JP5326243B2 - How to add lead to molten steel - Google Patents

How to add lead to molten steel Download PDF

Info

Publication number
JP5326243B2
JP5326243B2 JP2007230109A JP2007230109A JP5326243B2 JP 5326243 B2 JP5326243 B2 JP 5326243B2 JP 2007230109 A JP2007230109 A JP 2007230109A JP 2007230109 A JP2007230109 A JP 2007230109A JP 5326243 B2 JP5326243 B2 JP 5326243B2
Authority
JP
Japan
Prior art keywords
molten steel
lead
content
steel
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007230109A
Other languages
Japanese (ja)
Other versions
JP2009062567A (en
Inventor
亮輔 廣岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007230109A priority Critical patent/JP5326243B2/en
Publication of JP2009062567A publication Critical patent/JP2009062567A/en
Application granted granted Critical
Publication of JP5326243B2 publication Critical patent/JP5326243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、鋼の取鍋精錬の過程において、溶鋼中に鉛を均一に添加し、均一に溶解させることのできる鉛の添加方法に関するものである。
The present invention, in the course of ladle refining of steel, the addition of lead uniformly in the molten steel are those concerning the addition how a lead that can be uniformly dissolved.

鉛含有鋼は、快削性元素である鉛を含有する鋼である。鉛は鋼中において単独または硫化物として存在し、鋼の材質を劣化させることなく切削性を向上させる作用を有する元素である。特に、鉛快削鋼は切削性に優れていることから、需要が多い。鉛含有鋼は、鉛の含有率が高く、かつ溶鋼中に均一に溶解し、分散しているほど優れた切削性を発揮する。   Lead-containing steel is steel containing lead, which is a free-cutting element. Lead exists in steel alone or as a sulfide, and is an element having an effect of improving machinability without deteriorating the material of the steel. In particular, lead free-cutting steel is in great demand because of its excellent machinability. Lead-containing steel has a high lead content and exhibits excellent machinability as it is uniformly dissolved and dispersed in the molten steel.

しかしながら、溶鋼中の鉛の含有率を高め、かつ溶鋼中に均一に溶解させ、分散させることは、下記の理由により難しい。   However, it is difficult to increase the lead content in the molten steel and to uniformly dissolve and disperse it in the molten steel for the following reasons.

(a)溶鋼中における鉛の溶解度は0.3〜0.4質量%程度と低い。   (A) The solubility of lead in molten steel is as low as about 0.3 to 0.4% by mass.

(b)溶鋼の比重が7.1程度であるのに対して、鉛の比重は11.3程度と大きいため、取鍋内において強度の攪拌を行わない限り、溶解度を超えて添加された鉛分は取鍋内の底部に沈降することとなる。   (B) While the specific gravity of molten steel is about 7.1, the specific gravity of lead is as large as about 11.3. Therefore, lead added beyond the solubility unless strength is stirred in the ladle The minute will sink to the bottom of the ladle.

そこで、この問題を解決するため、溶鋼中への鉛の添加方法に関する様々な技術開発が行われてきた。その中で、鉛の代表的な添加方法として、下記の(1)〜(3)に示す方法を挙げることができる。   Therefore, in order to solve this problem, various technical developments related to a method for adding lead to molten steel have been performed. Among them, typical methods for adding lead include the methods shown in the following (1) to (3).

(1)インジェクションランスを用いて、取鍋内の溶鋼の内部に鉛含有物質を不活性ガスとともに吹き込む方法(特許文献1、特許文献2など)。   (1) A method of injecting a lead-containing substance together with an inert gas into molten steel in a ladle using an injection lance (Patent Document 1, Patent Document 2, etc.).

(2)取鍋の底部に設置したガスバブリング装置から、不活性ガスを吹き込んで溶鋼を攪拌しながら、その攪拌されている溶鋼表面へ、上方から鉛含有物質を自由落下させて添加する方法(特許文献3など)。   (2) A method in which a lead-containing substance is freely dropped from above and added to the agitated molten steel surface while blowing the inert gas from the gas bubbling device installed at the bottom of the ladle and stirring the molten steel ( Patent Document 3).

(3)取鍋の底部に設置したガスバブリング装置から、不活性ガスを吹き込んで溶鋼を攪拌しながら、その溶鋼中へ鉛含有物質を内装したワイヤーを添加する方法(特許文献3など)。   (3) A method of adding a wire containing a lead-containing substance into the molten steel while stirring the molten steel by blowing an inert gas from a gas bubbling device installed at the bottom of the ladle (Patent Document 3, etc.).

しかしながら、上記の鉛の添加方法には、なお、それぞれに下記の問題が存在する。   However, each of the above lead addition methods still has the following problems.

例えば、上記(1)にて述べたインジェクションランスを用いる添加方法は、他の方法に比較して、耐火物のコストが高くなる。   For example, the addition method using the injection lance described in the above (1) increases the cost of the refractory compared to other methods.

また、上記(2)にて述べた、攪拌されている溶鋼表面へ鉛含有物質を自由落下させる添加方法は、簡易な設備により実施することができ、また、鉛以外の合金の添加も容易に行うことができるという利点がある。しかしながら、前記のとおり、鉛の比重は11.3程度と、溶鋼の比重7.1程度に比較して圧倒的に大きく、かつ溶鋼中での溶解度が0.30〜0.40質量%と小さい。したがって、溶鋼に対する添加量が0.30質量%を超える多量の鉛を添加する場合に、粒径の大きな鉛を用いると、溶鋼中に均一に溶解させ、分散させることは極めて難しくなる。   In addition, the addition method for free-falling the lead-containing material onto the molten steel surface being stirred as described in (2) above can be performed with simple equipment, and addition of alloys other than lead is easy. There is an advantage that can be done. However, as described above, the specific gravity of lead is about 11.3, which is overwhelmingly higher than that of molten steel of about 7.1, and the solubility in molten steel is as small as 0.30 to 0.40 mass%. . Therefore, when adding a large amount of lead exceeding 0.30 mass% with respect to the molten steel, if lead having a large particle size is used, it is very difficult to uniformly dissolve and disperse the molten steel in the molten steel.

鉛含有物質を自由落下させて添加する方法において、溶鋼中への鉛の均一な溶解および分散を実現させるためには、鉛含有物質の粒径は小さくするほど良いが、一方では、粒径が小さすぎると、溶鋼からの輻射熱によりシュート内において鉛が溶融し、シュート出口を閉塞するおそれがある。   In the method of adding the lead-containing material by free-falling, in order to achieve uniform dissolution and dispersion of lead in the molten steel, it is better to make the particle size of the lead-containing material smaller. If it is too small, lead may melt in the chute due to radiant heat from the molten steel, and the chute outlet may be blocked.

これに対し、上記(3)にて述べた、鉛含有物質を内装したワイヤーを添加する方法では、上記のシュート閉塞の問題を回避することができる。前記の特許文献1や特許文献3では、鉛含有物質の平均粒径を小さくし、攪拌力を高めて、鉛含有物質の添加速度を低くすることにより、溶鋼中の鉛含有率が0.30質量%以上の場合であっても、鉛含有物質の溶け残りを生じることなく、鉛を微細に、且つ均一に分散させることができるとされている。   On the other hand, in the method of adding a wire containing a lead-containing substance described in (3) above, the above-mentioned problem of chute blockage can be avoided. In Patent Document 1 and Patent Document 3 described above, the lead content in the molten steel is 0.30 by reducing the average particle size of the lead-containing material, increasing the stirring force, and lowering the addition rate of the lead-containing material. Even in the case of mass% or more, it is said that lead can be finely and uniformly dispersed without causing undissolved residue of the lead-containing material.

