JP5720463B2 - Carbon dioxide recovery method and recovery apparatus - Google Patents

Carbon dioxide recovery method and recovery apparatus Download PDF

Info

Publication number
JP5720463B2
JP5720463B2 JP2011159634A JP2011159634A JP5720463B2 JP 5720463 B2 JP5720463 B2 JP 5720463B2 JP 2011159634 A JP2011159634 A JP 2011159634A JP 2011159634 A JP2011159634 A JP 2011159634A JP 5720463 B2 JP5720463 B2 JP 5720463B2
Authority
JP
Japan
Prior art keywords
absorption
carbon dioxide
liquid
tower
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011159634A
Other languages
Japanese (ja)
Other versions
JP2013022514A (en
Inventor
真也 奥野
真也 奥野
至高 中村
至高 中村
篤志 村上
篤志 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011159634A priority Critical patent/JP5720463B2/en
Publication of JP2013022514A publication Critical patent/JP2013022514A/en
Application granted granted Critical
Publication of JP5720463B2 publication Critical patent/JP5720463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

本発明は、燃焼ガスなどの二酸化炭素を含むガスから二酸化炭素を分離回収し、清浄なガスを大気に還元するための二酸化炭素の回収方法及び回収装置に関する。   The present invention relates to a carbon dioxide recovery method and recovery device for separating and recovering carbon dioxide from a gas containing carbon dioxide such as combustion gas and reducing clean gas to the atmosphere.

火力発電所や製鉄所、ボイラーなどの設備では、石炭、重油、超重質油などの燃料を多量に使用しており、燃料の燃焼によって排出される硫黄酸化物、窒素酸化物及び二酸化炭素は、大気汚染防止や地球環境保全の見地から放出に関する量的及び濃度的制限が必要とされている。近年、二酸化炭素は地球温暖化の主原因として問題視され、世界的にも排出を抑制する動きが活発化している。このため、燃焼排ガスやプロセス排ガスの二酸化炭素を大気中に放出せずに回収・貯蔵を可能とするために、様々な研究が精力的に進められ、二酸化炭素の回収方法として、例えば、PSA(圧力スウィング)法、膜分離濃縮法や、塩基性化合物による反応吸収を利用する化学吸収法などが知られている。   Facilities such as thermal power plants, steelworks, and boilers use large amounts of fuel such as coal, heavy oil, and super heavy oil. Sulfur oxides, nitrogen oxides, and carbon dioxide emitted by the combustion of fuel are There is a need for quantitative and concentration restrictions on emissions from the perspective of air pollution prevention and global environmental protection. In recent years, carbon dioxide has been seen as a major cause of global warming, and movements to suppress emissions have become active worldwide. For this reason, in order to enable the recovery and storage of carbon dioxide from combustion exhaust gases and process exhaust gases without releasing them into the atmosphere, various researches have been vigorously advanced. As a carbon dioxide recovery method, for example, PSA ( Known are pressure swinging), membrane separation and concentration, and chemical absorption using reaction absorption by basic compounds.

化学吸収法においては、主にアルカノールアミン系の塩基性化合物を吸収剤として用い、その処理プロセスでは、概して、吸収剤を含む水性液を吸収液として、ガスに含まれる二酸化炭素を吸収液に吸収させる吸収工程と、吸収された二酸化炭素を吸収液から放出させて吸収液を再生する再生工程とを交互に繰り返すように吸収液を循環させる(例えば、下記特許文献1参照)。再生工程においては、二酸化炭素を放出させるための加熱が必要であり、二酸化炭素回収の操業費用を削減するには、再生のために加熱/冷却に要するエネルギーを低減することが重要となる。   In the chemical absorption method, mainly alkanolamine-based basic compounds are used as the absorbent. In the treatment process, an aqueous liquid containing the absorbent is generally used as the absorbent, and carbon dioxide contained in the gas is absorbed into the absorbent. The absorbing solution is circulated so as to alternately repeat the absorbing step to be performed and the regeneration step of regenerating the absorbing solution by releasing the absorbed carbon dioxide from the absorbing solution (see, for example, Patent Document 1 below). In the regeneration process, heating for releasing carbon dioxide is necessary, and in order to reduce the operating cost of carbon dioxide recovery, it is important to reduce the energy required for heating / cooling for regeneration.

特許文献1に示されるように、再生工程において二酸化炭素を放出した高温の吸収液(リーン液)を、吸収工程において二酸化炭素を吸収した吸収液(リッチ液)と熱交換することによって、熱エネルギーを回収して再生工程で再利用することができる。   As shown in Patent Document 1, heat energy is exchanged between a high-temperature absorption liquid (lean liquid) that has released carbon dioxide in the regeneration process and an absorption liquid (rich liquid) that has absorbed carbon dioxide in the absorption process. Can be recovered and reused in the regeneration process.

特開2009−214089号公報JP 2009-214089 A

吸収液間の熱交換において、熱交換後のリッチ液と熱交換前のリーン液との温度差が少ない程、熱回収効率が良く、再生に要するエネルギーを低減することができる。しかし、熱交換率の高い構造の熱交換器を用いて、リッチ液を可能な限り高い温度で再生工程に供給しようとすると、吸収液中の二酸化炭素のガス圧が上昇して熱交換器内において二酸化炭素の起泡が起こり、ガス発生による伝熱効率を低下させたり、気化による温度低下を引き起こし易い。   In heat exchange between absorbing liquids, the smaller the temperature difference between the rich liquid after heat exchange and the lean liquid before heat exchange, the better the heat recovery efficiency and the lower the energy required for regeneration. However, if a rich liquid is supplied to the regeneration process at the highest possible temperature using a heat exchanger with a high heat exchange rate, the gas pressure of carbon dioxide in the absorbent rises and the heat In this case, carbon dioxide foaming occurs, and heat transfer efficiency due to gas generation is likely to be reduced, or temperature reduction due to vaporization is likely to occur.

本発明の課題は、上述の問題を解決し、二酸化炭素の回収に用いる吸収液の熱交換においてガス発生を抑制し、再生工程へ投入する吸収液をより高い温度で安定的に供給可能な、エネルギー効率が向上する二酸化炭素の回収方法及び回収装置を提供することである。   The problem of the present invention is to solve the above-mentioned problems, suppress gas generation in heat exchange of the absorption liquid used for carbon dioxide recovery, and stably supply the absorption liquid to be supplied to the regeneration process at a higher temperature. It is to provide a carbon dioxide recovery method and a recovery device that improve energy efficiency.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、吸収液の熱交換工程から再生工程における圧力を効果的に調整することを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research and found that the pressure in the regeneration process is effectively adjusted from the heat exchange process of the absorbing liquid, and the present invention has been completed. .

