can discharge the condensate to the outside.

吸収塔3と再生塔5との間に、再生塔5から吸収塔3に供給されるリーン液4bを熱源として、吸収塔3から再生塔5に供給されるリッチ液4aを加熱する再生熱交換器7が設けられ、リーン液4bの熱を回収するように構成されている。ここで、上述したように、再生塔5においてリッチ液4aから二酸化炭素ガスを放出させる際、リッチ液4aはリボイラー6からの高温の蒸気を熱源として加熱される。従って、再生熱交換器7に供給されるリーン液4bの温度は比較的高く、このリーン液4bが熱源として用いられている。   Regeneration heat exchange between the absorption tower 3 and the regeneration tower 5 using the lean liquid 4b supplied from the regeneration tower 5 to the absorption tower 3 as a heat source and heating the rich liquid 4a supplied from the absorption tower 3 to the regeneration tower 5. A vessel 7 is provided and configured to recover the heat of the lean liquid 4b. Here, as described above, when the carbon dioxide gas is released from the rich liquid 4 a in the regeneration tower 5, the rich liquid 4 a is heated using high-temperature steam from the reboiler 6 as a heat source. Accordingly, the temperature of the lean liquid 4b supplied to the regenerative heat exchanger 7 is relatively high, and this lean liquid 4b is used as a heat source.

吸収塔3と再生熱交換器7との間に、吸収塔タンク3aの底部から再生熱交換器7にリッチ液4aを供給する第1リッチ液ライン8が連結されている。この第1リッチ液ライン8に、吸収塔3からのリッチ液4aを再生熱交換器7に送り込むリッチ液ポンプ9が設けられている。   A first rich liquid line 8 for supplying the rich liquid 4a from the bottom of the absorption tower tank 3a to the regenerative heat exchanger 7 is connected between the absorption tower 3 and the regenerative heat exchanger 7. A rich liquid pump 9 for sending the rich liquid 4 a from the absorption tower 3 to the regenerative heat exchanger 7 is provided in the first rich liquid line 8.

再生熱交換器7と再生塔5との間に、再生熱交換器7から再生塔5の上部にリッチ液4aを供給する第2リッチ液ライン10が連結されている。第2リッチ液ライン10にはリッチ液の圧力を高める弁13が設けられている。弁13を用いてリッチ液の圧力を高めることで、再生熱交換器7においてリッチ液から二酸化炭素が分離して二相流化により熱交換率が低下することが抑制される。   Between the regeneration heat exchanger 7 and the regeneration tower 5, a second rich liquid line 10 for supplying the rich liquid 4a from the regeneration heat exchanger 7 to the upper portion of the regeneration tower 5 is connected. The second rich liquid line 10 is provided with a valve 13 for increasing the pressure of the rich liquid. By increasing the pressure of the rich liquid using the valve 13, it is possible to suppress the carbon dioxide from being separated from the rich liquid in the regenerative heat exchanger 7 and the heat exchange rate from being lowered due to the two-phase flow.

再生塔5と再生熱交換器7との間に、再生塔タンク5aの底部から再生熱交換器7にリーン液4bを供給する第1リーン液ライン11が連結されている。   Between the regeneration tower 5 and the regeneration heat exchanger 7, a first lean liquid line 11 for supplying the lean liquid 4b to the regeneration heat exchanger 7 from the bottom of the regeneration tower tank 5a is connected.

再生熱交換器7からのリーン液4bは、リーン液ポンプ12により吸収液冷却器14へ送り込まれる。吸収液冷却器14は、冷却水(冷却媒体)を冷却源とし、リーン液4bを冷却する。吸収液冷却器14により冷却されたリーン液4cが吸収塔3の上部に供給される。   The lean liquid 4 b from the regenerative heat exchanger 7 is sent to the absorbing liquid cooler 14 by the lean liquid pump 12. The absorption liquid cooler 14 uses the cooling water (cooling medium) as a cooling source and cools the lean liquid 4b. The lean liquid 4 c cooled by the absorption liquid cooler 14 is supplied to the upper part of the absorption tower 3.