しかしながら、(3)に記載されたワイヤーを添加する方法であっても、溶鋼中への鉛の溶解およびその分散性は、温度や溶鋼中C含有率に基づく溶鋼の流動性、ワイヤーの外径や肉厚といったワイヤーの特性、およびその添加速度によって、大きく変動することが判明した。   However, even in the method of adding the wire described in (3), the dissolution of lead in the molten steel and the dispersibility thereof are the fluidity of the molten steel based on the temperature and the C content in the molten steel, and the outer diameter of the wire. It has been found that it varies greatly depending on the wire characteristics such as thickness and thickness and the rate of addition.

特開昭61−199050号公報(特許請求の範囲および2頁右下欄10行〜3頁右上欄12行など)JP-A-61-199050 (claims and page 10, lower right column, line 10 to page 3, upper right column, line 12) 特開昭62−60815号公報(特許請求の範囲および2頁左下欄13〜19行))JP-A-62-60815 (Claims and page 2, lower left column, lines 13 to 19)) 特開平4−308021号公報(特許請求の範囲、段落[0004]および[0008]〜[0009])JP-A-4-308021 (Claims, paragraphs [0004] and [0008] to [0009]) (社)日本鉄鋼協会編 第3版鉄鋼便覧 第1巻 基礎(昭和58年3月):205頁The Japan Iron and Steel Institute, 3rd edition Handbook of Steel Volume 1 Basics (March 1983): 205 pages

本発明は、前記の問題に鑑みてなされたものであり、その課題は、取鍋の底部から溶鋼中に不活性ガスを吹き込んで溶鋼を攪拌しながら、溶鋼中へ鉛含有物質を内装したワイヤーを添加することにより、溶鋼中へ鉛を均一に溶解させ、分散させることのできる溶鋼への鉛の添加方法を提供することにある。特に、上記の方法を用いて、鉛含有率が0.30質量%以上の鉛快削鋼を対象とした鉛含有鋼を溶製する方法を提供することを目的としている。   The present invention has been made in view of the above-mentioned problems, and the problem is that a wire containing a lead-containing substance in the molten steel while stirring the molten steel by blowing an inert gas into the molten steel from the bottom of the ladle. It is an object of the present invention to provide a method for adding lead to molten steel, in which lead can be uniformly dissolved and dispersed in molten steel. In particular, an object of the present invention is to provide a method for melting lead-containing steel for lead free-cutting steel having a lead content of 0.30% by mass or more using the above method.

本発明者らは、上記の従来技術の問題を解決し、溶鋼中へ鉛を均一に溶解させ、分散させることのできる溶鋼への鉛の添加方法について研究開発を行った。そして、前記の特許文献3に記載の方法、すなわち、取鍋の底部に設置したガスバブリング装置から溶鋼中に不活性ガスを吹き込んで溶鋼を攪拌しながら、その攪拌されている溶鋼中へ鉛含有物質を内装したワイヤーを添加する方法であっても、溶鋼中に鉛を均一に溶解させ、分散させるためには、下記の(a)〜(c)に示す条件を満足することが必要、または好ましいとの知見を得て本発明を完成させた。   The present inventors have researched and developed a method for adding lead to molten steel that solves the above-described problems of the prior art and can uniformly dissolve and disperse lead in the molten steel. And, the method described in Patent Document 3, that is, containing lead into the agitated molten steel while stirring the molten steel by blowing an inert gas into the molten steel from a gas bubbling device installed at the bottom of the ladle Even in the method of adding a wire containing a substance, in order to uniformly dissolve and disperse lead in molten steel, it is necessary to satisfy the following conditions (a) to (c), or The present invention was completed with the knowledge that it was preferable.

(a)鉛含有物質を内装したワイヤーは、取鍋内溶鋼へ鍋底部からガスを吹き込んで強攪拌されている領域(以下、「プルーム」とも称する)内へ装入する必要がある。ワイヤーが装入されて溶鋼中に溶解した直後から、鉛含有物質が溶鋼により激しく攪拌され、溶鋼と混合されて、溶鋼中に速やかに溶解し、分散されるからである。   (A) A wire containing a lead-containing substance needs to be charged into a region (hereinafter also referred to as “plume”) in which gas is blown into the molten steel in the ladle from the bottom of the pan and is strongly stirred. This is because immediately after the wire is charged and melted in the molten steel, the lead-containing material is vigorously stirred by the molten steel, mixed with the molten steel, and quickly dissolved and dispersed in the molten steel.

図1は、取鍋内溶鋼に鍋底部から不活性ガスを吹き込みながら上部から鉛を添加する方法を説明するための図である。   FIG. 1 is a view for explaining a method of adding lead from the top while blowing an inert gas from the bottom of the pan into molten steel in the ladle.

上記の「プルーム」とは、同図中の符号5で示されるとおり、鍋1の底部から溶鋼2中へ吹きこまれた不活性ガス3の気泡4と溶鋼2とが混在し、激しく攪拌混合されている領域を意味する。この領域では、溶鋼2およびガス気泡4は、激しい乱流混合状態となっている。   The “plume” is a mixture of bubbles 4 of the inert gas 3 blown into the molten steel 2 from the bottom of the pan 1 and the molten steel 2 as shown by reference numeral 5 in the figure, and vigorously stirred and mixed. It means the area that has been. In this region, the molten steel 2 and the gas bubbles 4 are in a violent turbulent mixing state.

(b)溶鋼中への鉛の均一な溶解および分散を促進するためには、溶鋼中のC含有率および溶鋼温度を適正範囲に制御する必要がある。溶鋼中のC含有率が低下すると、溶鋼の融点が上昇することにより、その流動性が低下し、溶鋼中への鉛の均一な分散が阻害されるからである。したがって、溶鋼中における溶解度以上に多量に添加された鉛分を速やかに溶鋼中に均一に分散させるためには、溶鋼中C含有率の低下に伴いワイヤー装入前の温度を高めることが有効である。Siは、鋼の脱酸元素であるとともに、鋼に焼入れ性を付与して鋼の強化に寄与する元素であることから、これを含有させる。また、Mnは、鋼の脱酸作用を有すると同時に、鋼に焼入れ性を付与して鋼を強化し、さらに、MnSを形成して鋼の切削性を向上させ、FeSの形成を抑制して熱間加工性を向上させる作用を有することから、これらの効果を得るために含有させる。   (B) In order to promote uniform dissolution and dispersion of lead in the molten steel, it is necessary to control the C content in the molten steel and the molten steel temperature within an appropriate range. This is because when the C content in the molten steel is lowered, the melting point of the molten steel is increased, so that its fluidity is lowered and the uniform dispersion of lead into the molten steel is inhibited. Therefore, in order to quickly and uniformly disperse the lead added in a larger amount than the solubility in the molten steel, it is effective to increase the temperature before inserting the wire as the C content in the molten steel decreases. is there. Si is a deoxidizing element for steel, and is an element that imparts hardenability to the steel and contributes to strengthening of the steel. In addition, Mn has a deoxidizing action of steel, and at the same time, imparts hardenability to the steel to strengthen the steel, and further forms MnS to improve the machinability of the steel and suppress the formation of FeS. Since it has the effect | action which improves hot workability, it contains in order to acquire these effects.