本発明の一態様によれば、二酸化炭素の回収装置は、二酸化炭素を含有するガスを吸収液に接触させて前記吸収液に二酸化炭素を吸収させる吸収塔と、前記吸収塔で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生塔と、前記吸収塔から前記再生塔へ吸収液を供給する供給路と、前記再生塔から前記吸収塔へ吸収液を還流させる還流路と、前記吸収塔から前記再生塔へ供給される前記供給路の吸収液と前記再生塔から前記吸収塔へ還流される前記還流路の吸収液との間で熱交換する熱交換器と、前記供給路において前記熱交換器と前記再生塔との間に設けられる背圧弁を有し、前記吸収塔から前記再生塔へ供給される吸収液が加圧状態で前記熱交換器に供給されるように前記吸収液を加圧する加圧手段と、前記加圧手段による加圧において余剰の圧力を逃すための、前記供給路から分岐する退避路と、前記退避路に設けられる流量調節弁とを有し、前記流量調節弁は、前記供給路における吸収液の圧力に応じて開度を調整するように構成されることを要旨とする。
又、本発明の他の態様によれば、二酸化炭素の回収装置は、二酸化炭素を含有するガスを吸収液に接触させて前記吸収液に二酸化炭素を吸収させる吸収塔と、前記吸収塔で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生塔と、前記吸収塔から前記再生塔へ吸収液を供給する供給路と、前記再生塔から前記吸収塔へ吸収液を還流させる還流路と、前記吸収塔から前記再生塔へ供給される前記供給路の吸収液と前記再生塔から前記吸収塔へ還流される前記還流路の吸収液との間で熱交換する熱交換器と、前記供給路において前記熱交換器と前記再生塔との間に設けられる背圧弁を有し、前記吸収塔から前記再生塔へ供給される吸収液が加圧状態で前記熱交換器に供給されるように前記吸収液を加圧する加圧手段と、前記加圧手段による加圧において余剰の圧力を逃すための、前記供給路から分岐する退避路と、前記退避路に設けられる背圧弁とを有し、前記熱交換器に供給される前記吸収液の加圧状態は、前記供給路の背圧弁と前記退避路の背圧弁とによって調節されることを要旨とする。
According to one aspect of the present invention, a carbon dioxide recovery device includes an absorption tower in which a gas containing carbon dioxide is brought into contact with an absorption liquid so that the absorption liquid absorbs carbon dioxide, and the absorption tower absorbs carbon dioxide. A regeneration tower that regenerates the absorption liquid by heating the absorption liquid to release carbon dioxide from the absorption liquid, a supply path that supplies the absorption liquid from the absorption tower to the regeneration tower, and the absorption from the regeneration tower. A reflux path for refluxing the absorption liquid to the tower, an absorption liquid in the supply path supplied from the absorption tower to the regeneration tower, and an absorption liquid in the reflux path refluxed from the regeneration tower to the absorption tower. A heat exchanger for exchanging heat, and a back pressure valve provided between the heat exchanger and the regeneration tower in the supply path, wherein the absorption liquid supplied from the absorption tower to the regeneration tower is in a pressurized state. The absorbent to be supplied to the heat exchanger. And pressurizing means for pressurizing said to miss the pressure excess in the pressurization by the pressurizing means, possess the evacuation path branched from the supply passage, and a flow control valve provided in the evacuation passage, the flow regulating valve Is summarized in that the opening degree is adjusted according to the pressure of the absorbing liquid in the supply path .
According to another aspect of the present invention, a carbon dioxide recovery apparatus includes an absorption tower for bringing a gas containing carbon dioxide into contact with an absorption liquid to cause the absorption liquid to absorb carbon dioxide, and a carbon dioxide in the absorption tower. A regeneration tower for regenerating the absorbing liquid by heating the absorbing liquid that has absorbed carbon to release carbon dioxide from the absorbing liquid; a supply path for supplying the absorbing liquid from the absorbing tower to the regenerating tower; and the regenerating tower A reflux path for refluxing the absorption liquid from the absorption tower to the absorption tower, an absorption liquid in the supply path supplied from the absorption tower to the regeneration tower, and an absorption liquid in the reflux path refluxed from the regeneration tower to the absorption tower; And a back pressure valve provided between the heat exchanger and the regeneration tower in the supply path, and an absorption liquid supplied from the absorption tower to the regeneration tower is added to the heat exchanger. The suction so as to be supplied to the heat exchanger under pressure. A pressurizing means for pressurizing the liquid, a retreat path branched from the supply path for releasing excess pressure in pressurization by the pressurizing means, and a back pressure valve provided in the retreat path, and the heat The gist is that the pressurized state of the absorbent supplied to the exchanger is adjusted by a back pressure valve in the supply path and a back pressure valve in the retreat path.

又、本発明の一態様によれば、二酸化炭素の回収方法は、二酸化炭素を含有するガスを吸収液に接触させて前記吸収液に二酸化炭素を吸収させる吸収工程と、前記吸収工程で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生工程と、前記吸収工程から前記再生工程へ供給される吸収液と、前記再生工程から前記吸収工程へ還流される吸収液との間で熱交換する熱交換工程とを有し、前記熱交換工程において、前記吸収工程から前記再生工程へ供給される吸収液は、加圧状態で熱交換され、前記加圧状態における余剰の圧力を逃すために、前記吸収工程から前記再生工程へ供給される吸収液を分岐する退避路を用いて、前記加圧状態の吸収液の圧力に応じて前記退避路へ退避する吸収液の流量を変化させることを要旨とする。
又、本発明の他の態様によれば、二酸化炭素の回収方法は、二酸化炭素を含有するガスを吸収液に接触させて前記吸収液に二酸化炭素を吸収させる吸収工程と、前記吸収工程で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生工程と、前記吸収工程から前記再生工程へ供給される吸収液と、前記再生工程から前記吸収工程へ還流される吸収液との間で熱交換する熱交換工程とを有し、前記熱交換工程において、前記吸収工程から前記再生工程へ供給される吸収液は、加圧状態で熱交換され、前記吸収工程から前記再生工程へ供給される吸収液を分岐する退避路を用いて、前記退避路へ退避する吸収液の背圧と、前記吸収工程から前記再生工程へ供給される吸収液の背圧とによって前記加圧状態を調節して余剰の圧力を逃すことを要旨とする。
According to another aspect of the present invention, a method for recovering carbon dioxide includes an absorption step in which a gas containing carbon dioxide is brought into contact with an absorption liquid to cause the absorption liquid to absorb carbon dioxide, and carbon dioxide is absorbed in the absorption step. Heating the absorption liquid that has absorbed the carbon dioxide to release carbon dioxide from the absorption liquid to regenerate the absorption liquid; the absorption liquid supplied from the absorption process to the regeneration process; and the absorption from the regeneration process A heat exchanging process for exchanging heat with the absorbing liquid refluxed to the process. In the heat exchanging process, the absorbing liquid supplied from the absorbing process to the regeneration process is heat-exchanged in a pressurized state. In order to release the excess pressure in the pressurized state, the retraction is performed according to the pressure of the absorbent in the pressurized state using a retreat path that branches the absorbing liquid supplied from the absorption step to the regeneration step. Absorbing liquid evacuated to the road And gist Rukoto varying the flow rate.
According to another aspect of the present invention, a method for recovering carbon dioxide includes: an absorption step in which a gas containing carbon dioxide is brought into contact with an absorption liquid to absorb the carbon dioxide in the absorption liquid; A regeneration step of heating the absorption liquid that has absorbed carbon to release carbon dioxide from the absorption liquid to regenerate the absorption liquid; an absorption liquid supplied from the absorption process to the regeneration process; and A heat exchange step for exchanging heat with the absorption liquid refluxed to the absorption step, and in the heat exchange step, the absorption liquid supplied from the absorption step to the regeneration step is heat exchanged in a pressurized state. The back pressure of the absorption liquid that retreats to the retraction path using the retraction path that branches the absorption liquid that is supplied from the absorption process to the regeneration process, and the absorption liquid that is supplied from the absorption process to the regeneration process Of back pressure and by And summarized in that miss the pressure of surplus by adjusting the pressure.

本発明によれば、ガスに含まれる二酸化炭素を回収するプロセスにおいて、吸収液の熱交換における起泡及びガス発生を抑制して、効率よく熱交換することによってより高い温度で再生工程へ吸収液を投入できるので、吸収液の再生に要するエネルギーを低減でき、運転コストの軽減に有効な二酸化炭素の回収方法及び回収装置が提供される。特殊な装備や高価な装置を必要とせず、一般的な設備を利用して簡易に実施できるので、経済的に有利である。   According to the present invention, in the process of recovering carbon dioxide contained in the gas, the absorption liquid is transferred to the regeneration process at a higher temperature by suppressing the foaming and gas generation in the heat exchange of the absorption liquid and efficiently exchanging heat. Therefore, it is possible to reduce the energy required to regenerate the absorbing solution, and to provide a carbon dioxide recovery method and recovery device that are effective in reducing operation costs. It is economically advantageous because it can be carried out easily using general equipment without requiring special equipment or expensive equipment.

吸収液に加えられる圧力とガスの発生割合との関係を示すグラフ。The graph which shows the relationship between the pressure added to an absorption liquid, and the generation rate of gas. 本発明の第1の実施形態に係る二酸化炭素の回収装置を示す概略構成図。1 is a schematic configuration diagram showing a carbon dioxide recovery apparatus according to a first embodiment of the present invention. 本発明の第2の実施形態に係る二酸化炭素の回収装置を示す概略構成図。The schematic block diagram which shows the collection | recovery apparatus of the carbon dioxide which concerns on the 2nd Embodiment of this invention.

化学吸収法による二酸化炭素の吸収プロセスにおいては、ガスに含まれる二酸化炭素を低温の吸収液に吸収させる吸収工程と、吸収された二酸化炭素を吸収液から放出させて吸収液を再生する高温の再生工程との間で吸収液を循環させて、吸収工程と再生工程とを交互に繰り返す。再生工程において二酸化炭素を放出して再生した高温の吸収液(リーン液)を、吸収工程で二酸化炭素を吸収した吸収液(リッチ液)と熱交換することによって、熱エネルギーが回収され、加熱されたリーン液が再生工程に供給される。エネルギー効率の観点から、熱交換器におけるリーン液の入口温度とリッチ液の出口温度との温度差が少ないことが望ましく、この差は従来においては10℃前後と言われている。この温度差は、熱交換器における効率を高めることによって縮小可能であるが、リッチ液の温度上昇に伴って二酸化炭素が起泡して伝熱の障害となり、温度差の縮小の妨げとなる。   In the absorption process of carbon dioxide by the chemical absorption method, an absorption process in which carbon dioxide contained in the gas is absorbed by a low-temperature absorption liquid, and a high-temperature regeneration in which the absorbed carbon dioxide is released from the absorption liquid and the absorption liquid is regenerated. The absorption liquid is circulated between the processes, and the absorption process and the regeneration process are alternately repeated. Heat energy is recovered and heated by exchanging heat from the high-temperature absorption liquid (lean liquid) regenerated by releasing carbon dioxide in the regeneration process with the absorption liquid (rich liquid) that has absorbed carbon dioxide in the absorption process. The lean liquid is supplied to the regeneration process. From the viewpoint of energy efficiency, it is desirable that the temperature difference between the inlet temperature of the lean liquid and the outlet temperature of the rich liquid in the heat exchanger is small, and this difference is conventionally said to be around 10 ° C. This temperature difference can be reduced by increasing the efficiency in the heat exchanger, but carbon dioxide bubbles as the temperature of the rich liquid rises, hindering heat transfer and hindering the reduction of the temperature difference.

