JP5326329B2 - 白金構造体およびその製造方法 - Google Patents

白金構造体およびその製造方法 Download PDF

Info

Publication number
JP5326329B2
JP5326329B2 JP2008097404A JP2008097404A JP5326329B2 JP 5326329 B2 JP5326329 B2 JP 5326329B2 JP 2008097404 A JP2008097404 A JP 2008097404A JP 2008097404 A JP2008097404 A JP 2008097404A JP 5326329 B2 JP5326329 B2 JP 5326329B2
Authority
JP
Japan
Prior art keywords
platinum
substrate
glass
surface modification
modification layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008097404A
Other languages
English (en)
Other versions
JP2009249215A (ja
Inventor
和雄 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008097404A priority Critical patent/JP5326329B2/ja
Publication of JP2009249215A publication Critical patent/JP2009249215A/ja
Application granted granted Critical
Publication of JP5326329B2 publication Critical patent/JP5326329B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ガラス製造用の白金構造体、および該白金構造体の製造方法に関する。
ガラス製造においては、たとえば溶融ガラスの清澄槽、撹拌槽、これら槽を繋ぐ導管等のガラス製造装置が、溶融ガラスと接した状態で使用されている。
ガラス製造装置の材質には、白金、または白金と他の貴金属(金、ロジウム等)との合金(白金合金)が多用されている。
ガラス製造装置に白金または白金合金が使用される理由としては、これらの物質の融点が高いことに加えて、酸化物を主体とする溶融ガラスに対する反応性が他の耐熱金属に比べて低いことが挙げられる。これにより、耐火物に起因する介在物の溶融ガラスへの混入または溶融ガラスの不均質化を防止する効果が得られる。
また、白金または白金合金は高温での耐酸化性に優れるため、ガラス製造を、特に雰囲気制御を行う必要のない酸化性雰囲気で実施できることが挙げられる。さらに、ガラス製造装置自体の高温での強度をある程度確保できることも挙げられる。
しかし、ガラス製造は、1100〜1600℃という高温条件および酸化性雰囲気で実施されるため、白金または白金合金であっても、酸化性雰囲気にさらされると酸化され、PtO等の酸化物が生成して気化する、いわゆる揮散現象が避けられない。
該酸化の速度は、揮散現象そのものによって、白金または白金合金のガラス製造への使用が不適切となるほどに速くはない。しかし、長期間の使用を考えると、高価な貴金属の消耗が問題となる。
また、高価な貴金属を用いるガラス製造装置によって製造されるガラスには、必然的に高品質が求められる。しかし、該揮散現象が顕著な場合、揮散したPtO等の酸化物が、ガラス製造装置周囲に設けられた保温材等に再び金属として凝集し、溶融ガラス中に落下して異物欠陥となることがある。
この揮散現象への対策としては、白金または白金合金からなる白金材料に、ZrOまたはAl等のセラミックスを溶媒とともにスプレーコートし、加熱することによって酸化物皮膜を形成する、ガラス製造装置の表面改質施工方法が提案されている(特許文献1参照)。
また、ガラス製造においては、ガラスの組成によって、白金または白金合金からなる白金材料に溶融ガラスが接すると、多くの気泡が発生する問題もある。
該気泡は、溶融ガラスに含まれる水分が、白金金属と接触して解離し、またはガラスを介して流れる電流によって誘起される電気分解に基づいて解離し、生成する酸素に起因して形成されるものと考えられている。製造されるガラス製品に該気泡が残留すると、ガラス製品の品質の低下に繋がるおそれがある。
この気泡発生を防止するため、金属部材がガラスを含む気密の保護層で覆われたガラス製造用被覆金属部品が提案されている(特許文献2参照)。
特開2006−77318号公報 特表2004−523449号公報
しかし、特許文献1に記載された表面改質施工方法において、白金材料と酸化物皮膜とは、機械的に結合されるため、酸化物皮膜に一定以上の熱的または機械的な応力が付加された場合、該結合が保たれるほど強いものではない。そのため、該表面改質施工方法によって得られるガラス製造装置は、条件を限定して使用しなければならない問題があった。
また、特許文献2に記載された方法においては、金属部材の温度が保護層に含まれるガラスの流動温度を超えると、該ガラスを金属部材表面に留めておくことが困難である。さらに、該ガラスの流動温度を超えなくても、徐々に該ガラスが揮発してしまう。そのため、気泡の発生を抑制する効果を長時間維持することが困難であった。