(c)上記プルーム中でのワイヤーの溶解速度を高めるためには、ワイヤーの断面形状を角型管とし、その寸法および肉厚を好適適正に調整することが好ましい。断面形状を角型管とする理由は、溶鋼中へのワイヤーの装入時におけるトラブルを回避しやすいからである。   (C) In order to increase the dissolution rate of the wire in the plume, it is preferable that the cross-sectional shape of the wire is a square tube and the dimensions and thickness thereof are adjusted appropriately and appropriately. The reason why the cross-sectional shape is a square tube is that it is easy to avoid troubles when inserting the wire into the molten steel.

本発明は上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)および)に示される溶鋼への鉛の添加方法にある。
The present invention has been completed based on the above findings and has as its gist lies in addition how the lead to the molten steel shown in (1) and (2) below.

(1)取鍋内に収容された、質量%で、C:0.03〜0.50%、Si:0.60%以下およびMn:0.50〜2.00%を含有する溶鋼中に鍋底部から不活性ガスを吹き込み、吹き込まれた不活性ガスと溶鋼とが混在して激しく攪拌混合される領域へ、鉛含有物質を内装した鉄製ワイヤーを装入する溶鋼への鉛の添加方法であって、鉄製ワイヤーを装入する前の溶鋼の温度、溶鋼中のC含有率、溶鋼中のSi含有率、および溶鋼中のMn含有率が、下記(1)式および(3)式で表される関係を満足するように該溶鋼の温度を制御し、前記鉄製ワイヤーとして、断面の外寸法が(15〜17mm)×(7.0〜8.0mm)であり、肉厚が0.3〜0.5mmの角型管に粒径が0.6mm以下の炭酸カルシウムを2〜10質量%含有する粒径が0.6mm以下の粉状の鉛含有物質を内装した鉄製ワイヤーを用い、鉛換算装入速度で0.4〜0.7kg/(min・t−溶鋼)の鉛を溶鋼中へ装入することを特徴とする溶鋼への鉛の添加方法。
(1) In molten steel contained in a ladle and containing, by mass%, C: 0.03 to 0.50%, Si: 0.60% or less and Mn: 0.50 to 2.00% Injecting inert gas from the bottom of the pan, and adding lead to molten steel in which iron wire with lead-containing material is inserted into the area where the blown inert gas and molten steel are mixed and vigorously stirred and mixed The temperature of the molten steel before charging the iron wire, the C content in the molten steel, the Si content in the molten steel, and the Mn content in the molten steel are expressed by the following formulas (1) and (3). The temperature of the molten steel is controlled so as to satisfy the relationship, and the outer diameter of the cross section of the iron wire is (15 to 17 mm) × (7.0 to 8.0 mm), and the wall thickness is 0.3. 2 to 10% by mass of calcium carbonate having a particle size of 0.6 mm or less is contained in a square tube of .about.0.5 mm. Using iron wire with a powdery lead-containing substance with a particle size of 0.6 mm or less, 0.4 to 0.7 kg / (min · t-molten steel) of lead is loaded into the molten steel at a lead conversion charging speed. A method for adding lead to molten steel.

V≧1630−90×X−6.2×Y−1.7×Z ・・・・(1)
V≦1660−90×X−6.2×Y−1.7×Z ・・・・(3)
ここで、Vは鉄製ワイヤーを装入する前の溶鋼の温度(℃)、Xは溶鋼中のC含有率(質量%)、Yは溶鋼中のSi含有率(質量%)、Zは溶鋼中のMn含有率(質量%)をそれぞれ表す。
V ≧ 1630−90 × X−6.2 × Y−1.7 × Z (1)
V ≦ 1660−90 × X−6.2 × Y−1.7 × Z (3)
Here, V is the temperature (° C.) of the molten steel before charging the iron wire, X is the C content (mass%) in the molten steel, Y is the Si content (mass%) in the molten steel, and Z is in the molten steel. Represents the Mn content (mass%).

2)鋼中の鉛の含有率を0.3〜0.4質量%とすることを特徴とする前記(1)に記載の溶鋼への鉛の添加法。
(2) adding how the lead to the molten steel according to the the content of lead in the steel, characterized in that a 0.3 to 0.4 wt% (1).

本発明において、「不活性ガス」とは、周期律表の18族元素に属するアルゴン、ヘリウム、ネオンなどのガスを意味し、実用的には経済性などの面からアルゴンガスの使用が好ましい。   In the present invention, the “inert gas” means a gas such as argon, helium or neon belonging to the group 18 element of the periodic table, and the use of argon gas is preferable from the viewpoint of economical efficiency.

「粉状の鉛含有物質」とは、粒径が0.6mm以下であって、鉛の含有率が89質量%以上98質量%以下である鉛混合物および/または鉛化合物と、炭酸カルシウムとの混合物を意味する。   “Powdered lead-containing substance” means a mixture of lead and / or a lead compound having a particle size of 0.6 mm or less and a lead content of 89% by mass to 98% by mass, and calcium carbonate It means a mixture.

「鉄製」とは、炭素鋼製 、高合金鋼製、低合金鋼製、ステンレス鋼製などを意味する。   “Iron” means carbon steel, high alloy steel, low alloy steel, stainless steel, and the like.

なお、以下の説明において、鋼の成分組成を表示する「質量%」を単に「%」とも記載する。   In the following description, “mass%” indicating the component composition of steel is also simply referred to as “%”.

本発明によれば、取鍋の底部に設置したガスバブリング装置から溶鋼中に不活性ガスを吹き込んで溶鋼を攪拌しながら、溶鋼中へ鉛含有物質を内装したワイヤーを添加することにより、溶鋼中へ鉛を均一に溶解させ、分散させることができる。したがって、本発明の方法を用いることにより、鉛含有率が0.30質量%以上の鉛快削鋼を対象とし、鉛が均一分散した高品質の鉛含有鋼を溶製することができる。   According to the present invention, by adding a wire containing lead-containing material into the molten steel while stirring the molten steel by blowing inert gas into the molten steel from the gas bubbling device installed at the bottom of the ladle, Helium can be uniformly dissolved and dispersed. Therefore, by using the method of the present invention, high-quality lead-containing steel in which lead is uniformly dispersed can be melted for lead-free cutting steel having a lead content of 0.30% by mass or more.

本発明を完成するに至った経過とともに、本発明の内容および本発明の好ましい態様について、以下にさらに詳細に説明する。   The contents of the present invention and the preferred embodiments of the present invention will be described in more detail below as the invention has been completed.

1.発明の基本構成
前記図1に示されたとおり、取鍋1内に収容された質量:約70トン(t)、温度:1540〜1640℃、C含有率:0.03〜0.50%、Si含有率:0.60%以下、Mn含有率:0.50〜2.00%である溶鋼2中へ、取鍋底部からArガス3を1.56〜2.47Nl/(min・t−溶鋼)の流量で吹き込みながら、矢印Aで示されるようにプルーム5内へ、または矢印Bで示されるようにプルーム以外の領域へ、下記の方法により鉛を添加した。すなわち、粒径が0.6mm以下の炭酸カルシウムを2〜10質量%添加して鉛混合物とした粉状の鉛含有物質を、断面の外寸法が(15〜17mm)×(7.0〜8.0mm)であり、肉厚が0.3〜0.5mmの角型の鉄製管に内装した鉄製ワイヤーを、鉛量換算で0.4〜0.7kg/(min・t−溶鋼)の供給速度にて溶鋼中に装入した。なお、上記の鉄製管としては、溶鋼中での溶解を容易とするため、炭素鋼製の管を用いた。
1. Basic Configuration of the Invention As shown in FIG. 1, the mass accommodated in the ladle 1 is about 70 tons (t), the temperature is 1540 to 1640 ° C., the C content is 0.03 to 0.50%, Into molten steel 2 having a Si content of 0.60% or less and a Mn content of 0.50 to 2.00%, Ar gas 3 is added from the bottom of the ladle to 1.56 to 2.47 Nl / (min · t−. While being blown at a flow rate of molten steel, lead was added into the plume 5 as indicated by the arrow A or into the region other than the plume as indicated by the arrow B by the following method. That is, a powdered lead-containing substance obtained by adding 2 to 10% by mass of calcium carbonate having a particle size of 0.6 mm or less to make a lead mixture has an outer dimension of (15 to 17 mm) × (7.0 to 8). Supply of 0.4 to 0.7 kg / (min · t-molten steel) in terms of the amount of lead of iron wire embedded in a square iron pipe with a wall thickness of 0.3 to 0.5 mm Charged into molten steel at speed. In addition, in order to make the melt | dissolution in molten steel easy as said iron pipe, the pipe | tube made from carbon steel was used.