吸収塔3の上部に供給されたリーン液4cは、吸収塔3内において上部から吸収塔タンク3aに向けて下降する。一方、吸収塔3に供給された燃焼排ガス2aは、吸収塔3内において下部から頂部に向けて上昇する。そのため、二酸化炭素を含む燃焼排ガス2aとリーン液が向流接触(直接接触)し、燃焼排ガス2aから二酸化炭素が取り除かれてリーン液に吸収され、リッチ液4aが生成される。二酸化炭素が取り除かれた燃焼排ガス2bは、吸収塔3の頂部から排出されるとともに、リッチ液4aは吸収塔3の吸収塔タンク3aに貯留される。   The lean liquid 4 c supplied to the upper part of the absorption tower 3 descends from the upper part toward the absorption tower tank 3 a in the absorption tower 3. On the other hand, the combustion exhaust gas 2 a supplied to the absorption tower 3 rises from the lower part toward the top in the absorption tower 3. Therefore, the combustion exhaust gas 2a containing carbon dioxide and the lean liquid come into countercurrent contact (direct contact), and carbon dioxide is removed from the combustion exhaust gas 2a and absorbed by the lean liquid, thereby generating the rich liquid 4a. The combustion exhaust gas 2b from which carbon dioxide has been removed is discharged from the top of the absorption tower 3, and the rich liquid 4a is stored in the absorption tower tank 3a of the absorption tower 3.

通常、燃焼排ガス2aは吸収塔3での二酸化炭素吸収に最適な温度まで温度を下げて供給され、そのガスはほぼ飽和湿度の状態となっている。また、吸収液の飛散防止のため、デミスター、冷却により、吸収塔3からの出口ガス中の液は吸収塔3内に戻されている。吸収塔3の頂部から水の蒸気圧相当分は排出されるものの、大部分の蒸気(水)は吸収塔3内に戻される。従って、燃焼排ガス2a中の大部分の水は吸収液に取り込まれることになり、吸収液の水分比率が増加する。   Usually, the combustion exhaust gas 2a is supplied at a temperature lowered to the optimum temperature for carbon dioxide absorption in the absorption tower 3, and the gas is in a state of almost saturated humidity. Moreover, the liquid in the exit gas from the absorption tower 3 is returned in the absorption tower 3 by demister and cooling in order to prevent scattering of the absorption liquid. Although a portion corresponding to the vapor pressure of water is discharged from the top of the absorption tower 3, most of the steam (water) is returned to the absorption tower 3. Therefore, most of the water in the combustion exhaust gas 2a is taken into the absorption liquid, and the moisture ratio of the absorption liquid increases.

本実施形態では、調整弁20により凝縮液(水)を排出することで、吸収液の水分比率を一定に保つ。凝縮液の排出量は吸収液の水分比率(又は組成分析値)に基づいて算出することができる。例えば、リーン液4cの水分比率をガスクロマトグラフィ等により計測し、運転開始時の吸収液の水分比率との差分から、凝縮液の排出量を求めることができる。例えば、時間ΔT経過した時の水分比率を計測することで、時間ΔTでの吸収液の水分増加量ΔWが分かることから、単位時間当たりの凝縮液排出量Vは次式で求められる。
V=ΔW/ΔT
In the present embodiment, the condensate (water) is discharged by the regulating valve 20 to keep the moisture ratio of the absorbing liquid constant. The discharge amount of the condensate can be calculated based on the moisture ratio (or composition analysis value) of the absorption liquid. For example, the moisture ratio of the lean liquid 4c is measured by gas chromatography or the like, and the amount of condensate discharged can be determined from the difference from the moisture ratio of the absorbing liquid at the start of operation. For example, by measuring the water ratio when the time ΔT has elapsed, the amount of water increase ΔW in the absorbing liquid at the time ΔT can be known, and the condensate discharge amount V per unit time can be obtained by the following equation.
V = ΔW / ΔT

調整弁20は、単位時間当たりの排出量がVとなるように調整される。この式の計算及び調整弁20の制御は、図示しない演算制御部が行ってもよい。   The regulating valve 20 is adjusted so that the discharge amount per unit time becomes V. Calculation of this equation and control of the regulating valve 20 may be performed by an arithmetic control unit (not shown).

このように、再生塔5頂部の凝縮器17から調整弁20にて凝縮液を外部へ排出することで、吸収液の水分比率が一定に保たれるため、吸収液の二酸化炭素吸収性能が低下することを防止できる。   In this way, by discharging the condensate to the outside from the condenser 17 at the top of the regeneration tower 5 by the regulating valve 20, the water ratio of the absorption liquid is kept constant, so that the carbon dioxide absorption performance of the absorption liquid is reduced. Can be prevented.