上記のように、ガラス製造において、白金または白金合金からなる白金材料を使用する際の、揮散現象に起因する金属消耗と異物欠陥、および気泡の発生の問題を本質的に解決できる技術が求められていた。
よって、本発明は、揮散現象に起因する金属消耗および異物欠陥がいずれも起きにくく、かつ、気泡の発生が抑制されたガラス製造用の白金構造体、および該白金構造体の製造方法を提供する。
本発明の白金構造体は、溶融ガラスと接して使用されるガラス製造用の白金構造体であって、白金基体と表面改質層とを備え、前記白金基体は、白金または白金合金からなり、前記表面改質層は、前記白金基体表面の、溶融ガラスと接しない領域の少なくとも一部に設けられ、かつ、白金と、Ti、Zr、Cr、Fe、CoおよびNiからなる群から選ばれる少なくとも1種の金属元素とを含む複合酸化物の層であることを特徴とする。
本発明の白金構造体においては、前記複合酸化物が、白金と、Ti、Cr、FeおよびNiからなる群から選ばれる少なくとも1種の金属元素とを含むことが好ましい。
また、本発明の白金構造体においては、前記表面改質層の厚みが50〜250μmであることが好ましい。
また、本発明の白金構造体の製造方法は、溶融ガラスと接して使用されるガラス製造用の白金構造体の製造方法であって、白金または白金合金からなる白金基体表面の、溶融ガラスと接しない領域の少なくとも一部に、Ti、Zr、Cr、Fe、CoおよびNiからなる群から選ばれる少なくとも1種の金属元素を含む酸化物粉末を接触させながら、非酸化性雰囲気で加熱処理することを特徴とする。
本発明の白金構造体の製造方法においては、前記加熱処理を、1100〜1700℃の非酸化性雰囲気で行うことが好ましい。
本発明の白金構造体によれば、揮散現象の発生が抑制されることから、白金基体の金属消耗およびガラス製品における異物欠陥がいずれも起きにくい。また、気泡の発生が抑制されることから、ガラス製品における気泡の残留を防止できる。
また、本発明の白金構造体の製造方法により、揮散現象に起因する金属消耗および異物欠陥がいずれも起きにくく、かつ、気泡の発生が抑制されたガラス製造用の白金構造体を提供できる。
≪白金構造体≫
本発明の白金構造体は、溶融ガラスと接して使用されるガラス製造用の白金構造体であって、白金基体と表面改質層とを備える。
図1は、溶融ガラスと接して使用される白金構造体の一実施形態を示す概略縦断面図である。
本実施形態の白金構造体10は、中空の直方体状の容器であり、溶融ガラス5の流入路および流出路となる導管(図示略)が取り付けられた、たとえば清澄槽として使用されるものである。
白金構造体10は、白金基体1の外側の側面の一部および外側の底面全体に、表面改質層2を備えている。
図1において、白金構造体10には、内部空間の内容積に対して半分程度の量の溶融ガラス5が収容されるようになっている。
<白金基体>
本実施形態の白金基体1は、白金または白金合金からなるものであり、その内表面の下側約半分が溶融ガラス5と接するようになっている。
本発明において「白金合金」とは、白金と、ロジウム、金、イリジウムおよびルテニウムからなる群から選択される少なくとも1種との合金を意味する。
白金合金に含まれる白金の割合は、75質量%以上であることが好ましく、80質量%以上であることがより好ましい。白金の割合が75質量%以上であると、白金基体の特に高温での耐熱性および耐酸化性が向上する。
(表面改質層)
本発明における表面改質層2は、白金基体1表面の、溶融ガラス5と接しない領域の少なくとも一部に設けられる層である。
本発明において「溶融ガラスと接しない領域」とは、溶融ガラスの液面変動等を考慮して、常に溶融ガラスと接しない領域を意味する。
本実施形態の白金構造体10において「白金基体1表面の、溶融ガラス5と接しない領域」とは、白金基体1の外表面全体と、白金基体1の溶融ガラス5と接する側の面(内表面)であって、溶融ガラス5の液面(液面が変動する場合は最も高くなる液面、以下同じ。)より高くなる領域全体とをいう。
表面改質層2が溶融ガラス5に接しない領域に設けられるのは、表面改質層2が溶融ガラス5に直接触れると浸食されやすいからである。
本実施形態の白金構造体10は、白金基体1の底面から溶融ガラス5の液面よりも高い位置までの側面全体と、底面全体との外表面に表面改質層2を備えている。
本本実施形態のように、溶融ガラス5の液面よりも高い位置まで表面改質層2を設けることが、揮散現象と気泡の発生の抑制効果を高める点で好ましい。
本発明における表面改質層2は、白金基体1上に、白金基体1とは別の材料からなる、あらたな層を形成したものではなく、白金基体1の表面近傍を改質してなる層である。
表面改質層2は、白金と、短周期型周期表におけるIVa族、VIa族およびVIII族の金属元素からなる群から選ばれる金属元素とを含む複合酸化物の層である。
本発明における表面改質層2は、白金と、Ti、Zr、Cr、Fe、CoおよびNiからなる群から選ばれる少なくとも1種の金属元素(以下「特定金属元素」という。)とを含む複合酸化物の層である。特定金属元素は、白金と容易に複合酸化物を形成しやすい。また、特定金属元素の酸化物はガス化しにくいため、特定金属元素と白金とを含む複合酸化物もガス化しにくい。
(複合酸化物)
複合酸化物は、白金と、Ti、Cr、FeおよびNiからなる群から選ばれる少なくとも1種の金属元素とを含むものが好ましい。白金と複合酸化物をより形成しやすく、かつ、その酸化物がよりガス化しにくいからである。また、これら4種の金属元素は、その酸化物の耐熱性が良好であることからも好ましい。
複合酸化物に含まれる金属元素において、IVa族の金属元素は、化学的性質が互いに似ている。IVa族の金属元素のなかでも、TiとZrは複合酸化物を形成しやすく、そのなかでもTiは複合酸化物をより形成しやすい。