その結果、ワイヤーをプルーム以外の領域に装入した場合に比較して、プルーム内の領域に装入した場合の方が、鉛が溶鋼中により均一に溶解し、分散されることが判明した。本発明では、この評価を溶解性の確認のため、鉛歩留により評価した。但し、上記ワイヤーをプルーム内へ投入した場合であっても、溶鋼中の鉛の均一分散の程度にばらつきの生じることがわかった。   As a result, it was found that lead was more uniformly dissolved and dispersed in the molten steel when the wire was charged into the region other than the plume when compared with the case where the wire was charged into the region other than the plume. In the present invention, this evaluation was evaluated by lead yield for confirmation of solubility. However, it was found that even when the wire was put into the plume, the degree of uniform dispersion of lead in the molten steel varied.

一般に、溶鋼処理においては、不慮の溶鋼温度低下時への余裕代の確保や、後工程における温度低下への配慮などを踏まえて、溶鋼の過熱度(ΔT)(すなわち、溶鋼温度から液相線温度(凝固開始温度)を減じた値)をある程度以上の値に保持している。しかし、本発明が対象とする鉛含有鋼の溶製においては、溶鋼中での溶解度が0.3〜0.4%しかない鉛を、その溶解度の限界近傍まで溶解させる必要がある。鉛の溶解度は、溶鋼中のC含有率が高く、溶鋼温度が高いほど高くなる。また、溶鋼中のC含有率が高く、溶鋼温度が高いほど、溶鋼の流動性も上昇することから、溶鋼の均一攪拌には有利となる。しかし、溶鋼温度が高くなると、鉛が気化しやすくなり、鉛の歩留りが低下するだけでなく、作業環境上も好ましくない。また、必要以上に溶鋼の温度を高くすることは、精錬エネルギーコストの面からも回避すべきである。   In general, in molten steel processing, the degree of superheat (ΔT) of molten steel (that is, from the molten steel temperature to the liquidus line, taking into account the allowance for an unexpected temperature drop in the molten steel and consideration for the temperature drop in the subsequent process) The value obtained by subtracting the temperature (solidification start temperature) is maintained at a value above a certain level. However, in the melting of lead-containing steel targeted by the present invention, it is necessary to dissolve lead having a solubility in the molten steel of only 0.3 to 0.4% to the vicinity of the limit of the solubility. The solubility of lead increases as the C content in molten steel increases and the molten steel temperature increases. Further, the higher the C content in the molten steel and the higher the molten steel temperature, the higher the fluidity of the molten steel, which is advantageous for uniform stirring of the molten steel. However, when the molten steel temperature becomes high, lead is liable to vaporize, and not only the yield of lead is lowered, but also not preferable in the working environment. Also, it is necessary to avoid raising the temperature of molten steel more than necessary from the viewpoint of refining energy cost.

そこで、上記の点を考慮し、溶鋼中C含有率が低い領域では溶鋼の過熱度(ΔT)を高目とし、溶鋼中C含有率が高い領域では溶鋼の過熱度(ΔT)を低目とすることを想到し、その効果を実験的に確認した。   Therefore, considering the above points, the superheat degree (ΔT) of the molten steel is high in the region where the C content in the molten steel is low, and the superheat degree (ΔT) of the molten steel is low in the region where the C content in the molten steel is high. I thought of it, and confirmed its effect experimentally.

溶鋼の液相線温度は、例えば、非特許文献1によれば、下記(2)式により表される。   According to Non-Patent Document 1, for example, the liquidus temperature of molten steel is represented by the following equation (2).

L=1536−{90×(%C)+6.2×(%Si)+1.7×(%Mn)+・・・} ・・・(2)
ここで、(%C)、(%Si)および(%Mn)は、それぞれ溶鋼中のC、SiおよびMn含有率(質量%)を表す。
T L = 1536− {90 × (% C) + 6.2 × (% Si) + 1.7 × (% Mn) +...} (2)
Here, (% C), (% Si), and (% Mn) represent C, Si, and Mn contents (mass%) in the molten steel, respectively.

上記(2)式によれば、例えば溶鋼中C含有率が0.05%では、TL=1530.7〜1524.4℃であり、溶鋼中C含有率が0.45%では、TL=1494.7〜1488.4℃である。 According to the above formula (2), for example, when the C content in molten steel is 0.05%, T L = 1530.7 to 1524.4 ° C., and when the C content in molten steel is 0.45%, T L = 1494.7 to 1488.4 ° C.

そこで、本発明についての研究および調査においては、溶鋼中C含有率が約0.05%の低炭素側ではΔT=90℃近傍が、また溶鋼中C含有率が約0.45%の高炭素側ではΔT=85℃近傍が適切と考えて、鉛添加開始時の溶鋼温度と鉛の歩留との関係を調査した。   Therefore, in the research and investigation of the present invention, in the low carbon side where the C content in molten steel is about 0.05%, ΔT = 90 ° C. is near, and the high carbon content in the molten steel is about 0.45%. On the side, assuming that ΔT = 85 ° C. is appropriate, the relationship between molten steel temperature at the start of lead addition and lead yield was investigated.

図2は、鉛添加開始時の溶鋼温度と溶鋼中における鉛の歩留りとの関係を示す図である。同図の結果から、溶鋼中C含有率が約0.05%の低炭素側ではΔT=90℃近傍において、また、溶鋼中C含有率が約0.45%の高炭素側ではΔT=85℃近傍において、溶鋼の高温化に伴う鉛歩留の上昇効果が確認された。   FIG. 2 is a diagram showing the relationship between the molten steel temperature at the start of lead addition and the lead yield in the molten steel. From the results shown in the figure, ΔT = 90 ° C. on the low carbon side where the C content in molten steel is about 0.05%, and ΔT = 85 on the high carbon side where the C content in molten steel is about 0.45%. In the vicinity of ℃, the increase in the lead yield due to the high temperature of the molten steel was confirmed.

図3は、溶鋼中のC含有率および鉛添加開始時の溶鋼温度が鉛歩留り上昇に及ぼす影響を示す図である。同図は、前記図2の結果を整理し直したものである。   FIG. 3 is a diagram showing the influence of the C content in molten steel and the molten steel temperature at the start of lead addition on the lead yield increase. This figure is a rearrangement of the results of FIG.

