JP5324384B2 - POLYMER, TIRE RUBBER COMPOSITION AND PNEUMATIC TIRE - Google Patents

POLYMER, TIRE RUBBER COMPOSITION AND PNEUMATIC TIRE Download PDF

Info

Publication number
JP5324384B2
JP5324384B2 JP2009231891A JP2009231891A JP5324384B2 JP 5324384 B2 JP5324384 B2 JP 5324384B2 JP 2009231891 A JP2009231891 A JP 2009231891A JP 2009231891 A JP2009231891 A JP 2009231891A JP 5324384 B2 JP5324384 B2 JP 5324384B2
Authority
JP
Japan
Prior art keywords
group
polymer
tire
mass
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009231891A
Other languages
Japanese (ja)
Other versions
JP2011079913A (en
Inventor
和幸 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2009231891A priority Critical patent/JP5324384B2/en
Publication of JP2011079913A publication Critical patent/JP2011079913A/en
Application granted granted Critical
Publication of JP5324384B2 publication Critical patent/JP5324384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer capable of achieving both of a low fuel cost and wet grip performance, to provide a rubber composition for a tire, using the polymer, and to provide the pneumatic tire using the rubber composition for the tire as each member (especially tread) of the tire. <P>SOLUTION: The polymer is obtained by polymerizing a conjugated diene compound, or the conjugated diene compound and an aromatic vinyl compound by using a polymerization initiator obtained by reacting a lithium amide compound represented by general formula (I) with a silane compound represented by general formula (II) (wherein R<SP>1</SP>and R<SP>2</SP>are each independently 1-18C monovalent hydrocarbon which may have substituent amino or ether, or R<SP>1</SP>and R<SP>2</SP>may form a ring structure by bonding to each other; R<SP>3</SP>is 3-9C divalent hydrocarbon; and R<SP>4</SP>and R<SP>5</SP>are each independently 1-18C monovalent hydrocarbon). <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、重合体、該重合体を用いたタイヤ用ゴム組成物、及び該タイヤ用ゴム組成物を用いた空気入りタイヤに関する。 The present invention relates to a polymer, a tire rubber composition using the polymer, and a pneumatic tire using the tire rubber composition.

近年、省資源、省エネルギー、加えて、環境保護の立場から排出炭酸ガスの低減の社会的要求が強まっている。このため、自動車に対しても排出炭酸ガスの低減を目的として、タイヤの転がり抵抗改善による低燃費性の向上が必要とされており、更に、走行時の安全性(操縦安定性)向上の要求も強まっている。タイヤ特性は、タイヤの構造、使用材料等種々の要素に左右されるが、特に路面に接するトレッド部分に用いるゴム組成物の性能が低燃費性、安全性、耐久性等のタイヤ特性への寄与が大きい。このため、タイヤトレッド用ゴムの技術的改良が多く検討、提案され、実用化されている。 In recent years, social demands for reducing carbon dioxide emissions have been increasing from the standpoints of resource and energy conservation and environmental protection. For this reason, automobiles are also required to improve fuel efficiency by improving tire rolling resistance with the aim of reducing carbon dioxide emissions, and further demands for improved driving safety (steering stability). Is also getting stronger. The tire characteristics depend on various factors such as the tire structure and materials used, but the performance of the rubber composition used for the tread part in contact with the road surface contributes to the tire characteristics such as low fuel consumption, safety, and durability. Is big. For this reason, many technical improvements of rubber for tire treads have been studied, proposed, and put into practical use.

性能改善のために配合の改良が検討され、ヒステリシスロスが小さく(低燃費性が良好)、ウェットスキッド抵抗性が高い(ウェットグリップ性能が良好)配合が検討されている。しかしながら、低ヒステリシスロスと高ウェットスキッド抵抗性との関係は相反するものであり、両立は難しいのが現状である。 In order to improve the performance, improvement of the formulation has been studied, and a formulation having a low hysteresis loss (good fuel economy) and high wet skid resistance (good wet grip performance) has been studied. However, the relationship between low hysteresis loss and high wet skid resistance is a contradiction, and it is difficult to achieve both.

特許文献1には、アミノシラン化合物により変性されたブタジエンゴムを配合することにより、低燃費性、耐摩耗性が向上することが開示されている。しかし、低燃費性とウェットグリップ性能の両立という点では未だ改善の余地を残すものである。 Patent Document 1 discloses that low fuel consumption and wear resistance are improved by blending butadiene rubber modified with an aminosilane compound. However, there is still room for improvement in terms of both low fuel consumption and wet grip performance.

特開2008−214608号公報JP 2008-214608 A

本発明は、前記課題を解決し、低燃費性とウェットグリップ性能を両立できる重合体、該重合体を用いたタイヤ用ゴム組成物、および該タイヤ用ゴム組成物をタイヤの各部材(特に、トレッド)に用いた空気入りタイヤを提供することを目的とする。 The present invention solves the above-mentioned problems, a polymer capable of achieving both low fuel consumption and wet grip performance, a tire rubber composition using the polymer, and the tire rubber composition using the tire components (particularly, An object of the present invention is to provide a pneumatic tire used for a tread.

本発明者は、前記課題を解決するために鋭意検討を重ねた結果、以下の方法にて課題を解決できることを見い出した。
すなわち本発明は、下記一般式(I)で表されるリチウムアミド化合物と下記一般式(II)で表されるシラン化合物とを反応させて得られる重合開始剤を用いて、共役ジエン化合物または共役ジエン化合物と芳香族ビニル化合物を重合して得られる重合体に関する。
As a result of intensive studies to solve the above problems, the present inventor has found that the problems can be solved by the following method.
That is, the present invention uses a polymerization initiator obtained by reacting a lithium amide compound represented by the following general formula (I) and a silane compound represented by the following general formula (II), to provide a conjugated diene compound or a conjugated compound. The present invention relates to a polymer obtained by polymerizing a diene compound and an aromatic vinyl compound.

Figure 0005324384
Figure 0005324384
(RおよびRは、それぞれ独立して炭素数1〜18の一価の炭化水素基であり、該一価の炭化水素基は置換アミノ基またはエーテル基を有していてもよく、また、R及びRは互いに結合して環構造を形成してもよい。Rは炭素数3〜9の二価の炭化水素基、RおよびRはそれぞれ独立して炭素数1〜18の一価の炭化水素基を示す。)
Figure 0005324384
Figure 0005324384
(R 1 and R 2 are each independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, and the monovalent hydrocarbon group may have a substituted amino group or an ether group, , R 1 and R 2 may be bonded to each other to form a ring structure, R 3 is a divalent hydrocarbon group having 3 to 9 carbon atoms, and R 4 and R 5 are each independently 1 to 1 carbon atoms. 18 represents a monovalent hydrocarbon group.)

また、上記重合体は、上記重合体の停止末端が、窒素、酸素、およびケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する化合物により変性されていることが好ましい。 Moreover, it is preferable that the said polymer has modified | denatured with the compound which has the functional group containing the at least 1 sort (s) of atom selected from the group which the stop terminal of the said polymer consists of nitrogen, oxygen, and silicon.

また、上記共役ジエン化合物が1,3−ブタジエンまたはイソプレンであり、上記芳香族ビニル化合物がスチレンであることが好ましい。 The conjugated diene compound is preferably 1,3-butadiene or isoprene, and the aromatic vinyl compound is preferably styrene.

本発明はまた、ゴム成分100質量%中の上記重合体の含有量が5質量%以上であるタイヤ用ゴム組成物に関する。 The present invention also relates to a tire rubber composition in which the content of the polymer in 100% by mass of the rubber component is 5% by mass or more.

本発明はまた、上記タイヤ用ゴム組成物を用いて作製した空気入りタイヤに関する。 The present invention also relates to a pneumatic tire produced using the tire rubber composition.

本発明によれば、上記一般式(I)で表されるリチウムアミド化合物と上記一般式(II)で表されるシラン化合物とを反応させて得られる重合開始剤を用いて、共役ジエン化合物または共役ジエン化合物と芳香族ビニル化合物を重合して得られる重合体、すなわち、特定のアミノシラン構造を含んだ重合体であるので、低燃費性とウェットグリップ性能を両立できる。従って、該重合体を用いたタイヤ用ゴム組成物は、タイヤの各部材(特に、トレッド)に好適に適用でき、低燃費性とウェットグリップ性能を両立したタイヤを提供できる。 According to the present invention, using a polymerization initiator obtained by reacting the lithium amide compound represented by the general formula (I) and the silane compound represented by the general formula (II), a conjugated diene compound or Since it is a polymer obtained by polymerizing a conjugated diene compound and an aromatic vinyl compound, that is, a polymer containing a specific aminosilane structure, both low fuel consumption and wet grip performance can be achieved. Therefore, the rubber composition for tires using the polymer can be suitably applied to each member (particularly, tread) of the tire and can provide a tire having both low fuel consumption and wet grip performance.

(重合体)
本発明の重合体は、上記一般式(I)で表されるリチウムアミド化合物と上記一般式(II)で表されるシラン化合物とを反応させて得られる重合開始剤を用いて、共役ジエン化合物または共役ジエン化合物と芳香族ビニル化合物を重合して得られる重合体である。
(Polymer)
The polymer of the present invention is a conjugated diene compound using a polymerization initiator obtained by reacting a lithium amide compound represented by the above general formula (I) and a silane compound represented by the above general formula (II). Alternatively, it is a polymer obtained by polymerizing a conjugated diene compound and an aromatic vinyl compound.

上記一般式(I)において、RおよびRは、それぞれ独立して炭素数1〜18の一価の炭化水素基であり、該一価の炭化水素基は、置換アミノ基またはエーテル基を有していてもよく、また、R及びRは互いに結合して環構造を形成してもよい。 In the general formula (I), R 1 and R 2 are each independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, and the monovalent hydrocarbon group is a substituted amino group or an ether group. R 1 and R 2 may be bonded to each other to form a ring structure.

