JPS5964712A - Method of addition for obtaining alloy - Google Patents

Method of addition for obtaining alloy

Info

Publication number
JPS5964712A
JPS5964712A JP17324482A JP17324482A JPS5964712A JP S5964712 A JPS5964712 A JP S5964712A JP 17324482 A JP17324482 A JP 17324482A JP 17324482 A JP17324482 A JP 17324482A JP S5964712 A JPS5964712 A JP S5964712A
Authority
JP
Japan
Prior art keywords
molten steel
carrier gas
powdery
air
mixing ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17324482A
Other languages
Japanese (ja)
Other versions
JPH0125363B2 (en
Inventor
Yoshio Inagaki
稲垣 佳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP17324482A priority Critical patent/JPS5964712A/en
Publication of JPS5964712A publication Critical patent/JPS5964712A/en
Publication of JPH0125363B2 publication Critical patent/JPH0125363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To perform the titled addition with a high yield without segregation, in adding Mo or W to molten steel, by blowing an oxide of Mo or W together with carrier gas through a dipping lance into the molten steel. CONSTITUTION:The mixed body of powdery MoO3 or CaWO4 with carrier gas, e.g. air, is blown into molten steel 3 through the top end of a lance 2 immersed in the molten steel 3 having slag 4 inside a furnace 1, and the dispersion zone 6a or 6b of said mixed body is formed inside the molten steel 3. At this time, if the mixing ratio is below about 30wt%, said dispersion zone exhibits such a shape as shown in the zone 6a, so that the part 7 of the dispersed powdery body rises up without completely reducing it with Si, etc. in the molten steel. On the other hand, in the range of a pref. mixing ratio, the powdery body is deeply dispersed in such a state as shown in the zone 6b into the molten steel 3, so that the molten steel 3 is suifficiently agitated by the thermal expansion and floatation of air, and the powdery body of larger specific gravity is dispersed into a larger range so as to increase the chance to meet with Si, etc. in the molten steel. Consequently, even a volatile powdery body is rapidly reduced, and Mo or W is uniformly diffused into the entire body of the molten steel by the effect of agitation caused by the injection of air without the formation of segregation.

Description

【発明の詳細な説明】 本発明は、溶鋼中KMo、Wを効率よくかつ歩留り良く
添加する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently adding KMo and W to molten steel with good yield.

Mo、Wは構造用鋼、工具鋼、ダイス鋼等の添加元素と
して不可欠のものであるが、高価な合金元素である。し
たがって、溶鋼中にMo、Wを添加する場合の歩留りの
良否が、鋼の製造原価及び製品価格に直接影響する。
Mo and W are essential as additive elements for structural steel, tool steel, die steel, etc., but are expensive alloying elements. Therefore, the quality of the yield when Mo and W are added to molten steel directly affects the manufacturing cost and product price of the steel.

従来、溶鋼中に高価なMo 、 Wを添加する方法とし
ては、転炉、電気炉、取鍋等の容器の底部に設けたポー
ラスプラグ等を介してAr等の不活性ガスを溶鋼中に供
給し、溶鋼を攪拌しながら溶鋼表面にMo 、 ’Wの
金属単体あるいはMO,Wのフェロアロイを直接投入し
て添加する方法や、棒線状として連続的に投入する方法
(ワイヤーフィーダー法という)や、合金添加材を砲弾
型等の容器に充填して溶鋼中に投入する方法(弾発対決
という)等が一般に用いられている。
Conventionally, the method of adding expensive Mo and W to molten steel is to supply an inert gas such as Ar into molten steel through a porous plug installed at the bottom of a container such as a converter, electric furnace, or ladle. However, while stirring the molten steel, a single metal such as Mo or 'W or a ferroalloy of MO or W is directly added to the surface of the molten steel, or a method in which it is continuously added in the form of a rod (called the wire feeder method). A commonly used method is to fill alloy additives in a cannonball-shaped container or the like and throw it into molten steel (referred to as bombardment).

しかしながら、かかる従来の方法においては、容器の底
部から供給される不活性ガスの量的制約   □がちり
、溶鋼の攪拌が十分ではなく、また添加金属の融点が高
くかつ塊状あるいは粒状であるため、溶解時間が長くな
ると共に、歩留りが悪くかつ偏析を生じ易いという問題
があった。
However, in such conventional methods, there is a quantitative restriction on the amount of inert gas supplied from the bottom of the container, dust, insufficient stirring of the molten steel, and the addition metal has a high melting point and is in the form of lumps or granules. There were problems in that the dissolution time became long, the yield was poor, and segregation was likely to occur.