上記の結果から、本発明においては、溶鋼中C含有率が0.03〜0.50%、溶鋼中Si含有率が0.60%以下および溶鋼中Mn含有率が0.50〜2.00%の溶鋼処理において、鉛含有物質を内装した鉄製ワイヤーを装入する前の溶鋼の適正温度範囲を下記(1)式のとおり規定した。   From the above results, in the present invention, the C content in molten steel is 0.03 to 0.50%, the Si content in molten steel is 0.60% or less, and the Mn content in molten steel is 0.50 to 2.00. %, The appropriate temperature range of the molten steel before charging the iron wire containing the lead-containing material was defined as the following equation (1).

V≧1630−90×X−6.2×Y−1.7×Z ・・・・(1)
ここで、Vは鉄製ワイヤーを装入する前の溶鋼の温度(℃)、Xは溶鋼中のC含有率(質量%)、Yは溶鋼中のSi含有率(質量%)、Zは溶鋼中のMn含有率(質量%)をそれぞれ表す。
V ≧ 1630−90 × X−6.2 × Y−1.7 × Z (1)
Here, V is the temperature (° C.) of the molten steel before charging the iron wire, X is the C content (mass%) in the molten steel, Y is the Si content (mass%) in the molten steel, and Z is in the molten steel. Represents the Mn content (mass%).

なお、溶鋼温度が高すぎる場合の鉛歩留への悪影響については、今回の調査では明らかにならなかった。しかしながら、精錬エネルギーロスの低減や耐火物寿命などを考慮した操業上の制約から、鉄製ワイヤーを装入する前の溶鋼の温度Vは、下記(3)式により表される範囲内に調整する。
The adverse effect on lead yield when the molten steel temperature is too high was not clarified in this survey. However, constraints on operations in consideration of such reduction or refractory life of the refining energy loss, temperature V before the molten steel is charged with iron wire, adjust the range represented by the following formula (3) .

V≦1660−90×X−6.2×Y−1.7×Z ・・・・(3)
さらに、鉛含有物質内装ワイヤーとしては、断面の外寸法が(15〜17mm)×(7.0〜8.0mm)であり、肉厚が0.3〜0.5mmである角型管の内部に粒径が0.6mm以下の粉状の鉛含有物質を内装した鉄製ワイヤーを用い、これを溶鋼中に装入することが好ましいことが判明した。溶鋼中の鉛含有率の平均値が一層上昇し、しかも溶鋼内における鉛含有率のばらつきが低減されるからである。
2.構成要件の規定理由および好ましい態様
2−1.溶鋼中への鉛含有物質内装ワイヤーの装入領域
鉛含有物質を内装した鉄製ワイヤーは、プルーム領域に装入する必要がある。プルーム内においては、溶鋼は吹き込まれた不活性ガスにより激しく攪拌され、気泡と不活性ガスとが乱流混合状態となっている。したがって、ワイヤーをプルーム内の領域に装入することにより、ワイヤーをプルーム以外の領域に装入する場合よりも、ワイヤーに内装された鉛含有物質を溶鋼内で激しく攪拌混合させ、より均一に分散させることができるからである。
V ≦ 1660−90 × X−6.2 × Y−1.7 × Z (3)
Furthermore, as the lead-containing substance-incorporated wire, the inside dimension of the square tube whose outer dimension of the cross section is (15 to 17 mm) × (7.0 to 8.0 mm) and whose wall thickness is 0.3 to 0.5 mm. It was found that it is preferable to use an iron wire containing a powdery lead-containing substance having a particle size of 0.6 mm or less and to insert this into molten steel. This is because the average value of the lead content in the molten steel further increases and the variation in the lead content in the molten steel is reduced.
2. 2. Reasons for defining component requirements and preferred embodiments 2-1. Insertion region of lead-containing material-incorporated wire into molten steel Iron wire with lead-containing material must be inserted into the plume region. In the plume, the molten steel is vigorously stirred by the blown inert gas, and the bubbles and the inert gas are in a turbulent mixed state. Therefore, by inserting the wire into the area inside the plume, the lead-containing substance embedded in the wire is vigorously stirred and mixed in the molten steel, and distributed more uniformly than when the wire is inserted into the area other than the plume. It is because it can be made.

これに対して、ワイヤーをプルーム以外の領域に装入した場合には、溶鋼中に鉛が均一に分散しなかったのはもちろんのこと、プルーム以外の領域では、スラグが固いことから、ワイヤーが溶鋼中に十分に浸入しないという問題も発生した。   On the other hand, when the wire was inserted into an area other than the plume, lead was not uniformly dispersed in the molten steel, and the slag was hard in the area other than the plume. There was also a problem that it did not penetrate sufficiently into the molten steel.

2−2.炭酸カルシウムの粒度および含有率、ならびに粉状の鉛含有物質
粉状の鉛含有物質に含有させる炭酸カルシウムの粒径は0.6mm以下とし、その含有率は2〜10質量%とする。炭酸カルシウムを含有させる理由は、炭酸カルシウムの分解反応により炭酸ガスを発生させ、気泡による攪拌を活発に行わせるためである。また、その粒子径を0.6mm以下とするのは、溶鋼中において急速に溶解させ、炭酸カルシウムの分解反応を促進させるためである。粉状の鉛含有物質中の炭酸カルシウムの含有率が2%未満では上記の効果が得られず、他方、その含有率が10%を超えて高くなると、鉛含有物質の鉛含有率が低下してワイヤーの装入量が増加し、ワイヤーの装入時間が長くなって操業を阻害する。
2-2. The particle size and content of calcium carbonate and the powdered lead-containing material The particle size of calcium carbonate contained in the powdered lead-containing material is 0.6 mm or less, and the content is 2 to 10% by mass. The reason for containing calcium carbonate is to generate carbon dioxide gas by the decomposition reaction of calcium carbonate and to vigorously perform stirring with bubbles. The reason why the particle diameter is 0.6 mm or less is to rapidly dissolve in molten steel and promote the decomposition reaction of calcium carbonate. If the content of calcium carbonate in the powdery lead-containing material is less than 2%, the above effect cannot be obtained. On the other hand, if the content exceeds 10%, the lead content of the lead-containing material decreases. As a result, the amount of wire charged increases and the wire charging time becomes longer, hindering operation.

粉状の鉛含有物質は、前記のとおり、粒径が0.6mm以下であって、鉛の含有率が89%以上98%以下である鉛混合物および/または鉛化合物と、炭酸カルシウムとの混合物である。粒径が0.6mmを超えて大きいと、溶鋼中における鉛の溶解が不均一となりやすく、また、鉛の均一な分散を妨げる要因となりやすい。   As described above, the powdered lead-containing substance has a particle size of 0.6 mm or less and a lead mixture and / or a lead compound having a lead content of 89% or more and 98% or less, and a mixture of calcium carbonate. It is. When the particle size is larger than 0.6 mm, the dissolution of lead in the molten steel tends to be non-uniform and tends to hinder the uniform dispersion of lead.

2−3.鉛含有物質内装ワイヤー装入前における溶鋼温度
前記のとおり、鉛含有物質を内装した鉄製ワイヤーの装入前における溶鋼の適正温度範囲は、前記(1)式により表される範囲である。(1)式の関係を満足する条件でワイヤーを装入することにより、溶鋼中に鉛を均一に溶解させ、また、鉛の均一分散性を高めることができるからである。
2-3. Molten steel temperature before lead-containing substance-incorporated wire charging As described above, the appropriate temperature range of the molten steel before charging the iron wire in which the lead-containing substance is embedded is a range represented by the formula (1). It is because lead can be uniformly dissolved in molten steel and the uniform dispersibility of lead can be improved by charging the wire under the condition satisfying the relationship of the formula (1).