本実施形態では、再生塔5頂部の凝縮器17の凝縮液を外部へ排出していたが、図2に示すように、吸収塔3の頂部に設けられた凝縮器22の凝縮液を外部へ排出するようにしてもよい。吸収塔3と凝縮器22との間に、吸収塔3の頂部から排出された燃焼排ガス2bを凝縮器22に供給するライン23が連結され、このライン23に冷却水等の冷却媒体を用いて燃焼排ガス2bを冷却するガス冷却器24が設けられている。また、凝縮器22と吸収塔3との間に、凝縮器22からの凝縮液を吸収塔3の上部に供給する凝縮液ライン25が連結され、この凝縮液ライン25に、凝縮器22からの凝縮液を吸収塔3に送り込む凝縮液ポンプ26が設けられている。調整弁20はこの凝縮液ライン25に設けられ、凝縮液を外部へ排出可能としている。このような構成によっても、吸収液の水分比率を一定に保ち、吸収液の二酸化炭素吸収性能が低下することを防止できる。   In this embodiment, the condensate in the condenser 17 at the top of the regeneration tower 5 is discharged to the outside. However, as shown in FIG. 2, the condensate in the condenser 22 provided at the top of the absorption tower 3 is discharged to the outside. You may make it discharge | emit. A line 23 for supplying combustion exhaust gas 2b discharged from the top of the absorption tower 3 to the condenser 22 is connected between the absorption tower 3 and the condenser 22, and a cooling medium such as cooling water is used for the line 23. A gas cooler 24 for cooling the combustion exhaust gas 2b is provided. Further, a condensate line 25 for supplying the condensate from the condenser 22 to the upper part of the absorption tower 3 is connected between the condenser 22 and the absorption tower 3, and the condensate line 25 from the condenser 22 is connected to the condensate line 25. A condensate pump 26 for sending the condensate to the absorption tower 3 is provided. The regulating valve 20 is provided in the condensate line 25 so that the condensate can be discharged to the outside. Even with such a configuration, it is possible to keep the moisture ratio of the absorbing liquid constant and prevent the carbon dioxide absorbing performance of the absorbing liquid from deteriorating.

(第2の実施形態)図3に本発明の第2の実施形態に係る二酸化炭素回収システムの概略構成を示す。本実施形態では、演算制御部30、温度センサ31〜33、流量センサ34〜36、及び湿度センサ37〜39がさらに設けられている点以外は、図1に示す第1の実施形態と同様となっている。図3において、図1に示す第1の実施形態と同一部分には同一符号を付して説明を省略する。   (Second Embodiment) FIG. 3 shows a schematic configuration of a carbon dioxide recovery system according to a second embodiment of the present invention. This embodiment is the same as the first embodiment shown in FIG. 1 except that an arithmetic control unit 30, temperature sensors 31 to 33, flow rate sensors 34 to 36, and humidity sensors 37 to 39 are further provided. It has become. In FIG. 3, the same parts as those of the first embodiment shown in FIG.

温度センサ31、流量センサ34、湿度センサ37はそれぞれ燃焼排ガス2aの温度、流量、湿度を計測し、計測結果を演算制御部30へ通知する。   The temperature sensor 31, the flow sensor 34, and the humidity sensor 37 measure the temperature, flow rate, and humidity of the combustion exhaust gas 2a, respectively, and notify the calculation control unit 30 of the measurement results.

温度センサ32、流量センサ35、湿度センサ38はそれぞれ吸収塔3の頂部から排出される燃焼排ガス2bの温度、流量、湿度を計測し、計測結果を演算制御部30へ通知する。   The temperature sensor 32, the flow rate sensor 35, and the humidity sensor 38 measure the temperature, flow rate, and humidity of the flue gas 2b discharged from the top of the absorption tower 3, and notify the calculation control unit 30 of the measurement results.

温度センサ33、流量センサ36、湿度センサ39はそれぞれ凝縮器17から排出される二酸化炭素ガス2dの温度、流量、湿度を計測し、計測結果を演算制御部30へ通知する。   The temperature sensor 33, the flow sensor 36, and the humidity sensor 39 measure the temperature, flow rate, and humidity of the carbon dioxide gas 2d discharged from the condenser 17 and notify the calculation control unit 30 of the measurement results.

演算制御部30は、温度センサ31〜33、流量センサ34〜36、及び湿度センサ37〜39から通知された計測結果を用いて、外部へ排出すべき凝縮液の液量を算出し、調整弁20へ制御信号を出力する。   The arithmetic control unit 30 calculates the amount of condensate to be discharged to the outside using the measurement results notified from the temperature sensors 31 to 33, the flow rate sensors 34 to 36, and the humidity sensors 37 to 39, and adjusts the control valve. A control signal is output to 20.