本発明においては、上記の点を考慮して、リッチ液を加圧状態で熱交換器に投入して、リッチ液の温度上昇時における起泡を抑制する。これにより、熱交換器におけるリーン液の温度上昇が容易になり、熱交換器の効率向上によってリーン液の入口温度とリッチ液の出口温度との温度差を10℃未満に縮小することができる。リッチ液に加えられた圧力は、再生工程に投入する際に開放することによって、二酸化炭素が効率的に放出され、熱交換器でリッチ液に与えられる熱エネルギーは効率的に再生工程に供給される。   In the present invention, in consideration of the above points, the rich liquid is introduced into the heat exchanger in a pressurized state to suppress foaming when the temperature of the rich liquid rises. Thereby, the temperature rise of the lean liquid in the heat exchanger is facilitated, and the temperature difference between the inlet temperature of the lean liquid and the outlet temperature of the rich liquid can be reduced to less than 10 ° C. by improving the efficiency of the heat exchanger. The pressure applied to the rich liquid is released when it is put into the regeneration process, so that carbon dioxide is efficiently released, and the heat energy given to the rich liquid by the heat exchanger is efficiently supplied to the regeneration process. The

二酸化炭素を吸収した吸収液は、温度上昇に伴って二酸化炭素を放出し始めるが、吸収液における二酸化炭素の吸収性能及び放出性能は、吸収液に含まれる吸収剤の種類や組成割合によって異なるので、リッチ液の熱交換器出口温度におけるガスの発生を調べるために、2種の吸収液を用いて加熱時の吸収液から発生する二酸化炭素ガスを測定すると、図1に示すようなグラフが得られる。この測定は、吸収液として30wt%MEA(モノエタノールアミン)水溶液又はPZ/MDEA水溶液(ピペラジン/N−メチルジエタノールアミン)を用いて、二酸化炭素を50〜100[g/L]の割合で吸収させた吸収液を100〜115℃に加熱した時に発生する二酸化炭素ガスの割合[mol%]を、吸収液に加える圧力を変化させて調べたものであり、MEA水溶液は、一般的に使用される吸収液であり、PZ/MDEA水溶液は、放散性がよい吸収液の1つである。何れの吸収液においても、常圧においてはガスが発生するが、加圧によってガスの発生を抑制可能である。再生工程における吸収液は、概して沸点近辺に加熱され、上記2種の吸収液における沸点は100℃程度(常圧)〜130℃程度(100kPaG)となるので、吸収液に加える圧力を150kPaG以上、好ましくは200kPaG以上、より好ましくは250kPaG以上に設定すると、熱交換器でのガス発生を抑制することができ、熱交換器におけるリッチ液の出口温度をリーン液の入口温度(再生温度)に近づける上で有効である。   Absorbing liquid that has absorbed carbon dioxide begins to release carbon dioxide as the temperature rises, but the absorption performance and release performance of carbon dioxide in the absorbing liquid vary depending on the type and composition ratio of the absorbent contained in the absorbing liquid. In order to investigate the generation of gas at the heat exchanger outlet temperature of the rich liquid, when the carbon dioxide gas generated from the absorbing liquid during heating is measured using two kinds of absorbing liquid, a graph as shown in FIG. 1 is obtained. It is done. In this measurement, 30 wt% MEA (monoethanolamine) aqueous solution or PZ / MDEA aqueous solution (piperazine / N-methyldiethanolamine) was used as an absorbing solution, and carbon dioxide was absorbed at a rate of 50 to 100 [g / L]. The ratio [mol%] of carbon dioxide gas generated when the absorbing solution is heated to 100 to 115 ° C. was examined by changing the pressure applied to the absorbing solution. The PZ / MDEA aqueous solution is one of the absorbing liquids having good diffusibility. In any absorption liquid, gas is generated at normal pressure, but generation of gas can be suppressed by pressurization. The absorption liquid in the regeneration step is generally heated near the boiling point, and the boiling points of the two types of absorption liquid are about 100 ° C. (normal pressure) to about 130 ° C. (100 kPaG), so the pressure applied to the absorption liquid is 150 kPaG or more, When it is preferably set to 200 kPaG or higher, more preferably 250 kPaG or higher, gas generation in the heat exchanger can be suppressed, and the outlet temperature of the rich liquid in the heat exchanger is brought close to the inlet temperature (regeneration temperature) of the lean liquid. It is effective in.

又、加圧状態で熱交換を行ったリッチ液を再生塔に投入した時に、再生塔から排出される水蒸気及び二酸化炭素を含んだガスの温度について調べると、常圧で熱交換した場合に比べて低くなることが判明した。具体的には、PZ/MDEA水溶液を吸収液として用いて、二酸化炭素を吸収させた吸収液を50℃に加熱して再生塔に投入する場合の再生塔からの排出ガスの温度は、加熱時の圧力が常圧の場合に91.3℃であるのに対し、200kPaG以上の圧力下で加熱した場合には88.1℃に低下する。このような温度低下は、熱交換器における加熱状態で再生反応が進行し、再生塔への投入時に気化潜熱として消費可能なエネルギーの割合が増加するためと考えられ、再生塔から排出されるガスの凝縮が容易になる点で有利である。   In addition, when the rich liquid that had been subjected to heat exchange in a pressurized state was introduced into the regeneration tower, the temperature of the gas containing water vapor and carbon dioxide discharged from the regeneration tower was examined, compared with the case of heat exchange at normal pressure. Turned out to be low. Specifically, when the PZ / MDEA aqueous solution is used as an absorption liquid and the absorption liquid in which carbon dioxide has been absorbed is heated to 50 ° C. and charged into the regeneration tower, the temperature of the exhaust gas from the regeneration tower is When it is normal pressure, it is 91.3 ° C., but when heated under a pressure of 200 kPaG or more, it drops to 88.1 ° C. Such a temperature decrease is thought to be due to the fact that the regeneration reaction proceeds in the heating state in the heat exchanger, and the proportion of energy that can be consumed as latent heat of vaporization when it is introduced into the regeneration tower increases. This is advantageous in that it is easy to condense.

以下に、上述の構成を用いた本発明の二酸化炭素の回収方法及び回収装置について、図面を参照して詳細に説明する。尚、図において破線で記載する接続は電気的接続を示す。   The carbon dioxide recovery method and recovery apparatus of the present invention using the above-described configuration will be described in detail below with reference to the drawings. In addition, the connection described with a broken line in a figure shows an electrical connection.

図2は、本発明の二酸化炭素の回収方法及びそれを実施する回収装置の一実施形態を示す。回収装置1は、二酸化炭素を含有するガスGを吸収液に接触させて二酸化炭素を吸収液に吸収させる吸収塔10と、二酸化炭素を吸収した吸収液を加熱して二酸化炭素を吸収液から放出させ、吸収液を再生する再生塔20とを有する。更に、吸収塔10に供給されるガスGを二酸化炭素の吸収に適した低温に維持し易いように冷却塔30が設けられているので、燃焼排ガスやプロセス排ガスなどの様々なガスの取扱いが可能であり、回収装置1に供給されるガスGについて特に制限はない。吸収塔10、再生塔20及び冷却塔30は、各々、向流型気液接触装置として構成され、接触面積を大きくするための充填材11,21,31を各々内部に保持している。充填材11,21,31は、概して、ステンレス鋼、炭素鋼等の鉄系金属材料製のものが用いられるが、特に限定されず、処理温度における耐久性及び耐腐食性を有する素材で、所望の接触面積を提供し得る形状のものを適宜選択するとよい。吸収液として、アルカノールアミン類等の二酸化炭素に親和性を有する化合物を吸収剤として含有する水性液が用いられる。   FIG. 2 shows an embodiment of the carbon dioxide recovery method of the present invention and a recovery apparatus for implementing the method. The recovery device 1 is configured to bring the gas G containing carbon dioxide into contact with the absorption liquid and absorb the carbon dioxide into the absorption liquid, and heat the absorption liquid that has absorbed the carbon dioxide to release the carbon dioxide from the absorption liquid. And a regeneration tower 20 for regenerating the absorbent. Furthermore, since the cooling tower 30 is provided so that the gas G supplied to the absorption tower 10 can be easily maintained at a low temperature suitable for absorption of carbon dioxide, various gases such as combustion exhaust gas and process exhaust gas can be handled. The gas G supplied to the recovery device 1 is not particularly limited. The absorption tower 10, the regeneration tower 20, and the cooling tower 30 are each configured as a countercurrent gas-liquid contact device, and hold fillers 11, 21, 31 for increasing the contact area. The fillers 11, 21, 31 are generally made of ferrous metal materials such as stainless steel and carbon steel, but are not particularly limited, and are materials having durability and corrosion resistance at the processing temperature. It is preferable to select a shape that can provide the contact area. As the absorbing liquid, an aqueous liquid containing a compound having an affinity for carbon dioxide such as alkanolamines as an absorbent is used.