炭素数1〜18の一価の炭化水素基としては、例えば炭素数1〜18(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、さらに好ましくは炭素数1〜5)のアルキル基、炭素数2〜18のアルケニル基、炭素数6〜18のアリール基、炭素数7〜18のアラルキル基などを挙げることができる。なかでも、入手容易性という理由から、上記アルキル基が好ましい。 Examples of the monovalent hydrocarbon group having 1 to 18 carbon atoms include alkyl having 1 to 18 carbon atoms (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and further preferably 1 to 5 carbon atoms). Group, an alkenyl group having 2 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 18 carbon atoms, and the like. Among these, the above alkyl group is preferable because of its availability.

上記アルキル基及びアルケニル基は直鎖状、枝分かれ状、環状のいずれであってもよく、その例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、シクロペンチル基、シクロヘキシル基、ビニル基、プロぺニル基、アリル基、ヘキセニル基、オクテニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。上記アルキル基及びアルケニル基のなかでも、入手容易性という理由から、イソプロピル基がより好ましい。 The alkyl group and alkenyl group may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, cyclopentyl group, cyclohexyl group, vinyl group, propenyl group, allyl group, hexenyl group, octenyl group, cyclopentenyl group Group, cyclohexenyl group and the like. Among the alkyl groups and alkenyl groups, an isopropyl group is more preferable because of availability.

上記アリール基は、芳香環上に低級アルキル基などの置換基を有していてもよく、その例としては、フェニル基、トリル基、キシリル基、ナフチル基などが挙げられる。 The aryl group may have a substituent such as a lower alkyl group on the aromatic ring, and examples thereof include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.

上記アラルキル基は、芳香環上に低級アルキル基などの置換基を有していてもよく、その例としては、ベンジル基、フェネチル基、ナフチルメチル基などが挙げられる。 The aralkyl group may have a substituent such as a lower alkyl group on the aromatic ring, and examples thereof include a benzyl group, a phenethyl group, and a naphthylmethyl group.

上記炭化水素基は、置換アミノ基またはエーテル基を有していてもよく、また、これらすべてを有していてもよい。 The hydrocarbon group may have a substituted amino group or an ether group, or may have all of them.

また、R及びRは互いに結合し、上記一般式(I)中の窒素原子とともに環構造を形成してもよい。この環構造は、飽和または不飽和の炭化水素環構造であってもよく、また酸素原子を含む(エーテル基を有する)飽和または不飽和の複素環構造であってもよい。
なかでも、入手容易性という理由から、環は、4員環〜10員環が好ましく、4員環〜8員環がより好ましい。
R 1 and R 2 may be bonded to each other to form a ring structure together with the nitrogen atom in the general formula (I). This ring structure may be a saturated or unsaturated hydrocarbon ring structure, or a saturated or unsaturated heterocyclic structure containing an oxygen atom (having an ether group).
Among these, from the viewpoint of easy availability, the ring is preferably a 4-membered ring to a 10-membered ring, and more preferably a 4-membered ring to an 8-membered ring.

上記一般式(I)で表されるリチウムアミド化合物としては、例えばリチウムジメチルアミド、リチウムメチル(エチル)アミド、リチウムメチル(イソプロピル)アミド、リチウムメチル(n−ブチル)アミド、リチウムメチル(sec−ブチル)アミド、リチウムメチル(tert−ブチル)アミド、リチウムメチル(ペンチル)アミド、リチウムジエチルアミド、リチウムエチル(イソプロピル)アミド、リチウムエチル(n−ブチル)アミド、リチウムエチル(sec−ブチル)アミド、リチウムエチル(tert−ブチル)アミド、リチウムエチル(ペンチル)アミド、リチウムジイソプロピルアミド、リチウムイソプロピル(n−ブチル)アミド、リチウムイソプロピル(sec−ブチル)アミド、リチウムイソプロピル(tert−ブチル)アミド、リチウムイソプロピル(ペンチル)アミド、リチウムアゼチジン−1−イド、リチウムピロリジン−1−イド、リチウムピペリジン−1−イド、リチウムアゼパン−1−イド、リチウムアゾカン−1−イド、リチウム2−メチルピロリジン−1−イド、リチウム3−メチルピロリジン−1−イド、リチウム2−エチルピロリジン−1−イド、リチウム2−メチルピペリジン−1−イド、リチウム3−メチルピペリジン−1−イド、リチウム4−メチルピペリジン−1−イド、リチウム3,5−ジメチルピペリジン−1−イド、リチウム2−メチルピペリジン−1−イド、リチウム1,3−オキサジナン−3−イド、リチウムモルホリン−4−イド、リチウム1−メチルテトラヒドロ−1H−ピリミジン−3−イド、リチウム4−メチルピペラジン−1−イドなどが挙げられる。なかでも、リチウムジイソプロピルアミド、リチウムピロリジン−1−イド、リチウムアゼパン−1−イド、リチウムモルホリン−4−イドが好ましい。 Examples of the lithium amide compound represented by the general formula (I) include lithium dimethylamide, lithium methyl (ethyl) amide, lithium methyl (isopropyl) amide, lithium methyl (n-butyl) amide, lithium methyl (sec-butyl). ) Amide, lithium methyl (tert-butyl) amide, lithium methyl (pentyl) amide, lithium diethylamide, lithium ethyl (isopropyl) amide, lithium ethyl (n-butyl) amide, lithium ethyl (sec-butyl) amide, lithium ethyl ( tert-butyl) amide, lithium ethyl (pentyl) amide, lithium diisopropylamide, lithium isopropyl (n-butyl) amide, lithium isopropyl (sec-butyl) amide, lithium isopropyl (te t-butyl) amide, lithium isopropyl (pentyl) amide, lithium azetidine-1-id, lithium pyrrolidine-1-id, lithium piperidine-1-id, lithium azepan-1-id, lithium azocan-1-id Lithium 2-methylpyrrolidine-1-id, lithium 3-methylpyrrolidine-1-id, lithium 2-ethylpyrrolidine-1-id, lithium 2-methylpiperidine-1-id, lithium 3-methylpiperidine-1-id Lithium 4-methylpiperidine-1-id, lithium 3,5-dimethylpiperidine-1-id, lithium 2-methylpiperidine-1-id, lithium 1,3-oxazinane-3-id, lithium morpholine-4-id Lithium 1-methyltetrahydro-1H-pyrimidine-3-id, Um 4-methylpiperazin-1-Id, and the like. Of these, lithium diisopropylamide, lithium pyrrolidine-1-id, lithium azepan-1-id, and lithium morpholine-4-id are preferable.

上記一般式(II)において、Rは炭素数3〜9のニ価の炭化水素基、RおよびRはそれぞれ独立して炭素数1〜18の一価の炭化水素基を示す。 In the general formula (II), R 3 represents a divalent hydrocarbon group having 3 to 9 carbon atoms, and R 4 and R 5 each independently represents a monovalent hydrocarbon group having 1 to 18 carbon atoms.

の炭素数3〜9の二価の炭化水素基としては、例えば炭素数3〜9(好ましくは炭素数3〜7、より好ましくは炭素数3)のアルキレン基、炭素数3〜9のアルキニレン基などを挙げることができる。なかでも、入手容易性、反応性という理由から、上記アルキレン基が好ましい。 Examples of the divalent hydrocarbon group having 3 to 9 carbon atoms of R 3 include an alkylene group having 3 to 9 carbon atoms (preferably 3 to 7 carbon atoms, more preferably 3 carbon atoms), and 3 to 9 carbon atoms. An alkynylene group can be exemplified. Especially, the said alkylene group is preferable from the reason of availability and reactivity.

上記アルキレン基及びアルキニレン基は直鎖状、枝分かれ状、環状のいずれであってもよく、その例としては、n−プロピレン基、イソプロピレン基、n−ブチレン基、イソブチレン基、sec−ブチレン基、tert−ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基、デシレン基、ドデシレン基、シクロペンチレン基、シクロヘキシレン基、プロぺニレン基、ヘキセニレン基、オクテニレン基、シクロペンテニレン基、シクロヘキセニレン基などが挙げられる。上記アルキレン基及びアルキニレン基のなかでも、入手容易性、反応性という理由から、直鎖状が好ましく、n−プロピレン基、n−ブチレン基がより好ましい。 The alkylene group and alkynylene group may be linear, branched or cyclic, and examples thereof include n-propylene group, isopropylene group, n-butylene group, isobutylene group, sec-butylene group, tert-butylene group, pentylene group, hexylene group, octylene group, decylene group, dodecylene group, cyclopentylene group, cyclohexylene group, propenylene group, hexenylene group, octenylene group, cyclopentenylene group, cyclohexenylene group Etc. Among the alkylene groups and alkynylene groups, a straight chain is preferable because of availability and reactivity, and an n-propylene group and an n-butylene group are more preferable.

およびRの炭素数1〜18の一価の炭化水素基としては、R、Rと同様の基が挙げられる。なかでも、入手容易性、反応性という理由から、炭素数1〜18(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、さらに好ましくは炭素数1〜5、特に好ましくは炭素数1〜3)のアルキル基が好ましい。 Examples of the monovalent hydrocarbon group having 1 to 18 carbon atoms of R 4 and R 5 include the same groups as R 1 and R 2 . Among these, for reasons of availability and reactivity, the number of carbon atoms is 1 to 18 (preferably 1 to 12 carbons, more preferably 1 to 8 carbons, still more preferably 1 to 5 carbons, and particularly preferably the number of carbons. 1-3) are preferred.