さらに、Mo 、 Wの酸化物を溶鋼表面から添加する
場合においては、還元回収の歩留シが低く、製造原価の
観点から問題があった。
Furthermore, when Mo and W oxides are added from the surface of the molten steel, the yield of reduction and recovery is low, which poses a problem in terms of manufacturing costs.

そして、Mo 、 Wの金属単体、Mo 、 Wのフェ
ロアロイ及びMo 、 Wの酸化物はいずれも高価であ
るため、その添加歩留りの向上は鋼の製造原価を低減す
る観点から極めて重要な技術課題であり、その開発が急
務となっている。
Furthermore, since the elemental metals of Mo and W, the ferroalloys of Mo and W, and the oxides of Mo and W are all expensive, improving their addition yield is an extremely important technical issue from the perspective of reducing the manufacturing cost of steel. There is an urgent need to develop it.

本発明は従来の問題点を解消するためになされたもので
、溶鋼中にMo、Wを歩留り良くかつ偏析なく添加する
ことができる新規な方法を提供することを目的とする。
The present invention was made to solve the problems of the conventional method, and an object of the present invention is to provide a new method that can add Mo and W to molten steel with a high yield and without segregation.

本発明者は従来方法において、Mo 、 Wの酸化物粉
体を溶鋼中に添加する場合にその歩留りが悪い主な原因
として、第1図に示すように、酸化モリブデン(Mo5
3)と、それよりやや低いが酸化タンするため、溶鋼中
で還元回収される前に蒸発してロスすること、溶佃の攪
拌力が少ないこと等が挙げられることを見出した。
In the conventional method, the main reason for the poor yield when Mo and W oxide powders are added to molten steel is that molybdenum oxide (Mo5
3), and to a slightly lesser extent, it was found that oxidation causes evaporation and loss before being reduced and recovered in the molten steel, and the stirring power of the molten steel is low.

本発明は上記の知見に基づくもので、溶鋼中にMO,W
を添加するにあたり、前記Mo、Wの酸化物からなる粉
体または粒体を、溶鋼に浸漬したランスを介してキャリ
アガスと共に前溶鋼中に吹込むことを%、徴とする。
The present invention is based on the above knowledge, and MO, W in molten steel.
In addition, powder or granules made of the oxides of Mo and W are blown into the pre-molten steel together with a carrier gas through a lance immersed in the molten steel.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明を実晦するにあたっては、通常のアーク電気炉の
ほか、転炉、X空炉、AOD炉または取鍋等の合金添加
操業する全ての炉−または容器を含む。溶鋼中にMo 
、 W f添加する際の原料形態は、MoO3あるいは
C&Wo4(シーライトという)等の酸化物である。そ
して、このMoO3,CaWO4等の酸化物は粉体ある
いは粒体状であってキャリアガスによる高圧輸送が容易
なことが必要である。
In carrying out the present invention, all furnaces or vessels operated with alloy addition, such as a converter furnace, an X-air furnace, an AOD furnace, or a ladle, are included in addition to the ordinary arc electric furnace. Mo in molten steel
, W f is added in the form of a raw material such as an oxide such as MoO3 or C&Wo4 (referred to as celite). The oxides such as MoO3 and CaWO4 are required to be in the form of powder or granules so that they can be easily transported under high pressure by a carrier gas.

そして、本発明では、上記M003.CaWO4等の酸
化物粉体または粒体をキャリアガスと混合し、溶鋼内底
部近傍に位置せしめたランスから溶鋼中に高圧で噴射さ
せて溶鋼の攪拌と同時に、〜Io、Wを添加する方法を
採用する。このとき、キャリアガスはAr 、 He 
p N2等の不活性ガスをはじめ、空気あるいはこれら
の混合ガスでもよい。不活性ガスが高価であり、供給景
に制約がある一方、キャリアガスとしてAr 、 N2
等の不活性ガスを用いた場合には、Ar等が溶鋼中の元
素と反応することなく、溶鋼中で熱膨張して急上昇する
ため、かえってスプラッシュの原因となることがある。
In the present invention, the above M003. A method of mixing oxide powder or granules such as CaWO4 with a carrier gas and injecting the mixture at high pressure into molten steel from a lance located near the bottom of the molten steel to stir the molten steel and simultaneously add ~Io, W. adopt. At this time, the carrier gas is Ar, He
In addition to an inert gas such as pN2, air or a mixture thereof may be used. While inert gases are expensive and have limited supply, Ar and N2 can be used as carrier gases.
If an inert gas such as Ar is used, Ar or the like will thermally expand and rise rapidly in the molten steel without reacting with the elements in the molten steel, which may instead cause splash.