Crは、同じVIa族の他の金属元素(Mo、W)に比べて、酸化物の状態でガス化しにくく安定である。
VIII族の金属元素のなかで、Fe、Co、Niは耐熱性が高く、そのなかでもFe、Niは耐熱性がより高いことから好ましく、Feが特に好ましい。
白金合金としてたとえば白金(Pt)とロジウム(Rh)との合金を白金基体1に用いた場合、複合酸化物は、特定金属元素と、Ptと、Rhと、Oとを含む。
複合酸化物の具体例としては、たとえば、Fe−Pt−O、Cr−Pt−O、Ti−Pt−O、Ni−Pt−O、Fe−Pt−Rh−O、Cr−Pt−Rh−O、Ti−Pt−Rh−O、Ni−Pt−Rh−Oが挙げられる。
なお、前記表記において、たとえば「Fe−Pt−O」は、FeとPtとOとを含む複合酸化物を意味する。他の表記についても、式中の元素を含む複合酸化物をそれぞれ意味する。
複合酸化物は、表面改質層2の表面に近いほど、改質の度合いが高くなっている。すなわち、表面改質層2の表面に近いほど、Ti、Zr、Cr、Fe、CoまたはNiの割合、およびOの割合が高くなっている。
本発明における表面改質層2の厚みとは、特定金属元素がエネルギー分散形X線分光法(EDS法)により検出可能な範囲の厚みをいう。
具体的には、特定金属元素がEDS法により検出される位置の内、最も表面から離れた位置の表面からの距離により求める。
表面改質層2の厚みは、50〜250μmであることが好ましく、70〜200μmであることがより好ましい。
表面改質層2の厚みが50μm以上であると、揮散現象に起因する金属消耗および異物欠陥がより起きにくく、かつ、気泡の発生がより抑制される。表面改質層2の厚みが250μm以下であると、白金構造体10の強度の低下がより抑制され、また、白金基体1からの表面改質層2の剥離がより起きにくくなる。
なお、表面改質層2の厚みが変動する場合は、最も厚い部分が前記範囲であればよい。
白金構造体10は、ガラス製造の際、揮散現象の発生が抑制されて、白金基体の金属消耗およびガラス製品における異物欠陥がいずれも起きにくく、さらに、気泡の発生が抑制されて、ガラス製品における気泡の残留を防止できる。
前記効果が得られる理由としては、以下のように推測される。
揮散現象の発生が抑制されるのは、複合酸化物が白金よりも酸化されやすい金属元素を含み、かつ、揮散しにくいため、表面改質層2が白金基体1の保護層として働き、白金基体1の酸化を防止しているためであると考えられる。
気泡の発生が抑制されるのは、表面改質層2により、白金構造体10の表面活性が低下し、溶融ガラス5に含まれる水分が解離しにくくなるためであると考えられる。
なお、白金または白金合金よりも酸化物を形成しやすい金属元素を用いて揮散現象の発生を抑制する方法としては、たとえばAlまたはCrを、白金基体1の材料として添加する方法も考えられる。
しかし、比重が非常に大きい金属元素である白金と、比重が比較的小さいAlまたはCrとを均一に合金化することはとても困難である。また、AlまたはCrの添加は、白金または白金合金の機械的特性を劣化させ、展延性等の特性も劣化させやすいため、実用化することが困難である。
本発明の白金構造体は、図1に示す白金構造体10に限定されず、たとえば、図2(a)〜(c)に示すように、種々の場所に表面改質層2を備えたものであってもよい。
図2(a)に示す白金構造体10は、白金基体1の側面全体と底面全体の外表面に、表面改質層2を備えたものである。
図2(b)に示す白金構造体10は、白金基体1の外表面全体に、表面改質層2を備えたものである。
図2(c)に示す白金構造体10は、図1における表面改質層2の形成場所に加えて、外表面に表面改質層2が形成されていない部分の内表面全体に、表面改質層2を備えたものである。
また、図2(b)のように、白金基体1の外表面全体に表面改質層2を備え、かつ、図2(c)のように、内表面にも表面改質層2を備えた白金構造体も挙げられる。
揮散現象に起因する金属消耗に対しては、白金基体1表面の、溶融ガラス5に接していない面全体に対する表面改質層2の割合(面積比率)ができるだけ高い比率であることが好ましい。
白金基体1表面に設けられる表面改質層2の割合は、白金基体1表面の、溶融ガラス5と接していない領域全体に対して70%以上であることが好ましく、75〜95%であることがより好ましい。
揮散現象に起因する異物欠陥に対しては、表面改質層2を、白金基体1の溶融ガラス5と接する側の面(内表面)であって、溶融ガラス5の液面より高い領域において、できるだけ高い面積比率で設けることが効果的である。内表面に設けられる表面改質層2の割合は、内表面の溶融ガラス5の液面より高い領域全体に対して80%以上であることが好ましく、85%以上であることがより好ましく、該領域全体であることが特に好ましい。
また、気泡発生の抑制に対しては、表面改質層2を、白金基体1の溶融ガラス5と接する面に対向する面において、できるだけ高い面積比率で設けることがより効果的であり、溶融ガラス5の液面よりも高い位置まで該対向する面に設けることがさらに効果的である。白金基体1の溶融ガラス5と接する面に対向する面に設けられる表面改質層2の割合は、該対向する面全体に対して60%以上であることが好ましく、70%以上であることがより好ましく、該対向する面全体であることが特に好ましい。
揮散現象発生および気泡発生の両方の抑制に対して特に好適な実施形態としては、たとえば図2(b)のように、外表面全体に表面改質層2が設けられ、かつ、図2(c)のように、内表面にも表面改質層2が設けられた形態が挙げられる。