冷却塔30底部から供給されるガスGは、塔内に保持される充填材31を通過し、冷却塔30の上部から供給される冷却水によって冷却された後に、吸収塔10に供給される。これにより、冷却温度において飽和湿度以下のガスGが吸収塔10に供給され、ガスGに起因する吸収塔10の温度上昇が防止される。ガスGを冷却して温度上昇した冷却水は、ポンプ32によって水冷式冷却器33に送られ、冷却された後に冷却塔30に還流される。吸収塔10底部に接続される送気管18に温度センサーを設けて、検出温度に応じてポンプ32の駆動を制御するように構成すると、ガスGの温度が高い時に、冷却水の流量増加によって熱交換率を上昇させてガスGの温度を低下させることができる。   The gas G supplied from the bottom of the cooling tower 30 passes through the filler 31 held in the tower, is cooled by the cooling water supplied from the upper part of the cooling tower 30, and is then supplied to the absorption tower 10. Thereby, the gas G below the saturation humidity at the cooling temperature is supplied to the absorption tower 10, and the temperature rise of the absorption tower 10 due to the gas G is prevented. The cooling water whose temperature has risen by cooling the gas G is sent to the water-cooled cooler 33 by the pump 32, cooled, and then returned to the cooling tower 30. If a temperature sensor is provided in the air pipe 18 connected to the bottom of the absorption tower 10 and the drive of the pump 32 is controlled according to the detected temperature, the heat is increased by increasing the flow rate of the cooling water when the temperature of the gas G is high. The temperature of the gas G can be lowered by increasing the exchange rate.

冷却塔30を通過した二酸化炭素を含んだガスGは、吸収塔10の下部から供給される。一方、吸収液は、吸収塔10の上部から供給され、ガスG及び吸収液が充填材11を通過する間に気液接触してガスG中の二酸化炭素が吸収液に吸収される。二酸化炭素を吸収した吸収液(リッチ液)A1は、吸収塔10底部に貯溜され、ポンプ12によって、吸収塔10底部と再生塔20上部とを接続する供給路16を通じて再生塔20へ供給される。二酸化炭素が除去されたガスG’は、吸収塔10頂部から排出される。   The gas G containing carbon dioxide that has passed through the cooling tower 30 is supplied from the lower part of the absorption tower 10. On the other hand, the absorption liquid is supplied from the upper part of the absorption tower 10, and gas-liquid contact is made while the gas G and the absorption liquid pass through the filler 11, so that carbon dioxide in the gas G is absorbed by the absorption liquid. The absorption liquid (rich liquid) A1 that has absorbed carbon dioxide is stored at the bottom of the absorption tower 10 and is supplied to the regeneration tower 20 by a pump 12 through a supply path 16 that connects the bottom of the absorption tower 10 and the top of the regeneration tower 20. . The gas G ′ from which carbon dioxide has been removed is discharged from the top of the absorption tower 10.

吸収液が二酸化炭素を吸収することによって発熱して液温が上昇するので、必要に応じて、ガスG’に含まれ得る水蒸気等を凝縮するための冷却凝縮部13が吸収塔10頂部に設けられ、これにより、水蒸気等が塔外へ漏出するのをある程度抑制できる。これを更に確実にするために、吸収塔外に付設される冷却器14及びポンプ15を有し、冷却凝縮部13下に貯留される凝縮水の一部(塔内のガスG’を含んでも良い)は、ポンプ15によって冷却器14との間で循環させる。冷却器14で冷却されて塔頂部に供給される凝縮水等は冷却凝縮部13を低温に維持し、冷却凝縮部13を通過するガスG’を確実に冷却する。冷却凝縮部13で凝縮する水は充填材11に流下し、塔内の吸収液の組成変動が補整される。塔外へ排出されるガスG’の温度は60℃程度以下が好ましく、より好ましくは45℃以下となるようにポンプ15の駆動が制御される。   Since the absorption liquid absorbs carbon dioxide and generates heat, and the liquid temperature rises, a cooling condensing unit 13 for condensing water vapor or the like that can be contained in the gas G ′ is provided at the top of the absorption tower 10 as necessary. Thereby, it can suppress to some extent that water vapor | steam etc. leak out of a tower. In order to further ensure this, there is a cooler 14 and a pump 15 attached outside the absorption tower, and a part of the condensed water stored under the cooling condenser 13 (including the gas G ′ in the tower). Is good) is circulated between the cooler 14 by the pump 15. Condensed water or the like cooled by the cooler 14 and supplied to the top of the tower maintains the cooling condensing unit 13 at a low temperature and reliably cools the gas G ′ passing through the cooling condensing unit 13. The water condensed in the cooling and condensing unit 13 flows down to the packing material 11, and the composition fluctuation of the absorbing liquid in the tower is compensated. The driving of the pump 15 is controlled so that the temperature of the gas G ′ discharged to the outside of the tower is preferably about 60 ° C. or less, more preferably 45 ° C. or less.

吸収塔10の吸収液A1は、供給路16から再生塔20の上部に供給され、充填材21上を流下して底部に貯溜される。再生塔20の底部には、リボイラーが付設される。即ち、吸収液を加熱するために再生塔20外に付設されるスチームヒーター22と、吸収液をスチームヒーター22を介して循環させる循環路22’とが付設され、塔底部の吸収液A2の一部が循環路22’を通してスチームヒーター22に分岐され、高温蒸気との熱交換によって加熱された後に塔内へ還流される。この加熱によって、底部の吸収液から二酸化炭素が放出され、又、充填材21も間接的に加熱されて充填材21上での気液接触による二酸化炭素の放出が促進される。   The absorption liquid A1 of the absorption tower 10 is supplied from the supply path 16 to the upper part of the regeneration tower 20, flows down on the filler 21, and is stored at the bottom. A reboiler is attached to the bottom of the regeneration tower 20. That is, a steam heater 22 provided outside the regeneration tower 20 for heating the absorption liquid and a circulation path 22 ′ for circulating the absorption liquid through the steam heater 22 are provided, and one of the absorption liquid A 2 at the bottom of the tower is provided. The part is branched to a steam heater 22 through a circulation path 22 ', heated by heat exchange with high-temperature steam, and then refluxed into the tower. By this heating, carbon dioxide is released from the absorption liquid at the bottom, and the filler 21 is also indirectly heated to promote the release of carbon dioxide by gas-liquid contact on the filler 21.

再生塔20で二酸化炭素を放出して再生された吸収液(リーン液)A2は、還流路17を通じてポンプ23によって吸収塔10に還流される。供給路16及び還流路17は、熱交換器24中での接触によりこれらの間で熱伝達が起こって、吸収塔10から再生塔20に供給される供給路16の吸収液A1は加熱され、吸収液A2は冷却される。還流路17の吸収液A2は、更に、冷却水を用いた冷却器25によって、二酸化炭素の吸収に適した温度まで充分に冷却される。熱交換器には、スパイラル式、プレート式、二重管式、多重円筒式、多重円管式、渦巻管式、渦巻板式、タンクコイル式、タンクジャケット式、直接接触液液式等、様々な種類があり、本発明における熱交換器24として何れのタイプを使用しても良いが、装置の簡素化及び清掃分解の容易さの点ではプレート式が優れている。   The absorption liquid (lean liquid) A2 regenerated by releasing carbon dioxide in the regeneration tower 20 is refluxed to the absorption tower 10 by the pump 23 through the reflux path 17. Heat transfer occurs between the supply path 16 and the reflux path 17 due to contact in the heat exchanger 24, and the absorption liquid A1 in the supply path 16 supplied from the absorption tower 10 to the regeneration tower 20 is heated. The absorbing liquid A2 is cooled. Further, the absorption liquid A2 in the reflux path 17 is sufficiently cooled to a temperature suitable for absorption of carbon dioxide by the cooler 25 using cooling water. There are various heat exchangers such as spiral type, plate type, double pipe type, multiple cylinder type, multiple circular pipe type, spiral tube type, spiral plate type, tank coil type, tank jacket type, direct contact liquid-liquid type, etc. There are various types, and any type may be used as the heat exchanger 24 in the present invention, but the plate type is superior in terms of simplification of the apparatus and ease of cleaning and disassembly.