溶鋼中C含有率が低下すると、溶鋼の融点が上昇することに起因して溶鋼の流動性が低下し、鉛が溶鋼中に均一に分散しなくなる。したがって、溶鋼の溶解度以上に添加された鉛分を速やかに溶鋼中へ均一に分散させるためには、溶鋼中C含有率の低下に伴って、ワイヤー装入前の溶鋼温度を上昇させることが有効である。   When the C content in the molten steel is lowered, the melting point of the molten steel is increased, the fluidity of the molten steel is lowered, and lead is not uniformly dispersed in the molten steel. Therefore, in order to quickly and uniformly disperse the lead added above the solubility of the molten steel, it is effective to increase the molten steel temperature before the wire charging with the decrease in the C content in the molten steel. It is.

2−4.鉛含有物質内装ワイヤーの断面形状および寸法、ならびにワイヤー装入速度
鉛含有物質内装ワイヤーは、断面の外寸法が(15〜17mm)×(7.0〜8.0mm)であり、肉厚が0.3〜0.5mmである角型管の内部に粉状の鉛含有物質を内装した鉄製ワイヤーを用い、これを溶鋼中に装入する。溶鋼中の鉛含有率の平均値がさらに上昇し、しかも、そのばらつきが低減されるからである。また、ワイヤーとして断面が角型の管を用いる理由は、溶鋼中へのワイヤーの装入時におけるワイヤーの巻きぐせなどによるトラブルを回避しやすいからである。
2-4. Cross-sectional shape and dimensions of lead-containing substance-incorporated wire, and wire charging speed Lead-containing substance-incorporated wire has a cross-sectional outer dimension of (15 to 17 mm) × (7.0 to 8.0 mm), and a wall thickness of 0 using an iron wire was decorated with lead-containing substance of powdery inside of a .3~0.5mm square tube, it charged it in the molten steel. This is because the average value of the lead content in the molten steel is further increased and the variation is reduced. Also, why management of Ru with a tube cross-section square as a wire is because easy to avoid troubles due to habit turns of wire in the instrumentation Nyutoki wire into the molten steel.

鉛含有物質内装ワイヤーの断面の外寸法が15mm×7.0mm未満の場合には、ワイヤーの熱間強度が低下して、ワイヤーを溶鋼中へ深く浸入させることが難しくなる。そのため、ワイヤー中の鉛が溶鋼中に均一に分散しにくくなる。他方、ワイヤー断面の外寸法が17mm×8.0mmを超えて大きくなると、溶鋼中でワイヤーが溶解した際に比較的多量の鉛含有物質がプルーム内の局所的な領域で溶鋼と急激に接触するため、鉛含有物質の周囲の溶鋼温度が低下し、溶鋼中における鉛の分散性が低下することとなる。   When the outer dimension of the cross section of the lead-containing substance-incorporated wire is less than 15 mm × 7.0 mm, the hot strength of the wire is lowered and it is difficult to deeply penetrate the wire into the molten steel. Therefore, it becomes difficult for lead in the wire to be uniformly dispersed in the molten steel. On the other hand, when the outer dimension of the cross section of the wire becomes larger than 17 mm × 8.0 mm, a relatively large amount of lead-containing substance suddenly contacts the molten steel in a local region in the plume when the wire is melted in the molten steel. For this reason, the molten steel temperature around the lead-containing substance is lowered, and the dispersibility of lead in the molten steel is lowered.

鉛含有物質内装ワイヤーの肉厚が0.3mm未満の場合には、プルーム内の比較的上層部においてワイヤーが溶解するので、鉛が溶鋼と十分に攪拌混合される以前に、鉛がプルーム内からプルーム以外の比較的流動状態の緩やかな領域へと移動し、その結果、溶鋼中での鉛の分散性が低下する。他方、ワイヤーの肉厚が0.5mmを超えて厚くなると、ワイヤーがプルーム内の下方まで到達し、プルームと比較的流動の緩やかな領域との境界付近でワイヤーが溶解することから、鉛がプルーム内で十分に攪拌混合されにくくなり、その結果、溶鋼中における鉛の分散性が低下する。   When the thickness of the lead-containing material-incorporated wire is less than 0.3 mm, the wire dissolves at a relatively upper layer in the plume. Therefore, before the lead is sufficiently stirred and mixed with the molten steel, the lead is removed from the plume. It moves to a relatively fluid region other than the plume, and as a result, the dispersibility of lead in the molten steel decreases. On the other hand, when the thickness of the wire exceeds 0.5 mm, the wire reaches the lower part of the plume, and the wire melts near the boundary between the plume and the relatively slow flow region. It becomes difficult to be sufficiently stirred and mixed in the inside, and as a result, the dispersibility of lead in the molten steel is lowered.

鉛含有物質内装ワイヤーの装入速度は、鉛換算装入速度で0.4〜0.7kg/(min・t−溶鋼)の範囲とする。上記の装入速度が0.4kg/(min・t−溶鋼)未満では、溶鋼の表層部においてワイヤーが溶解し、鉛の蒸気が発生しやすくなって歩留まりが低下するので好ましくない。また、同速度が0.7kg/(min・t−溶鋼)を超えて速くなると、逆に溶解位置が取鍋の底部付近となり、鉛が沈殿しやすくなって歩留まりが低下し、好ましくないからである。
Dumping speed of lead-containing materials interior wire shall be the range of 0.4~0.7kg / (min · t- molten steel) of lead in terms of load velocity. If the charging speed is less than 0.4 kg / (min · t-molten steel), the wire melts in the surface layer portion of the molten steel, lead vapor is likely to be generated, and the yield is lowered, which is not preferable. On the other hand, if the speed exceeds 0.7 kg / (min · t-molten steel), the melting position will be near the bottom of the ladle, lead will easily precipitate, and the yield will decrease, which is not preferable. is there.

2−5.溶鋼の成分組成
溶鋼の主な成分組成は、下記の範囲とする
2-5. The main component composition of the molten steel chemical composition of molten steel is in the range below.

C:0.03〜0.50%
Cは、鋼を強化する作用を有する元素である。C含有率が0.03%未満では、必要な強度が得られにくくなるため好ましくない。他方、C含有率が0.50%を超えて高くなると、硬度が高くなりすぎて切削性が低下するので好ましくない。
C: 0.03-0.50%
C is an element having an effect of strengthening steel. If the C content is less than 0.03%, it is difficult to obtain the required strength, which is not preferable. On the other hand, if the C content exceeds 0.50%, the hardness becomes too high and the machinability deteriorates, which is not preferable.

Si:0.60%以下
Siは、鋼を脱酸する脱酸作用とともに、鋼に焼入れ性を付与して鋼を強化する作用を有する元素である。その含有率が0.60%を超えて高くなると、鋼の硬度が上昇しすぎて切削性が低下するので、好ましくない。
Si: 0.60% or less Si is an element having a function of strengthening steel by imparting hardenability to the steel as well as a deoxidizing action of deoxidizing the steel. If the content exceeds 0.60%, the hardness of the steel increases excessively and the machinability decreases, which is not preferable.