また、本発明の白金構造体は、中空の直方体状の容器以外に、ガラス製造装置の種々の用途に応じた形状とすることができる。
該形状としては、たとえば板形状のもの、坩堝形状のもの、樋状のもの、管状のもの、
楔形のものなどが挙げられる。
表面改質層2は、白金基体1表面に、連続した面状に設けても、ドット状、縞状、格子状等の不連続状態にして設けてもよい。
また、表面改質層2の厚みは、均一でも不均一でもよい。
≪白金構造体の製造方法≫
本発明の白金構造体の製造方法は、溶融ガラスと接して使用されるガラス製造用の白金構造体の製造方法であって、白金または白金合金からなる白金基体に、特定金属元素を含む酸化物粉末を接触させながら、非酸化性雰囲気で加熱処理する方法である。
白金基体の材質は、白金または白金合金からなるものであり、前記<白金基体>について説明したものと同じである。
酸化物粉末は、短周期型周期表におけるIVa族、VIa族およびVIII族の金属元素からなる群から選ばれる金属元素を含む酸化物の粉末状のものである。具体的には、複合酸化物を形成するための、特定金属元素を含む酸化物の粉末状のものである。
なかでも、Ti、Cr、FeおよびNiからなる群から選ばれる少なくとも1種の金属元素を含む酸化物の粉末状のものであることが好ましい。酸化物粉末としては、たとえば酸化鉄、酸化クロム、酸化チタン、酸化ニッケルが挙げられる。
酸化物粉末の平均粒子径は、0.5〜20μmであることが好ましく、1〜10μmであることがより好ましい。
ここで、「酸化物粉末の平均粒子径」は、レーザー回折・散乱式の粒度分析測定装置(マイクロトラック)を用いて測定される体積平均粒子径を示す。
該平均粒子径の下限値以上であると、酸化物粉末の流動性が良好となり、たとえば容器内で、白金基体の周囲に酸化物粉末を充填した際、ブリッジ現象による空隙ができにくくなる。また、上限値以下であると、白金基体の周囲に酸化物粉末を充填した際、酸化物粉末と白金基体とが充分に接触し合い、両者の接触面積が大きくなって、複合酸化物の生成反応が進行しやすくなる。
図1に示す白金構造体10は、たとえば以下のようにして製造できる。
まず、白金基体1に、酸化物粉末3を接触させる。
図3に、白金基体1に酸化物粉末3を接触させる方法の一実施形態を示す。
図3においては、開口4aを有する略直方体状の容器4に、酸化物粉末3が充填され、この充填された酸化物粉末3に白金基体1が埋設されることにより、白金基体1が酸化物粉末3と接触している。
容器4としては、たとえば高純度アルミナ製のもの、酸化ジルコニウムまたは酸化マグネシウムを主体(好ましくは90質量%以上)とする耐熱セラミックス製のものを用いることができる。
酸化物粉末3の容器4への充填量は、表面改質層2を設ける白金基体1の部位に応じて適宜調整すればよい。
次に、酸化物粉末3を接触させた白金基体1を、非酸化性雰囲気で加熱処理する。
加熱処理の方法としては、たとえば、白金基体1を電気炉内に設置し、炉内を非酸化性雰囲気に置換した後、加熱を行う方法が挙げられる。
本発明における「非酸化性雰囲気」とは、雰囲気中における酸化性ガスの分圧が1.33×10Pa以下であることをいう。該酸化性ガスとは、加熱処理において白金に酸素を与え得る気体を意味し、具体例としてはO、O、NO、NO、HO等が挙げられる。雰囲気中に酸化性ガスが2種以上含まれる場合は、それらの分圧の合計が前記の範囲内であればよい。非酸化性雰囲気中における酸化性ガスの分圧は、20Pa以下が好ましく、10Pa以下がより好ましい。1Pa程度が最も好ましい。酸化性ガスの分圧の値が小さいほど、複合酸化物のより緻密な表面改質層2を形成できる。
非酸化性雰囲気を構成するガスとしては、N、Ar等の不活性ガス;H、CO等の還元性ガスが挙げられる。
また、複合酸化物の生成反応を速く進め、より緻密な複合酸化物の層を形成するうえで、非酸化性雰囲気中に、Hおよび/またはCOを存在させることが好ましく、プラズマ状態のHを存在させることがより好ましい。したがって、雰囲気を一旦真空状態にした後、水素(H)を導入して加熱処理を行うことが好ましい。または、加熱処理を行う非酸化性雰囲気を真空状態とすることも好ましい。
本明細書おいて、真空状態の雰囲気圧力は10−1〜10−3Paの範囲が好ましく、10〜10−2Paの範囲がより好ましい。
本発明においては、前記加熱処理を、1100〜1700℃で行うことが好ましく、1200〜1600℃で行うことが好ましい。1100℃以上であると、白金基体と酸化物粉末との複合酸化物の生成反応がより進行しやすくなり、1700℃以下であると、該反応の速度を制御することが容易となる。
加熱処理の時間は、0.1〜10時間加熱することが好ましく、0.5〜5時間加熱することがより好ましい。該加熱処理の時間の下限値以上であると、白金基体と酸化物粉末との複合酸化物の生成反応がより進行しやすくなる。該加熱処理の時間の上限値以下であると、表面改質層が厚くなりすぎることが防止される。
また、前記温度範囲に調整する際、昇温または降温速度は、50〜500℃/hrとすることが好ましく、100〜400℃/hrとすることがより好ましい。該昇温または降温速度の下限値以上であると、表面改質層の厚みの制御が容易となる。該昇温または降温速度の上限値以下であると、表面改質層の組織(特定金属元素の分布)が粗になりにくくなる。
前記加熱処理は、酸化物粉末3に白金基体1を接触させた後、直ちに行ってもよく、少し時間が経過した後で行ってもよい。
以上説明した製造方法により、白金構造体10を製造できる。