再生塔20における加熱で放出される二酸化炭素を含むガスは、回収ガスCとして再生塔20上部の凝縮部26を通って頂部から排出される。凝縮部26は、ガスに含まれる水蒸気を凝縮させて過度の放出を抑制し、また、吸収剤の放出も抑制する。回収ガスCは、再生塔20の頂部から排気管34を通って冷却水を用いた冷却器27によって充分に冷却し、含まれる水蒸気等を可能な限り凝縮して、気液分離器28によって凝縮水を除去した後に回収される。回収ガスCに含まれる二酸化炭素は、例えば、地中又は油田中に注入することによって、地中での炭酸ガス固定及び再有機化が可能である。気液分離器28において分離された凝縮水は、ポンプ36によって所定流量で流路35から再生塔20の凝縮部26上へ供給され、冷却水として機能する。   The gas containing carbon dioxide released by heating in the regeneration tower 20 is discharged as a recovered gas C from the top through the condensing part 26 at the top of the regeneration tower 20. The condensing part 26 condenses the water vapor | steam contained in gas, suppresses excessive discharge | release, and also suppresses discharge | release of an absorber. The recovered gas C is sufficiently cooled by the cooler 27 using cooling water from the top of the regeneration tower 20 through the exhaust pipe 34, condensed as much as possible water vapor and the like, and condensed by the gas-liquid separator 28. It is recovered after removing the water. Carbon dioxide contained in the recovered gas C can be fixed and reorganized in the ground by, for example, injecting it into the ground or oil fields. The condensed water separated in the gas-liquid separator 28 is supplied at a predetermined flow rate from the flow path 35 onto the condensing unit 26 of the regeneration tower 20 by the pump 36, and functions as cooling water.

供給路16において、熱交換器24を流れる吸収液A1をポンプ12の駆動力を利用して加圧するために、供給路16における熱交換器24と再生塔20との間に背圧弁41が設けられる。この実施形態では、背圧弁41は、供給16の再生塔側出口付近、つまり、投入口付近に配置され、吸収液A1に加えられた圧力及び温度は、再生塔20への投入直前まで維持され、再生塔20へ投入されると共に加圧状態から解放されて減圧され、再生塔20内の圧力と等しくなる。また、余剰の圧力を逃すために、供給路16から分岐する退避路42及び流量調節弁43が熱交換器24の上流側に設けられる。流量調節弁43は、供給路16の液圧を検出する圧力センサー44と電気的に接続され、その検出圧力に応じて流量調節弁43の開度を調整することによって、供給路16から退避路42へ退避する吸収液の流量が変化して熱交換器24における吸収液A1の圧力が所定値に維持されるように調節される。つまり、ポンプ12の駆動力の制御を必要とせずに熱交換器24を流れる吸収液A1の圧力を調節することができる。退避路42の吸収液A1は、吸収塔10の底部に還流する。尚、供給路16を流れる吸収液A1の流量は、流量調節弁45によって還流路17における吸収液A2の流量と等しくなるように調節されれる。この実施形態において、流量調節弁45は熱交換器24の入口側、つまり、ポンプ12と熱交換器24との間に配置されるが、この位置は、熱交換器24の出口側、つまり、熱交換器24と背圧弁41との間に変更しても良い。   In the supply path 16, a back pressure valve 41 is provided between the heat exchanger 24 and the regeneration tower 20 in the supply path 16 in order to pressurize the absorbing liquid A1 flowing through the heat exchanger 24 using the driving force of the pump 12. It is done. In this embodiment, the back pressure valve 41 is disposed in the vicinity of the regeneration tower side outlet of the supply 16, that is, in the vicinity of the inlet, and the pressure and temperature applied to the absorbing liquid A1 are maintained until immediately before the inlet to the regeneration tower 20. Then, the pressure is released into the regeneration tower 20 and released from the pressurized state to reduce the pressure, so that the pressure in the regeneration tower 20 becomes equal. In addition, a retreat path 42 and a flow rate control valve 43 branched from the supply path 16 are provided on the upstream side of the heat exchanger 24 in order to release excess pressure. The flow rate control valve 43 is electrically connected to a pressure sensor 44 that detects the hydraulic pressure in the supply path 16, and adjusts the opening degree of the flow rate control valve 43 according to the detected pressure, thereby retreating from the supply path 16. The flow rate of the absorbing liquid retreating to 42 is changed so that the pressure of the absorbing liquid A1 in the heat exchanger 24 is maintained at a predetermined value. That is, the pressure of the absorbing liquid A1 flowing through the heat exchanger 24 can be adjusted without requiring control of the driving force of the pump 12. The absorption liquid A1 in the retreat path 42 is refluxed to the bottom of the absorption tower 10. The flow rate of the absorption liquid A1 flowing through the supply path 16 is adjusted by the flow rate adjustment valve 45 so as to be equal to the flow rate of the absorption liquid A2 in the reflux path 17. In this embodiment, the flow control valve 45 is disposed on the inlet side of the heat exchanger 24, that is, between the pump 12 and the heat exchanger 24, but this position is on the outlet side of the heat exchanger 24, that is, It may be changed between the heat exchanger 24 and the back pressure valve 41.

上記の実施形態では、吸収液の加圧に要する駆動力より高めの駆動力を発揮するポンプ12を使用して余剰の圧力を退避路42から逃すように構成されるので、ポンプ12の駆動力の変動による影響を排除することができる。ポンプ12として、駆動力の調節機能を有するものを使用すれば、退避路52及び流量調節弁43を設けずに、圧力センサー44の検出値に応じて直接ポンプ12の駆動力を制御することによって熱交換器24を流れる吸収液A1の圧力を調節することができる。   In the above embodiment, the pump 12 that exhibits a higher driving force than the driving force required to pressurize the absorbing liquid is used to release excess pressure from the retreat path 42. It is possible to eliminate the influence of fluctuations in If the pump 12 having a function of adjusting the driving force is used, the driving force of the pump 12 is directly controlled according to the detection value of the pressure sensor 44 without providing the retreat path 52 and the flow rate adjusting valve 43. The pressure of the absorbing liquid A1 flowing through the heat exchanger 24 can be adjusted.

図2の回収装置1において実施される回収方法について説明する。   A collection method performed in the collection apparatus 1 of FIG. 2 will be described.

吸収塔10において、燃焼排ガスやプロセス排ガスなどの二酸化炭素を含有するガスGを底部から供給し、吸収液を上部から供給すると、充填材11上でガスGと吸収液とが気液接触し、吸収液に二酸化炭素が吸収される。二酸化炭素は、低温において良好に吸収されるので、概して50℃程度以下、好ましくは40℃以下となるように吸収液の液温又は吸収塔10(特に充填材11)の温度を調整する。吸収液は二酸化炭素の吸収によって発熱するので、これによる液温上昇を考慮し、液温が60℃を超えないように配慮することが望ましい。吸収塔10に供給されるガスGについても、上述を勘案して、冷却塔30によって適正な温度に調整する。吸収液として、二酸化炭素に親和性を有する化合物を吸収剤として含有する水性液が用いられる。吸収剤としては、アルカノールアミン類やアルコール性水酸基を有するヒンダードアミン類などが挙げられ、具体的には、アルカノールアミンとして、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、ジイソプロパノールアミン、ジグリコールアミン等を例示することができ、アルコール性水酸基を有するヒンダードアミンとしては、2−アミノ−2−メチル−1−プロパノール(AMP)、2−(エチルアミノ)エタノール(EAE)、2−(メチルアミノ)エタノール(MAE)等を例示できる。通常、モノエタノールアミン(MEA)の使用が好まれ、上記のような化合物の複数種を混合使用しても良い。吸収液の吸収剤濃度は、処理対象とするガスに含まれる二酸化炭素量や処理速度等に応じて適宜設定することができ、吸収液の流動性や消耗損失抑制などの点を考慮すると、概して、10〜50質量%程度の濃度が適用され、例えば、二酸化炭素含有量20%程度のガスGの処理に対して、濃度30質量%程度の吸収液が好適に使用される。ガスG及び吸収液の供給速度は、ガスに含まれる二酸化炭素量及び気液接触効率等に応じて、吸収が充分に進行するように適宜設定される。   In the absorption tower 10, when the gas G containing carbon dioxide such as combustion exhaust gas and process exhaust gas is supplied from the bottom and the absorption liquid is supplied from the top, the gas G and the absorption liquid come into gas-liquid contact on the filler 11, Carbon dioxide is absorbed by the absorbing solution. Since carbon dioxide is well absorbed at low temperatures, the liquid temperature of the absorbent or the temperature of the absorption tower 10 (particularly the filler 11) is adjusted so that it is generally about 50 ° C. or lower, preferably 40 ° C. or lower. Since the absorbing liquid generates heat due to absorption of carbon dioxide, it is desirable to take into consideration the increase in liquid temperature caused by this, so that the liquid temperature does not exceed 60 ° C. The gas G supplied to the absorption tower 10 is also adjusted to an appropriate temperature by the cooling tower 30 in consideration of the above. An aqueous liquid containing a compound having affinity for carbon dioxide as an absorbent is used as the absorbent. Examples of the absorbent include alkanolamines and hindered amines having an alcoholic hydroxyl group, and specific examples of the alkanolamine include monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, diisopropanolamine, and the like. Examples of the hindered amine having an alcoholic hydroxyl group include 2-amino-2-methyl-1-propanol (AMP), 2- (ethylamino) ethanol (EAE), and 2- (methylamino). ) Ethanol (MAE) and the like can be exemplified. Usually, the use of monoethanolamine (MEA) is preferred, and a plurality of the above compounds may be used in combination. The absorbent concentration of the absorption liquid can be appropriately set according to the amount of carbon dioxide contained in the gas to be processed, the processing speed, etc. A concentration of about 10 to 50% by mass is applied. For example, an absorbent having a concentration of about 30% by mass is suitably used for the treatment of the gas G having a carbon dioxide content of about 20%. The supply rates of the gas G and the absorbing liquid are appropriately set so that the absorption proceeds sufficiently according to the amount of carbon dioxide contained in the gas, the gas-liquid contact efficiency, and the like.