外部へ排出すべき凝縮液の液量は、燃焼排ガス中の水が吸収液に取り込まれる量と等しい。演算制御部30は、下記の式を用いて、単位時間当たりに燃焼排ガス中の水が吸収液に取り込まれる量Wcを求める。吸収塔3入口における燃焼排ガス2aの流量をQi、湿度をCi、吸収塔3出口におけるガス2bの流量をQo、湿度をCo、凝縮器17出口におけるガス2dの流量をQs、湿度をCsとしている。なお、燃焼排ガス2a、2b、二酸化炭素ガス2dはそれぞれ温度が異なるため、流量Qi、Qo、Qsは温度センサ31〜33の計測結果に基づいて温度補正したものとなっている。
Wc=QiCi−QoCo−QsCs
The amount of the condensate to be discharged to the outside is equal to the amount of water in the combustion exhaust gas taken into the absorption liquid. The arithmetic control unit 30 obtains the amount Wc of water in the combustion exhaust gas taken into the absorbent per unit time using the following formula. The flow rate of the combustion exhaust gas 2a at the inlet of the absorption tower 3 is Qi, the humidity is Ci, the flow rate of the gas 2b at the outlet of the absorption tower 3 is Qo, the humidity is Co, the flow rate of the gas 2d at the outlet of the condenser 17 is Qs, and the humidity is Cs. . Since the combustion exhaust gases 2a, 2b and the carbon dioxide gas 2d have different temperatures, the flow rates Qi, Qo, Qs are temperature-corrected based on the measurement results of the temperature sensors 31-33.
Wc = QiCi-QoCo-QsCs

演算制御部30は、単位時間当たりの凝縮液排出量がWcとなるように、調整弁20へ制御信号を出力する。   The arithmetic control unit 30 outputs a control signal to the adjustment valve 20 so that the condensate discharge amount per unit time becomes Wc.

これにより、吸収液の水分比率が一定に保たれ、吸収液の二酸化炭素吸収性能が低下することを防止できる。   Thereby, the moisture ratio of the absorbing solution can be kept constant, and the carbon dioxide absorbing performance of the absorbing solution can be prevented from being lowered.

所定時間毎にガスクロマトグラフィ等により吸収液の水分比率を計測し、運転開始当初の水分比率との比較結果を凝縮液排出量に反映させることで、吸収液の水分比率をさらに精度良く制御することができる。   By measuring the moisture ratio of the absorbing liquid at a predetermined time by gas chromatography etc. and reflecting the comparison result with the moisture ratio at the beginning of operation in the condensate discharge amount, the moisture ratio of the absorbing liquid can be controlled more accurately. Can do.

本実施形態では図1に示す二酸化炭素回収システムを用いた例について説明したが、図2に示す二酸化炭素回収システムにも適用することができる。   In the present embodiment, the example using the carbon dioxide recovery system shown in FIG. 1 has been described, but the present invention can also be applied to the carbon dioxide recovery system shown in FIG.

(第3の実施形態)図4に本発明の第3の実施形態に係る二酸化炭素回収システムの概略構成を示す。本実施形態では、演算制御部40、温度センサ41、及び物性値センサ42がさらに設けられている点以外は、図1に示す第1の実施形態と同様となっている。図4において、図1に示す第1の実施形態と同一部分には同一符号を付して説明を省略する。   (Third Embodiment) FIG. 4 shows a schematic configuration of a carbon dioxide recovery system according to a third embodiment of the present invention. This embodiment is the same as the first embodiment shown in FIG. 1 except that an arithmetic control unit 40, a temperature sensor 41, and a physical property sensor 42 are further provided. In FIG. 4, the same parts as those of the first embodiment shown in FIG.

温度センサ41は、リーン液4cの温度を測定し、測定結果を演算制御部40に通知する。   The temperature sensor 41 measures the temperature of the lean liquid 4 c and notifies the calculation control unit 40 of the measurement result.

物性値センサ42は、リーン液4cの物性値を測定し、測定結果を演算制御部40に通知する。ここで、物性値センサ42が測定する物性値は、密度、粘度、表面張力、熱伝導度、比熱のいずれかである。   The physical property value sensor 42 measures the physical property value of the lean liquid 4 c and notifies the calculation control unit 40 of the measurement result. Here, the physical property value measured by the physical property sensor 42 is any one of density, viscosity, surface tension, thermal conductivity, and specific heat.

演算制御部40は、吸収液(アミン化合物水溶液)の濃度別の温度と物性値との対応関係を記憶する記憶部(図示せず)を有しており、当該対応関係を参照して、温度センサ41及び物性値センサ42から通知された計測結果から凝縮液排出量を制御する制御信号を生成し、調整弁20へ出力する。   The arithmetic control unit 40 has a storage unit (not shown) that stores the correspondence between the temperature and the physical property value for each concentration of the absorbing liquid (amine compound aqueous solution). A control signal for controlling the condensate discharge amount is generated from the measurement results notified from the sensor 41 and the physical property sensor 42 and is output to the regulating valve 20.