キャリアガスとしては無尽の資源である空気を使用する
ことは、製造原価の低減の観点から好ましい。例えキャ
リアガスとして空気を使用しても、#鋼中に供給される
酸素量はMoO3p CaW04から溶鋼中に入る酸累
儀に比べて微少であるため、無視し得る程度である。か
つ酸化物であるが由に酸化ロスの心配がない。□ 本発明では、M、o 、 Wの酸化物からなる粉体また
は粒体のキャリアガスに対する混合比を30重量%以上
50重盪チ以下とするのがより好ましい。
It is preferable to use air, which is an inexhaustible resource, as the carrier gas from the viewpoint of reducing manufacturing costs. Even if air is used as the carrier gas, the amount of oxygen supplied to #steel is negligible because it is minute compared to the amount of acid that enters the molten steel from MoO3pCaW04. And since it is an oxide, there is no worry about oxidation loss. □ In the present invention, it is more preferable that the mixing ratio of the powder or granules made of the oxides of M, O, and W to the carrier gas is 30% by weight or more and 50% by weight or less.

す女わち、粉体等の単位時間当りに吹込む重量をw、 
(Ky/ mjn ) 、吹込むキャリアガスの単位時
間当υの重量をW、(Kp / min )とすれば、
上記の混合比(μB)は次式で表わされる。
Well, the weight of powder, etc. injected per unit time is w,
(Ky/mjn), and the weight of the injected carrier gas per unit time υ is W, (Kp/min),
The above mixing ratio (μB) is expressed by the following formula.

μB = W8/〜Va(1) 第2図は混合比(μB)とMo、Wの還元歩留りとの関
係を詭ぺた結果の一例を示した図で、横軸に混合比、縦
軸にMo 、 Wの還元歩留りを示したものである。
μB = W8/~Va (1) Figure 2 shows an example of the relationship between the mixing ratio (μB) and the reduction yield of Mo and W, with the horizontal axis representing the mixing ratio and the vertical axis representing Mo. , shows the reduction yield of W.

(Aに示すように混合比(μB)が30重量−未満では
%[o 、 Wの歩留りの向上が図られないと共に、吹
込み時間が長くなり浸漬ランスの溶損及びへたりが発生
し操業上好ましくない。他方、50重量%超過では、混
合体を輸送するホースが詰りやすくかつ脈打ちして操業
が困難となり、かえって歩留りが低下する。上記の混合
比で、添加粉体をキャリアガスと共に、溶鋼内底部近傍
に浸漬したランスを介して吹込む。この浸漬ランスの形
状寸法及び本数は炉型式、炉内の溶鋼重量及び吹込址等
を考慮して決定される。吹込む際の浸漬ランスの角度は
前記の炉型式によっても異なるが、好ましくは水平に対
し25〜35°程度の角度をもたせるのが良い。
(As shown in A, if the mixing ratio (μB) is less than 30% by weight, the yield of % [o, W] cannot be improved, and the blowing time becomes longer, causing melting and fatigue of the immersion lance, which makes the operation difficult. On the other hand, if it exceeds 50% by weight, the hose that transports the mixture is likely to clog and pulsate, making operation difficult and reducing the yield.At the above mixing ratio, the added powder is mixed with the carrier gas, The molten steel is injected through a lance immersed near the bottom of the interior.The shape, dimensions and number of immersion lances are determined by taking into account the furnace model, the weight of molten steel in the furnace, the injection area, etc. Although the angle varies depending on the furnace type, it is preferably about 25 to 35 degrees with respect to the horizontal.

また、吹込み時間はMo、W合金添加に必要な所定のM
oO2,CaWO4の供給量、吹込み速度及び還元回収
歩留り等によって決まる。
In addition, the blowing time is set to the predetermined M required for adding Mo and W alloys.
It is determined by the supply amount of oO2 and CaWO4, the blowing speed, the reduction recovery yield, etc.