二酸化炭素を吸収した吸収液A1は、供給路16を通じてポンプ12の駆動力によって再生塔20に供給されるが、この間に、熱交換器24を流れる吸収液A1の圧力は背圧弁41によって増加し、150kPaG以上、好ましくは200kPaG以上、より好ましくは250kPaG以上の一定圧に調節される。熱交換器24を流れる吸収液A1の圧力は、再生塔20における再生条件を勘案して再生塔20内の圧力より高く設定される。但し、器機等の耐圧性を考慮して、900kPaG程度以下に設定するとよい。熱交換器24において、吸収液A1は、再生塔20から還流する吸収液A2と熱交換される。吸収液A1が加圧されるので、熱交換器24における吸収液A1の出口温度と吸収液A2の入口温度との差は10℃未満となるように構成可能であり、吸収液A1は、再生塔20での加熱温度に近い温度に昇温される。再生塔20における吸収液A2の加熱温度は、使用する吸収液組成や再生条件によって異なるが、概して100〜130℃程度に設定され、これに基づけば、熱交換において吸収液A1の熱交換器出口温度は95〜125℃程度に上昇させる。この時の吸収液A1は、昇温によって二酸化炭素を放出し易い状態となるが、加圧によってガスの発生は抑制される。   The absorption liquid A1 that has absorbed carbon dioxide is supplied to the regeneration tower 20 through the supply path 16 by the driving force of the pump 12, and during this time, the pressure of the absorption liquid A1 flowing through the heat exchanger 24 is increased by the back pressure valve 41. , 150 kPaG or higher, preferably 200 kPaG or higher, more preferably 250 kPaG or higher. The pressure of the absorbent A1 flowing through the heat exchanger 24 is set higher than the pressure in the regeneration tower 20 in consideration of the regeneration conditions in the regeneration tower 20. However, in consideration of pressure resistance of equipment and the like, it may be set to about 900 kPaG or less. In the heat exchanger 24, the absorption liquid A <b> 1 is heat-exchanged with the absorption liquid A <b> 2 refluxed from the regeneration tower 20. Since the absorbing liquid A1 is pressurized, the difference between the outlet temperature of the absorbing liquid A1 and the inlet temperature of the absorbing liquid A2 in the heat exchanger 24 can be configured to be less than 10 ° C., and the absorbing liquid A1 is regenerated. The temperature is raised to a temperature close to the heating temperature in the tower 20. The heating temperature of the absorbing liquid A2 in the regeneration tower 20 varies depending on the absorbing liquid composition used and the regeneration conditions, but is generally set to about 100 to 130 ° C. Based on this, the heat exchanger outlet of the absorbing liquid A1 in heat exchange The temperature is raised to about 95-125 ° C. At this time, the absorbing liquid A1 is in a state where it is easy to release carbon dioxide by raising the temperature, but the generation of gas is suppressed by pressurization.

沸点近辺の高温度で再生塔20に供給される吸収液A1は、背圧弁41を境として圧力が解放され、二酸化炭素を急速に放出しながら充填材21上へ流下する。更に、充填材21上での気液接触によって二酸化炭素の放出が促進されると共に、再生塔20底部での加熱によって更に昇温及び二酸化炭素の放出が進行する。底部に貯留される吸収液A2は、部分循環加熱によって沸点付近に加熱され、吸収液の沸点は組成(吸収剤濃度)及び再生塔20内の圧力に依存する。この際、吸収液から失う水の気化潜熱及び吸収液の顕熱の供給が必要であり、加圧によって気化を抑制すると、沸点上昇により顕熱が増加するので、これらのバランスを考慮して、再生塔20内を100kPaG程度に加圧し、吸収液は120〜130℃に加熱する条件設定を用いるとエネルギー効率上有効である。再生塔20内の加圧は、排気管34の出口に設けられる圧力調節弁29の制御によって調整可能である。   The absorption liquid A1 supplied to the regeneration tower 20 at a high temperature near the boiling point is released from the back pressure valve 41 as a boundary, and flows down onto the filler 21 while rapidly releasing carbon dioxide. Furthermore, the release of carbon dioxide is promoted by gas-liquid contact on the filler 21, and the temperature rise and the release of carbon dioxide further progress by heating at the bottom of the regeneration tower 20. The absorbent A2 stored in the bottom is heated to the vicinity of the boiling point by partial circulation heating, and the boiling point of the absorbent depends on the composition (absorbent concentration) and the pressure in the regeneration tower 20. At this time, it is necessary to supply the latent heat of vaporization of the water lost from the absorbing liquid and the sensible heat of the absorbing liquid.If the vaporization is suppressed by pressurization, the sensible heat increases due to the rise in boiling point. It is effective in terms of energy efficiency to use a condition setting in which the inside of the regeneration tower 20 is pressurized to about 100 kPaG and the absorbing solution is heated to 120 to 130 ° C. The pressurization in the regeneration tower 20 can be adjusted by controlling a pressure control valve 29 provided at the outlet of the exhaust pipe 34.

再生塔20の上部の温度は、投入される吸収液A1の温度に近くなるため、凝縮部26を通過した回収ガスを冷却器27において冷却水により十分に冷却する。回収ガスCから凝縮する水分及び吸収剤は気液分離器28において回収ガスCから分離され、凝縮部26に供給することによって凝縮部26を冷却すると共に、再生塔20における吸収液の濃度上昇及び吸収剤の気化放散を抑制する。   Since the temperature of the upper part of the regeneration tower 20 is close to the temperature of the absorbing liquid A1 to be charged, the recovered gas that has passed through the condensing unit 26 is sufficiently cooled by the cooling water in the cooler 27. Moisture and absorbent condensing from the recovered gas C are separated from the recovered gas C in the gas-liquid separator 28 and supplied to the condensing unit 26 to cool the condensing unit 26 and increase the concentration of the absorbing liquid in the regeneration tower 20. Reduces vaporization and release of absorbent.

このようにして、吸収液は吸収塔10と再生塔20との間で循環して、吸収工程と再生工程とが交互に繰り返され、加圧によって熱交換における加熱温度が上昇したリッチ液の投入によって、再生塔におけるエネルギー効率が向上する。   In this way, the absorption liquid circulates between the absorption tower 10 and the regeneration tower 20, and the absorption process and the regeneration process are alternately repeated, and the rich liquid whose heating temperature in the heat exchange is increased by pressurization is charged. This improves the energy efficiency in the regeneration tower.

尚、図2の回収装置では、再生塔20の排気管34に圧力調節弁29が設けられ、必要に応じて再生塔20内を加圧して圧力を調節可能なように構成されているが、大気圧に設定する場合には省略して良い。又、吸収塔10内のガス圧力は大気圧に設定されているが、再生塔20と同様にして圧力調節弁を用いて圧力を調節可能に構成してもよく、吸収液10の二酸化炭素回収率を上げる必要がある場合には、常圧を超える120kPaG程度以下、好ましくは10〜100kPaG程度の圧力範囲に調整するとよい。   2 is provided with a pressure control valve 29 in the exhaust pipe 34 of the regeneration tower 20 so that the pressure can be adjusted by pressurizing the inside of the regeneration tower 20 as necessary. If the atmospheric pressure is set, it may be omitted. Further, although the gas pressure in the absorption tower 10 is set to atmospheric pressure, it may be configured so that the pressure can be adjusted using a pressure control valve in the same manner as the regeneration tower 20, and carbon dioxide recovery of the absorption liquid 10 is possible. When the rate needs to be increased, the pressure may be adjusted to a pressure range of about 120 kPaG or less exceeding normal pressure, preferably about 10 to 100 kPaG.