図5にアミン化合物水溶液の濃度別の温度と密度との対応関係の一例を示す。例えば、吸収液の(運転開始当初の)アミン濃度設定値が50wt%であり、センサ41及び42の計測結果が点Aであった場合、矢印で示す50wt%に近付くように凝縮液排出量を制御する。アミンの密度が水の密度より大きい場合には、凝縮液排出量を減らすように制御する。逆に、アミンの密度が水の密度より小さい場合には、凝縮液排出量を増やすように制御する。   FIG. 5 shows an example of a correspondence relationship between temperature and density for each concentration of the amine compound aqueous solution. For example, when the amine concentration set value (at the start of operation) of the absorbing liquid is 50 wt% and the measurement results of the sensors 41 and 42 are point A, the condensate discharge amount is adjusted so as to approach 50 wt% indicated by an arrow. Control. If the amine density is greater than the water density, control is performed to reduce condensate discharge. On the contrary, when the density of amine is smaller than the density of water, it controls to increase the condensate discharge amount.

図6はアミン化合物水溶液の濃度別の温度と粘度との対応関係の一例を示す。また、図7はアミン化合物水溶液の濃度別の温度と表面張力との対応関係の一例を示す。また、図8はアミン化合物水溶液の濃度別の温度と熱伝導度との対応関係の一例を示す。また、図9はアミン化合物水溶液の濃度別の温度と比熱との対応関係の一例を示す。   FIG. 6 shows an example of the correspondence relationship between the temperature and the viscosity for each concentration of the amine compound aqueous solution. FIG. 7 shows an example of the correspondence between the temperature and surface tension for each concentration of the amine compound aqueous solution. FIG. 8 shows an example of the correspondence between the temperature and the thermal conductivity for each concentration of the amine compound aqueous solution. FIG. 9 shows an example of a correspondence relationship between the temperature and specific heat for each concentration of the amine compound aqueous solution.

このような各アミン濃度における温度と物性値との関係を事前に把握しておき、センサ41及び42の計測結果が設定値(理想値)に近付くように凝縮液排出量を制御することにより、吸収液の水分比率を維持できる。   By grasping the relationship between the temperature and the physical property value at each amine concentration in advance and controlling the condensate discharge amount so that the measurement results of the sensors 41 and 42 approach the set value (ideal value), The moisture ratio of the absorbing liquid can be maintained.

このように、本実施形態に係る二酸化炭素回収システムにより、吸収液の水分比率を一定に保ち、吸収液の二酸化炭素吸収性能が低下することを防止でき、運転の安定度が向上する。   As described above, the carbon dioxide recovery system according to the present embodiment can keep the moisture ratio of the absorbing solution constant, prevent the absorbing solution from deteriorating in carbon dioxide absorption performance, and improve the stability of operation.

なお、センサ41及び42は、吸収液中に二酸化炭素がほとんど含まれない再生塔5から吸収塔3への吸収液供給ライン中で計測を行うことが好ましい。   In addition, it is preferable that the sensors 41 and 42 perform measurement in the absorption liquid supply line from the regeneration tower 5 to the absorption tower 3 in which almost no carbon dioxide is contained in the absorption liquid.

本実施形態では、物性値として、密度、粘度、表面張力、熱伝導度、比熱のいずれか1つを計測する例について説明したが、2つ以上の物性値を計測して、排出量の制御に用いるようにしてもよい。   In this embodiment, an example of measuring any one of density, viscosity, surface tension, thermal conductivity, and specific heat as a physical property value has been described. However, control of discharge amount by measuring two or more physical property values. You may make it use for.

本実施形態では図1に示す二酸化炭素回収システムを用いた例について説明したが、図2に示す二酸化炭素回収システムにも適用することができる。   In the present embodiment, the example using the carbon dioxide recovery system shown in FIG. 1 has been described, but the present invention can also be applied to the carbon dioxide recovery system shown in FIG.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1 二酸化炭素回収システム
3 吸収塔
5 再生塔
6 リボイラー
7 再生熱交換器
14 ガス冷却器
17 凝縮器(気液分離器)
20 調整弁
DESCRIPTION OF SYMBOLS 1 Carbon dioxide recovery system 3 Absorption tower 5 Regeneration tower 6 Reboiler 7 Regenerative heat exchanger 14 Gas cooler 17 Condenser (gas-liquid separator)
20 Regulating valve

Claims (5)

燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させる吸収塔と、
前記吸収塔から二酸化炭素を吸収した吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを排出し、当該吸収液を再生する再生塔と、
前記吸収塔と前記再生塔との間に設けられ、前記再生塔から前記吸収塔に供給される再生された吸収液を熱源として、前記吸収塔から前記再生塔に供給される二酸化炭素を吸収した吸収液を加熱する再生熱交換器と、
前記再生塔から排出された排出ガスを凝縮し、生成された凝縮液を分離する凝縮器と、
外部への前記凝縮液の排出量を調整する調整弁と、
前記吸収液の水分比率及び組成分析値の少なくともいずれか一方に基づいて前記排出量を求め、前記調整弁を制御する制御信号を出力する制御部と、
を備える二酸化炭素回収システム。
An absorption tower for absorbing carbon dioxide contained in the combustion exhaust gas into the absorption liquid;
An absorption liquid that has absorbed carbon dioxide from the absorption tower is supplied, a carbon dioxide gas containing steam is discharged from the absorption liquid, and a regeneration tower that regenerates the absorption liquid;
The carbon dioxide supplied from the absorption tower to the regeneration tower is absorbed by the regenerated absorption liquid provided between the absorption tower and the regeneration tower and supplied from the regeneration tower to the absorption tower as a heat source. A regenerative heat exchanger for heating the absorption liquid;
A condenser for condensing the exhaust gas discharged from the regeneration tower and separating the generated condensate;
An adjusting valve for adjusting the amount of the condensate discharged to the outside;
A control unit for obtaining the discharge amount based on at least one of a moisture ratio and a composition analysis value of the absorption liquid and outputting a control signal for controlling the adjustment valve;
A carbon dioxide recovery system.
燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させるとともに、二酸化炭素が除去された燃焼排ガスを排出する吸収塔と、
前記吸収塔から二酸化炭素を吸収した吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを排出し、当該吸収液を再生する再生塔と、
前記吸収塔と前記再生塔との間に設けられ、前記再生塔から前記吸収塔に供給される再生された吸収液を熱源として、前記吸収塔から前記再生塔に供給される二酸化炭素を吸収した吸収液を加熱する再生熱交換器と、
前記吸収塔から排出された燃焼排ガスを凝縮し、生成された凝縮液を分離する凝縮器と、
外部への前記凝縮液の排出量を調整する調整弁と、
前記吸収液の水分比率及び組成分析値の少なくともいずれか一方に基づいて前記排出量を求め、前記調整弁を制御する制御信号を出力する制御部と、
を備える二酸化炭素回収システム。
An absorption tower for absorbing the carbon dioxide contained in the combustion exhaust gas into the absorption liquid and discharging the combustion exhaust gas from which the carbon dioxide has been removed;
An absorption liquid that has absorbed carbon dioxide from the absorption tower is supplied, a carbon dioxide gas containing steam is discharged from the absorption liquid, and a regeneration tower that regenerates the absorption liquid;
The carbon dioxide supplied from the absorption tower to the regeneration tower is absorbed by the regenerated absorption liquid provided between the absorption tower and the regeneration tower and supplied from the regeneration tower to the absorption tower as a heat source. A regenerative heat exchanger for heating the absorption liquid;
A condenser for condensing the combustion exhaust gas discharged from the absorption tower and separating the produced condensate;
An adjusting valve for adjusting the amount of the condensate discharged to the outside;
A control unit for obtaining the discharge amount based on at least one of a moisture ratio and a composition analysis value of the absorption liquid and outputting a control signal for controlling the adjustment valve;
A carbon dioxide recovery system.
前記吸収液の水分比率は、前記再生塔から前記吸収塔に供給される再生された吸収液の水分比率であることを特徴とする請求項1又は2に記載の二酸化炭素回収システム。   The carbon dioxide recovery system according to claim 1 or 2, wherein the moisture ratio of the absorption liquid is a moisture ratio of the regenerated absorption liquid supplied from the regeneration tower to the absorption tower. 燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させる吸収塔と、
前記吸収塔から二酸化炭素を吸収した吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを排出し、当該吸収液を再生する再生塔と、
前記吸収塔と前記再生塔との間に設けられ、前記再生塔から前記吸収塔に供給される再生された吸収液を熱源として、前記吸収塔から前記再生塔に供給される二酸化炭素を吸収した吸収液を加熱する再生熱交換器と、
前記再生塔から排出された排出ガスを凝縮し、生成された凝縮液を分離する凝縮器と、
外部への前記凝縮液の排出量を調整する調整弁と、
前記吸収塔に供給される前記燃焼排ガスの温度、流量、及び湿度を計測する第1のセンサと、
前記吸収塔から排出される燃焼排ガスの温度、流量、及び湿度を計測する第2のセンサと、