上記一般式(II)で表されるシラン化合物としては、例えば1,1−ジメチル−1−シラシクロプロパン、1−メチル−1−エチル−1−シラシクロプロパン、1,1−ジエチル−1−シラシクロプロパン、1,1−ジメチル−1−シラシクロブタン、1−メチル−1−エチル−1−シラシクロブタン、1,1−ジエチル−1−シラシクロブタン、1,1−ジメチル−1−シラシクロペンタン、1−メチル−1−エチル−1−シラシクロペンタン、1,1−ジエチル−1−シラシクロペンタン、1,1−ジメチル−1−シラシクロヘキサン、1−メチル−1−エチル−1−シラシクロヘキサン、1,1−ジエチル−1−シラシクロヘキサン、1,1−ジメチル−1−シラシクロヘプタン、1−メチル−1−エチル−1−シラシクロヘプタン、1,1−ジエチル−1−シラシクロヘプタンなどが挙げられる。なかでも、1,1−ジメチル−1−シラシクロブタン、1−メチル−1−エチル−1−シラシクロプロパンが好ましい。 Examples of the silane compound represented by the general formula (II) include 1,1-dimethyl-1-silacyclopropane, 1-methyl-1-ethyl-1-silacyclopropane, 1,1-diethyl-1- Silacyclopropane, 1,1-dimethyl-1-silacyclobutane, 1-methyl-1-ethyl-1-silacyclobutane, 1,1-diethyl-1-silacyclobutane, 1,1-dimethyl-1-silacyclopentane 1-methyl-1-ethyl-1-silacyclopentane, 1,1-diethyl-1-silacyclopentane, 1,1-dimethyl-1-silacyclohexane, 1-methyl-1-ethyl-1-silacyclohexane 1,1-diethyl-1-silacyclohexane, 1,1-dimethyl-1-silacycloheptane, 1-methyl-1-ethyl-1-silacycloheptane Such as 1,1-di-1-sila-cycloheptane and the like. Of these, 1,1-dimethyl-1-silacyclobutane and 1-methyl-1-ethyl-1-silacyclopropane are preferable.

本発明に用いられる重合開始剤の調製方法は、上記リチウムアミド化合物と上記シラン化合物とを接触する方法であれば特に制限はない。
上記リチウムアミド化合物と上記シラン化合物とを接触させることにより、下記式(III)に示す反応が進行し、特定のアミノシラン構造を含んだ重合開始剤が得られる。該重合開始剤は、このような構造を有しているため、開始末端にアミノ基およびシリル基を導入した変性重合体を得ることができる。
The method for preparing the polymerization initiator used in the present invention is not particularly limited as long as it is a method of contacting the lithium amide compound and the silane compound.
By bringing the lithium amide compound and the silane compound into contact with each other, a reaction represented by the following formula (III) proceeds to obtain a polymerization initiator containing a specific aminosilane structure. Since the polymerization initiator has such a structure, it is possible to obtain a modified polymer in which an amino group and a silyl group are introduced at the start terminal.

Figure 0005324384
Figure 0005324384

本発明に用いられる重合開始剤の調製方法は、例えば、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤に上記リチウムアミド化合物、上記シラン化合物をそれぞれ別々に溶解し、当該シラン化合物溶液に当該リチウムアミド化合物溶液を撹拌下で滴下することにより重合開始剤を調製できる。なお、重合開始剤を調製する際の反応温度は、−20〜50℃が好ましい。 The method for preparing the polymerization initiator used in the present invention includes, for example, an organic solvent inert to the reaction, for example, a hydrocarbon solvent such as an aliphatic, alicyclic or aromatic hydrocarbon compound, the lithium amide compound, the silane A polymerization initiator can be prepared by dissolving each compound separately and dropping the lithium amide compound solution dropwise into the silane compound solution with stirring. In addition, -20-50 degreeC is preferable for the reaction temperature at the time of preparing a polymerization initiator.

炭化水素系溶剤としては、炭素数3〜8のものが好ましく、例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、シクロヘキサン、プロペン、1−ブテン、イソブテン、トランス−2−ブテン、シス−2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。 The hydrocarbon solvent is preferably one having 3 to 8 carbon atoms, for example, propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, trans-2- Examples include butene, cis-2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, and ethylbenzene. These may be used alone or in combination of two or more.

重合開始剤を調製する際のリチウムアミド化合物とシラン化合物のモル比(リチウムアミド化合物/シラン化合物)は0.8〜1.1が好ましく、0.9〜1.05がより好ましい。 The molar ratio of the lithium amide compound to the silane compound (lithium amide compound / silane compound) in preparing the polymerization initiator is preferably 0.8 to 1.1, more preferably 0.9 to 1.05.

本発明に用いられる共役ジエン化合物としては、例えば1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン、2−フェニル−1,3−ブタジエン、1,3−ヘキサジエンなどが挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性などの実用性の面などの観点から1,3−ブタジエン、イソプレンが特に好ましい。 Examples of the conjugated diene compound used in the present invention include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and 1,3-hexadiene. Can be mentioned. These may be used alone or in combination of two or more. Among these, 1,3-butadiene and isoprene are particularly preferable from the viewpoint of practicality such as availability of monomers. preferable.

本発明に用いられる芳香族ビニル化合物としては、例えばスチレン、α−メチルスチレン、1−ビニルナフタレン、3−ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4−シクロヘキシルスチレン、2,4,6−トリメチルスチレンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性などの実用性の面などの観点からスチレンが特に好ましい。なお、共役ジエン化合物と、芳香族ビニル化合物を組み合わせて用いてもよい。 Examples of the aromatic vinyl compound used in the present invention include styrene, α-methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene. Etc. These may be used singly or in combination of two or more. Among these, styrene is particularly preferable from the viewpoint of practicality such as availability of monomers. A conjugated diene compound and an aromatic vinyl compound may be used in combination.

本発明の重合体の製造方法としては、重合開始剤として、上記一般式(I)で表されるリチウムアミド化合物と上記一般式(II)で表されるシラン化合物とを反応させて得られる重合開始剤を用いる以外は特に制限はなく、従来公知の方法を用いることができる。重合反応中は、下記式(IV)で表される重合末端にLiを有する重合体が生成する。 As a method for producing the polymer of the present invention, as a polymerization initiator, polymerization obtained by reacting a lithium amide compound represented by the above general formula (I) with a silane compound represented by the above general formula (II) There is no restriction | limiting in particular except using an initiator, A conventionally well-known method can be used. During the polymerization reaction, a polymer having Li at the polymerization terminal represented by the following formula (IV) is generated.

Figure 0005324384
Figure 0005324384

本発明の重合体の製造方法は、具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤中において、共役ジエン化合物または共役ジエン化合物と芳香族ビニル化合物を上記重合開始剤を用いて、必要に応じてランダマイザーの存在下で重合させることにより、目的の重合体が得られる。 Specifically, the method for producing a polymer of the present invention includes a conjugated diene compound or a conjugated compound in an organic solvent inert to the reaction, for example, a hydrocarbon solvent such as an aliphatic, alicyclic or aromatic hydrocarbon compound. A target polymer is obtained by polymerizing a diene compound and an aromatic vinyl compound using the above polymerization initiator in the presence of a randomizer as necessary.

炭化水素系溶剤としては、上記重合開始剤の調製の場合と同様のものを好適に使用できる。 As the hydrocarbon solvent, the same solvents as those used in the preparation of the polymerization initiator can be suitably used.

また、前記ランダマイザーとは、重合体中の共役ジエン部分のミクロ構造制御、例えばブタジエンにおける1、2−結合、イソプレンにおける3、4−結合の増加など、あるいは重合体におけるモノマー単位の組成分布の制御、例えばブタジエン−スチレン共重合体におけるブタジエン単位、スチレン単位のランダム化などの作用を有する化合物のことである。 The randomizer is a microstructure control of a conjugated diene moiety in a polymer, for example, an increase in 1,2-bond in butadiene, an increase in 3,4-bond in isoprene, or a composition distribution of monomer units in the polymer. It is a compound having control, for example, randomization of butadiene units and styrene units in a butadiene-styrene copolymer.

ランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを用いることができる。例えば、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ビステトラヒドロフリルプロパン、トリエチルアミン、ピリジン、N−メチルモルホリン、N,N,N’,N’−テトラメチルエチレンジアミン、1,2−ジピペリジノエタンなどのエーテル類及び第三級アミン類などを挙げることができる。また、カリウム−t−アミレート、カリウム−t−ブトキシドなどのカリウム塩、ナトリウム−t−アミレートなどのナトリウム塩類も用いることができる。これらのランダマイザーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、入手容易性という理由から、テトラヒドロフラン、N,N,N’,N’−テトラメチルエチレンジアミンが好ましい。 There is no restriction | limiting in particular as a randomizer, Arbitrary things can be used from the well-known compound generally used as a conventional randomizer. For example, dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, bistetrahydrofurylpropane, triethylamine, pyridine, N-methylmorpholine, N, N, N ′, N′-tetramethylethylenediamine, 1,2-di Examples include ethers such as piperidinoethane and tertiary amines. Further, potassium salts such as potassium-t-amylate and potassium-t-butoxide, and sodium salts such as sodium-t-amylate can also be used. These randomizers may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, tetrahydrofuran and N, N, N ′, N′-tetramethylethylenediamine are preferable because of easy availability.