本発明の白金構造体10の製造方法においては、白金基体1表面に接触している酸化物粉末3における酸化物と、白金基体1を構成する白金または白金合金とが反応し、酸化物に含まれる金属元素(特定金属元素)の一部が還元され、(特定金属元素)−(白金)−(酸素)の複合酸化物を形成する。これにより、白金基体1表面に、該複合酸化物の層からなる表面改質層2が設けられた白金構造体10が製造される。
本発明の白金構造体10の製造方法は、特定金属元素を含む酸化物粉末3に、白金基体1を接触させて加熱処理を行うだけの、非常に簡便な方法である。
なお、白金基体1に酸化物粉末3を接触させる方法としては、図3に示す方法に限定されず、たとえば白金基体1に、酸化物粉末3を有機溶媒に溶解してなる塗布液を塗工する方法であってもよい。
有機溶媒としては、たとえばエチレングリコール、グリセリンが挙げられる。
該塗布液には、酸化物粉末3および溶媒以外に、分散剤等を含んでいてもよい。
該塗布液における酸化物粉末3の割合(固形分)は20〜70質量%が好ましく、30〜60質量%がより好ましい。
また、本発明の白金構造体の製造方法を用いて、板形状の白金構造体を製造し、その後、該白金構造体をガラス製造装置の種々の用途に応じた形状に成型することもできる。
以下、本発明を実施例により具体的に説明するが、本発明はこれら例によって何ら限定されない。
(平均粒子径の測定)
以下の実施例において、酸化物粉末の平均粒子径は、レーザー回折・散乱式の粒度分析測定装置(製品名:マイクロトラックMT3300、日機装社製)を用いて測定した。なお、該平均粒子径は体積平均粒子径を示す。
本実施例において使用した白金基体、酸化物粉末および容器は下記の通りである。
(白金基体)
1Aa:内容積10mL、外径22mm、高さ25mm、厚み0.5mmの白金からなる坩堝形状のもの。図4(a)に、本実施例において使用した坩堝形状の白金基体1Aaの斜視図を示す。
1Ba:縦15mm×横15mm×厚み0.8mmの白金からなる板形状の小片。
1Bb(1):縦20mm×横20mm×厚み0.8mmの白金合金(Pt/Rh=9/1(質量比))からなる板形状の小片。
1Bb(2):縦15mm×横15mm×厚み0.8mmの白金合金(Pt/Rh=9/1(質量比))からなる板形状の小片。
(酸化物粉末)
3A:酸化鉄(Fe)の含有割合(純度)が99.5質量%以上、平均粒子径3.0μmの粉末。
3B:酸化クロム(Cr)の純度が99.5質量%以上、平均粒子径2.6μmの粉末。
3C:酸化チタン(TiO)の純度が99.5質量%以上、平均粒子径1.6μmの粉末。
3D:酸化ニッケル(NiO)の純度が99.5質量%以上、平均粒子径4.5μmの粉末。
(容器)
4A:内容積200mLの高純度アルミナ製の坩堝形状のもの。
[白金構造体の製造例]
(実施例1)
白金基体1として白金基体1Aa、酸化物粉末3として酸化鉄3A、および容器4として容器4Aを用い、まず、容器4に、酸化物粉末3を、容器4の内容積の半分程度の量を充填した。次に、白金基体1を、白金基体1の高さ2/3程度が酸化物粉末3に埋設するように配置した。図4(b)に、白金基体1が酸化物粉末3に埋設された状態を示す。
次いで、白金基体1が配置された容器4を、白金基体1に何も充填しないまま、電気炉内に設置した。その後、電気炉内を、NにNに対して3容積%のHを混合した非酸化性ガスに置換(10Paまで減圧した後、非酸化性ガスを1Paになるまで導入)した後、1450℃で1時間の加熱処理を行い、白金構造体を得た。
該加熱処理において、昇温および降温速度は、いずれも300℃/hrに設定した。
(実施例2)
白金基体1として白金基体1Bb(1)、酸化物粉末3として酸化鉄3A、および容器4として容器4Aを用い、まず、容器4に、酸化物粉末3を、容器4の内容積の半分程度の量を充填した。次に、白金基体1を、白金基体1の一方の面が酸化物粉末3に接触するように配置した。図5に、白金基体1が酸化物粉末3上に配置された状態を示す。
次いで、白金基体1が配置された容器4を、電気炉内に設置した。その後、電気炉内を、NにNに対して3容積%のHを混合した非酸化性ガスに置換(10Paまで減圧した後、非酸化性ガスを1Paになるまで導入)した後、1450℃で1時間の加熱処理を行い、白金構造体を得た。
該加熱処理において、昇温および降温速度は、いずれも200℃/hrに設定した。
(実施例3、5、7)
実施例3、5、7は、酸化物粉末3および加熱処理の条件を表1のように変更した他は、実施例1と同様にして、それぞれ白金構造体を得た。
(実施例4、6、8)
実施例4、6、8は、白金基体1、酸化物粉末3および加熱処理の条件を表1のように変更した他は、実施例2と同様にして、それぞれ白金構造体を得た。
Figure 0005326329
図6(a)に実施例1で使用した白金基体1Aaを、図6(b)に実施例1で得られた白金構造体を、それぞれ外側の底面から観察した外観を示す。
実施例1で得られた白金構造体は、白金基体1Aaにおける酸化鉄粉末3Aとの接触部が、図6(a)に示すように白金基体1Aa本来の金属光沢を失い、図6(b)のように梨地状になっていた。
実施例3、5、7で得られた白金構造体のいずれについても、実施例1で得られた白金構造体と同様の外観を呈していた。
また、実施例2、4、6、8で得られた白金構造体のいずれについても、白金基体1における酸化物粉末3との接触部が、白金基体1本来の金属光沢を失い、梨地状になっていた。
該梨地状になっている部分が改質され、表面改質層2が形成された部分である。
[気泡の発生抑制の評価]