前記凝縮器から排出されるガスの温度、流量、及び湿度を計測する第3のセンサと、
前記第1、第2、及び第3のセンサの計測結果に基づいて前記排出量を算出し、前記調整弁を制御する制御信号を出力する演算制御部と、
を備える二酸化炭素回収システム。
An absorption tower for absorbing carbon dioxide contained in the combustion exhaust gas into the absorption liquid;
An absorption liquid that has absorbed carbon dioxide from the absorption tower is supplied, a carbon dioxide gas containing steam is discharged from the absorption liquid, and a regeneration tower that regenerates the absorption liquid;
The carbon dioxide supplied from the absorption tower to the regeneration tower is absorbed by the regenerated absorption liquid provided between the absorption tower and the regeneration tower and supplied from the regeneration tower to the absorption tower as a heat source. A regenerative heat exchanger for heating the absorption liquid;
A condenser for condensing the exhaust gas discharged from the regeneration tower and separating the generated condensate;
An adjusting valve for adjusting the amount of the condensate discharged to the outside;
A first sensor for measuring the temperature, flow rate, and humidity of the flue gas supplied to the absorption tower;
A second sensor for measuring the temperature, flow rate, and humidity of the flue gas discharged from the absorption tower;
A third sensor for measuring the temperature, flow rate and humidity of the gas discharged from the condenser;
An arithmetic control unit that calculates the discharge amount based on the measurement results of the first, second, and third sensors and outputs a control signal that controls the regulating valve;
A carbon dioxide recovery system.
燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させる吸収塔と、
前記吸収塔から二酸化炭素を吸収した吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを排出し、当該吸収液を再生する再生塔と、
前記吸収塔と前記再生塔との間に設けられ、前記再生塔から前記吸収塔に供給される再生された吸収液を熱源として、前記吸収塔から前記再生塔に供給される二酸化炭素を吸収した吸収液を加熱する再生熱交換器と、
前記再生塔から排出された排出ガスを凝縮し、生成された凝縮液を分離する凝縮器と、
外部への前記凝縮液の排出量を調整する調整弁と、
前記吸収液の温度を計測する第1のセンサと、
前記吸収液の密度、粘度、表面張力、熱伝導度、及び比熱の少なくともいずれか1つの物性値を計測する第2のセンサと、
所定濃度の吸収液における温度と前記物性値との対応関係と、前記第1及び第2のセンサの計測結果とに基づいて前記排出量を算出し、前記調整弁を制御する制御信号を出力する演算制御部と、
を備える二酸化炭素回収システム。
An absorption tower for absorbing carbon dioxide contained in the combustion exhaust gas into the absorption liquid;
An absorption liquid that has absorbed carbon dioxide from the absorption tower is supplied, a carbon dioxide gas containing steam is discharged from the absorption liquid, and a regeneration tower that regenerates the absorption liquid;
The carbon dioxide supplied from the absorption tower to the regeneration tower is absorbed by the regenerated absorption liquid provided between the absorption tower and the regeneration tower and supplied from the regeneration tower to the absorption tower as a heat source. A regenerative heat exchanger for heating the absorption liquid;
A condenser for condensing the exhaust gas discharged from the regeneration tower and separating the generated condensate;
An adjusting valve for adjusting the amount of the condensate discharged to the outside;
A first sensor for measuring the temperature of the absorbing liquid;
A second sensor that measures at least one physical property value of the density, viscosity, surface tension, thermal conductivity, and specific heat of the absorbing liquid;
The discharge amount is calculated on the basis of the correspondence between the temperature and the physical property value in the absorbing liquid having a predetermined concentration and the measurement results of the first and second sensors, and a control signal for controlling the adjustment valve is output. An arithmetic control unit;
A carbon dioxide recovery system.
JP2009145041A 2009-06-18 2009-06-18 Carbon dioxide recovery system Active JP5331587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145041A JP5331587B2 (en) 2009-06-18 2009-06-18 Carbon dioxide recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145041A JP5331587B2 (en) 2009-06-18 2009-06-18 Carbon dioxide recovery system