ランダマイザーの使用量は、有機リチウム化合物(式(III)で表される重合開始剤)1モルに対して、0.01モル以上が好ましく、0.05モル以上がより好ましい。ランダマイザーの使用量が0.01モル未満では、添加効果が小さく、ランダム化しにくい傾向がある。また、ランダマイザーの使用量は、有機リチウム化合物(式(III)で表される重合開始剤)1モルに対して、1000モル以下が好ましく、500モル以下がより好ましい。ランダマイザーの使用量が1000モルをこえると、モノマーの反応速度が大きく変化してしまい、逆にランダム化しにくくなる傾向がある。 The amount of randomizer used is preferably 0.01 mol or more and more preferably 0.05 mol or more with respect to 1 mol of the organolithium compound (polymerization initiator represented by the formula (III)). When the amount of the randomizer used is less than 0.01 mol, the effect of addition is small and it tends to be difficult to randomize. The amount of randomizer used is preferably 1000 mol or less, more preferably 500 mol or less, per 1 mol of the organolithium compound (polymerization initiator represented by formula (III)). When the amount of the randomizer used exceeds 1000 mol, the reaction rate of the monomer changes greatly, and conversely, it tends to be difficult to randomize.

本発明における重合体の停止末端には、官能基を導入してもよく、導入しなくてもよい。なかでも、ゴム組成物の低燃費性とウェットグリップ性能のバランスを向上させるという理由から、官能基を導入することが好ましい。なお、官能基を導入しない場合には、例えば、アルコール等の重合停止剤を添加して重合反応を終了すればよい。一方、官能基を導入する場合には、例えば、上記式(IV)で表される重合体の重合末端と、官能基を有する変性剤とを反応させて、重合反応を終了すればよい。 A functional group may or may not be introduced at the terminating end of the polymer in the present invention. Among these, it is preferable to introduce a functional group for the purpose of improving the balance between the low fuel consumption of the rubber composition and the wet grip performance. When no functional group is introduced, for example, a polymerization terminator such as alcohol may be added to terminate the polymerization reaction. On the other hand, when introducing a functional group, for example, the polymerization end of the polymer represented by the above formula (IV) may be reacted with a modifier having a functional group to terminate the polymerization reaction.

変性剤による重合体の変性方法としては、特公平6−53768号公報、特公平6−57767号公報等に記載されている方法等、従来公知の手法を用いることができる。例えば、重合体と変性剤とを接触させればよく、調製した重合体溶液中に変性剤を添加して反応させる方法等が挙げられる。 As a method for modifying a polymer with a modifier, conventionally known methods such as those described in JP-B-6-53768 and JP-B-6-57767 can be used. For example, a polymer and a modifier may be brought into contact with each other, and a method in which a modifier is added to the prepared polymer solution to cause a reaction may be mentioned.

重合体の停止末端に官能基を導入するための変性剤は、窒素、酸素、およびケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する化合物が好ましい。
官能基としては、例えばアミノ基、アミド基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、カルボキシル基、ヒドロキシル基、ニトリル基、ピリジル基等があげられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、ゴム組成物の低燃費性とウェットグリップ性能のバランスを向上させるという理由から、アミノ基、アルコキシシリル基、エーテル基、カルボニル基、ヒドロキシル基、カルボキシル基が好ましい。
The modifier for introducing a functional group at the terminal end of the polymer is preferably a compound having a functional group containing at least one atom selected from the group consisting of nitrogen, oxygen, and silicon.
Examples of the functional group include amino group, amide group, alkoxysilyl group, isocyanate group, imino group, imidazole group, urea group, ether group, carbonyl group, carboxyl group, hydroxyl group, nitrile group, pyridyl group and the like. These functional groups may have a substituent. Among these, an amino group, an alkoxysilyl group, an ether group, a carbonyl group, a hydroxyl group, and a carboxyl group are preferable because the balance between the low fuel consumption and wet grip performance of the rubber composition is improved.