前記実施例1の白金構造体、および実施例1で使用した白金基体1Aa(以下「比較例1」とする。)のそれぞれにブロック状のホウ珪酸ガラスを入れ、電気炉内に設置した。電気炉内を500℃/hrの昇温速度で、大気中で1350℃まで加熱し、90分間保持した。その後、200℃/hrの降温速度で100℃まで冷却した。
その後、実施例1の白金構造体および比較例1の白金基体1Aaを電気炉から取り出し、溶融したホウ珪酸ガラスの状態を目視により観察した。
図7(a)に比較例1の白金基体1Aa内で溶融したガラスの状態を、図7(b)に実施例1の白金構造体内で溶融したガラスの状態を、それぞれガラス液面上方から観察した外観を示す。
図7より、白金構造体および白金基体1Aaのそれぞれについて、内側の底面積に対する気泡の占める面積の割合(以下「気泡の面積比率」という。)を求めて、気泡の発生抑制の評価を行った。その結果を表2に示す。
前記実施例3、5、7の白金構造体、および実施例3、5、7でそれぞれ使用した白金基体1(以下、それぞれの白金基体を比較例3、比較例5、比較例7という。)について、溶融するガラス種と加熱条件を表2のように変更した他は、実施例1および比較例1と同様にして[気泡の発生抑制の評価]を行い、気泡の面積比率を求めた。その結果を表2に示す。
Figure 0005326329
図7に示したように、実施例の白金構造体と比較例の白金基体1との間には、いずれも明らかな差異が認められた。
表2に示した結果から、本発明の実施例1、3、5、7の白金構造体は、いずれも、比較例1、3、5、7の白金基体1に比べて、気泡の面積比率が顕著に低いことから、ガラスを溶解した際に発生する気泡の発生が抑制されていることが確認できた。
[揮散現象の評価]
前記実施例2の白金構造体、および実施例2で使用した白金基体1Bb(1)(以下「比較例2」とする。)の加熱処理前20℃における質量をそれぞれ測定した。
次に、実施例2の白金構造体と比較例2の白金基体1Bb(1)を、多孔質の焼結アルミナ板の上に並べて電気炉内に設置した。
次いで、両者を、電気炉内を500℃/hrの昇温速度で、エアーポンプにより給気しながら大気中で1400℃まで加熱し、100時間保持した。その後、200℃/hrの降温速度で100℃まで冷却し、両者の加熱処理後の質量をそれぞれ測定した。
そして、白金構造体および白金基体1Bb(1)のそれぞれについて、加熱処理前後の単位表面積当たりの質量変化の割合(μg/cm;以下「質量減少率」という。)を求めて、揮散現象の評価を行った。その結果を表3に示す。
前記実施例4、6、8の白金構造体、および実施例4、6、8でそれぞれ使用した白金基体1(以下、それぞれの白金基体を比較例4、比較例6、比較例8という。)について、加熱条件を表3のように変更した他は、実施例2および比較例2と同様にして[揮散現象の評価]を行い、質量減少率を求めた。その結果を表3に示す。
Figure 0005326329
表3に示した結果から明らかなように、実施例2、4、6、8の白金構造体は、いずれも、比較例2、4、6、8の白金基体1に比べて、質量減少率が顕著に低いことから、揮散現象が起きにくいことが確認できた。
[表面改質層の定性分析]
実施例2の白金構造体を、厚み方向に半分に切断し、その切断面について、SEM−EDS(製品名:HITACHI S−3000H、日立製作所製)を用いて定性分析を行った。
定性分析は、試料表面(前記の切断面)にカーボンを蒸着して実施した。測定条件は、金属試料に対する標準的な条件で行った。
図8に、実施例2の白金構造体の厚み方向における切断面のSEM像を示す。
分析点7の位置する側が、白金基体1Bb(1)に酸化鉄粉末3Aが接触していた面側である。図8に示す、分析点1〜7の位置における定性分析を行った結果を表4に示す。
表4における「−」は、Feが検出限界以下であったことを示す。
Figure 0005326329
実施例2の白金構造体は、白金合金からなる白金基体1Bb(1)に、複合酸化物(Fe−Pt−Rh−O)の層からなる表面改質層2を、白金基体1Bb(1)の酸化鉄粉末3Aが接触していた面から分析点5までの位置の間に備えていることが確認された。
特に、白金基体1Bb(1)における酸化鉄粉末3Aとの接触面近傍である分析点3と分析点7において、Feの割合が著しく高いことが確認された。
表面改質層2の表面から分析点5までの距離は200μmであった。
本発明の白金構造体は、たとえば溶融ガラスの清澄槽、撹拌槽、これら槽を繋ぐ導管等のガラス製造装置に利用できる。
また、本発明の白金構造体は、各種のガラス製造の際に利用できる。
溶融ガラスと接して使用される白金構造体の一実施形態を示す概略縦断面図である。 図2(a)〜(c)は溶融ガラスと接して使用される白金構造体の他の実施形態を示す概略縦断面図である。 白金基体に酸化物粉末を接触させる方法の一実施形態を示す図である。 図4(a)は実施例1において使用した坩堝形状の白金基体を示す斜視図であり、図4(b)は白金基体が酸化鉄粉末に埋設された状態を示す概略縦断面図である。 実施例2において使用した板形状の白金基体が酸化鉄粉末に配置された状態を示す概略縦断面図である。 図6(a)は実施例1で使用した白金基体を、図6(b)は実施例1で得た白金構造体を、それぞれ外側の底面から観察した外観を示す図である。 図7(a)は比較例1の白金基体内で溶融したガラスの状態を、図7(b)は実施例1の白金構造体内で溶融したガラスの状態を、それぞれガラス液面上方から観察した外観を示す図である。 実施例2の白金構造体の厚み方向における切断面のSEM像を示す図である。
符号の説明
1 白金基体 2 表面改質層 3 酸化物粉末 4 容器 5 溶融ガラス 10 白金構造体