図3は、本発明の二酸化炭素の回収方法を実施する回収装置の他の実施形態を示す。回収装置2は、熱交換器24を流れる吸収液A1の加圧制御システムを変更したもので、供給路16において流量調節弁45’の設置位置を熱交換器24の出口側に変更し、退避路42において流量調節弁43の代わりに背圧弁46を用いている。   FIG. 3 shows another embodiment of a recovery apparatus for implementing the carbon dioxide recovery method of the present invention. The recovery device 2 is a modification of the pressurization control system for the absorbing liquid A1 that flows through the heat exchanger 24. In the supply path 16, the installation position of the flow rate adjustment valve 45 'is changed to the outlet side of the heat exchanger 24, and then retreated. A back pressure valve 46 is used in the passage 42 instead of the flow rate adjusting valve 43.

図3の回収装置2において、ポンプ12の駆動力による吸収液A1の液圧は、背圧弁41及び背圧弁46によって調節され、供給路17の吸収液A1の流量は流量調節弁45’によって一定に維持されるので、余剰圧は、吸収液A1が背圧弁46及び退避路42を通じて還流することによって解放される。従って、圧力センサー44は、加圧制御に使用する必要はなく、監視又は確認のために利用すれば良い。この実施形態において、熱交換器24を流れる吸収液A1の圧力を流量調節弁45’の流量調節によって所定の圧力に保持可能な場合には、背圧弁41を省略することができる。上記において説明した点以外については図2の回収装置1と同様であるので、その説明は省略する。   In the recovery device 2 of FIG. 3, the liquid pressure of the absorbing liquid A1 by the driving force of the pump 12 is adjusted by the back pressure valve 41 and the back pressure valve 46, and the flow rate of the absorbing liquid A1 in the supply path 17 is constant by the flow rate adjusting valve 45 ′. Therefore, the excess pressure is released when the absorbing liquid A1 recirculates through the back pressure valve 46 and the retreat path 42. Therefore, the pressure sensor 44 does not need to be used for pressurization control, and may be used for monitoring or confirmation. In this embodiment, when the pressure of the absorbing liquid A1 flowing through the heat exchanger 24 can be maintained at a predetermined pressure by adjusting the flow rate of the flow rate adjusting valve 45 ', the back pressure valve 41 can be omitted. Since the points other than those described above are the same as those of the collection device 1 of FIG. 2, the description thereof is omitted.

本発明は、火力発電所や製鉄所、ボイラーなどの設備から排出される二酸化炭素含有ガスの処理等に利用して、その二酸化炭素放出量や、環境に与える影響などの軽減に有用である。二酸化炭素の回収処理に要する費用が削減され、省エネルギー及び環境保護に貢献可能な二酸化炭素の回収装置を提供できる。   INDUSTRIAL APPLICABILITY The present invention is useful for reducing the amount of carbon dioxide released and its influence on the environment by using it for the treatment of carbon dioxide-containing gas discharged from facilities such as thermal power plants, ironworks, and boilers. The cost required for the carbon dioxide recovery process can be reduced, and a carbon dioxide recovery device that can contribute to energy saving and environmental protection can be provided.

1,2:回収装置、 10:吸収塔、 20:再生塔、 30:冷却塔、
11,21,31:充填材、 12,15,23,32,36,42:ポンプ、
13:冷却凝縮部、 14,25,27,33:冷却器、 16:供給路、
17:還流路、 18:逆止弁、 18’:送気管、
19,29:圧力調節弁、 19’,34:排気管、
22:スチームヒーター、 22’:循環路、 24:熱交換器、
26:凝縮部、 28:気液分離器、 35,43:流路、 41:液面計、
44,46,47:温度センサー、 45:流量調節弁、
G、G’:ガス、 A1,A2:吸収液、 C:回収ガス、 W:冷却水。
1, 2: Recovery device, 10: Absorption tower, 20: Regeneration tower, 30: Cooling tower,
11, 21, 31: Filler, 12, 15, 23, 32, 36, 42: Pump,
13: Cooling condensing part, 14, 25, 27, 33: Cooler, 16: Supply path,
17: Return path, 18: Check valve, 18 ': Air pipe,
19, 29: pressure regulating valve, 19 ', 34: exhaust pipe,
22: Steam heater, 22 ': Circuit, 24: Heat exchanger,
26: condensing part, 28: gas-liquid separator, 35, 43: flow path, 41: liquid level gauge,
44, 46, 47: temperature sensor, 45: flow control valve,
G, G ′: Gas, A1, A2: Absorbing liquid, C: Recovery gas, W: Cooling water.

Claims (9)