Mn:0.50〜2.00%
Mnは、鋼の脱酸作用を有するとともに、鋼に焼入れ性を付与して鋼を強化し、さらに、MnSを形成して鋼の切削性を向上させ、FeSの形成を抑制して熱間加工性を向上させる作用を有する元素である。Mn含有率が0.50%未満では、必要な強度が得られにくく、また、熱間延性が低下して熱間加工性が悪化するので、好ましくない。他方、その含有率が2.00%を超えて高くなると、これらの効果が飽和し、合金コストが上昇するので、好ましくない。
Mn: 0.50 to 2.00%
Mn has a deoxidizing effect on steel, strengthens the steel by imparting hardenability to the steel, and further improves the machinability of the steel by forming MnS, thereby suppressing the formation of FeS and hot working. It is an element having the effect of improving the properties. If the Mn content is less than 0.50%, the required strength is difficult to obtain, and the hot ductility is lowered and the hot workability is deteriorated. On the other hand, if the content exceeds 2.00%, these effects are saturated and the alloy cost increases, which is not preferable.

本発明の溶鋼への鉛の添加方法の効果を確認するため、下記の鉛含有鋼の溶製試験を行い、その結果を評価した。   In order to confirm the effect of the method of adding lead to the molten steel of the present invention, the following lead-containing steel melting test was conducted and the results were evaluated.

取鍋内に収容された質量が約70tで、温度が1540〜1640℃、C含有率が0.05〜0.10%、Si含有率が0.01〜0.02%、Mn含有率が0.90〜1.30%の溶鋼中へ、取鍋底部からArガスを1.95Nl/(min・t−溶鋼)の流量で吹き込みながら、プルーム内またはプルーム以外の領域へ、下記の方法により、鉛を添加する試験を行った。   The mass accommodated in the ladle is about 70 t, the temperature is 1540 to 1640 ° C., the C content is 0.05 to 0.10%, the Si content is 0.01 to 0.02%, and the Mn content is While blowing Ar gas from the bottom of the ladle into the 0.90 to 1.30% molten steel at a flow rate of 1.95 Nl / (min · t-molten steel), into the plume or the area other than the plume by the following method A test for adding lead was conducted.

すなわち、粒径が0.6mm以下の炭酸カルシウムを2〜10質量%添加して鉛混合物とした粒径が0.6mm以下の粉状の鉛含有物質を、横断面の外寸法が16mm×7.5mmであり、肉厚が0.4mmの角型の鉄製管に内装した鉄製ワイヤーを、鉛量換算で0.4〜0.7kg/(min・t−溶鋼)の供給速度にて、溶鋼中に7分間装入した。この鉛装入量は、溶鋼中の鉛含有率では0.30質量%に相当する。なお、一部の試験では、ワイヤーの断面形状を変更した試験も行った。   That is, a powdery lead-containing substance having a particle size of 0.6 mm or less, which is a lead mixture obtained by adding 2 to 10 mass% of calcium carbonate having a particle size of 0.6 mm or less, has an outer dimension of 16 mm × 7 A steel wire that is housed in a square steel pipe having a thickness of 0.4 mm and a thickness of 0.4 mm, and at a supply rate of 0.4 to 0.7 kg / (min · t-molten steel) in terms of lead amount. The inside was charged for 7 minutes. This lead charge corresponds to 0.30% by mass in terms of the lead content in the molten steel. In some tests, a test in which the cross-sectional shape of the wire was changed was also performed.

試験条件および試験結果を表1に示した。   Test conditions and test results are shown in Table 1.

Figure 0005326243
Figure 0005326243

同表において、ワイヤー装入位置の「A」は、鉛含有物質を内装した鉄製ワイヤーをプルーム内の領域に装入したことを、また、「B」は、同ワイヤーをプルーム以外の領域に装入したことを表す(図1参照)。   In the table, “A” at the wire loading position indicates that an iron wire containing lead-containing material was loaded into the area in the plume, and “B” represents that the wire was loaded in an area other than the plume. It represents that it entered (see FIG. 1).

また、試験結果は、鉛の分散性を均一溶解性により評価するため、下記(4)式により算出される鉛の歩留りを求め、この値により評価した。鉛歩留りの値が大きいほど鉛の分散性が良好なことを意味する。   Moreover, in order to evaluate the dispersibility of lead by uniform solubility, the test result was obtained by obtaining the lead yield calculated by the following equation (4), and evaluated this value. A larger lead yield value means better lead dispersibility.

鉛歩留り=製品中の鉛含有率(%)/{(鉛含有物質の質量(kg)×鉛含有率(%))/溶鋼の質量(kg)}×100(%) ・・・・(4)
試験番号2〜9および11〜13は、本発明で規定する条件を満足する本発明例についての試験であり、試験番号1および2は、本発明で規定する条件を満たさない比較例についての試験である。
Lead yield = lead content in product (%) / {(mass of lead-containing material (kg) x lead content (%)) / mass of molten steel (kg)} x 100 (%) (4) )
Test Nos 2-9 and 11-13 are tests for inventive examples satisfying the conditions specified in this onset bright, Test No. 1 and 2, for Comparative examples not satisfying the conditions defined by the present invention It is a test.

鉛含有物質を内装した鉄製ワイヤーをプルーム以外の領域に装入した比較例である試験番号1、および同ワイヤー装入前の溶鋼温度が低く、(1)式により表される関係を満たさない比較例である試験番号10は、いずれも、鉛の歩留りが比較的低く、溶鋼中における鉛の分散性が劣っていた。   Test number 1, which is a comparative example in which an iron wire containing lead-containing material is inserted into a region other than the plume, and a comparison in which the molten steel temperature before charging the wire is low and does not satisfy the relationship expressed by equation (1) In each of Test No. 10 as an example, the lead yield was relatively low, and the dispersibility of lead in the molten steel was inferior.

これに対して、本発明例である試験番号2〜9および11〜13は、いずれも、鉛の歩留りが高く、良好な分散性を示した。とりわけ、試験番号3、4、7、8および11〜13では、鉛の歩留りが63%以上の高い値が得られ、極めて良好な鉛の分散性が確認された。
On the other hand, Test Nos. 2 to 9 and 11 to 13, which are examples of the present invention, all showed high lead yield and good dispersibility. Especially, the test numbers 3, 4, 7, 8 and 11 to 13, lead yield is obtained a high value of more than 63%, the dispersibility of the very good lead was confirmed.

本発明の溶鋼への鉛の添加方法によれば、取鍋の底部に設置したガスバブリング装置から溶鋼中に不活性ガスを吹き込んで溶鋼を攪拌しながら、溶鋼中へ鉛含有物質を内装したワイヤーを添加することにより、溶鋼中へ鉛を均一に溶解させ、分散させることができる。特に、本発明の方法は、鉛含有率が0.30質量%以上の鉛快削鋼を対象とし、鉛が均一に分散した高品質の鉛含有鋼の溶製に適している。したがって、本発明の鉛の添加方法は、被削性に優れ、また需要の多い鉛快削鋼の製造技術分野において広範に適用できる技術である。   According to the method for adding lead to molten steel of the present invention, a wire containing lead-containing material in the molten steel while stirring the molten steel by blowing an inert gas into the molten steel from a gas bubbling device installed at the bottom of the ladle Can be uniformly dissolved and dispersed in molten steel. In particular, the method of the present invention targets lead free-cutting steel having a lead content of 0.30% by mass or more and is suitable for melting high-quality lead-containing steel in which lead is uniformly dispersed. Therefore, the lead addition method of the present invention is a technique that is excellent in machinability and can be widely applied in the field of production technology for lead free-cutting steel, which is in great demand.