Claims (5)

  1. 溶融ガラスと接して使用されるガラス製造用の白金構造体であって、
    白金基体と表面改質層とを備え、
    前記白金基体は、白金または白金合金からなり、
    前記表面改質層は、前記白金基体表面の、溶融ガラスと接しない領域の少なくとも一部に設けられ、かつ、白金と、Ti、Zr、Cr、Fe、CoおよびNiからなる群から選ばれる少なくとも1種の金属元素とを含む複合酸化物の層であることを特徴とする白金構造体。
  2. 前記複合酸化物が、白金と、Ti、Cr、FeおよびNiからなる群から選ばれる少なくとも1種の金属元素とを含む請求項1に記載の白金構造体。
  3. 前記表面改質層の厚みが50〜250μmである請求項1または2に記載の白金構造体。
  4. 溶融ガラスと接して使用されるガラス製造用の白金構造体の製造方法であって、
    白金または白金合金からなる白金基体表面の、溶融ガラスと接しない領域の少なくとも一部に、Ti、Zr、Cr、Fe、CoおよびNiからなる群から選ばれる少なくとも1種の金属元素を含む酸化物粉末を接触させながら、非酸化性雰囲気で加熱処理することを特徴とする白金構造体の製造方法。
  5. 前記加熱処理を、1100〜1700℃の非酸化性雰囲気で行う請求項4に記載の白金構造体の製造方法。
JP2008097404A 2008-04-03 2008-04-03 白金構造体およびその製造方法 Expired - Fee Related JP5326329B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097404A JP5326329B2 (ja) 2008-04-03 2008-04-03 白金構造体およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097404A JP5326329B2 (ja) 2008-04-03 2008-04-03 白金構造体およびその製造方法