二酸化炭素を含有するガスを吸収液に接触させて前記吸収液に二酸化炭素を吸収させる吸収塔と、
前記吸収塔で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生塔と、
前記吸収塔から前記再生塔へ吸収液を供給する供給路と、
前記再生塔から前記吸収塔へ吸収液を還流させる還流路と、
前記吸収塔から前記再生塔へ供給される前記供給路の吸収液と前記再生塔から前記吸収塔へ還流される前記還流路の吸収液との間で熱交換する熱交換器と、
前記供給路において前記熱交換器と前記再生塔との間に設けられる背圧弁を有し、前記吸収塔から前記再生塔へ供給される吸収液が加圧状態で前記熱交換器に供給されるように前記吸収液を加圧する加圧手段と
前記加圧手段による加圧において余剰の圧力を逃すための、前記供給路から分岐する退避路と、
前記退避路に設けられる流量調節弁と
を有し、前記流量調節弁は、前記供給路における吸収液の圧力に応じて開度を調整するように構成される二酸化炭素の回収装置。
An absorption tower in which a gas containing carbon dioxide is brought into contact with the absorption liquid to cause the absorption liquid to absorb carbon dioxide;
A regeneration tower for heating the absorption liquid that has absorbed carbon dioxide in the absorption tower to release carbon dioxide from the absorption liquid to regenerate the absorption liquid;
A supply path for supplying an absorption liquid from the absorption tower to the regeneration tower;
A reflux path for refluxing the absorbent from the regeneration tower to the absorption tower;
A heat exchanger for exchanging heat between the absorption liquid in the supply path supplied from the absorption tower to the regeneration tower and the absorption liquid in the reflux path refluxed from the regeneration tower to the absorption tower;
A back pressure valve is provided between the heat exchanger and the regeneration tower in the supply path, and an absorption liquid supplied from the absorption tower to the regeneration tower is supplied to the heat exchanger in a pressurized state. Pressurizing means for pressurizing the absorbing liquid ,
A retreat path branching off from the supply path for releasing excess pressure in pressurization by the pressurizing means;
Wherein possess a flow regulating valve provided in the evacuation passage, said flow control valve, the absorption liquid carbon dioxide recovery device configured to adjust the opening degree in accordance with the pressure of the said supply channel.
前記熱交換器は、前記熱交換器から前記再生塔へ供給される吸収液の温度と、前記再生塔から前記熱交換器へ供給される吸収液の温度との差が10℃未満となる熱交換効率を有する請求項1に記載の二酸化炭素の回収装置。   The heat exchanger has a heat at which a difference between the temperature of the absorbent supplied from the heat exchanger to the regeneration tower and the temperature of the absorbent supplied from the regeneration tower to the heat exchanger is less than 10 ° C. The carbon dioxide recovery device according to claim 1, which has exchange efficiency. 更に、前記供給路の液圧を検出する圧力センサーを有し、前記圧力センサーの検出圧力に応じて前記流量調節弁の開度が調整される請求項1又は2に記載の二酸化炭素の回収装置。 Furthermore, the hydraulic pressure in the supply channel has a pressure sensor for detecting carbon dioxide recovery apparatus according to claim 1 or 2 opening of the flow regulating valve in accordance with the detected pressure of the pressure sensor is adjusted . 二酸化炭素を含有するガスを吸収液に接触させて前記吸収液に二酸化炭素を吸収させる吸収塔と、
前記吸収塔で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生塔と、
前記吸収塔から前記再生塔へ吸収液を供給する供給路と、
前記再生塔から前記吸収塔へ吸収液を還流させる還流路と、
前記吸収塔から前記再生塔へ供給される前記供給路の吸収液と前記再生塔から前記吸収塔へ還流される前記還流路の吸収液との間で熱交換する熱交換器と、
前記供給路において前記熱交換器と前記再生塔との間に設けられる背圧弁を有し、前記吸収塔から前記再生塔へ供給される吸収液が加圧状態で前記熱交換器に供給されるように前記吸収液を加圧する加圧手段と、
前記加圧手段による加圧において余剰の圧力を逃すための、前記供給路から分岐する退避路と、
前記退避路に設けられる背圧弁と
を有し、前記熱交換器に供給される前記吸収液の加圧状態は、前記供給路の背圧弁と前記退避路の背圧弁とによって調節される二酸化炭素の回収装置。
An absorption tower in which a gas containing carbon dioxide is brought into contact with the absorption liquid to cause the absorption liquid to absorb carbon dioxide;
A regeneration tower for heating the absorption liquid that has absorbed carbon dioxide in the absorption tower to release carbon dioxide from the absorption liquid to regenerate the absorption liquid;
A supply path for supplying an absorption liquid from the absorption tower to the regeneration tower;
A reflux path for refluxing the absorbent from the regeneration tower to the absorption tower;
A heat exchanger for exchanging heat between the absorption liquid in the supply path supplied from the absorption tower to the regeneration tower and the absorption liquid in the reflux path refluxed from the regeneration tower to the absorption tower;
A back pressure valve is provided between the heat exchanger and the regeneration tower in the supply path, and an absorption liquid supplied from the absorption tower to the regeneration tower is supplied to the heat exchanger in a pressurized state. Pressurizing means for pressurizing the absorbing liquid,
A retreat path branching off from the supply path for releasing excess pressure in pressurization by the pressurizing means;
And a back pressure valve provided in the evacuation passage, pressurized state of the absorbing liquid supplied to the heat exchanger, adjusted Ru dioxide by the back-pressure valve of the evacuation passage and back pressure valve of the supply passage Carbon recovery equipment.
二酸化炭素を含有するガスを吸収液に接触させて前記吸収液に二酸化炭素を吸収させる吸収工程と、
前記吸収工程で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生工程と、
前記吸収工程から前記再生工程へ供給される吸収液と、前記再生工程から前記吸収工程へ還流される吸収液との間で熱交換する熱交換工程とを有し、
前記熱交換工程において、前記吸収工程から前記再生工程へ供給される吸収液は、加圧状態で熱交換され
前記加圧状態における余剰の圧力を逃すために、前記吸収工程から前記再生工程へ供給される吸収液を分岐する退避路を用いて、前記加圧状態の吸収液の圧力に応じて前記退避路へ退避する吸収液の流量を変化させる二酸化炭素の回収方法。
An absorption step in which a gas containing carbon dioxide is brought into contact with the absorption liquid to cause the absorption liquid to absorb carbon dioxide;
A regeneration step of regenerating the absorbing liquid by heating the absorbing liquid that has absorbed carbon dioxide in the absorbing step to release carbon dioxide from the absorbing liquid;
A heat exchange step of exchanging heat between the absorption liquid supplied from the absorption step to the regeneration step and the absorption liquid refluxed from the regeneration step to the absorption step;
In the heat exchange step, the absorption liquid supplied from the absorption step to the regeneration step is heat-exchanged in a pressurized state ,
In order to release the excess pressure in the pressurized state, a retreat path for branching the absorbing liquid supplied from the absorption process to the regeneration process is used, and the retreat path according to the pressure of the absorbing liquid in the pressurized state method for recovering carbon dioxide flow rate Ru alter the absorption liquid to be saved to.
二酸化炭素を含有するガスを吸収液に接触させて前記吸収液に二酸化炭素を吸収させる吸収工程と、An absorption step in which a gas containing carbon dioxide is brought into contact with the absorption liquid to cause the absorption liquid to absorb carbon dioxide;
前記吸収工程で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生工程と、A regeneration step of regenerating the absorbing liquid by heating the absorbing liquid that has absorbed carbon dioxide in the absorbing step to release carbon dioxide from the absorbing liquid;
前記吸収工程から前記再生工程へ供給される吸収液と、前記再生工程から前記吸収工程へ還流される吸収液との間で熱交換する熱交換工程とを有し、A heat exchange step of exchanging heat between the absorption liquid supplied from the absorption step to the regeneration step and the absorption liquid refluxed from the regeneration step to the absorption step;
前記熱交換工程において、前記吸収工程から前記再生工程へ供給される吸収液は、加圧状態で熱交換され、In the heat exchange step, the absorption liquid supplied from the absorption step to the regeneration step is heat-exchanged in a pressurized state,
前記吸収工程から前記再生工程へ供給される吸収液を分岐する退避路を用いて、前記退避路へ退避する吸収液の背圧と、前記吸収工程から前記再生工程へ供給される吸収液の背圧とによって前記加圧状態を調節して余剰の圧力を逃す二酸化炭素の回収方法。Using a retreat path for branching the absorption liquid supplied from the absorption process to the regeneration process, the back pressure of the absorption liquid retreated to the retraction path and the back of the absorption liquid supplied from the absorption process to the regeneration process. A method for recovering carbon dioxide that adjusts the pressurization state according to pressure and releases excess pressure.
前記熱交換工程における熱交換効率は、前記熱交換工程から前記再生工程へ供給される吸収液の温度と、前記再生工程から前記熱交換工程へ供給される吸収液の温度との差が10℃未満となるように設定される請求項5又は6に記載の二酸化炭素の回収方法。 The heat exchange efficiency in the heat exchange process is such that the difference between the temperature of the absorbent supplied from the heat exchange process to the regeneration process and the temperature of the absorbent supplied from the regeneration process to the heat exchange process is 10 ° C. The method for recovering carbon dioxide according to claim 5 or 6 , wherein the carbon dioxide recovery method is set to be less. 前記熱交換工程において、前記吸収工程から前記再生工程へ供給される吸収液は、150kPaG以上の加圧状態で熱交換される請求項5〜の何れか1項に記載の二酸化炭素の回収方法。 The method for recovering carbon dioxide according to any one of claims 5 to 7 , wherein, in the heat exchange step, the absorption liquid supplied from the absorption step to the regeneration step is heat-exchanged in a pressurized state of 150 kPaG or more. . 前記吸収工程から前記再生工程へ供給される加圧状態の吸収液は、前記再生工程へ投入されると共に減圧される請求項5〜8の何れか1項に記載の二酸化炭素の回収方法。 The absorption liquid under pressure supplied to the regeneration step from the absorption step, the carbon dioxide collection methods according to any one of claims 5-8 which is reduced while being turned to the regeneration step.
JP2011159634A 2011-07-21 2011-07-21 Carbon dioxide recovery method and recovery apparatus Active JP5720463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011159634A JP5720463B2 (en) 2011-07-21 2011-07-21 Carbon dioxide recovery method and recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011159634A JP5720463B2 (en) 2011-07-21 2011-07-21 Carbon dioxide recovery method and recovery apparatus

Publications (2)

Publication Number Publication Date
JP2013022514A JP2013022514A (en) 2013-02-04
JP5720463B2 true JP5720463B2 (en) 2015-05-20

Family

ID=47781468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159634A Active JP5720463B2 (en) 2011-07-21 2011-07-21 Carbon dioxide recovery method and recovery apparatus

Country Status (1)

Country Link
JP (1) JP5720463B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101421611B1 (en) 2013-06-04 2014-07-22 한국전력기술 주식회사 Apparatus for separating CO2 having sensible heat recovery using decompression and phase separation
JP7043249B2 (en) 2017-12-27 2022-03-29 三菱重工エンジニアリング株式会社 CO2 recovery device, CO2 recovery method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497852B2 (en) * 2000-12-22 2002-12-24 Shrikar Chakravarti Carbon dioxide recovery at high pressure
WO2005044955A1 (en) * 2003-11-10 2005-05-19 Basf Aktiengesellschaft Method for obtaining a high pressure acid gas stream by removal of the acid gases from a liquid stream
US7083662B2 (en) * 2003-12-18 2006-08-01 Air Products And Chemicals, Inc. Generation of elevated pressure gas mixtures by absorption and stripping
NZ565503A (en) * 2005-07-18 2011-03-31 Union Engineering As A method for recovery of high purity carbon dioxide from a gaseous source comprising nitrogen compounds
JP5023512B2 (en) * 2006-02-27 2012-09-12 三菱マテリアル株式会社 Gas separation and recovery method and apparatus
US8062408B2 (en) * 2006-05-08 2011-11-22 The Board Of Trustees Of The University Of Illinois Integrated vacuum absorption steam cycle gas separation
WO2007134994A2 (en) * 2006-05-18 2007-11-29 Basf Se Carbon dioxide absorbent requiring less regeneration energy
JP2010201379A (en) * 2009-03-04 2010-09-16 Toshiba Corp Carbon dioxide recovery system
JP5331587B2 (en) * 2009-06-18 2013-10-30 株式会社東芝 Carbon dioxide recovery system

Also Published As

Publication number Publication date
JP2013022514A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5741690B2 (en) Carbon dioxide recovery method and recovery apparatus
CA2825303C (en) Method of recovering carbon dioxide and recovery apparatus
AU2012378451B2 (en) Method of recovering carbon dioxide and recovery apparatus
EP2679295B1 (en) Carbon dioxide recovering apparatus and method for operating the same
CA2851586C (en) Method of recovering carbon dioxide and recovery apparatus
JP6064770B2 (en) Carbon dioxide recovery method and recovery apparatus
WO2013161574A1 (en) Co2 recovery device, and co2 recovery method
JP5707894B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2017109884A (en) Carbon dioxide recovery system
JP5527095B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6225572B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5720463B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6248813B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5724600B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6225574B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2012196603A (en) Method and device for recovering carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R151 Written notification of patent or utility model registration

Ref document number: 5720463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250