取鍋内溶鋼に鍋底部から不活性ガスを吹き込みながら上部から鉛を添加する方法を説明するための図である。It is a figure for demonstrating the method of adding lead from upper part, blowing inactive gas from the bottom part of a ladle into molten steel in a ladle. 鉛添加開始時の溶鋼温度と溶鋼中における鉛の歩留りとの関係を示す図である。It is a figure which shows the relationship between the molten steel temperature at the time of a lead addition start, and the yield of lead in molten steel. 溶鋼中のC含有率および鉛添加開始時の溶鋼温度が鉛歩留り上昇に及ぼす影響を示す図である。It is a figure which shows the influence which the C steel content rate in molten steel and the molten steel temperature at the time of a lead addition start exert on a lead yield rise.

Claims (2)

取鍋内に収容された、質量%で、C:0.03〜0.50%、Si:0.60%以下およびMn:0.50〜2.00%を含有する溶鋼中に鍋底部から不活性ガスを吹き込み、吹き込まれた不活性ガスと溶鋼とが混在して激しく攪拌混合される領域へ、
鉛含有物質を内装した鉄製ワイヤーを装入する溶鋼への鉛の添加方法であって、
鉄製ワイヤーを装入する前の溶鋼の温度、溶鋼中のC含有率、溶鋼中のSi含有率、および溶鋼中のMn含有率が、下記(1)式および(3)式で表される関係を満足するように該溶鋼の温度を制御し、
前記鉄製ワイヤーとして、断面の外寸法が(15〜17mm)×(7.0〜8.0mm)であり、肉厚が0.3〜0.5mmの角型管に粒径が0.6mm以下の炭酸カルシウムを2〜10質量%含有する粒径が0.6mm以下の粉状の鉛含有物質を内装した鉄製ワイヤーを用い、鉛換算装入速度で0.4〜0.7kg/(min・t−溶鋼)の鉛を溶鋼中へ装入することを特徴とする溶鋼への鉛の添加方法。
V≧1630−90×X−6.2×Y−1.7×Z ・・・・(1)
V≦1660−90×X−6.2×Y−1.7×Z ・・・・(3)
ここで、Vは鉄製ワイヤーを装入する前の溶鋼の温度(℃)、Xは溶鋼中のC含有率(質量%)、Yは溶鋼中のSi含有率(質量%)、Zは溶鋼中のMn含有率(質量%)をそれぞれ表す。
From the bottom of the pan in the molten steel contained in the ladle, in mass%, containing C: 0.03-0.50%, Si: 0.60% or less and Mn: 0.50-2.00% To the area where inert gas is blown and the blown inert gas and molten steel are mixed and vigorously stirred and mixed,
It is a method of adding lead to molten steel that is charged with an iron wire containing a lead-containing substance,
Relationship between the temperature of the molten steel before charging the iron wire, the C content in the molten steel, the Si content in the molten steel, and the Mn content in the molten steel represented by the following formulas (1) and (3) The temperature of the molten steel is controlled to satisfy
As the iron wire, the outer dimension of the cross section is (15 to 17 mm) × (7.0 to 8.0 mm), and the particle diameter is 0.6 mm or less in a square tube having a wall thickness of 0.3 to 0.5 mm. Of iron carbonate containing a powdery lead-containing substance having a particle size of 0.6 mm or less and containing 2 to 10% by mass of calcium carbonate at a lead conversion rate of 0.4 to 0.7 kg / (min · A method for adding lead to molten steel, wherein the lead of (t-molten steel) is charged into the molten steel.
V ≧ 1630−90 × X−6.2 × Y−1.7 × Z (1)
V ≦ 1660−90 × X−6.2 × Y−1.7 × Z (3)
Here, V is the temperature (° C.) of the molten steel before charging the iron wire, X is the C content (mass%) in the molten steel, Y is the Si content (mass%) in the molten steel, and Z is in the molten steel. Represents the Mn content (mass%).
鋼中の鉛の含有率を0.3〜0.4質量%とすることを特徴とする請求項1に記載の溶鋼への鉛の添加方法。   The method for adding lead to molten steel according to claim 1, wherein the lead content in the steel is 0.3 to 0.4 mass%.
JP2007230109A 2007-09-05 2007-09-05 How to add lead to molten steel Active JP5326243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230109A JP5326243B2 (en) 2007-09-05 2007-09-05 How to add lead to molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230109A JP5326243B2 (en) 2007-09-05 2007-09-05 How to add lead to molten steel

Publications (2)

Publication Number Publication Date
JP2009062567A JP2009062567A (en) 2009-03-26
JP5326243B2 true JP5326243B2 (en) 2013-10-30

Family

ID=40557415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230109A Active JP5326243B2 (en) 2007-09-05 2007-09-05 How to add lead to molten steel

Country Status (1)

Country Link
JP (1) JP5326243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053178B (en) * 2013-10-07 2022-08-05 Tdk株式会社 Ferrite composition and electronic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354117A (en) * 2022-08-30 2022-11-18 江苏星火特钢集团有限公司 Optimized process for adding lead into steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157215A (en) * 1983-02-26 1984-09-06 Nippon Steel Corp Manufacture of molten steel containing lead by utilizing calcium carbonate
JPS59205453A (en) * 1983-05-09 1984-11-21 Daido Steel Co Ltd Free cutting steel and preparation thereof
JPS613822A (en) * 1984-06-19 1986-01-09 Nippon Kokan Kk <Nkk> Method for adding alloy element of which vapor pressure is increased by temperature of molten steel to molten steel
DE3739154A1 (en) * 1987-11-19 1989-06-01 Sueddeutsche Kalkstickstoff LEADING ADDITIVE FOR STEEL MELTING
JPH0229448U (en) * 1988-08-10 1990-02-26
JP2000328132A (en) * 1999-05-19 2000-11-28 Namariichi Kagaku Kogyo Kk Additive for adding lead into molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053178B (en) * 2013-10-07 2022-08-05 Tdk株式会社 Ferrite composition and electronic component

Also Published As

Publication number Publication date
JP2009062567A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5037360B2 (en) Method for producing high manganese low carbon steel
US11486012B2 (en) Cast iron inoculant and method for production of cast iron inoculant
US11486011B2 (en) Cast iron inoculant and method for production of cast iron inoculant
JP2008531840A5 (en)
CA3084661A1 (en) Cast iron inoculant and method for production of cast iron inoculant
KR20180008612A (en) How to melt cast iron
JP6816777B2 (en) Slag forming suppression method and converter refining method
US11932913B2 (en) Cast iron inoculant and method for production of cast iron inoculant
JP5326243B2 (en) How to add lead to molten steel
KR102565782B1 (en) Ca addition method to molten steel
CN109072320B (en) Method and apparatus for desulfurizing molten iron
CN104651729B (en) Steel for bucket teeth of construction machinery and preparation method of bucket teeth
JP6455289B2 (en) Continuous casting method for molten steel
JP5406516B2 (en) Method for producing high nitrogen content stainless steel
RU2443785C1 (en) Flux cored wire filler for out-of-furnace treatment of metallurgical melts
JP2008231494A (en) Desulfurizing agent and method for desulfurizing molten iron
RU2456349C1 (en) Procedure for out-of-furnace treatment of iron-carbon melt
JP2009114532A (en) Manufacturing method of magnesium alloy material
JP2016000409A (en) Maraging steel manufacturing method
JP2019108566A (en) Method of suppressing slag foaming and converter refining
SU996070A1 (en) Steel ingot production method
JP2008189975A (en) Molten steel treatment method by addition of magnesium thereto
JPS5964712A (en) Method of addition for obtaining alloy
RU2369642C1 (en) Wire for out-of-furnace treatment of melt (versions)
Derda-Ślęzak et al. The Initial Assessment of Effectiveness of the Impulse Method of Introducing an Inoculant into Cast Iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350