変性剤としては、例えば3−グリシドキシプロピルトリメトキシシラン、(3−トリエトキシシリルプロピル)テトラスルフィド、1−(4−N,N−ジメチルアミノフェニル)−1−フェニルエチレン、1,1−ジメトキシトリメチルアミン、1,2−ビス(トリクロロシリル)エタン、1,3,5−トリス(3−トリエトキシシリルプロピル)イソシアヌレート、1,3,5−トリス(3−トリメトキシシリルプロピル)イソシアヌレート、1,3−ジメチル−2−イミダゾリジノン、1,3−プロパンジアミン、1,4−ジアミノブタン、1−[3−(トリエトキシシリル)プロピル]−4,5−ジヒドロイミダゾール、1−グリシジル−4−(2−ピリジル)ピペラジン、1−グリシジル−4−フェニルピペラジン、1−グリシジル−4−メチルピペラジン、1−グリシジル−4−メチルホモピペラジン、1−グリシジルヘキサメチレンイミン、11−アミノウンデシルトリエトキシシラン、11−アミノウンデシルトリメトキシシラン、1−ベンジル−4−グリシジルピペラジン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(4−モルフォリノジチオ)ベンゾチアゾール、2−(6−アミノエチル)−3−アミノプロピルトリメトキシシラン、2−(トリエトキシシリルエチル)ピリジン、2−(トリメトキシシリルエチル)ピリジン、2−(2−ピリジルエチル)チオプロピルトリメトキシシラン、2−(4−ピリジルエチル)チオプロピルトリメトキシシラン、2,2−ジエトキシ−1,6−ジアザ−2−シラシクロオクタン、2,2−ジメトキシ−1,6−ジアザ−2−シラシクロオクタン、2,3−ジクロロ−1,4−ナフトキノン、2,4−ジニトロベンゼンスルホニルクロライド、2,4−トリレンジイソシアナート、2−(4−ピリジルエチル)トリエトキシシラン、2−(4−ピリジルエチル)トリメトキシシラン、2−シアノエチルトリエトキシシラン、2−トリブチルスタニル−1,3−ブタジエン、2−(トリメトキシシリルエチル)ピリジン、2−ビニルピリジン、2−(4−ピリジルエチル)トリエトキシシラン、2−(4−ピリジルエチル)トリメトキシシラン、2−ラウリルチオエチルフェニルケトン、3−(1−ヘキサメチレンイミノ)プロピル(トリエトキシ)シラン、3−(1,3−ジメチルブチリデン)アミノプロピルトリエトキシシラン、3−(1,3−ジメチルブチリデン)アミノプロピルトリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリメトキシシラン、3−(m−アミノフェノキシ)プロピルトリメトキシシラン、3−(N,N−ジメチルアミノ)プロピルトリエトキシシラン、3−(N,N−ジメチルアミノ)プロピルトリメトキシシラン、3−(N−メチルアミノ)プロピルトリエトキシシラン、3−(N−メチルアミノ)プロピルトリメトキシシラン、3−(N−アリルアミノ)プロピルトリメトキシシラン、3,4−ジアミノ安息香酸、3−アミノプロピルジメチルエトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリス(メトキシジエトキシ)シラン、3−アミノプロピルジイソプロピルエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−ジエチルアミノプロピルトリメトキシシラン、3−ジエトキシ(メチル)シリルプロピル無水コハク酸、3−(N,N−ジエチルアミノプロピル)トリエトキシシラン、3−(N,N−ジエチルアミノプロピル)トリメトキシシラン、3−(N,N−ジメチルアミノプロピル)ジエトキシメチルシラン、3−(N,N−ジメチルアミノプロピル)トリエトキシシラン、3−(N,N−ジメチルアミノプロピル)トリメトキシシラン、3−トリエトキシシリルプロピル無水コハク酸、3−トリエトキシシリルプロピル無水酢酸、3−トリフェノキシシリルプロピル無水コハク酸、3−トリフェノキシシリルプロピル無水酢酸、3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−ヘキサメチレンイミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、(3−トリエトキシシリルプロピル)ジエチレントリアミン、(3−トリメトキシシリルプロピル)ジエチレントリアミン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4’−(イミダゾール−1−イル)−アセトフェノン、4−〔3−(N,N−ジグリシジルアミノ)プロピル〕モルホリン、4−グリシジル−2,2,6,6−テトラメチルピぺリジニルオキシ、4−アミノブチルトリエトキシシラン、4−ビニルピリジン、4−モルホリノアセトフェノン、4−モルホリノベンゾフェノン、m−アミノフェニルトリメトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(1,3−ジメチルブチリデン)−3−(トリメトキシシリル)−1−プロパンアミン、N−(1−メチルエチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(2−アミノエチル)−3−アミノプロピルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−11−アミノウンデシルトリエトキシシラン、N−(2−アミノエチル)−11−アミノウンデシルトリメトキシシラン、N−(2−アミノエチル)−3−アミノイソブチルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノイソブチルメチルジメトキシシラン、N−(3−ジエトキシメチルシリルプロピル)サクシンイミド、N−(3−トリエトキシシリルプロピル)−4,5−ジヒドロイミダゾール、N−(3−トリエトキシシリルプロピル)ピロール、N−(3−トリメトキシシリルプロピル)ピロール、N−3−[アミノ(ポリプロピレンオキシ)]アミノプロピルトリメトキシシラン、N−[5−(トリエトキシシリル)−2−アザ−1−オキソペンチル]カプロラクタム、N−[5−(トリメトキシシリル)−2−アザ−1−オキソペンチル]カプロラクタム、N−(6−アミノヘキシル)アミノメチルトリエトキシシラン、N−(6−アミノヘキシル)アミノメチルトリメトキシシラン、N−アリル−アザ−2,2−ジエトキシシラシクロペンタン、N−アリル−アザ−2,2−ジメトキシシラシクロペンタン、N−(シクロヘキシルチオ)フタルイミド、N−n−ブチル−アザ−2,2−ジエトキシシラシクロペンタン、N−n−ブチル−アザ−2,2−ジメトキシシラシクロペンタン、N,N,N’,N’−テトラエチルアミノベンゾフェノン、N,N,N’,N’−テトラメチルチオ尿素、N,N,N’,N’−テトラメチル尿素、N,N’−エチレン尿素、N,N’−ジエチルアミノベンゾフェノン、N,N’−ジエチルアミノベンゾフェノン、N,N’−ジエチルアミノベンゾフラン、N,N’−ジエチルカルバミン酸メチル、N,N’−ジエチル尿素、(N,N−ジエチル−3−アミノプロピル)トリエトキシシラン、(N,N−ジエチル−3−アミノプロピル)トリメトキシシラン、N,N−ジオクチル−N’−トリエトキシシリルプロピルウレア、N,N−ジオクチル−N’−トリメトキシシリルプロピルウレア、N,N−ジエチルカルバミン酸メチル、N,N−ジグリシジルシクロヘキシルアミン、N,N−ジメチル−o−トルイジン、N,N−ジメチルアミノスチレン、N,N−ジエチルアミノプロピルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N−エチルアミノイソブチルトリエトキシシラン、N−エチルアミノイソブチルトリメトキシシラン、N−エチルアミノイソブチルメチルジエトキシシラン、N−オキシジエチレン−2−ベンゾチアゾールスルフェンアミド、N−シクロヘキシルアミノプロピルトリエトキシシラン、N−シクロヘキシルアミノプロピルトリメトキシシラン、N−メチルアミノプロピルメチルジメトキシシラン、N−メチルアミノプロピルメチルジエトキシシラン、N−ビニルベンジルアザシクロヘプタン、N−フェニルピロリドン、N−フェニルアミノプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン、N−フェニルアミノメチルトリエトキシシラン、N−フェニルアミノメチルトリメトキシシラン、n−ブチルアミノプロピルトリエトキシシラン、n−ブチルアミノプロピルトリメトキシシラン、N−メチルアミノプロピルトリエトキシシラン、N−メチルアミノプロピルトリメトキシシラン、N−メチル−2−ピペリドン、N−メチル−2−ピロリドン、N−メチル−ε−カプロラクタム、N−メチルインドリノン、N−メチルピロリドン、p−(2−ジメチルアミノエチル)スチレン、p−アミノフェニルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、(アミノエチルアミノ)−3−イソブチルジエトキシシラン、(アミノエチルアミノ)−3−イソブチルジメトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、アクリル酸、アジピン酸ジエチル、アセタミドプロピルトリメトキシシラン、アミノフェニルトリメトキシシラン、アミノベンゾフェノン、ウレイドプロピルトリエトキシシラン、ウレイドプロピルトリメトキシシラン、エチレンオキシド、オクタデシルジメチル(3−トリメトキシシリルプロピル)アンモニウムクロリド、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルトリメトキシシラン、グリセロールトリステアレート、クロロトリエトキシシラン、クロロプロピルトリエトキシシラン、クロロポリジメチルシロキサン、クロロメチルジフェノキシシラン、ジアリルジフェニルスズ、ジエチルアミノメチルトリエトキシシラン、ジエチルアミノメチルトリメトキシシラン、ジエチル(グリシジル)アミン、ジエチル、ジチオカルバミン酸2−ベンゾチアゾイルエステル、ジエトキシジクロロシラン、(シクロヘキシルアミノメチル)トリエトキシシラン、(シクロヘキシルアミノメチル)トリメトキシシラン、ジグリシジルポリシロキサン、ジクロロジフェノキシシラン、ジシクロヘキシルカルボジイミド、ジビニルベンゼン、ジフェニルカルボジイミド、ジフェニルシアナミド、ジフェニルメタンジイソシアネート、ジフェノキシメチルクロロシラン、ジブチルジクロロスズ、ジメチル(アセトキシ−メチルシロキサン)ポリジメチルシロキサン、ジメチルアミノメチルトリエトキシシラン、ジメチルアミノメチルトリメトキシシラン、ジメチル(メトキシ−メチルシロキサン)ポリジメチルシロキサン、ジメチルイミダゾリジノン、ジメチルエチレン尿素、ジメチルジクロロシラン、ジメチルスルホモイルクロライド、シルセスキオキサン、ソルビタントリオレイン酸エステル、ソルビタンモノラウリン酸エステル、チタンテトラキス(2−エチルヘキシオキシド)、テトラエトキシシラン、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサン、テトラフェノキシシラン、テトラメチルチウラムジスルフィド、テトラメトキシシラン、トリエトキシビニルシラン、トリス(3−トリメトキシシリルプロピル)シアヌレート、トリフェニルホスフェート、トリフェノキシクロロシラン、トリフェノキシメチルケイ素、トリフェノキシメチルシラン、二酸化炭素、ビス(トリエトキシシリルプロピル)アミン、ビス(トリメトキシシリルプロピル)アミン、ビス[3−(トリエトキシシリル)プロピル]エチレンジアミン、ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン、ビス[3−(トリエトキシシリル)プロピル]ウレア、ビス[(トリメトキシシリル)プロピル]ウレア、ビス(2−ヒドロキシメチル)−3−アミノプロピルトリエトキシシラン、ビス(2−ヒドロキシメチル)−3−ア
ミノプロピルトリメトキシシラン、ビス(2−エチルヘキサノエート)スズ、ビス(2−メチルブトキシ)メチルクロロシラン、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビスジエチルアミノベンゾフェノン、ビスフェノールAジグリシジルエーテル、ビスフェノキシエタノールフルオレンジグリシジルエーテル、ビス(メチルジエトキシシリルプロピル)アミン、ビス(メチルジメトキシシリルプロピル)−N−メチルアミン、ヒドロキシメチルトリエトキシシラン、ビニルトリス(2−エチルヘキシルオキシ)シラン、ビニルベンジルジエチルアミン、ビニルベンジルジメチルアミン、ビニルベンジルトリブチルスズ、ビニルベンジルピペリジン、ビニルベンジルピロリジン、ピロリジン、フェニルイソシアナート、フェニルイソチオシアナート、(フェニルアミノメチル)メチルジメトキシシラン、(フェニルアミノメチル)メチルジエトキシシラン、フタル酸アミド、ヘキサメチレンジイソシアナート、ベンジリデンアニリン、ポリジフェニルメタンジイソシアネート、ポリジメチルシロキサン、メチル−4−ピリジルケトン、メチルカプロラクタム、メチルトリエトキシシラン、メチルトリフェノキシシラン、ラウリルチオプロピオン酸メチル、四塩化ケイ素等があげられる。
Examples of the modifier include 3-glycidoxypropyltrimethoxysilane, (3-triethoxysilylpropyl) tetrasulfide, 1- (4-N, N-dimethylaminophenyl) -1-phenylethylene, 1,1- Dimethoxytrimethylamine, 1,2-bis (trichlorosilyl) ethane, 1,3,5-tris (3-triethoxysilylpropyl) isocyanurate, 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3-dimethyl-2-imidazolidinone, 1,3-propanediamine, 1,4-diaminobutane, 1- [3- (triethoxysilyl) propyl] -4,5-dihydroimidazole, 1-glycidyl- 4- (2-pyridyl) piperazine, 1-glycidyl-4-phenylpiperazine, 1-glycidyl 4-methylpiperazine, 1-glycidyl-4-methylhomopiperazine, 1-glycidylhexamethyleneimine, 11-aminoundecyltriethoxysilane, 11-aminoundecyltrimethoxysilane, 1-benzyl-4-glycidylpiperazine, 2 -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (4-morpholinodithio) benzothiazole, 2- (6-aminoethyl) -3-aminopropyltrimethoxysilane, 2- (triethoxysilylethyl) ) Pyridine, 2- (trimethoxysilylethyl) pyridine, 2- (2-pyridylethyl) thiopropyltrimethoxysilane, 2- (4-pyridylethyl) thiopropyltrimethoxysilane, 2,2-diethoxy-1,6 -Diaza-2-silacyclooctane, 2, -Dimethoxy-1,6-diaza-2-silacyclooctane, 2,3-dichloro-1,4-naphthoquinone, 2,4-dinitrobenzenesulfonyl chloride, 2,4-tolylene diisocyanate, 2- (4- Pyridylethyl) triethoxysilane, 2- (4-pyridylethyl) trimethoxysilane, 2-cyanoethyltriethoxysilane, 2-tributylstannyl-1,3-butadiene, 2- (trimethoxysilylethyl) pyridine, 2- Vinylpyridine, 2- (4-pyridylethyl) triethoxysilane, 2- (4-pyridylethyl) trimethoxysilane, 2-laurylthioethylphenylketone, 3- (1-hexamethyleneimino) propyl (triethoxy) silane, 3- (1,3-Dimethylbutylidene) aminopropyltriethoxysila 3- (1,3-dimethylbutylidene) aminopropyltrimethoxysilane, 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (m-aminophenoxy) propyltrimethoxysilane, 3- (N , N-dimethylamino) propyltriethoxysilane, 3- (N, N-dimethylamino) propyltrimethoxysilane, 3- (N-methylamino) propyltriethoxysilane, 3- (N-methylamino) propyltrimethoxy Silane, 3- (N-allylamino) propyltrimethoxysilane, 3,4-diaminobenzoic acid, 3-aminopropyldimethylethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl Tris (methoxydiethoxy) silane, 3-amino Lopyldiisopropylethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-diethylaminopropyltrimethoxy Silane, 3-diethoxy (methyl) silylpropyl succinic anhydride, 3- (N, N-diethylaminopropyl) triethoxysilane, 3- (N, N-diethylaminopropyl) trimethoxysilane, 3- (N, N-dimethyl) Aminopropyl) diethoxymethylsilane, 3- (N, N-dimethylaminopropyl) triethoxysilane, 3- (N, N-dimethylaminopropyl) trimethoxysilane, 3-triethoxysilylpropyl succinic anhydride, 3- Trier Xylsilylpropylacetic anhydride, 3-triphenoxysilylpropyl succinic anhydride, 3-triphenoxysilylpropyl acetic anhydride, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-hexamethyleneiminopropyltriethoxysilane, 3-mercaptopropyl Trimethoxysilane, (3-triethoxysilylpropyl) diethylenetriamine, (3-trimethoxysilylpropyl) diethylenetriamine, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4′- (Imidazol-1-yl) -acetophenone, 4- [3- (N, N-diglycidylamino) propyl] morpholine, 4-glycidyl-2,2,6,6-tetramethylpiperidinyloxy, 4-aminobutyl Tiltlyethoxysilane, 4-vinylpyridine, 4-morpholinoacetophenone, 4-morpholinobenzophenone, m-aminophenyltrimethoxysilane, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1- Propanamine, N- (1,3-dimethylbutylidene) -3- (trimethoxysilyl) -1-propanamine, N- (1-methylethylidene) -3- (triethoxysilyl) -1-propanamine, N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxy Silane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-amino Ethyl) -11-aminoundecyltriethoxysilane, N- (2-aminoethyl) -11-aminoundecyltrimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N- (3-diethoxymethylsilylpropyl) succinimide, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, N- (3 -Triethoxysilylpropyl) pyrrole, N- (3-trimethoxysilylpropyl) pyrrole, N-3- [amino (polypropyleneoxy)] aminopropyltrimethoxysilane, N- [5- (triethoxysilyl) -2- Aza-1-oxopentyl] caprolactam, N- [5- (trimethoxy Ryl) -2-aza-1-oxopentyl] caprolactam, N- (6-aminohexyl) aminomethyltriethoxysilane, N- (6-aminohexyl) aminomethyltrimethoxysilane, N-allyl-aza-2, 2-diethoxysilacyclopentane, N-allyl-aza-2,2-dimethoxysilacyclopentane, N- (cyclohexylthio) phthalimide, Nn-butyl-aza-2,2-diethoxysilacyclopentane, N -N-butyl-aza-2,2-dimethoxysilacyclopentane, N, N, N ', N'-tetraethylaminobenzophenone, N, N, N', N'-tetramethylthiourea, N, N, N ' , N′-tetramethylurea, N, N′-ethyleneurea, N, N′-diethylaminobenzophenone, N, N′-diethylaminobenzophenone N, N′-diethylaminobenzofuran, methyl N, N′-diethylcarbamate, N, N′-diethylurea, (N, N-diethyl-3-aminopropyl) triethoxysilane, (N, N-diethyl- 3-aminopropyl) trimethoxysilane, N, N-dioctyl-N′-triethoxysilylpropylurea, N, N-dioctyl-N′-trimethoxysilylpropylurea, methyl N, N-diethylcarbamate, N, N-diglycidylcyclohexylamine, N, N-dimethyl-o-toluidine, N, N-dimethylaminostyrene, N, N-diethylaminopropylacrylamide, N, N-dimethylaminopropylacrylamide, N-ethylaminoisobutyltriethoxysilane N-ethylaminoisobutyltrimethoxysilane, N Ethylaminoisobutylmethyldiethoxysilane, N-oxydiethylene-2-benzothiazolesulfenamide, N-cyclohexylaminopropyltriethoxysilane, N-cyclohexylaminopropyltrimethoxysilane, N-methylaminopropylmethyldimethoxysilane, N- Methylaminopropylmethyldiethoxysilane, N-vinylbenzylazacycloheptane, N-phenylpyrrolidone, N-phenylaminopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N-phenylaminomethyltriethoxysilane, N- Phenylaminomethyltrimethoxysilane, n-butylaminopropyltriethoxysilane, n-butylaminopropyltrimethoxysilane, N-methylaminopropyltrie Toxisilane, N-methylaminopropyltrimethoxysilane, N-methyl-2-piperidone, N-methyl-2-pyrrolidone, N-methyl-ε-caprolactam, N-methylindolinone, N-methylpyrrolidone, p- (2 -Dimethylaminoethyl) styrene, p-aminophenyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, (aminoethylamino) -3-isobutyldiethoxysilane, (aminoethyl) Amino) -3-isobutyldimethoxysilane, (aminoethylaminomethyl) phenethyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, acrylic acid, diethyl adipate, acetamidopropyltrimethoxysilane, aminophen Nyltrimethoxysilane, aminobenzophenone, ureidopropyltriethoxysilane, ureidopropyltrimethoxysilane, ethylene oxide, octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride, glycidoxypropyltriethoxysilane, glycidoxypropyltrimethoxysilane , Glycerol tristearate, chlorotriethoxysilane, chloropropyltriethoxysilane, chloropolydimethylsiloxane, chloromethyldiphenoxysilane, diallyldiphenyltin, diethylaminomethyltriethoxysilane, diethylaminomethyltrimethoxysilane, diethyl (glycidyl) amine, diethyl , Dithiocarbamic acid 2-benzothiazoyl ester, diethoxydichlorosilane, ( (Cyclohexylaminomethyl) triethoxysilane, (cyclohexylaminomethyl) trimethoxysilane, diglycidylpolysiloxane, dichlorodiphenoxysilane, dicyclohexylcarbodiimide, divinylbenzene, diphenylcarbodiimide, diphenylcyanamide, diphenylmethane diisocyanate, diphenoxymethylchlorosilane, dibutyldichloro Tin, dimethyl (acetoxy-methylsiloxane) polydimethylsiloxane, dimethylaminomethyltriethoxysilane, dimethylaminomethyltrimethoxysilane, dimethyl (methoxy-methylsiloxane) polydimethylsiloxane, dimethylimidazolidinone, dimethylethyleneurea, dimethyldichlorosilane , Dimethylsulfoyl chloride, silsesquioxane Sorbitan trioleate, sorbitan monolaurate, titanium tetrakis (2-ethylhexoxide), tetraethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, tetraphenoxysilane, tetramethylthiuram disulfide, tetramethoxy Silane, triethoxyvinylsilane, tris (3-trimethoxysilylpropyl) cyanurate, triphenyl phosphate, triphenoxychlorosilane, triphenoxymethylsilicon, triphenoxymethylsilane, carbon dioxide, bis (triethoxysilylpropyl) amine, bis (tri Methoxysilylpropyl) amine, bis [3- (triethoxysilyl) propyl] ethylenediamine, bis [3- (trimethoxysilyl) propyl] Range amine, bis [3- (triethoxysilyl) propyl] urea, bis [(trimethoxysilyl) propyl] urea, bis (2-hydroxymethyl) -3-aminopropyltriethoxysilane, bis (2-hydroxymethyl) -3-aminopropyltrimethoxysilane, bis (2-ethylhexanoate) tin, bis (2-methylbutoxy) methylchlorosilane, bis (3-triethoxysilylpropyl) tetrasulfide, bisdiethylaminobenzophenone, bisphenol A diglycidyl Ether, bisphenoxyethanol fluorenediglycidyl ether, bis (methyldiethoxysilylpropyl) amine, bis (methyldimethoxysilylpropyl) -N-methylamine, hydroxymethyltriethoxysilane, vinyltri (2-ethylhexyloxy) silane, vinylbenzyldiethylamine, vinylbenzyldimethylamine, vinylbenzyltributyltin, vinylbenzylpiperidine, vinylbenzylpyrrolidine, pyrrolidine, phenyl isocyanate, phenylisothiocyanate, (phenylaminomethyl) methyldimethoxysilane, ( Phenylaminomethyl) methyldiethoxysilane, phthalic acid amide, hexamethylene diisocyanate, benzylidene aniline, polydiphenylmethane diisocyanate, polydimethylsiloxane, methyl-4-pyridyl ketone, methylcaprolactam, methyltriethoxysilane, methyltriphenoxysilane, Examples include methyl lauryl thiopropionate and silicon tetrachloride.

上記変性剤のなかでも、ゴム組成物の低燃費性とウェットグリップ性能のバランスを向上させるという理由から、下記一般式(V)〜(VII)で表される化合物が好ましい。 Among the above modifiers, the compounds represented by the following general formulas (V) to (VII) are preferable because the balance between the low fuel consumption and the wet grip performance of the rubber composition is improved.

Figure 0005324384
(式中、R、R及びRは、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R及びR10は、同一若しくは異なって、水素原子、またはアルキル基を表す。rは整数を表す。)
Figure 0005324384
(Wherein R 6 , R 7 and R 8 are the same or different and each represents an alkyl group, an alkoxy group, a silyloxy group, an acetal group, a carboxyl group, a mercapto group, or a derivative thereof. R 9 and R 10 are (The same or different, and represents a hydrogen atom or an alkyl group. R represents an integer.)

Figure 0005324384
(式中、R11、R12及びR13は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R14は、環状エーテル基を表す。p及びqは整数を表す。)
Figure 0005324384
(Wherein R 11 , R 12 and R 13 are the same or different and each represents an alkyl group, an alkoxy group, a silyloxy group, an acetal group, a carboxyl group, a mercapto group or a derivative thereof. R 14 is a cyclic ether group. P and q represent integers.

Figure 0005324384
(式中、R15、R16及びR17は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。sは整数を表す。)
Figure 0005324384
(Wherein R 15 , R 16 and R 17 are the same or different and each represents an alkyl group, an alkoxy group, a silyloxy group, an acetal group, a carboxyl group, a mercapto group, or a derivative thereof. S represents an integer.)