前記のMoO2,CaWO,粉体とキャリアガスとの混
合体の吹込み態様を添附第3図によって説明する。
The manner in which the mixture of MoO2, CaWO, powder and carrier gas is blown will be explained with reference to FIG. 3 attached hereto.

図において、1は炉、2は浸漬ランス、6は溶鋼、4は
スラグである。Mobs、 CaWO4粉体とキャリア
ガスとの混合体は輸送管2aを通って高圧輸送され、溶
鋼6内の底部近傍に位置せしめた浸漬ランス2の先端か
ら溶鋼6中へ吹き込まれる。そして、溶鋼3中で混合体
の分散帯6a、6bが形成される。このとき、混合比が
30重量%よシも少ない分散帯6aのような形状を呈し
、分散した粉体は分散帯6a近傍の溶鋼中の還元元素<
St>等により、完全に還元されず、一部7が溶鋼上の
スラグ4の層へ上昇する。そのためMo 、 Wの還元
回収の歩留りが悪くなる。一方、本発明法によるより好
ましい混合比の範囲では分散帯6bのように、溶鋼6中
に深く分散され、かつ空気(、N2+ 0□)の熱膨張
、浮上により溶鋼が十分に攪拌されると共に、比重の大
きいMoO2,CaWO,粉体はその運動エネルギーに
より溶鋼の広範囲に分散、拡散され溶鋼中の還元元素た
とえば<St><C>等との出合の機会を多くする。し
たがって、蒸発ロスし易いMob3t CaVi’l:
)4であってもすみやかに還元回収される。還元された
<MO>、<W>はキャリアガスの吹き込みによる攪拌
効果により、溶鋼全体に均一に拡散し、偏析を生ずるこ
とがない。一方、還元に供した<Si>等は5IO2酸
化物8等となり、溶鋼6中を上昇してスラグ4に入る。
In the figure, 1 is a furnace, 2 is an immersion lance, 6 is molten steel, and 4 is slag. A mixture of Mobs, CaWO4 powder, and carrier gas is transported under high pressure through the transport pipe 2a and blown into the molten steel 6 from the tip of the immersion lance 2 located near the bottom of the molten steel 6. Dispersion zones 6a and 6b of the mixture are then formed in the molten steel 3. At this time, the shape appears like a dispersion zone 6a where the mixing ratio is less than 30% by weight, and the dispersed powder is less than the reducing element in the molten steel near the dispersion zone 6a.
St> etc., it is not completely reduced and a portion 7 rises to the layer of slag 4 on the molten steel. Therefore, the yield of reduction and recovery of Mo and W deteriorates. On the other hand, in a more preferable mixing ratio range according to the method of the present invention, the molten steel is deeply dispersed in the molten steel 6 like the dispersion zone 6b, and the molten steel is sufficiently stirred by the thermal expansion and floating of the air (N2+ 0□). , MoO2, CaWO, and powder having a large specific gravity are dispersed and diffused over a wide range of molten steel due to their kinetic energy, increasing the chances of encountering reducing elements such as <St> and <C> in the molten steel. Therefore, Mob3t CaVi'l which is prone to evaporation loss:
) 4 will be promptly reduced and recovered. The reduced <MO> and <W> are uniformly diffused throughout the molten steel due to the stirring effect of the carrier gas injection, and no segregation occurs. On the other hand, <Si> and the like subjected to the reduction become 5IO2 oxides 8 and the like, which rise in the molten steel 6 and enter the slag 4.

なお、吹込み前の溶鋼中のSt含有量は、上述した酸化
物の還元を促舶し、酸化物としての蒸発ロスをおさえる
意味から0.05重i%以上であることが望ましい。
Note that the St content in the molten steel before blowing is desirably 0.05% by weight or more in order to promote the reduction of the oxides mentioned above and to suppress evaporation loss as oxides.

本発明をさらに実施例に基づいて説明する。The present invention will be further explained based on examples.

実施例 1 30 TONのアーク電気炉を用いて溶鋼からMO金含
有ダイス用鋼を溶製するに当り、浸漬ランスからM00
3粉体403 Kyを、キャリアガス(空気)に対する
粉体の混合比を33.8重J’t %として、溶鋼中7
50mmの深さに浸漬したランスから高圧で吹き込んで
、溶鋼中にMOを還元添加した。この際の吹込み条件を
第1表に示す。
Example 1 When melting MO gold-containing die steel from molten steel using a 30 TON arc electric furnace, M00 from an immersion lance was used.
3 powder 403 Ky in molten steel with a mixing ratio of powder to carrier gas (air) of 33.8 weight J't%.
MO was reduced and added to the molten steel by blowing at high pressure from a lance immersed to a depth of 50 mm. The blowing conditions at this time are shown in Table 1.

2g1表 本実施例においての吹込み時期は鋼の溶製工程における
溶解期の終了時とし、その吹込み操業時間は3分である
。本発明法によるMo添加の結果を第  2  表 溶鋼中のMO成分量は溶解時に0.39 % MOであ
ったところ、M2O3の吹込み完了時には0.88%M
Oと上昇した。一方、Si成分量が溶解時の0605 
% Stから0.03 % Stと減少した。このこと
はM003吹込みと同時にM2O3が溶鋼中のSi等の
還元元素と激しく還元反応することが分かる。この還元
反応式%式%(2) となる。すなわち、M003吹込前の溶鋼中のrsz 
  1チが高いほど、上記の反応(2)が迅やかに進行
することになり、M2O3の形における蒸発ロスを抑制
することを可能にする。酸化期においても、MO成分I
が0.91%と還元回収される一方、溶鋼中rsiJチ
は0001%に:減少する。これは非還元M003は酸
化雰囲気においても、溶鋼中の還元元素r Si j等
と反応するものと推測される。
Table 2g1 The blowing timing in this example is the end of the melting period in the steel melting process, and the blowing operation time is 3 minutes. Table 2 shows the results of adding Mo using the method of the present invention.The amount of MO component in molten steel was 0.39% MO at the time of melting, but 0.88% MO when the injection of M2O3 was completed.
It rose to O. On the other hand, the amount of Si component is 0605 when dissolved.
% St to 0.03% St. This shows that M2O3 undergoes a violent reduction reaction with reducing elements such as Si in the molten steel at the same time as M003 is injected. This reduction reaction formula is as follows. In other words, rsz in molten steel before M003 injection
The higher the value of 1, the faster the reaction (2) proceeds, making it possible to suppress evaporation loss in the form of M2O3. Even in the oxidation period, MO component I
is reduced and recovered to 0.91%, while rsiJ in the molten steel decreases to 0001%. This is presumably because non-reduced M003 reacts with reducing elements r Si j etc. in molten steel even in an oxidizing atmosphere.

さらに還元JIJlにおいて、50チフエロシリコン7
00 KQを投入すると、MO含有縫は1.07%と上
昇し、81%も0゜43チとなる。
Furthermore, in reduced JIJl, 50 thieferosilicon 7
When 00 KQ is introduced, the MO-containing stitch increases to 1.07%, and 81% becomes 0°43 stitch.

この様に、本実施例において、キャリアガス(空気)に
対するMoO3粉体の混合比を33.8重量%として行
った結果、MOの歩留りがほぼ100チど良好になるこ
とが判明した。
As described above, in this example, when the mixing ratio of the MoO3 powder to the carrier gas (air) was set to 33.8% by weight, it was found that the yield of MO was improved to approximately 100%.

実施例 2 30TONのアーク′電気炉を用いて、溶銅からW含有
の金型用鋼を1.10チW目様に耐裂するにあたり、溶
鋼中に浸漬したランスからCavJo4粉体600〜を
、キャリアガス(空気)に対するC aWO,粉体の混
合比を46.6 %として、高圧で溶鋼中の750■深
さに吹き込んで、溶鋼中にWを還元添加した。
Example 2 In making mold steel containing W from molten copper crack resistant to 1.10 inch W using a 30 TON arc electric furnace, CavJo4 powder 600 ~ was added from a lance immersed in the molten steel. The mixture ratio of CaWO and powder to carrier gas (air) was set to 46.6%, and W was reduced and added to the molten steel by blowing into the molten steel to a depth of 750 cm under high pressure.

なお、この実施例は溶製工程の還元期直前に吹込示す。In this example, blowing was performed immediately before the reduction period of the melting process.

示す。show.

本実施例に用いた溶鋼は0.02 % 81と低いので
、CaWo、吹込み直前に還元剤として50%フェロシ
リコン50 Kg、 SiMn 375 Kq 、更に
At2 Kpを溶鋼中に投入、添加した。その時の溶鋼
中の<St >チは0.23俤と上昇した。
Since the molten steel used in this example had a low content of 0.02% 81, 50 kg of 50% ferrosilicon, 375 Kq of SiMn, and At2 Kp were added to the molten steel immediately before CaWo was blown into the molten steel. At that time, <St>chi in the molten steel rose to 0.23 t.