Publications (2)

Publication Number Publication Date
JP2011000529A JP2011000529A (en) 2011-01-06
JP5331587B2 true JP5331587B2 (en) 2013-10-30

Family

ID=43558955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145041A Active JP5331587B2 (en) 2009-06-18 2009-06-18 Carbon dioxide recovery system

Country Status (1)

Country Link
JP (1) JP5331587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106943844A (en) * 2015-12-21 2017-07-14 株式会社东芝 The method of the operation of carbon dioxide separation and acquisition equipment and control carbon dioxide separation and acquisition equipment

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0812486D0 (en) 2008-07-08 2009-04-29 Bae Systems Plc Electrical Power Sources
JP5693295B2 (en) 2011-02-28 2015-04-01 三菱重工業株式会社 CO2 recovery device and operation control method of CO2 recovery device
JP2012196603A (en) * 2011-03-18 2012-10-18 Ihi Corp Method and device for recovering carbon dioxide
JP5724600B2 (en) * 2011-05-10 2015-05-27 株式会社Ihi Carbon dioxide recovery method and recovery apparatus
JP5741690B2 (en) * 2011-07-13 2015-07-01 株式会社Ihi Carbon dioxide recovery method and recovery apparatus
JP5720463B2 (en) * 2011-07-21 2015-05-20 株式会社Ihi Carbon dioxide recovery method and recovery apparatus
KR101961609B1 (en) * 2011-09-30 2019-03-26 한국전력공사 High efficiency system and method for acidic gas absorption
JP5767609B2 (en) * 2012-06-25 2015-08-19 株式会社東芝 Carbon dioxide recovery device and operation method thereof
CN105517690B (en) * 2013-09-19 2019-05-07 陶氏环球技术有限责任公司 Optimization for the regenerated stripper feed configuration of richness/lean solvent
JP6392091B2 (en) 2014-11-14 2018-09-19 株式会社東芝 Carbon dioxide recovery device and carbon dioxide recovery method
JP6581471B2 (en) * 2015-11-05 2019-09-25 三菱重工エンジニアリング株式会社 Carbon dioxide concentration analysis system for amine absorption liquid, carbon dioxide recovery system, and operation method thereof
JP6871720B2 (en) * 2016-11-14 2021-05-12 三菱パワー株式会社 Carbon dioxide absorber
JP7431708B2 (en) * 2020-09-11 2024-02-15 株式会社東芝 Acid gas removal control device, acid gas removal control method, and acid gas removal device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1169175A (en) * 1965-10-19 1969-10-29 Power Gas Ltd Improvements in or relating to the Removal of Acidic Gases from Gaseous Mixtures
JP2948426B2 (en) * 1992-11-17 1999-09-13 関西電力株式会社 Method for controlling amine compound concentration in carbon dioxide absorbing solution
JP3217742B2 (en) * 1997-11-11 2001-10-15 関西電力株式会社 Method and apparatus for controlling carbon dioxide absorbing liquid
CA2685923C (en) * 2007-05-29 2013-09-17 University Of Regina Method and absorbent composition for recovering a gaseous component from a gas stream

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106943844A (en) * 2015-12-21 2017-07-14 株式会社东芝 The method of the operation of carbon dioxide separation and acquisition equipment and control carbon dioxide separation and acquisition equipment
US10786781B2 (en) 2015-12-21 2020-09-29 Kabushiki Kaisha Toshiba Carbon dioxide separation and capture apparatus and method of controlling operation of carbon dioxide separation and capture apparatus
CN106943844B (en) * 2015-12-21 2021-03-12 株式会社东芝 Carbon dioxide separation and capture device and method of controlling operation of carbon dioxide separation and capture device

Also Published As

Publication number Publication date
JP2011000529A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5331587B2 (en) Carbon dioxide recovery system
JP5582960B2 (en) Carbon dioxide separation and recovery system and reboiler heat input measurement method
JP5479949B2 (en) Measuring device, measuring method, and carbon dioxide recovery system
JP6157925B2 (en) Carbon dioxide separation and recovery device and operation method thereof
JP5383339B2 (en) Concentration management method for CO2 absorbent used in CO2 recovery equipment
US10173166B2 (en) Carbon dioxide recovering apparatus and method for operating the same
JP2010201379A (en) Carbon dioxide recovery system
JP5349221B2 (en) Carbon dioxide recovery device
JP6659351B2 (en) Carbon dioxide separation and recovery system and operation control method thereof
JP5741690B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6284383B2 (en) CO2 recovery device and CO2 recovery method
JP6507089B2 (en) Carbon dioxide recovery system
JP5431005B2 (en) Carbon dioxide recovery system
JP6200338B2 (en) CO2 recovery device and CO2 recovery method
JP2016093788A (en) Carbon dioxide recovery device and carbon dioxide recovery method
JP6280475B2 (en) Carbon dioxide separation and recovery apparatus and operation control method thereof
JP2016016393A (en) Co2 recovery device and co2 recovery method
JP2024073211A (en) Carbon dioxide capture device and method for operating the carbon dioxide capture device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350