Publications (2)

Publication Number Publication Date
JP2009249215A JP2009249215A (ja) 2009-10-29
JP5326329B2 true JP5326329B2 (ja) 2013-10-30

Family

ID=41310261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097404A Expired - Fee Related JP5326329B2 (ja) 2008-04-03 2008-04-03 白金構造体およびその製造方法

Country Status (1)

Country Link
JP (1) JP5326329B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632816A (ja) * 1986-06-20 1988-01-07 Tanaka Kikinzoku Kogyo Kk 高温用白金容器
JPH01201033A (ja) * 1988-02-04 1989-08-14 Canon Inc 溶融装置及び溶融容器
JPH03219030A (ja) * 1990-01-22 1991-09-26 Tanaka Kikinzoku Kogyo Kk 貴金属複合材料の製造方法
JP4588868B2 (ja) * 2000-11-29 2010-12-01 株式会社フルヤ金属 ガラス溶融処理用金属材料及びその製造方法
ES2284708T3 (es) * 2000-11-30 2007-11-16 Schott Ag Pieza de matal noble revestida en la fabricacion de vidrio.
JP4646395B2 (ja) * 2000-12-19 2011-03-09 株式会社フルヤ金属 ガラス溶融処理用金属材料及びその製造方法
JP2006077318A (ja) * 2004-09-13 2006-03-23 Tanaka Kikinzoku Kogyo Kk ガラス製造装置の表面改質施工方法
DE102006003531A1 (de) * 2006-01-24 2007-08-02 Schott Ag Verfahren und Vorrichtung zum blasenfreien Transportieren, Homogenisieren und Konditionieren von geschmolzenem Glas

Also Published As

Publication number Publication date
JP2009249215A (ja) 2009-10-29

Similar Documents

Publication Publication Date Title
KR101859247B1 (ko) 용융 유리 유지용 내화물 및 용융 유리 유지용 내화물을 사용한 유리 제조 장치 및 상기 유리 제조 장치를 사용한 유리 제조 방법
TWI359117B (en) Method and apparatus for minimizing oxidation pitt
US20090165500A1 (en) Method and Device for Bubble-free Transportation, Homogenization and Conditioning of Molten Glass
Wei et al. High temperature oxidation and corrosion behaviours of Ni–Fe–Cr alloys as inert anode for aluminum electrolysis
JP2002266040A (ja) 分散固化された白金−金材料、該材料の製造法および該材料の使用
TW200923113A (en) Sputtering targets comprising a novel manufacturing design, methods of production and uses thereof
JP5294859B2 (ja) スパークプラグ電極のための改善された表面を有する酸化物分散強化されたPt−Ir合金および他の合金からのリボン、ワイヤまたは成形部材、ならびにその製造法
TWI389862B (zh) Glass manufacturing apparatus and manufacturing method thereof
AU2004222545A1 (en) Method for the manufacture of an inert anode for the production of aluminium by means of fusion electrolysis
Du et al. Effect of Al content on chemical corrosion resistance of Al/SiC composites
JP5326329B2 (ja) 白金構造体およびその製造方法
Salomon et al. Formation of corundum, magnesium titanate, and titanium (III) oxide at the interface between rutile and molten Al or AlSi7Mg0. 6 alloy
JP4513605B2 (ja) 溶融ガラスの減圧脱泡装置、および該減圧脱泡装置を用いた溶融ガラスの清澄方法、ならびにガラス製造装置要素
JP2015021144A (ja) 耐熱性部品及びその製造方法
JP3821756B2 (ja) 金属系抵抗発熱体とその製造方法
Lin et al. Effect of yttria on interfacial reactions between titanium melt and hot‐pressed yttria/zirconia composites at 1700° C
US6090227A (en) Structural units for glass melts made from a molybdenum/tungsten alloy
TW201228995A (en) Ceramic member and method for producing same, device and method for producing molten glass, and device and method for producing glass article
WO2011021487A1 (ja) 複合構造体及びその製造方法
US20050022560A1 (en) Tank for melting solder glass
US20110048076A1 (en) Glass manufacturing container, glass manufacturing apparatus with the same and glass manufacturing method using glass manufacturing apparatus
JP5610299B2 (ja) 耐酸化消耗性白金合金、耐酸化消耗性白金合金皮膜および耐酸化消耗性金属部材
Mukherjee et al. Compatibility Issues of Yttria‐Stabilized Zirconia Solid Oxide Membrane in the Direct Electro‐Deoxidation of Metal Oxides
EP0198078A1 (en) Process for applying coatings to metals and resulting product
Petitjean et al. Glass/Metal Interactions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees