JP5325099B2 - GAS GENERATOR COMPOSITION, GAS GENERATOR COMPOSITION COMPOSITION, METHOD FOR PRODUCING COMPOUND USED FOR SAME, AND GAS GENERATOR - Google Patents

GAS GENERATOR COMPOSITION, GAS GENERATOR COMPOSITION COMPOSITION, METHOD FOR PRODUCING COMPOUND USED FOR SAME, AND GAS GENERATOR Download PDF

Info

Publication number
JP5325099B2
JP5325099B2 JP2009512993A JP2009512993A JP5325099B2 JP 5325099 B2 JP5325099 B2 JP 5325099B2 JP 2009512993 A JP2009512993 A JP 2009512993A JP 2009512993 A JP2009512993 A JP 2009512993A JP 5325099 B2 JP5325099 B2 JP 5325099B2
Authority
JP
Japan
Prior art keywords
gas
mass
compound
nitrate
gas generant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009512993A
Other languages
Japanese (ja)
Other versions
JPWO2008136431A1 (en
Inventor
智博 緒方
英史 佐藤
修二 蔵重
真紀子 古後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2007/059380 external-priority patent/WO2008139557A1/en
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2009512993A priority Critical patent/JP5325099B2/en
Publication of JPWO2008136431A1 publication Critical patent/JPWO2008136431A1/en
Application granted granted Critical
Publication of JP5325099B2 publication Critical patent/JP5325099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

本発明は、ガス発生剤組成物及びガス発生剤組成物成形体、並びにそれらに用いる分解温度が160℃以上である化合物(A)の製造方法、並びに該ガス発生剤組成物成形体を備えたガス発生器に関し、特に燃焼ガス中の一酸化炭素および窒素酸化物の生成量が少なく、燃焼温度が低く且つ燃焼性が高いガス発生剤組成物に関するものである。   The present invention includes a gas generant composition, a gas generant composition molded body, a method for producing a compound (A) having a decomposition temperature of 160 ° C. or higher, and the gas generant composition molded body. The present invention relates to a gas generator, and more particularly to a gas generant composition that produces a small amount of carbon monoxide and nitrogen oxide in combustion gas, has a low combustion temperature, and high combustibility.

近年、エアバッグに代表される自動車安全装置用ガス発生器に用いられるガス発生剤としては、これまで汎用されてきたアジ化ナトリウムに代えて、製造時および使用時の安全性の高い化合物が各種提案されている。   In recent years, as gas generators used in gas generators for automobile safety devices represented by airbags, various highly safe compounds at the time of manufacture and use can be used instead of sodium azide which has been widely used so far. Proposed.

例えば、米国特許第4,909,549号明細書には、水素を含むテトラゾール又はトリアゾール化合物と酸化剤との組成物が開示されている。米国特許第4,369,079号明細書には、水素を含まないビテトラゾールの金属塩と酸化剤からなるガス発生剤が開示されている。特開2000−319085号公報には、ビテトラゾール化合物と塩基性金属硝酸塩を含むガス発生剤が開示されている。米国特許第5,608,183号明細書には、燃料成分としてポリアンミン硝酸塩(例えば硝酸グアニジン)、酸化剤として塩基性硝酸銅、及びCo(NH3)3(NO3)3からなる組成物が開示されている。また、金属錯体を成分として含有するガス発生剤が、特表平11−510779号公報、米国特許第6,592,691号明細書及び米国特許第6,602,365号明細書に開示されている。For example, US Pat. No. 4,909,549 discloses a composition of a hydrogen-containing tetrazole or triazole compound and an oxidizing agent. U.S. Pat. No. 4,369,079 discloses a gas generating agent comprising a metal salt of bitetrazole containing no hydrogen and an oxidizing agent. Japanese Unexamined Patent Publication No. 2000-319085 discloses a gas generating agent containing a bitetrazole compound and a basic metal nitrate. US Pat. No. 5,608,183 describes a composition comprising polyammine nitrate (eg, guanidine nitrate) as a fuel component, basic copper nitrate as an oxidant, and Co (NH 3 ) 3 (NO 3 ) 3. It is disclosed. Gas generating agents containing a metal complex as a component are disclosed in JP-T-11-51079, US Pat. No. 6,592,691 and US Pat. No. 6,602,365. Yes.

上述した特許文献に記載されているテトラゾール誘導体、トリアゾール誘導体を燃料成分として含むガス発生剤は、燃焼性は良好であるが、燃焼温度が高いことから、窒素酸化物の発生が多く、また、該ガス発生剤をガス発生器に使用する際には、冷却部材が多く必要となり、ガス発生器の重量が重くなってしまう。更に、上記特許文献に記載の金属錯体を含有するガス発生剤においては、燃焼特性が優れているものの、金属錯体を含有することにより燃焼温度が上昇し、発熱量が増加してしまう。   The gas generating agent containing a tetrazole derivative or a triazole derivative as a fuel component described in the above-mentioned patent document has good combustibility, but because of its high combustion temperature, it generates a lot of nitrogen oxides. When the gas generating agent is used in the gas generator, a large number of cooling members are required, which increases the weight of the gas generator. Furthermore, although the gas generating agent containing the metal complex described in the above-mentioned patent document has excellent combustion characteristics, the inclusion of the metal complex increases the combustion temperature and increases the calorific value.

一方、燃料成分としての硝酸グアニジンは、比較的安価で、非毒性であり、また高いガス発生量を与えるとして、広く使用されている。しかしながら、燃焼性が悪いという欠点を有している。   On the other hand, guanidine nitrate as a fuel component is widely used because it is relatively inexpensive, non-toxic, and gives high gas generation. However, it has the disadvantage of poor flammability.

これに対し、ガス発生剤に金属酸化物を添加することで、該ガス発生剤の燃焼性を改善する手法が知られているが、金属酸化物を添加した場合、ガス発生剤のガス発生効率が悪くなることから適正な解決策とは言えない。   On the other hand, a technique for improving the combustibility of the gas generating agent by adding a metal oxide to the gas generating agent is known. However, when the metal oxide is added, the gas generating efficiency of the gas generating agent is known. Is not the right solution because it gets worse.

そこで、本発明の目的は、上記従来技術の問題を解決し、ガス発生剤の発熱量を低減しつつ、燃焼性を向上させることが可能なガス発生剤組成物及びガス発生剤組成物成形体を提供することにある。また、本発明の他の目的は、該ガス発生剤組成物に用いる分解開始温度が160℃以上である化合物(A)の製造方法と、該ガス発生剤組成物成形体を備えるガス発生器を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art, and to reduce the calorific value of the gas generating agent and improve the combustibility and the gas generating composition molded body. Is to provide. Another object of the present invention is to provide a method for producing a compound (A) having a decomposition start temperature of 160 ° C. or higher used for the gas generant composition, and a gas generator comprising the gas generant composition molded body. It is to provide.

即ち、本発明の要旨構成は次のとおりである。   That is, the gist configuration of the present invention is as follows.

1.主成分として燃料成分と酸化剤を含むガス発生剤組成物であって、該燃料成分として、尿素と硝酸銅または過塩素酸鉄である金属塩を溶融または溶解させた状態で反応させて得た、分解開始温度が160℃以上である化合物(A)を用いることを特徴とするガス発生剤組成物。 1. A gas generating composition containing a fuel component and an oxidant as main components, and obtained by reacting urea and a metal salt of copper nitrate or iron perchlorate in a molten or dissolved state as the fuel component A gas generant composition characterized by using a compound (A) having a decomposition initiation temperature of 160 ° C. or higher.

2.前記尿素と金属塩との反応における尿素と金属塩の使用割合(モル比)が2:1〜6:1であることを特徴とする上記1に記載のガス発生剤組成物。 2. 2. The gas generant composition according to 1 above, wherein the use ratio (molar ratio) of urea and metal salt in the reaction between urea and metal salt is 2: 1 to 6: 1.

3.前記尿素と金属塩との反応が100〜150℃の熱処理工程を含むことを特徴とする上記1又は2に記載のガス発生剤組成物。 3. 3. The gas generating composition according to 1 or 2 above, wherein the reaction between the urea and the metal salt includes a heat treatment step of 100 to 150 ° C.

.前記酸化剤が、塩基性金属硝酸塩(塩基性複合金属硝酸塩を含む)、アルカリ金属硝酸塩、アルカリ土類金属硝酸塩、相安定化硝酸アンモニウム、金属過塩素酸塩及び過塩素酸アンモニウムからなる群から選ばれる少なくとも1種であることを特徴とする上記1〜3のいずれかに記載のガス発生剤組成物。 4 . The oxidizing agent is selected from the group consisting of basic metal nitrates (including basic complex metal nitrates), alkali metal nitrates, alkaline earth metal nitrates, phase-stabilized ammonium nitrates, metal perchlorates and ammonium perchlorates. 4. The gas generant composition as described in any one of 1 to 3 above, which is at least one kind.

.前記塩基性金属硝酸塩(塩基性複合金属硝酸塩を含む)が、銅、亜鉛、マグネシウム、コバルトからなる群から選ばれる少なくとも1種の金属を含むことを特徴とする上記に記載のガス発生剤組成物。 5 . 5. The gas generant composition according to 4 above, wherein the basic metal nitrate (including a basic complex metal nitrate) contains at least one metal selected from the group consisting of copper, zinc, magnesium, and cobalt. object.

.前記燃料成分として、さらに含窒素有機化合物を含むことを特徴とする上記1〜5のいずれかに記載のガス発生剤組成物。 6 . 6. The gas generant composition as described in any one of 1 to 5 above, further comprising a nitrogen-containing organic compound as the fuel component.

.前記含窒素有機化合物が、グアニジン、テトラゾール、トリアゾール及びそれらの誘導体からなる群から選ばれる少なくとも1種であることを特徴とする上記に記載のガス発生剤組成物。 7 . 7. The gas generant composition as described in 6 above, wherein the nitrogen-containing organic compound is at least one selected from the group consisting of guanidine, tetrazole, triazole and derivatives thereof.

.前記グアニジンの誘導体が、硝酸グアニジン、ニトログアニジン、トリアミノグアニジン硝酸塩、炭酸グアニジン及び過塩素酸グアニジンからなる群から選ばれる少なくとも1種であることを特徴とする上記に記載のガス発生剤組成物。 8 . 8. The gas generant composition according to 7 above, wherein the guanidine derivative is at least one selected from the group consisting of guanidine nitrate, nitroguanidine, triaminoguanidine nitrate, guanidine carbonate, and guanidine perchlorate. .

.前記化合物(A)及び前記酸化剤の合計中の化合物(A)の含有率が55〜85質量%で、酸化剤の含有率が15〜45質量%であることを特徴とする上記1〜5のいずれかに記載のガス発生剤組成物。 9 . The 1 to 5, characterized in that said compound (A) and the content of the compound in the total oxidizer (A) is at 55 to 85 wt%, the content of the oxidizing agent is 15 to 45 wt% The gas generating composition according to any one of the above.

10.前記化合物(A)、前記含窒素有機化合物及び前記酸化剤の合計中の化合物(A)の含有率が5質量%以上、85質量%未満で、含窒素有機化合物の含有率が質量49.5%以下で、酸化剤の含有率が15〜45.5質量%であることを特徴とする上記6〜8のいずれかに記載のガス発生剤組成物。 10 . The content of the compound (A) in the total of the compound (A), the nitrogen-containing organic compound and the oxidizing agent is 5% by mass or more and less than 85% by mass, and the content of the nitrogen-containing organic compound is 49.5 by mass. % Or less, and the content rate of an oxidizing agent is 15-45.5 mass%, The gas generating composition in any one of said 6-8 characterized by the above-mentioned.

11.さらに、燃焼調整剤、スラグ形成剤及びバインダからなる群から選ばれる少なくも1種の添加剤を含むことを特徴とする上記1〜10のいずれかに記載のガス発生剤組成物。 11 . Furthermore, the gas generant composition in any one of said 1-10 characterized by including the at least 1 sort (s) of additive chosen from the group which consists of a combustion regulator, a slag formation agent, and a binder.

12.前記添加剤の含有率が、ガス発生剤組成物の全体に対して0〜10質量%であることを特徴とする上記11に記載のガス発生剤組成物。 12 . 12. The gas generant composition as described in 11 above, wherein the content of the additive is 0 to 10% by mass with respect to the entire gas generant composition.

13.上記1〜12のいずれかに記載のガス発生剤組成物を、混合した後、成形・乾燥して、成形体としたことを特徴とするガス発生剤組成物成形体。 13 . 13. A gas generant composition molded article obtained by mixing the gas generant composition according to any one of 1 to 12 above and then molding and drying to obtain a molded article.

14.上記13に記載のガス発生剤組成物成形体を備えることを特徴とするガス発生器。 14 . A gas generator comprising the molded product of the gas generant composition described in 13 above.

本発明によれば、エアバッグ用ガス発生器、シートベルトプリテンショナー用ガス発生器等の自動車安全部品に用いられる組成物であって、熱安定性に優れ、着火性が良好で、燃焼速度が高く、一酸化炭素や窒素酸化物の発生量が少なく、さらに良好な燃焼性を有するガス発生剤組成物及びガス発生剤組成物成形体を提供することができる。また、本発明のガス発生剤組成物は、従来用いられていたガス発生剤組成物と比較して、発熱量が少ないため、かかるガス発生剤組成物の成形体をガス発生器に用いた場合、ガス発生器の冷却部材を軽量化することができる。更に、本発明のガス発生剤組成物に用いる分解開始温度が160℃以上である化合物(A)を製造することができる。   According to the present invention, it is a composition used for automobile safety parts such as a gas generator for an air bag and a gas generator for a seat belt pretensioner, which has excellent thermal stability, good ignitability, and a burning rate. It is possible to provide a gas generant composition and a gas generant composition molded body that are high, generate less carbon monoxide and nitrogen oxides, and have better combustibility. In addition, the gas generant composition of the present invention has a lower calorific value than a conventionally used gas generant composition, and therefore when a molded product of the gas generant composition is used in a gas generator. The cooling member of the gas generator can be reduced in weight. Furthermore, a compound (A) having a decomposition start temperature of 160 ° C. or higher used for the gas generant composition of the present invention can be produced.

図1は、本発明のガス発生器の一例の断面図である。FIG. 1 is a cross-sectional view of an example of the gas generator of the present invention.

本発明のガス発生剤組成物は、主成分として燃料成分と酸化剤を含むガス発生剤組成物であって、該燃料成分として、尿素と金属塩を溶融または溶解させた状態で反応させて得た、分解開始温度が160℃以上である化合物(A)を用いることを特徴とする。本発明で燃料成分として用いられる化合物(A)は、迅速な分解、或いは酸化剤との燃焼反応で、窒素ガス、水蒸気、二酸化炭素等を含む気体混合物を生成するものである。この化合物(A)は、分解開始温度が160℃以上であることを要し、170℃以上であることが好ましく、180〜300℃の範囲であることが更に好ましい。当該分解開始温度は、たとえば示差熱分析装置を使用して確認することができる。該化合物(A)の分解開始温度が160℃以上であれば、ガス発生剤組成物としての熱安定性を確保することができる。また、このような化合物(A)は、水素原子及び窒素原子を含有する化合物、尿素、及び尿素誘導体を中性配位子とする金属化合物であると考えられる。なお、このことは、たとえばC、H、Nについての元素分析、IR測定を行うことにより推定することができる。   The gas generant composition of the present invention is a gas generant composition containing a fuel component and an oxidant as main components, and is obtained by reacting urea and a metal salt in a molten or dissolved state as the fuel component. Further, the compound (A) having a decomposition start temperature of 160 ° C. or higher is used. The compound (A) used as a fuel component in the present invention generates a gas mixture containing nitrogen gas, water vapor, carbon dioxide and the like by rapid decomposition or combustion reaction with an oxidant. This compound (A) needs to have a decomposition start temperature of 160 ° C. or higher, preferably 170 ° C. or higher, and more preferably in the range of 180 to 300 ° C. The decomposition start temperature can be confirmed using, for example, a differential thermal analyzer. When the decomposition start temperature of the compound (A) is 160 ° C. or higher, the thermal stability as the gas generant composition can be ensured. Further, such a compound (A) is considered to be a metal compound having a neutral ligand of a compound containing a hydrogen atom and a nitrogen atom, urea, and a urea derivative. This can be estimated by performing elemental analysis and IR measurement on C, H, and N, for example.

従来から、燃料成分として尿素単体をガス発生剤組成物に用いると、燃焼時の窒素酸化物の発生量を抑える効果があることが知られている。しかし、尿素単体を含むガス発生剤組成物においては、尿素単体の分解開始温度が低く、熱安定性が悪いため、実用化には至っていなかった。これに対し、本発明のガス発生剤組成物においては、燃料成分として、尿素と金属塩を溶融または溶解させた状態で反応させて得た、分解開始温度が160℃以上である化合物(A)を用いることにより、上述した尿素を含有させた場合の燃焼時の窒素酸化物の発生量を抑える効果が得られるだけでなく、熱安定性をも改善することができる。それによって、燃焼性がよく、燃焼温度が低く、また熱安定性に優れ、燃焼時に一酸化炭素や窒素酸化物の生成量が少ないガス発生剤組成物を提供することができる。   Conventionally, it is known that the use of urea alone as a fuel component in a gas generant composition has an effect of suppressing the amount of nitrogen oxide generated during combustion. However, in the gas generant composition containing urea alone, the decomposition start temperature of urea alone is low and the thermal stability is poor, so that it has not been put to practical use. On the other hand, in the gas generant composition of the present invention, the compound (A) having a decomposition start temperature of 160 ° C. or higher obtained by reacting urea and metal salt as a fuel component in a molten or dissolved state. By using this, not only the effect of suppressing the amount of nitrogen oxides generated during combustion when urea is contained, but also thermal stability can be improved. As a result, it is possible to provide a gas generant composition that has good combustibility, low combustion temperature, excellent thermal stability, and low carbon monoxide and nitrogen oxide production during combustion.

本発明で使用する化合物(A)は、尿素と金属塩を溶融または溶解させた状態で反応させて得られるもので、該化合物(A)中には、金属カチオンMが存在する。この金属カチオンMは、錯体を形成するためのテンプレートまたは配位中心として作用する。該金属カチオンMには、遷移金属、アルカリ土類金属、メタロイドまたはランタニドなどのカチオンを用いることができ、具体的には、銅、鉄、コバルト、ニッケル、ジルコニウム、クロム、マンガン、亜鉛、チタン、マグネシウム、アルミニウム、ネオジウムなどのカチオンを挙げることができるが、これらに制限されるものではない。なお、本発明で使用する化合物(A)に含まれる金属カチオンMの種類は、たとえば蛍光X線分析により確認することができる。   The compound (A) used in the present invention is obtained by reacting urea and a metal salt in a melted or dissolved state, and a metal cation M is present in the compound (A). This metal cation M acts as a template or coordination center for forming a complex. As the metal cation M, a cation such as a transition metal, alkaline earth metal, metalloid or lanthanide can be used. Specifically, copper, iron, cobalt, nickel, zirconium, chromium, manganese, zinc, titanium, Although cations, such as magnesium, aluminum, and neodymium, can be mentioned, it is not restricted to these. In addition, the kind of metal cation M contained in the compound (A) used by this invention can be confirmed by a fluorescent X ray analysis, for example.

前記金属カチオンMには、通常、錯体電荷のバランスの観点から、1以上の酸化性アニオンKを要する。本発明に用いられる酸化性アニオンKは、特に制限されるものではなく、例えば硝酸イオン、亜硝酸イオン、塩素酸イオン、過塩素酸イオンなどが挙げられるが、ハロゲンを含まず燃焼後全てガス化すること、また、酸素供給源にもなることから、上記した酸化性アニオンKの中でも、特に硝酸イオン、亜硝酸イオンが好ましい。なお、本発明で使用する化合物(A)に含まれる酸化性アニオンKの種類は、たとえばイオンクロマトを実施することで確認することができる。   The metal cation M usually requires one or more oxidizing anions K from the viewpoint of the balance of complex charges. The oxidizing anion K used in the present invention is not particularly limited and includes, for example, nitrate ion, nitrite ion, chlorate ion, perchlorate ion, etc., but does not contain halogen and is all gasified after combustion. Among these oxidizing anions K, nitrate ions and nitrite ions are particularly preferable. In addition, the kind of oxidizing anion K contained in the compound (A) used by this invention can be confirmed by implementing ion chromatography, for example.

本発明で使用する化合物(A)を得るための反応に供する金属塩としては、特に限定されるものではないが、上記金属カチオンMと酸化性アニオンKからなる金属塩が挙げられ、これらの中でも、安定な化合物を形成しやすく、また反応性が高いことから、遷移金属塩であることが好ましい。また、該遷移金属塩に含まれる遷移金属の中でも、反応性がよく、良好な燃焼性を有することから、銅が特に好ましい。   Although it does not specifically limit as a metal salt used for reaction for obtaining the compound (A) used by this invention, The metal salt which consists of the said metal cation M and the oxidizing anion K is mentioned, Among these, A transition metal salt is preferable because it is easy to form a stable compound and has high reactivity. Of the transition metals contained in the transition metal salt, copper is particularly preferred because of its good reactivity and good flammability.

本発明で使用する化合物(A)は、例えば、酸化性アニオンKの金属塩(具体的には硝酸鉄、硝酸コバルト、硝酸銅、硝酸マグネシウム、亜硝酸銅、亜硝酸鉄、過塩素酸鉄、過塩素酸コバルト、過塩素酸銅、過塩素酸マグネシウム、塩素酸鉄、塩素酸銅、塩素酸マグネシウムなど)と尿素とを、必要に応じて適当な溶媒中で、混合し、溶融または溶解させた状態で反応させて得られる。ここで、上記金属塩および尿素を溶媒に溶解した状態で反応させると、例えば、結晶の形態で沈殿物が反応溶液中に析出することがあるが、この場合、必要に応じて沈殿物を加熱すること(熱処理)により、化合物(A)を製造することができる。この尿素と金属塩との反応における尿素と金属塩との使用割合は特に制限されるものではないが、尿素:金属塩=2:1〜6:1(モル比)であるのが好ましく、尿素:金属塩=4:1〜6:1(モル比)であるのがより好ましい。前記金属塩に対する尿素の比率が2倍モル未満であると、未反応の酸化性アニオンKの金属塩が残留し、熱安定性に悪影響を与えるおそれがあり、一方、前記金属塩に対する尿素の比率が6倍モルを超えると、過剰の尿素が残留して、やはり熱安定性に悪影響を与えるおそれがある。   The compound (A) used in the present invention includes, for example, a metal salt of an oxidizing anion K (specifically, iron nitrate, cobalt nitrate, copper nitrate, magnesium nitrate, copper nitrite, iron nitrite, iron perchlorate, (Cobalt perchlorate, copper perchlorate, magnesium perchlorate, iron chlorate, copper chlorate, magnesium chlorate, etc.) and urea are mixed in an appropriate solvent as necessary, and melted or dissolved. It is obtained by reacting in a wet state. Here, if the metal salt and urea are reacted in a state dissolved in a solvent, for example, a precipitate may be precipitated in the reaction solution in the form of crystals. In this case, the precipitate is heated as necessary. By doing (heat treatment), the compound (A) can be produced. The use ratio of urea and metal salt in the reaction between urea and metal salt is not particularly limited, but is preferably urea: metal salt = 2: 1 to 6: 1 (molar ratio). : Metal salt = 4: 1 to 6: 1 (molar ratio) is more preferable. If the ratio of urea to the metal salt is less than 2 moles, the metal salt of the unreacted oxidizing anion K may remain and adversely affect the thermal stability, whereas the ratio of urea to the metal salt When the amount exceeds 6 times mole, excess urea remains, which may also adversely affect the thermal stability.

また、本発明に用いる化合物(A)を製造するにあたり、尿素と金属塩との反応が、熱処理工程を含むことが好ましい。当該熱処理時の加熱温度は、尿素の分解温度付近である100〜150℃が好ましく、110〜140℃がより好ましい。前記加熱温度が100℃未満である場合には、熱安定性に悪影響を及ぼす傾向にあり、一方、前記加熱温度が150℃を超える場合には、形成した錯体が分解するおそれがある。また熱処理時間は、合成量により異なるため一概にはいえないが、好ましくは12〜240時間、より好ましくは12〜150時間である。   Moreover, when manufacturing the compound (A) used for this invention, it is preferable that reaction of urea and a metal salt includes the heat processing process. 100-150 degreeC which is the decomposition temperature of urea is preferable, and the heating temperature at the time of the said heat processing has more preferable 110-140 degreeC. When the heating temperature is less than 100 ° C., the thermal stability tends to be adversely affected. On the other hand, when the heating temperature exceeds 150 ° C., the formed complex may be decomposed. Also, the heat treatment time varies depending on the amount of synthesis and cannot be generally specified, but is preferably 12 to 240 hours, more preferably 12 to 150 hours.

前記反応に用いることができる溶媒としては、たとえば水、メタノール、エタノール、イソプロパノールなどの低級アルコール類、変性アルコール、アセトニトリルなどのニトリル類、アセトン、メチルエチルケトンなどのケトン類、ジエチルエーテルなどのエーテル類、n−ヘキサンなどの炭化水素類およびスルホランなどが挙げられる。   Examples of the solvent that can be used in the reaction include lower alcohols such as water, methanol, ethanol, and isopropanol, modified alcohols, nitriles such as acetonitrile, ketones such as acetone and methyl ethyl ketone, ethers such as diethyl ether, n -Hydrocarbons such as hexane and sulfolane.

本発明で使用する化合物(A)の配位数は、1〜6であることが好ましく、該化合物(A)に含まれる金属の種類により異なる。また、化合物(A)の配位数は、上述した製造過程において、材料の配合割合、加熱温度、加熱時間、また反応後の乾燥条件を適宜変更することにより調整することもできる。前記化合物(A)の配位子、及び配位数は、たとえば赤外分光分析(FT−IR)、イオンクロマトによる酸化性アニオンの定量、及びC、H、Nについての元素分析により推定することができる。   It is preferable that the coordination number of the compound (A) used by this invention is 1-6, and changes with kinds of metal contained in this compound (A). Moreover, the coordination number of a compound (A) can also be adjusted by changing suitably the blending ratio of a material, heating temperature, heating time, and the drying conditions after reaction in the manufacturing process mentioned above. The ligand and coordination number of the compound (A) should be estimated by, for example, infrared spectroscopic analysis (FT-IR), quantification of oxidizing anion by ion chromatography, and elemental analysis of C, H, and N Can do.

また別法として、尿素と金属塩とを、予め酸化剤や、必要に応じて含まれる含窒素有機化合物、バインダ、その他添加剤等の配合剤を混合した混合粉末と共に溶媒中で混合した後、例えばスプレードライ法のような熱処理を行うことによって、本発明に従うガス発生剤組成物を得ることができる。この場合における熱処理工程の加熱温度は100〜150℃であるのが好ましく、110〜130℃であるのがより好ましい。   As another method, urea and a metal salt are mixed in a solvent together with a mixed powder in which compounding agents such as an oxidizing agent and a nitrogen-containing organic compound, a binder, and other additives, which are included as necessary, are mixed in advance. For example, the gas generating composition according to the present invention can be obtained by performing a heat treatment such as spray drying. In this case, the heating temperature of the heat treatment step is preferably 100 to 150 ° C, more preferably 110 to 130 ° C.

更に、本発明で使用する化合物(A)を製造するにあたり、上記金属塩および尿素を溶媒に溶解した状態で反応させると、例えば、尿素と金属塩との反応により結晶の形態で生成物が析出したり、必要に応じて熱処理を行う際には、析出後に生成物が沈殿する場合がある。この場合、尿素と金属塩との反応により析出した生成物又は熱処理工程後に沈殿した生成物、即ち、本発明で使用する化合物(A)を、例えばろ過等によって分離することができ、更には、分離して得た生成物を100〜150℃の熱処理を行うことで乾燥させることが好ましい。なお、上記熱処理は、分離して得た生成物の熱安定性の点から100〜150℃の範囲で行うこととしている。   Furthermore, in producing the compound (A) used in the present invention, when the metal salt and urea are reacted in a state dissolved in a solvent, for example, the product precipitates in the form of crystals due to the reaction between urea and the metal salt. When the heat treatment is performed as necessary, the product may precipitate after the precipitation. In this case, the product precipitated by the reaction between urea and the metal salt or the product precipitated after the heat treatment step, that is, the compound (A) used in the present invention can be separated by, for example, filtration, It is preferable to dry the product obtained by the separation by performing a heat treatment at 100 to 150 ° C. In addition, it is supposed that the said heat processing is performed in the range of 100-150 degreeC from the point of the thermal stability of the product obtained by isolate | separating.

本発明のガス発生剤組成物は、エアバッグ用ガス発生器等の自動車安全部品に用いられ、迅速に燃焼または分解して窒素、二酸化炭素、水蒸気等の気体混合物を生成する燃料成分と酸化剤を主成分とする組成物であり、ここで、該燃料成分として、尿素と金属塩を溶融または溶解させた状態で反応させて得られる上記の化合物(A)を用いる。上記酸化剤としては、例えば塩基性金属硝酸塩(塩基性複合金属硝酸塩を含む、以下同じ)、アルカリ金属硝酸塩、アルカリ土類金属硝酸塩、相安定化硝酸アンモニウム、金属過塩素酸塩、及び過塩素酸アンモニウム等が挙げられる。また、塩基性金属硝酸塩としては、銅、亜鉛、マグネシウム、コバルトからなる群から選ばれる少なくとも1種の金属を含むものが挙げられ、これらの中でも、塩基性硝酸銅、塩基性硝酸亜鉛が好ましい。なお、これら酸化剤は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。一方、上記燃料成分には、上記の化合物(A)のほかに、さらに含窒素有機化合物を含んでいてもよい。含窒素有機化合物としては、例えば、グアニジン、テトラゾール、トリアゾール及びそれらの誘導体等が挙げられ、これらの中でも、グアニジンの誘導体が好ましく、具体的には、硝酸グアニジン、ニトログアニジン、トリアミノグアニジン硝酸塩、炭酸グアニジン、過塩素酸グアニジン等が好適に挙げられる。なお、これら含窒素有機化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。   The gas generant composition of the present invention is used in automobile safety parts such as gas generators for airbags, and rapidly burns or decomposes to produce a gas mixture such as nitrogen, carbon dioxide, and water vapor and an oxidant. Here, the compound (A) obtained by reacting urea and a metal salt in a melted or dissolved state is used as the fuel component. Examples of the oxidizing agent include basic metal nitrates (including basic complex metal nitrates, the same shall apply hereinafter), alkali metal nitrates, alkaline earth metal nitrates, phase-stabilized ammonium nitrates, metal perchlorates, and ammonium perchlorates. Etc. Examples of the basic metal nitrate include those containing at least one metal selected from the group consisting of copper, zinc, magnesium and cobalt. Among these, basic copper nitrate and basic zinc nitrate are preferable. In addition, these oxidizing agents may be used independently and may be used in combination of 2 or more type. On the other hand, the fuel component may further contain a nitrogen-containing organic compound in addition to the compound (A). Examples of the nitrogen-containing organic compound include guanidine, tetrazole, triazole and derivatives thereof. Among these, guanidine derivatives are preferable, and specifically, guanidine nitrate, nitroguanidine, triaminoguanidine nitrate, carbonate Preferred examples include guanidine and guanidine perchlorate. In addition, these nitrogen-containing organic compounds may be used alone or in combination of two or more.

本発明のガス発生剤組成物においては、上記化合物(A)及び上記酸化剤の合計中の化合物(A)の含有率が55〜85質量%で、酸化剤の含有率が15〜45質量%であることが好ましい。また、本発明のガス発生剤組成物は、燃料成分として、さらに上記含窒素有機化合物を含む場合においては、化合物(A)、含窒素有機化合物及び酸化剤の合計中の化合物(A)の含有率が5質量%以上、85質量%未満で、含窒素有機化合物の含有率が45.5質量%以下で、酸化剤の含有率が15〜49.5質量%であることが好ましく、化合物(A)の含有率が10質量%以上、85質量%未満で、含窒素有機化合物の含有率が45質量%以下で、酸化剤の含有率が15〜45質量%であることが更に好ましい。なお、本発明のガス発生剤組成物は、上記化合物(A)と酸化剤の二成分系、またさらに含窒素有機化合物を含む三成分系の他、これら二成分系、三成分系にさらに必要に応じて、燃焼調整剤、スラグ形成剤及びバインダより選ばれた添加剤を含有させることができる。ここに、上記添加剤を含む場合においては、該添加剤の合計量は、ガス発生剤組成物の全体に対して0〜10質量%とすることが好ましい。   In the gas generant composition of the present invention, the content of the compound (A) in the total of the compound (A) and the oxidant is 55 to 85% by mass, and the content of the oxidant is 15 to 45% by mass. It is preferable that In addition, when the gas generant composition of the present invention further contains the nitrogen-containing organic compound as a fuel component, the compound (A) is contained in the total of the compound (A), the nitrogen-containing organic compound and the oxidizing agent. It is preferable that the rate is 5% by mass or more and less than 85% by mass, the content of the nitrogen-containing organic compound is 45.5% by mass or less, and the content of the oxidizing agent is 15 to 49.5% by mass. More preferably, the content of A) is 10% by mass or more and less than 85% by mass, the content of the nitrogen-containing organic compound is 45% by mass or less, and the content of the oxidizing agent is 15 to 45% by mass. The gas generant composition of the present invention is further required for the two-component system and the three-component system in addition to the two-component system of the compound (A) and the oxidizing agent, and the three-component system further containing a nitrogen-containing organic compound. Depending on the case, an additive selected from a combustion regulator, a slag forming agent and a binder can be contained. Here, when the said additive is included, it is preferable that the total amount of this additive shall be 0-10 mass% with respect to the whole gas generating composition.

本発明のガス発生剤組成物は、従来のガス発生剤組成物と比較して燃焼性がよい。ここで、「燃焼性がよい」とは、線燃焼速度が従来のガス発生剤組成物(具体例:硝酸グアニジン/塩基性硝酸銅/硝酸ストロンチウム/その他の添加剤系)では1.0〜3.0mm/sec程度であったのに対して、本発明のガス発生剤組成物では3.0〜10.0mm/secであることを指す。なお、線燃焼速度は、ストランド試験、或いは密閉式ボンブ試験の結果より求められる。   The gas generant composition of the present invention has better combustibility than the conventional gas generant composition. Here, “combustibility is good” means that the linear combustion rate is 1.0 to 3 in a conventional gas generant composition (specific example: guanidine nitrate / basic copper nitrate / strontium nitrate / other additive system). While it was about 0.0 mm / sec, the gas generant composition of the present invention indicates 3.0 to 10.0 mm / sec. The linear burning rate is obtained from the result of the strand test or the sealed bomb test.

本発明のガス発生剤組成物は、従来のガス発生剤組成物と比較して燃焼温度が低い。具体的には、従来のガス発生剤組成物(具体例:硝酸グアニジン/塩基性硝酸銅/硝酸ストロンチウム/その他の添加剤系)では燃焼温度が2000〜2300Kであったのに対して、本発明のガス発生剤組成物では1500〜2000K(より好適には1600〜1800K)である(NASAプログラム「NASA RP−1311」を用いて理論計算により算出)。   The gas generant composition of the present invention has a lower combustion temperature than conventional gas generant compositions. Specifically, the conventional gas generant composition (specific example: guanidine nitrate / basic copper nitrate / strontium nitrate / other additive system) has a combustion temperature of 2000 to 2300 K, whereas the present invention. In the case of the gas generant composition, it is 1500 to 2000K (more preferably 1600 to 1800K) (calculated by theoretical calculation using NASA program “NASA RP-1311”).

本発明のガス発生剤組成物は、従来のガス発生剤組成物と比較して発熱量が低い。具体的には、従来のガス発生剤組成物(具体例:硝酸グアニジン/塩基性硝酸銅/硝酸ストロンチウム/その他の添加剤系)では発生ガスモル当たりの発熱量が90〜100kJ/モルであったのに対して、本発明のガス発生剤組成物のそれは75〜85kJ/モルである(カロリーメーターで測定)。   The gas generant composition of the present invention has a lower calorific value than conventional gas generant compositions. Specifically, in the conventional gas generant composition (specific example: guanidine nitrate / basic copper nitrate / strontium nitrate / other additive system), the calorific value per mol of generated gas was 90 to 100 kJ / mol. On the other hand, that of the gas generant composition of the present invention is 75 to 85 kJ / mol (measured with a calorimeter).

本発明のガス発生剤組成物は、熱安定性に優れる。ここで、「熱安定性に優れる」とは、例えばDSC、TG/DTA等の熱分析試験で、150℃での重量減少率が2%以下、或いは高温劣化試験(107℃×400時間、120℃×100時間)での重量減少率が2%以下の性質のことである。本発明のガス発生剤組成物では、TG/DTAの熱分析の結果、150℃での重量減少率が1%以下であり、熱安定性は優れている。   The gas generant composition of the present invention is excellent in thermal stability. Here, “excelling in thermal stability” means a thermal analysis test such as DSC, TG / DTA, etc., and the weight loss rate at 150 ° C. is 2% or less, or a high temperature deterioration test (107 ° C. × 400 hours, 120 ° C. The weight loss rate at 2 ° C. × 100 hours) is 2% or less. In the gas generant composition of the present invention, the weight loss rate at 150 ° C. is 1% or less as a result of TG / DTA thermal analysis, and the thermal stability is excellent.

本発明のガス発生剤組成物は、従来のガス発生剤組成物と比較して燃焼時に一酸化炭素や窒素酸化物の生成量が少ない。具体的には、ガス発生剤組成物をガス発生器に充填し、60L密閉タンク内で燃焼させた場合、従来のガス発生剤組成物(具体例:硝酸グアニジン/塩基性硝酸銅/硝酸ストロンチウム/その他添加剤系)では、例えば燃焼時の一酸化窒素の生成量が200〜300ppm、二酸化窒素の生成量が80〜100ppm、一酸化炭素の生成量が8000〜9000ppm程度であったのに対して、本発明のガス発生剤組成物では、例えば燃焼時の一酸化窒素の生成量が150〜200ppm、二酸化窒素の生成量が10〜20ppm、一酸化炭素の生成量が7000〜8000ppm程度である(燃焼後の排ガスを回収し、ガステック製検知管にて測定)。   The gas generant composition of the present invention produces less carbon monoxide and nitrogen oxides during combustion than the conventional gas generant composition. Specifically, when a gas generator composition is filled in a gas generator and burned in a 60 L sealed tank, a conventional gas generator composition (specific example: guanidine nitrate / basic copper nitrate / strontium nitrate / In other additive systems, for example, the amount of nitric oxide produced during combustion was 200 to 300 ppm, the amount of nitrogen dioxide produced was 80 to 100 ppm, and the amount of carbon monoxide produced was about 8000 to 9000 ppm. In the gas generant composition of the present invention, for example, the amount of nitric oxide produced during combustion is 150 to 200 ppm, the amount of nitrogen dioxide produced is 10 to 20 ppm, and the amount of carbon monoxide produced is about 7000 to 8000 ppm ( (Exhaust gas after combustion is collected and measured with a Gastec detector tube).

本発明のガス発生剤組成物は、上述した化合物(A)を5〜85質量%含有するのが好ましく、9〜60質量%含有するのがより好ましい。ガス発生剤組成物中における前記化合物(A)の含有率(配合割合)が5質量%未満であると、化合物(A)を添加したことによる効果が発揮されないおそれがある。本発明のガス発生剤組成物では、化合物(A)の含有量が増加するに従い、発熱量は低下し、線燃焼速度は速くなる。本発明のガス発生剤組成物が、該化合物(A)を9〜60質量%含有する場合には、特に線燃焼速度が速い。   The gas generant composition of the present invention preferably contains 5 to 85% by mass of the above-described compound (A), more preferably 9 to 60% by mass. If the content (mixing ratio) of the compound (A) in the gas generant composition is less than 5% by mass, the effect of adding the compound (A) may not be exhibited. In the gas generant composition of the present invention, as the content of the compound (A) increases, the calorific value decreases and the linear combustion rate increases. When the gas generant composition of the present invention contains 9 to 60% by mass of the compound (A), the linear burning rate is particularly fast.

本発明のガス発生剤組成物は、より燃焼性、ガス化率を向上させる観点から、燃料として、上述した化合物(A)に加えて、さらに含窒素有機化合物を含有することが好ましい。ここで、「含窒素有機化合物」とは、当分野においてガス発生のための燃料として用いられてきた窒素を含有する有機化合物であれば、特に制限されることなく本発明に用いることができる。含窒素有機化合物は、分子構造中の窒素原子の比率が高く一酸化炭素の発生を基本的に抑制する構造を有しており、しかも、熱安定性を含めて取り扱い性が容易である。   The gas generant composition of the present invention preferably further contains a nitrogen-containing organic compound as a fuel in addition to the above-described compound (A) from the viewpoint of further improving the combustibility and gasification rate. Here, the “nitrogen-containing organic compound” is not particularly limited and can be used in the present invention as long as it is an organic compound containing nitrogen that has been used as a fuel for gas generation in this field. The nitrogen-containing organic compound has a structure in which the ratio of nitrogen atoms in the molecular structure is high and basically suppresses the generation of carbon monoxide, and it is easy to handle including thermal stability.

含窒素有機化合物としては、例えばトリアゾール、テトラゾール、グアニジン、アゾジカルボンアミド、ヒドラジン、及びそれらの誘導体、ビウレット、並びにアンミン錯体から選ばれる少なくとも1種を挙げることができる。より具体的には、トリアゾール及びその誘導体としては、例えば5−オキソ−1,2,4−トリアゾールがあげられ、テトラゾール及びその誘導体としては、例えばテトラゾール、5−アミノテトラゾール、硝酸アミノテトラゾール、ニトロアミノテトラゾール、5,5’−ビ−1H−テトラゾール、5,5’−ビ−1H−テトラゾールジアンモニウム塩、5,5’−アゾテトラゾールジグアニジウム塩等があげられ、グアニジン及びその誘導体としては、例えばグアニジン、ニトログアニジン、シアノグアニジン、トリアミノグアニジン硝酸塩、硝酸グアニジン、硝酸アミノグアニジン、炭酸グアニジン、過塩素酸グアニジン等があげられ、アゾジカルボンアミド及びその誘導体としては、例えばアゾジカルボンアミドがあげられ、ヒドラジン及びその誘導体としては、例えばカルボヒドラジド、カルボヒドラジド硝酸塩錯体、シュウ酸ヒドラジド、金属亜硝酸塩ヒドラジン、金属硝酸塩ヒドラジン、金属過塩素酸塩ヒドラジンなどを挙げることができる。アンミン錯体としては、例えば金属亜硝酸塩アンミン錯体、金属硝酸塩アンミン錯体、金属過塩素酸塩アンミン錯体などを挙げることができる。これらの含窒素有機化合物の中でも、テトラゾール、グアニジン及びそれらの誘導体から選ばれる1種以上が更に好ましく、ニトログアニジン、硝酸グアニジン、シアノグアニジン、トリアミノグアニジン硝酸塩、炭酸グアニジン、過塩素酸グアニジン、5−アミノテトラゾール、及び5,5’−ビ−1H−テトラゾールジアンモニウム塩が特に好ましい。   Examples of the nitrogen-containing organic compound include at least one selected from triazole, tetrazole, guanidine, azodicarbonamide, hydrazine, derivatives thereof, biuret, and ammine complexes. More specifically, examples of triazole and derivatives thereof include 5-oxo-1,2,4-triazole, and examples of tetrazole and derivatives thereof include tetrazole, 5-aminotetrazole, aminotetrazole nitrate, and nitroamino. Tetrazole, 5,5′-bi-1H-tetrazole, 5,5′-bi-1H-tetrazole diammonium salt, 5,5′-azotetrazole diguanidinium salt, and the like. Examples of guanidine and its derivatives include Examples include guanidine, nitroguanidine, cyanoguanidine, triaminoguanidine nitrate, guanidine nitrate, aminoguanidine nitrate, guanidine carbonate, guanidine perchlorate, and the like. Examples of azodicarbonamide and derivatives thereof include azodicarbonamide, Hydra The emission and derivatives thereof include for example carbohydrazide, carbohydrazide nitrate complex, oxalic acid hydrazide, metal nitrite hydrazines, metal nitrate hydrazine, and metal perchlorates hydrazine. Examples of ammine complexes include metal nitrite ammine complexes, metal nitrate ammine complexes, and metal perchlorate ammine complexes. Among these nitrogen-containing organic compounds, one or more selected from tetrazole, guanidine, and derivatives thereof are more preferable. Nitroguanidine, guanidine nitrate, cyanoguanidine, triaminoguanidine nitrate, guanidine carbonate, guanidine perchlorate, 5- Aminotetrazole and 5,5′-bi-1H-tetrazole diammonium salt are particularly preferred.

本発明のガス発生剤組成物中における前記含窒素有機化合物の好ましい含有率(配合割合)は、用いる含窒素有機化合物中の炭素元素、水素元素およびその他の酸化される元素の数によって異なり、またその絶対値は後述する酸化剤の種類によっても異なってくるが、49.5質量%以下であるのが好ましく、45質量%以下であるのが更に好ましく、10〜40質量%であるのが一層好ましい。含窒素有機化合物の含有率が49.5質量%を超える場合には、完全酸化理論量よりも多くなり過ぎて発生ガス中の微量CO濃度が増大する傾向にあるためである。   The preferred content (mixing ratio) of the nitrogen-containing organic compound in the gas generant composition of the present invention depends on the number of carbon elements, hydrogen elements and other elements to be oxidized in the nitrogen-containing organic compound used, The absolute value varies depending on the type of oxidant described below, but is preferably 49.5% by mass or less, more preferably 45% by mass or less, and more preferably 10 to 40% by mass. preferable. This is because when the content of the nitrogen-containing organic compound exceeds 49.5% by mass, the concentration becomes too much than the theoretical amount of complete oxidation and the trace CO concentration in the generated gas tends to increase.

本発明のガス発生剤組成物はまた、人体に有害なガスの発生を防ぎ、燃焼性をより向上させる観点から酸化剤を含むことを要する。本発明のガス発生剤組成物に用いられる酸化剤としては、例えばオキソハロゲン酸塩、及び硝酸塩から選ばれる1種以上を挙げることができるが、これらに制限されるものではない。   The gas generant composition of the present invention also needs to contain an oxidizing agent from the viewpoint of preventing the generation of gas harmful to the human body and improving the combustibility. Examples of the oxidizing agent used in the gas generating composition of the present invention include one or more selected from oxohalogenates and nitrates, but are not limited thereto.

酸化剤として用いることができるオキソハロゲン酸塩としては、公知のものが使用でき、例えば過ハロゲン酸塩、ハロゲン酸塩などが挙げられる。過ハロゲン酸塩としては、例えば過塩素酸リチウム、過塩素酸カリウム、過塩素酸ナトリウム、過臭素酸リチウム、過臭素酸カリウム、過臭素酸ナトリウムなどのアルカリ金属過ハロゲン酸塩、過塩素酸マグネシウム、過塩素酸バリウム、過塩素酸カルシウム、過臭素酸マグネシウム、過臭素酸バリウム、過臭素酸カルシウムなどのアルカリ土類金属過ハロゲン酸塩、過塩素酸アンモニウム、過臭素酸アンモニウムなどのアンモニウム塩などが挙げられる。ハロゲン酸塩としては、例えば、塩素酸リチウム、塩素酸カリウム、塩素酸ナトリウム、臭素酸リチウム、臭素酸カリウム、臭素酸ナトリウムなどのアルカリ金属ハロゲン酸塩、塩素酸マグネシウム、塩素酸バリウム、塩素酸カルシウム、臭素酸マグネシウム、臭素酸バリウム、臭素酸カルシウムなどのアルカリ金属土類ハロゲン酸塩、塩素酸アンモニウム、臭素酸アンモニウムなどのアンモニウム塩などが挙げられる。   As the oxohalogenates that can be used as the oxidizing agent, known ones can be used, and examples thereof include perhalogenates and halogenates. Examples of the perhalogenate include alkali metal perhalogenates such as lithium perchlorate, potassium perchlorate, sodium perchlorate, lithium perbromate, potassium perbromate, sodium perbromate, and magnesium perchlorate. , Alkaline earth metal perhalogenates such as barium perchlorate, calcium perchlorate, magnesium perbromate, barium perbromate, calcium perbromate, ammonium salts such as ammonium perchlorate, ammonium perbromate, etc. Is mentioned. Examples of the halogen acid salt include alkali metal halides such as lithium chlorate, potassium chlorate, sodium chlorate, lithium bromate, potassium bromate, sodium bromate, magnesium chlorate, barium chlorate, calcium chlorate And alkali metal earth halides such as magnesium bromate, barium bromate and calcium bromate, and ammonium salts such as ammonium chlorate and ammonium bromate.

酸化剤として用いることができる硝酸塩としては、例えば、塩基性金属硝酸塩、硝酸ナトリウム、硝酸カリウムなどのアルカリ金属硝酸塩、硝酸マグネシウム、硝酸バリウム、硝酸ストロンチウムなどのアルカリ土類金属硝酸塩、相安定化硝酸アンモニウム、硝酸アンモニウムなどのアンモニウム塩などが挙げられる。   Examples of nitrates that can be used as the oxidizing agent include basic metal nitrates, alkali metal nitrates such as sodium nitrate and potassium nitrate, alkaline earth metal nitrates such as magnesium nitrate, barium nitrate and strontium nitrate, phase-stabilized ammonium nitrate and ammonium nitrate. And ammonium salts.

酸化剤として用いることができる塩基性金属硝酸塩としては、例えば、銅、亜鉛、マグネシウム、コバルト、マンガン、鉄、ビスマス、セリウムからなる群から選ばれる少なくとも1種の金属を含むものが挙げられ、具体的には、塩基性硝酸銅、塩基性硝酸コバルト、塩基性硝酸亜鉛、塩基性硝酸マンガン、塩基性硝酸鉄、塩基性硝酸モリブデン、塩基性硝酸ビスマス、塩基性硝酸セリウム、或いはこれら金属の複塩などが好ましく、塩基性硝酸銅及び塩基性硝酸亜鉛が更に好ましい。   Examples of the basic metal nitrate that can be used as the oxidizing agent include those containing at least one metal selected from the group consisting of copper, zinc, magnesium, cobalt, manganese, iron, bismuth, and cerium. Basic copper nitrate, basic cobalt nitrate, basic zinc nitrate, basic manganese nitrate, basic iron nitrate, basic molybdenum nitrate, basic bismuth nitrate, basic cerium nitrate, or double salts of these metals Etc. are preferable, and basic copper nitrate and basic zinc nitrate are more preferable.

本発明では、上述した酸化剤の中でも、燃焼温度を低下できることから、塩基性金属硝酸塩および/またはアルカリ土類金属硝酸塩が好ましく、特に塩基性硝酸銅が好ましい。   In the present invention, basic metal nitrates and / or alkaline earth metal nitrates are preferable, and basic copper nitrate is particularly preferable because the combustion temperature can be lowered among the oxidizing agents described above.

これらの酸化剤は、単独で使用することもできるし、また2種類以上を混合して使用することも可能である。また、酸化剤は市販品をそのまま使用することができる。さらに、酸化剤の形状、粒径などは特に制限されず、たとえば、酸化剤自体の配合量、他の成分との配合比率、自動車安全装置の容量などに応じて広い範囲から適宜選択すればよい。   These oxidizing agents can be used alone or in combination of two or more. Moreover, a commercial item can be used for an oxidizing agent as it is. Furthermore, the shape and particle size of the oxidizing agent are not particularly limited, and may be appropriately selected from a wide range depending on, for example, the blending amount of the oxidizing agent itself, the blending ratio with other components, the capacity of the automobile safety device, and the like. .

酸化剤の含有率(配合割合)は、通常、酸素量を基準として完全に酸化燃焼し得る化学量論量とすればよいが、酸化剤の含有率を適宜変更することにより、燃焼速度、燃焼温度、燃焼ガス組成などを任意に調整できるので、広い範囲から適宜選択することができる。ガス発生剤組成物中における酸化剤の含有率は、15〜45.5質量%の範囲が好ましく、15〜45質量%の範囲が更に好ましく、20〜40質量%の範囲が一層好ましい。酸化剤の含有率(配合割合)が15質量%未満である場合には、酸素供給不足により一酸化炭素が増加し、また燃焼性が低下する傾向にあり、また、酸化剤の含有率(配合割合)が45.5質量%を超える場合には、過剰に酸素を供給するために、窒素酸化物の発生量が増加する傾向にあるためである。   The content (mixing ratio) of the oxidizer is usually a stoichiometric amount that can be completely oxidized and burned based on the amount of oxygen, but by appropriately changing the content of the oxidizer, the combustion rate and combustion Since temperature, combustion gas composition, etc. can be adjusted arbitrarily, it can select suitably from a wide range. The content of the oxidizing agent in the gas generant composition is preferably in the range of 15 to 45.5% by mass, more preferably in the range of 15 to 45% by mass, and still more preferably in the range of 20 to 40% by mass. When the content (mixing ratio) of the oxidizer is less than 15% by mass, carbon monoxide increases due to insufficient oxygen supply, and the combustibility tends to decrease. This is because when the ratio) exceeds 45.5% by mass, the amount of nitrogen oxide generated tends to increase in order to supply oxygen excessively.

本発明のガス発生剤組成物は必要に応じて、燃焼調整剤、スラグ形成剤、クーラント及びバインダより選ばれた添加剤を1種以上含んでもよい。   The gas generant composition of the present invention may contain one or more additives selected from a combustion regulator, a slag forming agent, a coolant, and a binder as necessary.

本発明のガス発生剤組成物は、燃焼性改善や排ガス改善を目的として、さらに燃焼調整剤を含有していてもよい。また、燃焼調整剤は、燃焼温度を下げる作用、燃焼ガス中の窒素酸化物濃度を低減する作用等を有し、また酸化剤としても作用するものであり、たとえば、元素周期律表の第4〜6周期元素の酸化物、金属酸化物、過酸化物、金属水酸化物、金属炭酸塩及び塩基性炭酸塩などを使用できる。燃焼調整剤を含有する場合、その含有率は、ガス発生剤組成物中10質量%以下の範囲が好ましく、1〜5質量%の範囲が更に好ましい。   The gas generant composition of the present invention may further contain a combustion regulator for the purpose of improving combustibility and exhaust gas. Further, the combustion regulator has an action of lowering the combustion temperature, an action of reducing the concentration of nitrogen oxides in the combustion gas, and the like, and also acts as an oxidant. ˜6-periodic element oxides, metal oxides, peroxides, metal hydroxides, metal carbonates, basic carbonates and the like can be used. In the case of containing a combustion regulator, the content is preferably in the range of 10% by mass or less, more preferably in the range of 1 to 5% by mass in the gas generant composition.

燃焼調整剤として用いることができる金属酸化物としては、たとえば、酸化銅、酸化ニッケル、酸化コバルト、酸化鉄、酸化クロム、酸化マンガンなどの周期律表第4周期元素の酸化物が挙げられる。   Examples of the metal oxide that can be used as a combustion modifier include oxides of the fourth periodic element of the periodic table such as copper oxide, nickel oxide, cobalt oxide, iron oxide, chromium oxide, and manganese oxide.

燃焼調整剤として用いることができる過酸化物としては、たとえば、過酸化カリウム、過酸化ナトリウムなどのアルカリ金属の過酸化物、過酸化カルシウム、過酸化ストロンチウム、過酸化バリウムなどのアルカリ土類金属の過酸化物などが挙げられる。   Examples of the peroxide that can be used as a combustion regulator include alkali metal peroxides such as potassium peroxide and sodium peroxide, alkaline earth metals such as calcium peroxide, strontium peroxide, and barium peroxide. A peroxide etc. are mentioned.

燃焼調整剤として用いることができる金属水酸化物としては、たとえば、水酸化銅、水酸化ニッケル、水酸化コバルト、水酸化アルミニウム、水酸化マグネシウム、水酸化鉄などが挙げられる。   Examples of the metal hydroxide that can be used as a combustion modifier include copper hydroxide, nickel hydroxide, cobalt hydroxide, aluminum hydroxide, magnesium hydroxide, and iron hydroxide.

燃焼調整剤として用いることができる金属炭酸塩としては、たとえば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸ストロンチウム、塩基性炭酸銅、塩基性炭酸亜鉛、塩基性炭酸マグネシウム、塩基性炭酸コバルト、塩基性炭酸ビスマスなどが挙げられる。   Examples of metal carbonates that can be used as combustion modifiers include lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate, strontium carbonate, basic copper carbonate, basic zinc carbonate, basic magnesium carbonate, and basic cobalt carbonate. And basic bismuth carbonate.

上記スラグ形成剤は、ガス発生剤中の特に酸化剤成分から発生する金属、或いは金属酸化物とのインタラクションにより、ガス発生器内のフィルターでの濾過を容易にするために添加される。具体的には、二酸化珪素、窒化珪素、炭化珪素、酸性白土、ベントナイト系、カオリン系等のアルミノケイ酸塩を主成分とする天然に産する粘土、合成マイカ、合成カオリナイト、合成スメクタイト等の人工的粘土、含水マグネシウムケイ酸塩鉱物の一種であるタルク等から選ばれるものを挙げることができ、これらの中でも二酸化珪素又は酸性白土が好ましく、特に二酸化珪素が好ましい。スラグ形成剤の配合割合は、ガス発生剤組成物中20質量%以下の範囲が好ましく、2〜10質量%の範囲が特に好ましい。多すぎると線燃焼速度の低下及びガス発生効率の低下をもたらし、少なすぎるとスラグ形成能を十分発揮することができない。   The slag forming agent is added in order to facilitate filtration with a filter in the gas generator due to the interaction with the metal or metal oxide generated from the oxidant component in the gas generating agent. Specifically, artificially produced clay, synthetic mica, synthetic kaolinite, synthetic smectite, etc., which are mainly produced from aluminosilicates such as silicon dioxide, silicon nitride, silicon carbide, acid clay, bentonite and kaolin Among them, silicon dioxide or acidic clay is preferable, and silicon dioxide is particularly preferable. The blending ratio of the slag forming agent is preferably in the range of 20% by mass or less, particularly preferably in the range of 2 to 10% by mass in the gas generant composition. If the amount is too large, the linear combustion rate is lowered and the gas generation efficiency is lowered. If the amount is too small, the slag forming ability cannot be sufficiently exhibited.

上記クーラントは、吸熱分解する有機又は無機の化合物、或いは不活性な金属化合物であり、ガス発生剤の燃焼温度を下げるために添加される。クーラントの配合割合は、ガス発生剤組成物中0〜10質量%の範囲が好ましい。該クーラントの配合割合が10質量%を超えると、ガス発生剤の燃焼温度が充分上がらず、所望の燃焼速度が得られない場合がある。   The coolant is an organic or inorganic compound that undergoes endothermic decomposition, or an inert metal compound, and is added to lower the combustion temperature of the gas generating agent. The blending ratio of the coolant is preferably in the range of 0 to 10% by mass in the gas generant composition. If the blending ratio of the coolant exceeds 10% by mass, the combustion temperature of the gas generating agent may not be sufficiently increased, and a desired combustion rate may not be obtained.

上記バインダは、本発明のガス発生剤組成物の成型体とするときに、破壊強度およびその他の機械的性質を改善する観点から、使用される。バインダとしては、ガス発生剤組成物の燃焼挙動に大幅な悪影響を与えないものであれば、特に制限なく用いることができる。好適なバインダとしては、たとえば、カルボキシメチルセルロースの金属塩、ヒドロキシエチルセルロース、酢酸セルロース、プロピオン酸セルロース、酢酸酪酸セルロース、ニトロセルロース、微結晶性セルロース、グアガム、ポリビニルアルコール、ポリアクリルアミド、デンプンなどの多糖誘導体、ステアリン酸塩などの有機バインダ、二硫化モリブデン、合成ヒドロキシタルサイト、酸性白土、タルク、ベントナイト、ケイソウ土、カオリン、シリカ、アルミナなどの無機バインダを挙げることができる。中でも、セルロース系バインダ、酸性白土などをバインダとして用いるのが好ましい。   The binder is used from the viewpoint of improving the breaking strength and other mechanical properties when forming the molded article of the gas generant composition of the present invention. Any binder can be used without particular limitation as long as it does not have a significant adverse effect on the combustion behavior of the gas generant composition. Suitable binders include, for example, metal salts of carboxymethyl cellulose, hydroxyethyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, nitrocellulose, microcrystalline cellulose, guar gum, polyvinyl alcohol, polyacrylamide, starch and other polysaccharide derivatives, Organic binders such as stearate, inorganic binders such as molybdenum disulfide, synthetic hydroxytalcite, acid clay, talc, bentonite, diatomaceous earth, kaolin, silica, and alumina can be exemplified. Among these, it is preferable to use a cellulose-based binder, acidic clay, or the like as the binder.

本発明のガス発生剤組成物において、バインダの含有率(配合割合)は、1〜10質量%であるのが好ましく、1〜5質量%であるのがより好ましい。バインダの含有率が高いと、成形体の破壊強度を高めることができるが、組成物中の炭素元素および水素元素の数が増大し、炭素元素の不完全燃焼生成物である微量COガスの濃度が増大し、発生ガスの品質を低下させ、また燃焼を阻害してしまうおそれがあることから、最低量での使用が好ましい。特に、バインダの含有率が10質量%を超える場合には、酸化剤の相対的存在割合の増大を必要とし、ガス発生剤組成物中における燃料(化合物(A)および含窒素有機化合物)の相対的割合が低下し、ガス発生器の実用化が困難となるおそれがある。   In the gas generant composition of the present invention, the binder content (mixing ratio) is preferably 1 to 10% by mass, and more preferably 1 to 5% by mass. When the binder content is high, the fracture strength of the compact can be increased, but the number of carbon elements and hydrogen elements in the composition increases, and the concentration of trace CO gas that is an incomplete combustion product of carbon elements. Is increased, the quality of the generated gas is lowered, and combustion may be hindered. In particular, when the binder content exceeds 10% by mass, it is necessary to increase the relative proportion of the oxidant, and the relative amount of fuel (compound (A) and nitrogen-containing organic compound) in the gas generant composition. The target ratio may be lowered, and it may be difficult to put the gas generator to practical use.

なお、上述した燃焼調整剤、スラグ形成剤、クーラント及びバインダ等を添加する場合、それら添加剤の合計量は、ガス発生剤組成物中0〜10質量%とすることが好ましい。というのは、これらの添加剤の合計量が10質量%を超えると、所望の燃焼速度が得られない場合がある。   In addition, when adding the combustion regulator, slag formation agent, coolant, binder, etc. which were mentioned above, it is preferable that the total amount of these additives shall be 0-10 mass% in a gas generant composition. This is because if the total amount of these additives exceeds 10% by mass, a desired burning rate may not be obtained.

本発明のガス発生剤組成物は、適当な形状に成形した成型体として使用することが好ましい。本発明のガス発生剤組成物成形体は、上記のガス発生剤組成物を用いる以外特に制限はなく、例えば、該ガス発生剤組成物を混合した後、成形・乾燥することにより、成形体として得られる。該成形体の形状としては、特に制限されるものではなく、ペレット状、ディスク状、球状、棒状、中空円筒状、単孔円筒状、多孔円筒状、こんぺいとう状、テトラポット状などが挙げられる。さらに、ペレット状、ディスク状のものは、片面または両面に1〜数個程度の突起を設けてもよい。突起の形状は特に制限されず、たとえば、円柱状、円錐状、多角錘状などが挙げられる。   The gas generant composition of the present invention is preferably used as a molded product formed into an appropriate shape. The gas generant composition molded body of the present invention is not particularly limited except that the above gas generant composition is used. For example, the gas generant composition is mixed and then molded and dried to form a molded body. can get. The shape of the molded body is not particularly limited, and examples thereof include a pellet shape, a disk shape, a spherical shape, a rod shape, a hollow cylindrical shape, a single-hole cylindrical shape, a porous cylindrical shape, a compressed sweet shape, and a tetrapot shape. Furthermore, the pellet-shaped or disk-shaped one may be provided with one to several protrusions on one side or both sides. The shape of the protrusion is not particularly limited, and examples thereof include a columnar shape, a conical shape, and a polygonal pyramid shape.

本発明のガス発生剤組成物は、上述したように、従来用いられていたガス発生剤組成物と比較して、燃焼性がよく、発熱量が低く、また熱安定性に優れ、燃焼時に一酸化炭素や窒素酸化物の生成量が少ない。このような効果を発揮し得るガス発生剤組成物の成形体は、自動車安全装置に特に好適に用いることができる。自動車安全装置としては、運転席、助手席、側面などの各種エアバッグの他、シートベルト用プリテンショナ、歩行者障害防止システムなどが例示できる。   As described above, the gas generant composition of the present invention has good flammability, low calorific value, excellent heat stability, and excellent stability during combustion, as compared with conventionally used gas generant compositions. Low production of carbon oxides and nitrogen oxides. The molded article of the gas generant composition capable of exhibiting such an effect can be particularly suitably used for an automobile safety device. Examples of the automobile safety device include various airbags such as a driver's seat, a passenger seat, and a side surface, a seat belt pretensioner, a pedestrian obstacle prevention system, and the like.

自動車安全装置のうちで、エアバッグを急速に膨張展開させるガス発生器は、一般的に、ステアリングやインストルメントパネル内に装着されたエアバッグモジュールに組み込まれている。この種のガス発生器のうち、主に運転席用エアバッグに用いられるガス発生器の一例として、短尺円筒状のハウジングを有するガス発生器があげられる。   Among automobile safety devices, a gas generator for rapidly inflating and deploying an airbag is generally incorporated in an airbag module mounted in a steering or instrument panel. Among this type of gas generator, a gas generator having a short cylindrical housing is an example of a gas generator mainly used for a driver's seat airbag.

本発明のガス発生器は、上述したガス発生剤組成物の成形体を備えることを特徴とする。以下に、図を参照して本発明のガス発生器を詳細に説明する。図1は、上述したガス発生剤組成物の成形体(錠剤)を備えた、運転席用エアバックに用いられる本発明のガス発生器の一例の断面図である。図示例のガス発生器1は、ハウジング6内に、エンハンサカップ8、ガス発生剤組成物の成型体(錠剤)4、及び冷却部材5を有している。エンハンサカップ8内に点火具2が設置され、またエンハンサ剤3が装填されている。なお、本発明のガス発生器は、更にガス発生器に通常用いられる公知の部品(図示せず)を備えることができる。図示例のガス発生器1の作動について説明する。センサー(図示せず)が衝突を感知すると、コントロールユニット(作動器)(図示せず)に信号を送り、この信号を検知したコントロールユニットからの通電によって、コントロールユニットに電気的に接続された点火具(スクイブ)2が作動して発火し火炎が生じる。この火炎によりエンハンサカップ8内に装填されたエンハンサ剤3が着火し火炎が広がる。この火炎はエンハンサカップ8に形成された火炎噴出口9から放出される。火炎噴出口9からの火炎によってハウジング6内に装填されているガス発生剤組成物の成型体(錠剤)4が燃焼して多量のガスを発生させる。発生した多量のガスは、冷却部材5を通過してガス放出孔7から放出されてエアバッグ(図示せず)を膨張させる。ここで、本発明のガス発生器においては、ガス発生剤組成物の成型体(錠剤)4に、上述した本発明のガス発生剤組成物の成形体を用いることを特徴とする。   The gas generator of the present invention is characterized by comprising a molded body of the gas generating agent composition described above. Hereinafter, the gas generator of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of an example of the gas generator of the present invention used for an airbag for a driver's seat provided with a molded body (tablet) of the gas generating agent composition described above. The gas generator 1 in the illustrated example includes an enhancer cup 8, a molded body (tablet) 4 of a gas generating agent composition, and a cooling member 5 in a housing 6. The igniter 2 is installed in the enhancer cup 8 and the enhancer 3 is loaded. In addition, the gas generator of this invention can be further equipped with the well-known components (not shown) normally used for a gas generator. The operation of the illustrated gas generator 1 will be described. When a sensor (not shown) detects a collision, it sends a signal to a control unit (actuator) (not shown), and the ignition connected electrically to the control unit by energization from the control unit that detected this signal. The tool (squib) 2 is actuated to ignite and produce a flame. This flame ignites the enhancer 3 loaded in the enhancer cup 8 and spreads the flame. This flame is emitted from a flame outlet 9 formed in the enhancer cup 8. The molded product (tablet) 4 of the gas generant composition loaded in the housing 6 is burned by the flame from the flame outlet 9 to generate a large amount of gas. A large amount of the generated gas passes through the cooling member 5 and is discharged from the gas discharge hole 7 to inflate an airbag (not shown). Here, in the gas generator of the present invention, the molded article of the gas generant composition of the present invention described above is used as the molded article (tablet) 4 of the gas generant composition.

<<実施例>>
以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、各試験は以下の方法で行った。
<< Example >>
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these. Each test was conducted by the following method.

1.熱分析
示差熱分析装置(SII社製、商品名:TG/DTA6300)を使用して発熱開始温度および重量減少率について測定した。なお、測定条件は昇温速度10℃/分、温度範囲50〜500℃である。測定容器はアルミセルにピンホールを開けたものを使用した。
1. Thermal analysis A differential thermal analyzer (trade name: TG / DTA6300, manufactured by SII) was used to measure the heat generation start temperature and the weight loss rate. The measurement conditions are a temperature rising rate of 10 ° C./min and a temperature range of 50 to 500 ° C. The measurement vessel used was an aluminum cell with a pinhole.

2.耐環境試験(高温安定性試験)
ガス発生剤組成物の成形体(ガス発生剤)をアルミ容器に入れて密封した後、107℃に調温された恒温槽に入れて400時間放置した。その後、ガス発生剤を取り出し、ガス発生剤の分解の有無および重量減少率について確認した。
2. Environmental resistance test (high temperature stability test)
The molded article (gas generating agent) of the gas generating agent composition was put in an aluminum container and sealed, and then placed in a thermostatic chamber adjusted to 107 ° C. and left for 400 hours. Thereafter, the gas generating agent was taken out, and the presence or absence of decomposition of the gas generating agent and the weight reduction rate were confirmed.

3.燃焼性試験(60Lタンク試験)
ガス発生剤組成物の成形体(ガス発生剤)47.5gを、図1に示す構造のガス発生器に充填し、60Lのタンク試験を実施し、圧力立ち上がり時間、最大到達圧力およびその時間を確認した。
3. Flammability test (60L tank test)
A gas generator having a structure shown in FIG. 1 is filled with 47.5 g of a molded product (gas generant) of the gas generant composition, a 60-liter tank test is conducted, and the pressure rise time, the maximum pressure reached and the time are determined. confirmed.

4.排ガス測定
燃焼性試験後、タンク内のガスをテドラーバックに回収し、ガステック製検知管を用いてガス分析を実施した。
4). Exhaust gas measurement After the flammability test, the gas in the tank was collected in a tedlar bag, and a gas analysis was performed using a gas-tech detector tube.

<製造例1>
硝酸銅(II)3水和物74gと尿素110gを混合し、130℃で溶融反応させ、同温度で24時間熱処理して、本発明に使用される化合物(A-1)を得た。
<Production Example 1>
Copper (II) nitrate trihydrate (74 g) and urea (110 g) were mixed, melt-reacted at 130 ° C., and heat-treated at the same temperature for 24 hours to obtain compound (A-1) used in the present invention.

<製造例2>
硝酸銅(II)3水和物11.46gと尿素8.54gを80gの水に溶解した後、80℃に調温した温水槽に入れて12時間放置した。その後、生成した沈殿物を濾過分離した後、130℃にて12時間乾燥させて本発明に使用される化合物(A-2)を得た。
<Production Example 2>
After dissolving 11.46 g of copper (II) nitrate trihydrate and 8.54 g of urea in 80 g of water, it was placed in a warm water bath adjusted to 80 ° C. and left for 12 hours. Thereafter, the produced precipitate was separated by filtration and then dried at 130 ° C. for 12 hours to obtain the compound (A-2) used in the present invention.

<製造例3>
過塩素酸鉄(III)n水和物(過塩素酸として純度70%)の5.06gを10mlの水に溶解し、これに尿素を3.60g加えて溶解させ、常温で両者を反応させるとすぐに結晶が析出し、さらに尿素を3.60g加えて48時間攪拌した後、結晶をろ過し、冷エタノールで洗浄し、淡緑色の結晶(化合物(A-3))5.61gを得た。
<Production Example 3>
Dissolve 5.06 g of iron (III) perchlorate n hydrate (purity 70% as perchloric acid) in 10 ml of water, add 3.60 g of urea to this, dissolve it, and react both at room temperature. As soon as crystals were precipitated, 3.60 g of urea was further added and stirred for 48 hours, and then the crystals were filtered and washed with cold ethanol to obtain 5.61 g of pale green crystals (compound (A-3)). It was.

<実施例1>
製造例1にて得られた化合物(A-1)10質量部、硝酸グアニジン43質量部、塩基性硝酸銅43質量部および酸性白土4質量部を混合した後、この混合物100質量部に対し、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加して顆粒を作製した。その後、直径6.1mm、厚さ1.60mmのペレットに成形した後、110℃で熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
<Example 1>
After mixing 10 parts by mass of the compound (A-1) obtained in Production Example 1, 43 parts by mass of guanidine nitrate, 43 parts by mass of basic copper nitrate, and 4 parts by mass of acidic clay, Granules were prepared by spraying 11 parts by weight of a 0.6% by weight aqueous polyvinyl alcohol solution. Then, after forming into a pellet of diameter 6.1mm and thickness 1.60mm, it heat-processed at 110 degreeC, and obtained the molded object (gas generating agent) of the gas generating agent composition of this invention.

<実施例2>
製造例2にて得られた化合物(A-2)10質量部、硝酸グアニジン43質量部、塩基性硝酸銅43質量部および酸性白土4質量部を混合した後、この混合物100質量部に対し、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加して顆粒を作製した。その後、直径6.1mm、厚さ1.60mmのペレットに成形した後、110℃で熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
<Example 2>
After mixing 10 parts by mass of the compound (A-2) obtained in Production Example 2, 43 parts by mass of guanidine nitrate, 43 parts by mass of basic copper nitrate, and 4 parts by mass of acidic clay, Granules were prepared by spraying 11 parts by weight of a 0.6% by weight aqueous polyvinyl alcohol solution. Then, after forming into a pellet of diameter 6.1mm and thickness 1.60mm, it heat-processed at 110 degreeC, and obtained the molded object (gas generating agent) of the gas generating agent composition of this invention.

<比較例1>
硝酸グアニジン53質量部、硝酸ストロンチウム22.5質量部、塩基性硝酸銅22.5質量部、および酸性白土2.0質量部を混合した後、この混合物100質量部に対し、0.6質量%のポリビニルアルコール水溶液12質量部を噴霧添加して顆粒を作製した。その後、直径6.1mm、厚さ1.60mmのペレットに成形した後、110℃で熱処理をして比較例用のガス発生剤組成物の成形体(ガス発生剤)を得た。
<Comparative Example 1>
After mixing 53 parts by mass of guanidine nitrate, 22.5 parts by mass of strontium nitrate, 22.5 parts by mass of basic copper nitrate, and 2.0 parts by mass of acid clay, 0.6% by mass with respect to 100 parts by mass of this mixture. 12 parts by mass of an aqueous polyvinyl alcohol solution was added by spraying to prepare granules. Then, after forming into a pellet of diameter 6.1mm and thickness 1.60mm, it heat-processed at 110 degreeC, and obtained the molded object (gas generating agent) of the gas generating agent composition for a comparative example.

<比較例2>
硝酸グアニジン40.5質量部、尿素10質量部、塩基性硝酸銅47.5質量部、および酸性白土2.0質量部を混合した後、この混合物100質量部に対し、0.6質量%のポリビニルアルコール水溶液11質量部を噴霧添加して顆粒を作製した。その後、直径6.1mm、厚さ1.60mmのペレットに成形した後、110℃で熱処理をして比較例用のガス発生剤組成物の成形体(ガス発生剤)を得た。
<Comparative example 2>
After mixing 40.5 parts by mass of guanidine nitrate, 10 parts by mass of urea, 47.5 parts by mass of basic copper nitrate, and 2.0 parts by mass of acid clay, 0.6% by mass with respect to 100 parts by mass of the mixture. 11 parts by mass of an aqueous polyvinyl alcohol solution was added by spraying to prepare granules. Then, after forming into a pellet of diameter 6.1mm and thickness 1.60mm, it heat-processed at 110 degreeC, and obtained the molded object (gas generating agent) of the gas generating agent composition for a comparative example.

<熱分析>
製造例1、製造例2、及び製造例3の化合物について示差熱分析を実施した。その結果を表1に示す。製造例1、製造例2のそれぞれの原材料である硝酸銅(II)3水和物、尿素はそれぞれ160℃未満で融解および分解したのに対し、製造例1、製造例2、及び製造例3の化合物は230℃付近から分解を開始したことから、単独で使用するよりも熱安定性が向上していることが分かる。
<Thermal analysis>
Differential thermal analysis was performed on the compounds of Production Example 1, Production Example 2, and Production Example 3. The results are shown in Table 1. The raw materials copper (II) nitrate trihydrate and urea in Production Example 1 and Production Example 2, respectively, melted and decomposed at less than 160 ° C., whereas Production Example 1, Production Example 2, and Production Example 3 Since this compound started to decompose at around 230 ° C., it can be seen that the thermal stability is improved as compared with the case where it is used alone.

Figure 0005325099
Figure 0005325099

<耐環境試験(高温安定性試験)>
実施例1〜2、比較例1および比較例2のガス発生剤組成物の成形体を、107℃×400時間の耐環境試験に投入した。初期重量および試験後重量から算出した重量減少率を表2に示す。実施例1〜2の重量減少率は1%以下であり、ガス発生剤として使用可能である。比較例2のように尿素を単体で添加した場合は重量減少率が5%を超えていることから、化合物(A)を含む本発明のガス発生剤組成物は、尿素単体のガス発生剤組成物より熱安定性が向上していることが分かる。
<Environmental resistance test (high temperature stability test)>
The molded products of the gas generant compositions of Examples 1 and 2, Comparative Example 1 and Comparative Example 2 were put into an environmental resistance test at 107 ° C. × 400 hours. Table 2 shows the weight loss rate calculated from the initial weight and the weight after the test. The weight reduction rate of Examples 1-2 is 1% or less, and can be used as a gas generating agent. When urea is added alone as in Comparative Example 2, the weight loss rate exceeds 5%. Therefore, the gas generant composition of the present invention containing the compound (A) is a gas generant composition of urea alone. It can be seen that the thermal stability is improved compared to the product.

Figure 0005325099
Figure 0005325099

<燃焼性試験(60Lタンク試験)>
実施例1〜2、および比較例1について、60Lタンク試験を実施した。その結果およびガス発生器の冷却部材重量を表3に示す。実施例1〜2の圧力立ち上がり時間(t1)は比較例1に比べて速く、着火性が向上している。最大到達圧力(Pmax)はいずれも同等であるが、実施例1〜2は比較例1より最大圧力到達時間(tPmax)が速いことから、燃焼速度も速くなる傾向にある。また、実施例1〜2は燃焼温度が低下しているため、比較例1に比べて冷却部材を25g減らすことが可能である。
<Flammability test (60L tank test)>
About Examples 1-2 and the comparative example 1, the 60L tank test was implemented. The results and the cooling member weight of the gas generator are shown in Table 3. The pressure rise time (t1) of Examples 1 and 2 is faster than that of Comparative Example 1, and the ignitability is improved. Although the maximum ultimate pressure (Pmax) is the same, Examples 1 and 2 have a higher maximum pressure arrival time (tPmax) than Comparative Example 1, and therefore the combustion speed tends to be faster. Moreover, since the combustion temperature is falling in Examples 1-2, it is possible to reduce a cooling member 25g compared with the comparative example 1. FIG.

Figure 0005325099
Figure 0005325099

<排ガス測定>
実施例1〜2、および比較例1について60Lタンク試験後の排ガスを回収し、燃焼後の発生ガス分析を実施した。その結果を表4に示す。実施例1〜2は比較例1と比べると、一酸化炭素、一酸化窒素および二酸化窒素の発生量が低減しており、燃焼後の排ガス成分が改善されていることが分かる。
<Exhaust gas measurement>
Regarding Examples 1 and 2 and Comparative Example 1, the exhaust gas after the 60 L tank test was collected, and the generated gas after combustion was analyzed. The results are shown in Table 4. Compared with Comparative Example 1, Examples 1 and 2 show that the amount of carbon monoxide, nitrogen monoxide and nitrogen dioxide generated is reduced, and the exhaust gas components after combustion are improved.

Figure 0005325099
Figure 0005325099

以下、実施例3、比較例3および比較例4について詳細に説明する。なお、各試験は以下の方法で行った。   Hereinafter, Example 3, Comparative Example 3, and Comparative Example 4 will be described in detail. Each test was conducted by the following method.

2.耐環境試験(高温安定性試験)
ガス発生剤組成物の成形体(ガス発生剤)をアルミ容器に入れて密封した後、107℃に調温された恒温槽に入れて400時間放置した。その後、ガス発生剤を取り出し、ガス発生剤の分解の有無および重量減少率について確認した。
2. Environmental resistance test (high temperature stability test)
The molded article (gas generating agent) of the gas generating agent composition was put in an aluminum container and sealed, and then placed in a thermostatic chamber adjusted to 107 ° C. and left for 400 hours. Thereafter, the gas generating agent was taken out, and the presence or absence of decomposition of the gas generating agent and the weight reduction rate were confirmed.

5.燃焼性試験(60Lタンク試験)
ガス発生剤組成物の成形体(ガス発生剤)75gを、図1に示す構造のガス発生器に充填し、60Lのタンク試験を実施し、圧力立ち上がり時間、最大到達圧力およびその時間を確認した。
5. Flammability test (60L tank test)
A gas generator having a structure shown in FIG. 1 was filled with 75 g of a molded product (gas generant) of the gas generant composition, a 60 L tank test was conducted, and the pressure rise time, the maximum pressure reached and the time were confirmed. .

6.排ガス測定
ガス発生剤組成物の成形体(ガス発生剤)75gを、図1に示す構造のガス発生器に充填し、2,800Lタンク試験を実施し、タンク内のガスについてガステック製検知管を用いてガス分析を実施した。
6). Exhaust gas measurement 75 g of a molded product (gas generant) of a gas generant composition is filled in a gas generator having the structure shown in FIG. 1, and a 2,800 L tank test is conducted. The gas analysis was performed using

<実施例3>
製造例3にて得られた化合物(A-3)5質量部、硝酸グアニジン49.5質量部および塩基性硝酸銅45.5質量部を混合した後、この混合物100質量部に対し、0.67質量%のポリビニルアルコール水溶液12質量部を噴霧添加して顆粒を作製した。その後、直径6.1mm、厚さ1.60mmのペレットに成形した後、110℃で熱処理して本発明のガス発生剤組成物の成形体(ガス発生剤)を得た。
<Example 3>
After mixing 5 parts by mass of the compound (A-3) obtained in Production Example 3, 49.5 parts by mass of guanidine nitrate and 45.5 parts by mass of basic copper nitrate, 0.1 parts by mass with respect to 100 parts by mass of this mixture. Granules were prepared by spraying 12 parts by weight of a 67% by weight aqueous polyvinyl alcohol solution. Then, after forming into a pellet of diameter 6.1mm and thickness 1.60mm, it heat-processed at 110 degreeC, and obtained the molded object (gas generating agent) of the gas generating agent composition of this invention.

<比較例3>
硝酸グアニジン53.3質量部および塩基性硝酸銅46.7質量部を混合した後、この混合物100質量部に対し、0.67質量%のポリビニルアルコール水溶液12質量部を噴霧添加して顆粒を作製した。その後、直径6.1mm、厚さ1.60mmのペレットに成形した後、110℃で熱処理をして比較例用のガス発生剤組成物の成形体(ガス発生剤)を得た。
<Comparative Example 3>
After mixing 53.3 parts by mass of guanidine nitrate and 46.7 parts by mass of basic copper nitrate, 12 parts by mass of 0.67% by mass of a polyvinyl alcohol aqueous solution is added to 100 parts by mass of this mixture to produce granules. did. Then, after forming into a pellet of diameter 6.1mm and thickness 1.60mm, it heat-processed at 110 degreeC, and obtained the molded object (gas generating agent) of the gas generating agent composition for a comparative example.

<比較例4>
硝酸グアニジン54.2質量部、塩基性硝酸銅42.9質量部、および過塩素酸カリウム2.9質量部を混合した後、この混合物100質量部に対し、0.67質量%のポリビニルアルコール水溶液12質量部を噴霧添加して顆粒を作製した。その後、直径6.1mm、厚さ1.60mmのペレットに成形した後、110℃で熱処理をして比較例用のガス発生剤組成物の成形体(ガス発生剤)を得た。
<Comparative example 4>
After mixing 54.2 parts by mass of guanidine nitrate, 42.9 parts by mass of basic copper nitrate, and 2.9 parts by mass of potassium perchlorate, a polyvinyl alcohol aqueous solution of 0.67% by mass with respect to 100 parts by mass of the mixture. 12 parts by mass were added by spraying to prepare granules. Then, after forming into a pellet of diameter 6.1mm and thickness 1.60mm, it heat-processed at 110 degreeC, and obtained the molded object (gas generating agent) of the gas generating agent composition for a comparative example.

<耐環境試験(高温安定性試験)>
実施例3、比較例3および比較例4のガス発生剤組成物の成形体を、107℃×400時間の耐環境試験に投入した。初期重量および試験後重量から算出した重量減少率を表5に示す。実施例3、比較例3および比較例4の重量減少率は1%以下であり、ガス発生剤として使用可能である。
<Environmental resistance test (high temperature stability test)>
The molded articles of the gas generant compositions of Example 3, Comparative Example 3 and Comparative Example 4 were put into an environmental resistance test at 107 ° C. × 400 hours. Table 5 shows the weight loss rate calculated from the initial weight and the weight after the test. The weight reduction rate of Example 3, Comparative Example 3 and Comparative Example 4 is 1% or less, and can be used as a gas generating agent.

Figure 0005325099
Figure 0005325099

<燃焼性試験(60Lタンク試験)>
実施例3、比較例3および比較例4について、60Lタンク試験を実施した。その結果を表6に示す。実施例3の最大到達圧力(Pmax)は比較例3および比較例4に比べ増加しており、さらに実施例3は比較例3および比較例4より最大圧力到達時間(tPmax)が速い。このことから、燃焼速度も速くなる傾向にある。
<Flammability test (60L tank test)>
For Example 3, Comparative Example 3 and Comparative Example 4, a 60 L tank test was performed. The results are shown in Table 6. The maximum ultimate pressure (Pmax) of Example 3 is increased as compared with Comparative Example 3 and Comparative Example 4, and Example 3 has a maximum pressure arrival time (tPmax) faster than Comparative Example 3 and Comparative Example 4. For this reason, the burning rate tends to increase.

Figure 0005325099
Figure 0005325099

<排ガス測定>
実施例3、比較例3および比較例4について2,800Lタンク試験後の排ガスを回収し、燃焼後の発生ガス分析を実施した。その結果を表7に示す。実施例3は比較例3および比較例4と比べると、二酸化窒素、アンモニアの発生量が低減しており、燃焼後の排ガス成分が改善されていることが分かる。
<Exhaust gas measurement>
Regarding Example 3, Comparative Example 3 and Comparative Example 4, the exhaust gas after the 2,800 L tank test was collected, and the generated gas after combustion was analyzed. The results are shown in Table 7. Compared with Comparative Example 3 and Comparative Example 4, Example 3 shows that the generation amounts of nitrogen dioxide and ammonia are reduced, and the exhaust gas components after combustion are improved.

Figure 0005325099
Figure 0005325099

今回開示された実施の形態、実施例および比較例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiments, examples, and comparative examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (14)

主成分として燃料成分と酸化剤を含むガス発生剤組成物であって、該燃料成分として、尿素と硝酸銅または過塩素酸鉄である金属塩を溶融または溶解させた状態で反応させて得た、分解開始温度が160℃以上である化合物(A)を用いることを特徴とするガス発生剤組成物。 A gas generating composition containing a fuel component and an oxidant as main components, and obtained by reacting urea and a metal salt of copper nitrate or iron perchlorate in a molten or dissolved state as the fuel component A gas generant composition characterized by using a compound (A) having a decomposition initiation temperature of 160 ° C. or higher. 前記尿素と金属塩との反応における尿素と金属塩の使用割合(モル比)が2:1〜6:1であることを特徴とする請求項1に記載のガス発生剤組成物。   2. The gas generating composition according to claim 1, wherein the use ratio (molar ratio) of urea and metal salt in the reaction between urea and metal salt is 2: 1 to 6: 1. 前記尿素と金属塩との反応が100〜150℃の熱処理工程を含むことを特徴とする請求項1又は2に記載のガス発生剤組成物。   The gas generating composition according to claim 1 or 2, wherein the reaction between the urea and the metal salt includes a heat treatment step of 100 to 150 ° C. 前記酸化剤が、塩基性金属硝酸塩(塩基性複合金属硝酸塩を含む)、アルカリ金属硝酸塩、アルカリ土類金属硝酸塩、相安定化硝酸アンモニウム、金属過塩素酸塩及び過塩素酸アンモニウムからなる群から選ばれる少なくとも1種であることを特徴とする請求項1〜3のいずれかに記載のガス発生剤組成物。 The oxidizing agent is selected from the group consisting of basic metal nitrates (including basic complex metal nitrates), alkali metal nitrates, alkaline earth metal nitrates, phase-stabilized ammonium nitrates, metal perchlorates and ammonium perchlorates. The gas generant composition according to any one of claims 1 to 3 , wherein the gas generant composition is at least one kind. 前記塩基性金属硝酸塩(塩基性複合金属硝酸塩を含む)が、銅、亜鉛、マグネシウム、コバルトからなる群から選ばれる少なくとも1種の金属を含むことを特徴とする請求項に記載のガス発生剤組成物。 The gas generating agent according to claim 4 , wherein the basic metal nitrate (including a basic complex metal nitrate) contains at least one metal selected from the group consisting of copper, zinc, magnesium, and cobalt. Composition. 前記燃料成分として、さらに含窒素有機化合物を含むことを特徴とする請求項1〜5のいずれかに記載のガス発生剤組成物。 The gas generating composition according to any one of claims 1 to 5 , further comprising a nitrogen-containing organic compound as the fuel component. 前記含窒素有機化合物が、グアニジン、テトラゾール、トリアゾール及びそれらの誘導体からなる群から選ばれる少なくとも1種であることを特徴とする請求項に記載のガス発生剤組成物。 The gas generating composition according to claim 6 , wherein the nitrogen-containing organic compound is at least one selected from the group consisting of guanidine, tetrazole, triazole, and derivatives thereof. 前記グアニジンの誘導体が、硝酸グアニジン、ニトログアニジン、トリアミノグアニジン硝酸塩、炭酸グアニジン及び過塩素酸グアニジンからなる群から選ばれる少なくとも1種であることを特徴とする請求項に記載のガス発生剤組成物。 8. The gas generant composition according to claim 7 , wherein the guanidine derivative is at least one selected from the group consisting of guanidine nitrate, nitroguanidine, triaminoguanidine nitrate, guanidine carbonate, and guanidine perchlorate. object. 前記化合物(A)及び前記酸化剤の合計中の化合物(A)の含有率が55〜85質量%で、酸化剤の含有率が15〜45質量%であることを特徴とする請求項1〜5のいずれかに記載のガス発生剤組成物。 The content of the compound (A) in the total of the compound (A) and the oxidant is 55 to 85% by mass, and the content of the oxidant is 15 to 45% by mass . 6. The gas generant composition according to any one of 5 above. 前記化合物(A)、前記含窒素有機化合物及び前記酸化剤の合計中の化合物(A)の含有率が5質量%以上、85質量%未満で、含窒素有機化合物の含有率が49.5質量%以下で、酸化剤の含有率が15〜45.5質量%であることを特徴とする請求項6〜8のいずれかに記載のガス発生剤組成物。 The content of the compound (A) in the total of the compound (A), the nitrogen-containing organic compound and the oxidizing agent is 5% by mass or more and less than 85% by mass, and the content of the nitrogen-containing organic compound is 49.5% by mass. % Or less, and the content rate of an oxidizing agent is 15-45.5 mass%, The gas generating agent composition in any one of Claims 6-8 characterized by the above-mentioned. さらに、燃焼調整剤、スラグ形成剤及びバインダからなる群から選ばれる少なくも1種の添加剤を含むことを特徴とする請求項1〜10のいずれかに記載のガス発生剤組成物。 The gas generant composition according to any one of claims 1 to 10 , further comprising at least one additive selected from the group consisting of a combustion regulator, a slag forming agent, and a binder. 前記添加剤の含有率が、ガス発生剤組成物の全体に対して0〜10質量%であることを特徴とする請求項11に記載のガス発生剤組成物。 The gas generating agent composition according to claim 11 , wherein the content of the additive is 0 to 10% by mass with respect to the entire gas generating agent composition. 請求項1〜12のいずれかに記載のガス発生剤組成物を、混合した後、成形・乾燥して、成形体としたことを特徴とするガス発生剤組成物成形体。 A gas generant composition molded body, wherein the gas generant composition according to any one of claims 1 to 12 is mixed and then molded and dried to form a molded body. 請求項13に記載のガス発生剤組成物成形体を備えることを特徴とするガス発生器。   A gas generator comprising the molded product of the gas generant composition according to claim 13.
JP2009512993A 2007-05-02 2008-04-25 GAS GENERATOR COMPOSITION, GAS GENERATOR COMPOSITION COMPOSITION, METHOD FOR PRODUCING COMPOUND USED FOR SAME, AND GAS GENERATOR Active JP5325099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009512993A JP5325099B2 (en) 2007-05-02 2008-04-25 GAS GENERATOR COMPOSITION, GAS GENERATOR COMPOSITION COMPOSITION, METHOD FOR PRODUCING COMPOUND USED FOR SAME, AND GAS GENERATOR

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2007/059380 WO2008139557A1 (en) 2007-05-02 2007-05-02 Gas generating agent composition, moldings of the composition, process for the production of compounds constituting the composition, and gas generator
JPPCT/JP2007/059380 2007-05-02
JP2009512993A JP5325099B2 (en) 2007-05-02 2008-04-25 GAS GENERATOR COMPOSITION, GAS GENERATOR COMPOSITION COMPOSITION, METHOD FOR PRODUCING COMPOUND USED FOR SAME, AND GAS GENERATOR
PCT/JP2008/058118 WO2008136431A1 (en) 2007-05-02 2008-04-25 Gas generator composition, molded article of gas generator composition, method for production of compound for use in the composition or molded article, and gas generation apparatus

Publications (2)

Publication Number Publication Date
JPWO2008136431A1 JPWO2008136431A1 (en) 2010-07-29
JP5325099B2 true JP5325099B2 (en) 2013-10-23

Family

ID=49596489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009512993A Active JP5325099B2 (en) 2007-05-02 2008-04-25 GAS GENERATOR COMPOSITION, GAS GENERATOR COMPOSITION COMPOSITION, METHOD FOR PRODUCING COMPOUND USED FOR SAME, AND GAS GENERATOR

Country Status (1)

Country Link
JP (1) JP5325099B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129157A (en) * 1977-04-13 1978-11-10 Us Government Granular metal or metal oxide manufacturing process
JPH01104035A (en) * 1987-10-16 1989-04-21 Toray Ind Inc Production of aliphatic nitriles
JPH01178556A (en) * 1987-12-31 1989-07-14 Kawasaki Kasei Chem Ltd Production of metal phthalocyanine and/or its derivative
JPH01224209A (en) * 1988-01-27 1989-09-07 Westinghouse Electric Corp <We> Production of ceramic superconductor
JPH05339086A (en) * 1992-01-27 1993-12-21 Terni Ind Chim Spa Production of calcium nitrate-urea adduct
JP2001513758A (en) * 1997-02-19 2001-09-04 ドイチェス クレブスフォルシュンクスツェントルム スチフトゥング デス エッフェントリヒェン レヒツ Preparation of acid amides and metallization of compounds
JP2005054046A (en) * 2003-08-04 2005-03-03 Fuji Photo Film Co Ltd Method for producing fluorophor
JP4799136B2 (en) * 2005-11-14 2011-10-26 日本化薬株式会社 Gas generant composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129157A (en) * 1977-04-13 1978-11-10 Us Government Granular metal or metal oxide manufacturing process
JPH01104035A (en) * 1987-10-16 1989-04-21 Toray Ind Inc Production of aliphatic nitriles
JPH01178556A (en) * 1987-12-31 1989-07-14 Kawasaki Kasei Chem Ltd Production of metal phthalocyanine and/or its derivative
JPH01224209A (en) * 1988-01-27 1989-09-07 Westinghouse Electric Corp <We> Production of ceramic superconductor
JPH05339086A (en) * 1992-01-27 1993-12-21 Terni Ind Chim Spa Production of calcium nitrate-urea adduct
JP2001513758A (en) * 1997-02-19 2001-09-04 ドイチェス クレブスフォルシュンクスツェントルム スチフトゥング デス エッフェントリヒェン レヒツ Preparation of acid amides and metallization of compounds
JP2005054046A (en) * 2003-08-04 2005-03-03 Fuji Photo Film Co Ltd Method for producing fluorophor
JP4799136B2 (en) * 2005-11-14 2011-10-26 日本化薬株式会社 Gas generant composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013020257; Journal of Colloid and Interface Science 212(2), 1999, p.317-323 *
JPN6013020260; Colloids and Surfaces A: Physicochemical and Engineering Aspects 81, 1993, p153-159 *
JPN6013020261; Solid State Ionics 141-142, 2001, p.549-557 *
JPN6013020264; Inorganica Chimica Acta 293(1), 1999, p.80-87 *

Also Published As

Publication number Publication date
JPWO2008136431A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP4500399B2 (en) Gas generant composition containing triazine derivative
JP5719763B2 (en) GAS GENERATOR COMPOSITION, MOLDED BODY THEREOF, AND GAS GENERATOR USING THE SAME
WO2001023304A1 (en) Basic metal nitrate, method for producing the same and gas-generating agent composition
US6964716B2 (en) Gas generating composition
CN105777460B (en) Gas generant composition
EP1538137A1 (en) Gas generant composition
JP4800469B2 (en) Gas generant composition
JP4514024B2 (en) Gunpowder molded body and gas generator having the same
JP5325099B2 (en) GAS GENERATOR COMPOSITION, GAS GENERATOR COMPOSITION COMPOSITION, METHOD FOR PRODUCING COMPOUND USED FOR SAME, AND GAS GENERATOR
JP2002160992A (en) Gas generating agent
JP5391440B2 (en) Pyro-type gas generator and molded article of gas generating agent composition
JP3920773B2 (en) Gas evolution by metal complexes of guanylurea nitrate.
JP4799136B2 (en) Gas generant composition
JP4294331B2 (en) Production method of gas generant
JP5031255B2 (en) Gas generant composition
JP3953187B2 (en) Gas generant composition
JP2006517510A (en) Gas generating agent
JP4318238B2 (en) Gas generant composition
US20230271897A1 (en) Gas-forming agent composition
US20240002311A1 (en) Gas-generating agent composition
JP2003321293A (en) Gas generating composition having improved heat resistance
JP4794728B2 (en) Basic metal nitrate and process for producing the same
JP4500576B2 (en) Gas generant composition
JP4500586B2 (en) Gas generant composition
WO2000029355A1 (en) Gas generator composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5325099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250