次いでCall 、吹込み後には溶鋼中の<W>Sは酸
化期のo、155wから1゜11%Wと増加し、一方<
St>俤が0.06 %まで減少した。さらに還元期に
おいてSiMn 10 oct 、 FSi 100K
gを投入。
Then, after blowing, <W>S in the molten steel increases from o, 155w during the oxidation period to 1°11%W, while <
St > 0.06% decreased to 0.06%. Furthermore, in the reduction period, SiMn 10 oct, FSi 100K
Insert g.

添加したが、<St>Sが上昇するだけで、くW〉係は
ほぼ同等であった。このことは、本発明法によりC(5
)4粉体をキャリアガス(空気)と共に、所定の混合比
をもって溶鋼中深く吹き込んでやれば、C&Wo4粉体
が溶鋼上のスラグ層へ上昇する前に、溶鋼中の還元元素
たとえば(St)等と迅やかに還元反応し、効率の良い
還元回収が可能であることが判明した。
Although it was added, <St>S only increased, and W> was almost the same. This can be confirmed by the method of the present invention.
)4 powder is injected deeply into molten steel together with a carrier gas (air) at a predetermined mixing ratio, reducing elements such as (St), etc. It was found that the reduction reaction was rapid and efficient reduction recovery was possible.

以上の説明から明らかなように、本発明法によれば、単
体で添加した場合には溶解しにくい金属であるMo 、
 Wを溶鋼中に歩留りよく良好にかつ短時間のうちに添
加することができ、揮発性のある酸化物として添加した
ときでも蒸発ロスが少なく高歩留りで添加することがで
きる等の優れた効果を発揮するものである。
As is clear from the above explanation, according to the method of the present invention, Mo, which is a metal that is difficult to dissolve when added alone,
W can be added to molten steel at high yields and in a short time, and even when added as a volatile oxide, there is little evaporation loss and it can be added at high yields. It is something that can be demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMoO8の気化ロス率と保持時間との関係を示
すグラフ、第2図は本発明法によるキャリアガスに対す
るMob、 、 CaWO4の混合比とMo 、 Wの
歩留りの関係を調べた結果を示すグラフ、第3図は本発
明法による吹込み状況の一例を説明する模式図である。 1・・・炉、2・・・浸漬ランス、3・・:溶鋼、4・
・・スラグ、6a、6b・・・粉体とキャリアガスの混
合体の′分散帯。 特許出願人  大同特殊鋼株式会社 代理人弁理士   小  塩     豊第1図 係持時間 (−「) 第2図 三里合上ヒ(%)
Fig. 1 is a graph showing the relationship between the vaporization loss rate of MoO8 and retention time, and Fig. 2 shows the results of investigating the relationship between the mixing ratio of Mob, CaWO4 to carrier gas and the yield of Mo and W using the method of the present invention. The graph shown in FIG. 3 is a schematic diagram illustrating an example of the blowing situation according to the method of the present invention. 1...Furnace, 2...Immersion lance, 3...: Molten steel, 4...
...Slag, 6a, 6b...'dispersion zone of a mixture of powder and carrier gas. Patent Applicant: Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Oshio Figure 1 Holding time (-'') Figure 2 Sanri Aihi (%)

Claims (4)

【特許請求の範囲】[Claims] (1)溶鋼中にMo、Wを添加するにおたり、前記Mo
、Wの酸化物からなる粉体または粒体を、溶鋼に浸漬し
たランスを介してキャリアガスと共に、前記溶鋼中に吹
込むことを特徴とする合金添加方法。
(1) When Mo and W are added to molten steel, the Mo
, W oxide powder or granules are blown into the molten steel together with a carrier gas through a lance immersed in the molten steel.
(2)  Mo 、 Wの酸化物からなる粉体または粒
体のキャリアガスに対する混合比が30重量%以上50
重敗−以下である特許請求の範囲第(1)項記載の合金
添加方法。
(2) The mixing ratio of powder or granules made of oxides of Mo and W to the carrier gas is 30% by weight or more50
Heavy failure - The alloy addition method according to claim (1), which is as follows.
(3)  Moの酸化物がMoO2であシ、Wの酸化物
がC円4である特許請求の範囲第(1)項又は第(2)
項記載の合金添加方法。
(3) Claim (1) or (2) in which the oxide of Mo is MoO2 and the oxide of W is C4.
Alloy addition method described in section.
(4)吹き込み前の溶鋼中のSi含有量が0.05重重
−以上である特許請求の範囲第(1)項、第(2)項ま
たは第(3)項記載の合金添加方法。
(4) The alloy addition method according to claim (1), (2) or (3), wherein the Si content in the molten steel before blowing is 0.05 weight or more.
JP17324482A 1982-10-04 1982-10-04 Method of addition for obtaining alloy Granted JPS5964712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17324482A JPS5964712A (en) 1982-10-04 1982-10-04 Method of addition for obtaining alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17324482A JPS5964712A (en) 1982-10-04 1982-10-04 Method of addition for obtaining alloy