上記式(V)で表される化合物において、R、R及びRは、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基(−COOH)、メルカプト基(−SH)又はこれらの誘導体を表す。上記アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基等の炭素数1〜4のアルキル基(好ましくは炭素数1〜3)等が挙げられる。上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基等の炭素数1〜8のアルコキシ基(好ましくは炭素数1〜6、より好ましくは炭素数1〜4)等が挙げられる。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基等の炭素数5〜8のシクロアルコキシ基等)、アリールオキシ基(フェノキシ基、ベンジルオキシ基等の炭素数6〜8のアリールオキシ基等)も含まれる。 In the compound represented by the formula (V), R 6 , R 7 and R 8 are the same or different and are an alkyl group, an alkoxy group, a silyloxy group, an acetal group, a carboxyl group (—COOH), a mercapto group (— SH) or derivatives thereof. Examples of the alkyl group include an alkyl group having 1 to 4 carbon atoms (preferably having 1 to 3 carbon atoms) such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a t-butyl group. Etc. Examples of the alkoxy group include alkoxy groups having 1 to 8 carbon atoms such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group and t-butoxy group (preferably having 1 to 6 carbon atoms). More preferably, C1-C4) etc. are mentioned. The alkoxy group includes a cycloalkoxy group (cycloalkoxy group having 5 to 8 carbon atoms such as cyclohexyloxy group) and an aryloxy group (aryloxy group having 6 to 8 carbon atoms such as phenoxy group and benzyloxy group). ) Is also included.

上記シリルオキシ基としては、例えば、炭素数1〜20の脂肪族基、芳香族基が置換したシリルオキシ基(トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、ジエチルイソプロピルシリルオキシ基、t−ブチルジメチルシリルオキシ基、t−ブチルジフェニルシリルオキシ基、トリベンジルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基等)等が挙げられる。 Examples of the silyloxy group include a silyloxy group substituted with an aliphatic group having 1 to 20 carbon atoms and an aromatic group (trimethylsilyloxy group, triethylsilyloxy group, triisopropylsilyloxy group, diethylisopropylsilyloxy group, t- Butyldimethylsilyloxy group, t-butyldiphenylsilyloxy group, tribenzylsilyloxy group, triphenylsilyloxy group, tri-p-xylylsilyloxy group, etc.).

上記アセタール基としては、例えば、−C(RR′)−OR″、−O−C(RR′)−OR″で表される基を挙げることができる。前者としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、イソプロポキシメチル基、t−ブトキシメチル基、ネオペンチルオキシメチル基等が挙げられ、後者としては、メトキシメトキシ基、エトキシメトキシ基、プロポキシメトキシ基、i−プロポキシメトキシ基、n−ブトキシメトキシ基、t−ブトキシメトキシ基、n−ペンチルオキシメトキシ基、n−ヘキシルオキシメトキシ基、シクロペンチルオキシメトキシ基、シクロヘキシルオキシメトキシ基等を挙げることができる。R、R及びRとしては、入手容易性、反応性という理由から、アルコキシ基、シリルオキシ基が好ましい。 Examples of the acetal group include groups represented by -C (RR ')-OR "and -O-C (RR')-OR". Examples of the former include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, an isopropoxymethyl group, a t-butoxymethyl group, and a neopentyloxymethyl group. The latter includes a methoxymethoxy group, an ethoxy group, and the like. Methoxy group, propoxymethoxy group, i-propoxymethoxy group, n-butoxymethoxy group, t-butoxymethoxy group, n-pentyloxymethoxy group, n-hexyloxymethoxy group, cyclopentyloxymethoxy group, cyclohexyloxymethoxy group, etc. Can be mentioned. As R 6 , R 7 and R 8 , an alkoxy group and a silyloxy group are preferable because of availability and reactivity.

上記式(V)で表される化合物において、R及びR10のアルキル基としては、例えば、上記R、R及びRのアルキル基と同様の基を挙げることができる。 In the compound represented by the formula (V), examples of the alkyl group for R 9 and R 10 include the same groups as the alkyl groups for R 6 , R 7, and R 8 .

r(整数)としては、入手容易性という理由から0〜5が好ましい。更には、rは2〜4がより好ましく、3が最も好ましい。rが6以上であるとコストが増大する。 As r (integer), 0-5 are preferable for the reason of availability. Furthermore, r is more preferably from 2 to 4, and most preferably 3. If r is 6 or more, the cost increases.

上記式(V)で表される化合物の具体例としては、上記変性剤として例示した3−(N,N−ジメチルアミノ)プロピルトリエトキシシラン、3−(N,N−ジメチルアミノ)プロピルトリメトキシシラン等が挙げられる。なかでも、3−(N,N−ジメチルアミノ)プロピルトリメトキシシランが好ましい。 Specific examples of the compound represented by the formula (V) include 3- (N, N-dimethylamino) propyltriethoxysilane and 3- (N, N-dimethylamino) propyltrimethoxy exemplified as the modifier. Silane etc. are mentioned. Of these, 3- (N, N-dimethylamino) propyltrimethoxysilane is preferable.

上記式(VI)で表される化合物において、R11、R12及びR13は、上記式(V)で表される化合物におけるR、R及びRと同様である。 In the compound represented by the formula (VI), R 11 , R 12 and R 13 are the same as R 6 , R 7 and R 8 in the compound represented by the formula (V).

上記式(VI)で表される化合物において、R14の環状エーテル基としては、例えば、オキシラン基、オキセタン基、オキソラン基、オキサン基、オキセパン基、オキソカン基、オキソナン基、オキセカン基、オキセト基、オキソール基等のエーテル結合を1つ有する環状エーテル基、ジオキソラン基、ジオキサン基、ジオキセパン基、ジオキセカン基等のエーテル結合を2つ有する環状エーテル基、トリオキサン基等のエーテル結合を3つ有する環状エーテル基等が挙げられる。なかでも、エーテル結合を1つ有する炭素数2〜7の環状エーテル基が好ましく、エーテル結合を1つ有する炭素数2〜4の環状エーテル基がより好ましく、オキシラン基が更に好ましい。また、環状エーテル基は環骨格内に不飽和結合を有していないことが好ましい。 In the compound represented by the above formula (VI), examples of the cyclic ether group of R 14 include oxirane group, oxetane group, oxolane group, oxane group, oxepane group, oxocan group, oxonan group, oxecan group, oxet group, A cyclic ether group having one ether bond such as an oxol group, a cyclic ether group having two ether bonds such as a dioxolane group, a dioxane group, a dioxepane group and a dioxecan group, and a cyclic ether group having three ether bonds such as a trioxane group Etc. Among these, a C2-C7 cyclic ether group having one ether bond is preferable, a C2-C4 cyclic ether group having one ether bond is more preferable, and an oxirane group is still more preferable. The cyclic ether group preferably has no unsaturated bond in the ring skeleton.

p(整数)としては、入手容易性、反応性という理由から0〜5が好ましい。更には、pは2〜4がより好ましく、3が最も好ましい。pが6以上であるとコストが増大する。 The p (integer) is preferably 0 to 5 for reasons of availability and reactivity. Further, p is more preferably from 2 to 4, and most preferably 3. If p is 6 or more, the cost increases.

q(整数)としては、入手容易性、反応性という理由から0〜5が好ましい。更には、qは1〜3がより好ましく、1が最も好ましい。qが6以上であるとコストが増大する。 q (integer) is preferably 0 to 5 for reasons of availability and reactivity. Furthermore, q is more preferably 1 to 3, and most preferably 1. If q is 6 or more, the cost increases.

上記式(VI)で表される化合物の具体例としては、上記変性剤として例示した3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン等が挙げられる。なかでも、3−グリシドキシプロピルトリメトキシシランが好ましい。 Specific examples of the compound represented by the formula (VI) include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane exemplified as the modifier. Of these, 3-glycidoxypropyltrimethoxysilane is preferable.

上記式(VII)で表される化合物において、R15、R16及びR17は、上記式(V)で表される化合物におけるR、R及びRと同様である。 In the compound represented by the above formula (VII), R 15 , R 16 and R 17 are the same as R 6 , R 7 and R 8 in the compound represented by the above formula (V).

s(整数)としては、入手容易性、反応性という理由から0〜5が好ましい。更には、sは2〜4がより好ましく、3が最も好ましい。sが6以上であるとコストが増大する。 As s (integer), 0-5 are preferable from the reason of availability and reactivity. Furthermore, s is more preferably from 2 to 4, and most preferably 3. If s is 6 or more, the cost increases.

上記式(VII)で表される化合物の具体例としては、上記変性剤として例示した3−トリフェノキシシリルプロピル無水コハク酸、3−トリエトキシシリルプロピル無水コハク酸、3−ジエトキシ(メチル)シリルプロピル無水コハク酸等が挙げられる。なかでも、3−トリエトキシシリルプロピル無水コハク酸が好ましい。 Specific examples of the compound represented by the formula (VII) include 3-triphenoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, and 3-diethoxy (methyl) silylpropyl exemplified as the modifier. And succinic anhydride. Of these, 3-triethoxysilylpropyl succinic anhydride is preferable.

本発明においては、重合体と変性剤とを反応させた後に、必要に応じて、公知の老化防止剤や重合反応を停止する目的でアルコールなどを加えてもよい。 In the present invention, after reacting the polymer and the modifier, if necessary, a known anti-aging agent or alcohol may be added for the purpose of stopping the polymerization reaction.

重合体の重量平均分子量(Mw)は1.0×10以上が好ましく、2.0×10以上がより好ましい。重合体の重量平均分子量は2.0×10以下が好ましく、1.5×10以下がより好ましく、1.0×10以下が更に好ましく、5.0×10以下が特に好ましい。重量平均分子量が1.0×10未満ではヒステリシスロスが大きく十分な低燃費性が得られにくいだけでなく、耐摩耗性も低下する傾向がある。一方、2.0×10を越えると加工性が低下する傾向がある。
なお、重量平均分子量(Mw)は、後述の実施例に記載の方法により測定した値である。
The weight average molecular weight (Mw) of the polymer is preferably 1.0 × 10 5 or more, and more preferably 2.0 × 10 5 or more. The weight average molecular weight of the polymer is preferably 2.0 × 10 6 or less, more preferably 1.5 × 10 6 or less, still more preferably 1.0 × 10 6 or less, and particularly preferably 5.0 × 10 5 or less. When the weight average molecular weight is less than 1.0 × 10 5 , not only is the hysteresis loss large and it is difficult to obtain sufficient fuel efficiency, but the wear resistance also tends to decrease. On the other hand, when it exceeds 2.0 × 10 6 , workability tends to be lowered.
In addition, a weight average molecular weight (Mw) is the value measured by the method as described in the below-mentioned Example.