Publications (2)

Publication Number Publication Date
JPS5964712A true JPS5964712A (en) 1984-04-12
JPH0125363B2 JPH0125363B2 (en) 1989-05-17

Family

ID=15956827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17324482A Granted JPS5964712A (en) 1982-10-04 1982-10-04 Method of addition for obtaining alloy

Country Status (1)

Country Link
JP (1) JPS5964712A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889843A1 (en) * 2005-08-16 2007-02-23 Valdi Soc Par Actions Simplifi PROCESS FOR THE PREPARATION OF CALCIUM SALTS
CN103469049A (en) * 2013-09-13 2013-12-25 江阴兴澄特种钢铁有限公司 Technology for steel making by directly alloying molybdenum oxide
CN111961889A (en) * 2020-09-07 2020-11-20 江苏汇联铝业有限公司 Equipment and method for adding powdery material in alloy smelting process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889843A1 (en) * 2005-08-16 2007-02-23 Valdi Soc Par Actions Simplifi PROCESS FOR THE PREPARATION OF CALCIUM SALTS
WO2007020338A3 (en) * 2005-08-16 2007-04-12 Valdi Method of preparing calcium tungstate, vanadate and molybdate and mixtures of same
CN103469049A (en) * 2013-09-13 2013-12-25 江阴兴澄特种钢铁有限公司 Technology for steel making by directly alloying molybdenum oxide
CN111961889A (en) * 2020-09-07 2020-11-20 江苏汇联铝业有限公司 Equipment and method for adding powdery material in alloy smelting process
CN111961889B (en) * 2020-09-07 2021-02-09 江苏汇联铝业有限公司 Equipment and method for adding powdery material in alloy smelting process

Also Published As

Publication number Publication date
JPH0125363B2 (en) 1989-05-17

Similar Documents

Publication Publication Date Title
KR101418125B1 (en) Manufacture of ferroalloys
KR100194133B1 (en) Method for producing ferroalloy using a molten bath reactor
US4586956A (en) Method and agents for producing clean steel
EP0328677B1 (en) PROCESS FOR MELT REDUCTION OF Cr STARTING MATERIAL AND MELT REDUCTION FURNACE
US3230075A (en) Method for nitrogen-enrichment of molten steel covered with slag
JPS5964712A (en) Method of addition for obtaining alloy
JP4630031B2 (en) Methods for reducing and dissolving iron raw materials containing iron oxide
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JP2564604B2 (en) Electric furnace refining method for chromium-containing steel
CN1206373C (en) Method and use of calcium nitrate for foaming of steel-making slags
JP2556052B2 (en) Method for producing molten stainless steel by smelting reduction
RU2107738C1 (en) Method of steel melting from metal scrap in electric-arc furnace
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP2556077B2 (en) Cr smelting reduction method for raw ore
US3304172A (en) Process for the manufacture of low phosphorus pig iron
JP2684113B2 (en) Dephosphorization method of chromium-containing hot metal
JP2615728B2 (en) Decarburization method for Cr-containing pig iron
JPH01195212A (en) Method for using powdered coal in iron bath type melting and reducing furnace
JPH0159327B2 (en)
JPH0137450B2 (en)
RU1605524C (en) Method of manufacturing corrosion-resistant steel
JPH01195209A (en) Operation of iron bath type melting and reducing furnace
JP5453794B2 (en) Hot metal dephosphorization method
JPS62120418A (en) Method for refining molten steel in ladle
JPS6130647A (en) Dephosphorization method of ferroalloy