重合体のスチレン量は、好ましくは50質量%以下、より好ましくは45質量%以下、更に好ましくは30質量%以下である。50質量%を超えると、充分な低燃性が得られないおそれがある。また、重合体のスチレン量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上である。5質量%未満であると、充分なウェットグリップ性能が得られないおそれがある。
なお、スチレン量は、後述の実施例に記載の方法により測定した値である。
The amount of styrene in the polymer is preferably 50% by mass or less, more preferably 45% by mass or less, and still more preferably 30% by mass or less. When it exceeds 50 mass%, there is a possibility that sufficient low flame retardancy may not be obtained. The amount of styrene in the polymer is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 20% by mass or more. If it is less than 5% by mass, sufficient wet grip performance may not be obtained.
In addition, the amount of styrene is a value measured by the method described in Examples described later.

重合体のビニル量は、好ましくは80質量%以下、より好ましくは75質量%以下、更に好ましくは60質量%以下、特に好ましくは50質量%以下である。80質量%を超えると、充分な低燃費性が得られないおそれがある。また、重合体のビニル量は、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは25質量%以上、特に好ましくは40質量%以上である。10質量%未満であると、充分なウェットグリップ性能が得られないおそれがある。
なお、ビニル量は、後述の実施例に記載の方法により測定した値である。
The vinyl content of the polymer is preferably 80% by mass or less, more preferably 75% by mass or less, still more preferably 60% by mass or less, and particularly preferably 50% by mass or less. If it exceeds 80% by mass, sufficient fuel economy may not be obtained. The vinyl content of the polymer is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 25% by mass or more, and particularly preferably 40% by mass or more. If it is less than 10% by mass, sufficient wet grip performance may not be obtained.
The vinyl content is a value measured by the method described in the examples below.

(タイヤ用ゴム組成物)
本発明では、ゴム成分として、上記重合体が使用される。ゴム成分として、上記重合体を使用することにより、低燃費性とウェットグリップ性能を両立できる。
(Rubber composition for tire)
In the present invention, the above polymer is used as the rubber component. By using the above polymer as the rubber component, both low fuel consumption and wet grip performance can be achieved.

ゴム成分100質量%中の上記重合体の含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、特に好ましくは20質量%以上である。5質量%未満であると、低燃費性、ウェットグリップ性能の改善効果が得られにくい傾向がある。 The content of the polymer in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and particularly preferably 20% by mass or more. If it is less than 5% by mass, there is a tendency that it is difficult to obtain an effect of improving fuel economy and wet grip performance.

本発明では、上記重合体以外のゴム成分として、ジエン系ゴムを使用できる。ジエン系ゴムとしては、例えば、天然ゴム(NR)、ジエン系合成ゴムが挙げられる。ジエン系合成ゴムとしては、例えば、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンコム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)などがあげられる。なかでも、グリップ性能および耐摩耗性をバランスよく示すことから、NR、BR、SBRが好ましい。これらのゴムは単独で用いてもよく、2種以上組み合わせてもよい。 In the present invention, a diene rubber can be used as a rubber component other than the polymer. Examples of the diene rubber include natural rubber (NR) and diene synthetic rubber. Examples of the diene synthetic rubber include isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene comb (NBR), chloroprene rubber (CR), butyl rubber (IIR), and the like. Of these, NR, BR, and SBR are preferable because they exhibit a good balance between grip performance and wear resistance. These rubbers may be used alone or in combination of two or more.

NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。 As the NR, for example, those commonly used in the tire industry such as SIR20, RSS # 3, TSR20 and the like can be used.

BRとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B等の高シス含有量のBR、宇部興産(株)製のVCR412、VCR617等のシンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。なかでも、低燃費性と耐摩耗性をバランスよく得られるという理由から、BRのシス含量は95質量%以上が好ましい。 The BR is not particularly limited. For example, BR1220 manufactured by Nippon Zeon Co., Ltd., BR130B manufactured by Ube Industries, Ltd., BR150B having a high cis content such as BR150B, VCR412 manufactured by Ube Industries, Ltd. BR containing syndiotactic polybutadiene crystals can be used. In particular, the cis content of BR is preferably 95% by mass or more because low fuel consumption and wear resistance can be obtained in a good balance.

本発明のゴム組成物においては、補強剤としてカーボンブラックまたはシリカを配合することが好ましい。 In the rubber composition of the present invention, it is preferable to blend carbon black or silica as a reinforcing agent.

使用できるカーボンブラックとしては、GPF、FEF、HAF、ISAF、SAFなどが挙げられるが、特に限定されない。カーボンブラックを配合することにより、補強性を高めることができるとともに、電気伝導性、耐オゾン性、耐老化性を改善できる。カーボンブラックは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of carbon black that can be used include GPF, FEF, HAF, ISAF, and SAF, but are not particularly limited. By blending carbon black, it is possible to enhance the reinforcing property and improve the electrical conductivity, ozone resistance, and aging resistance. Carbon black may be used alone or in combination of two or more.

カーボンブラックのチッ素吸着比表面積(NSA)は80m/g以上が好ましく、100m/g以上がより好ましい。80m/g未満では、十分なウェットグリップ性能が得られず、また耐摩耗性が低下するおそれがある。また、カーボンブラックのチッ素吸着比表面積は280m/g以下が好ましく、250m/g以下がより好ましく、200m/g以下が更に好ましく、150m/g以下が特に好ましい。280m/gを超えると、分散性に劣り、耐摩耗性が低下するおそれがある。
なお、カーボンブラックのチッ素吸着比表面積は、JIS K6217のA法によって求められる。
The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 80 m 2 / g or more, and more preferably 100 m 2 / g or more. If it is less than 80 m < 2 > / g, sufficient wet-grip performance cannot be obtained, and there is a possibility that the wear resistance is lowered. Further, the nitrogen adsorption specific surface area of the carbon black is preferably 280 meters 2 / g or less, more preferably 250 meters 2 / g, more preferably from 200 meters 2 / g or less, and particularly preferably 150m 2 / g. If it exceeds 280 m 2 / g, the dispersibility is inferior and the wear resistance may be reduced.
In addition, the nitrogen adsorption specific surface area of carbon black is calculated | required by A method of JISK6217.

上記ゴム組成物がカーボンブラックを含有する場合、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。1質量部未満では、耐摩耗性が低下する傾向がある。また、該カーボンブラックの含有量は、好ましくは100質量部以下、より好ましくは90質量部以下、更に好ましくは50質量部以下である。100質量部を超えると、低燃費性が悪化する傾向がある。 When the rubber composition contains carbon black, the content of carbon black is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 1 part by mass, the wear resistance tends to decrease. The carbon black content is preferably 100 parts by mass or less, more preferably 90 parts by mass or less, and still more preferably 50 parts by mass or less. If it exceeds 100 parts by mass, the fuel efficiency tends to deteriorate.

使用できるシリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。シリカは、単独で用いてもよく、2種以上を併用してもよい。シリカを配合することにより、低燃費性とウェットグリップ性能のバランスが向上する。 The silica that can be used is not particularly limited, and examples thereof include dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid), and the like, and wet process silica is preferable because it has many silanol groups. Silica may be used alone or in combination of two or more. By blending silica, the balance between low fuel consumption and wet grip performance is improved.

上記シリカの窒素吸着比表面積(NSA)は、好ましくは50m/g以上、より好ましくは80m/g以上、更に好ましくは120m/g以上である。50m/g未満であると、補強効果が小さく、耐摩耗性が低下する傾向がある。また、シリカのNSAは、好ましくは300m/g以下、より好ましくは250m/g以下、更に好ましくは210m/g以下である。300m/gを超えると、分散性が悪く、ヒステリシスロスが増大し、低燃費性が低下する傾向がある。
なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of the silica is preferably 50 m 2 / g or more, more preferably 80 m 2 / g or more, and still more preferably 120 m 2 / g or more. If it is less than 50 m 2 / g, the reinforcing effect is small, and the wear resistance tends to decrease. Further, N 2 SA of silica is preferably 300 m 2 / g or less, more preferably 250 m 2 / g or less, and further preferably 210 m 2 / g or less. When it exceeds 300 m 2 / g, the dispersibility is poor, the hysteresis loss increases, and the fuel efficiency tends to decrease.
The nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.

シリカの含有量は、ゴム成分100質量部に対して、5質量部以上、好ましくは10質量部以上、より好ましく15質量部以上である。5質量部未満では、耐摩耗性が低下する傾向がある。該シリカの含有量は、好ましくは150質量部以下、より好ましくは100質量部以下、更に好ましくは90質量部以下、特に好ましくは50質量部以下である。150質量部を超えると、加工性が悪化する傾向がある。 The content of silica is 5 parts by mass or more, preferably 10 parts by mass or more, more preferably 15 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 5 parts by mass, the wear resistance tends to decrease. The silica content is preferably 150 parts by mass or less, more preferably 100 parts by mass or less, still more preferably 90 parts by mass or less, and particularly preferably 50 parts by mass or less. If it exceeds 150 parts by mass, the workability tends to deteriorate.

上記ゴム組成物がカーボンブラック及びシリカを含有する場合、カーボンブラック及びシリカの合計含有量は、ゴム成分100質量部に対して、好ましくは15質量部以上、より好ましくは20質量部以上、更に好ましくは25質量部以上である。15質量部未満では、耐摩耗性が低下する傾向がある。また、該合計含有量は、好ましくは100質量部以下、より好ましくは90質量部以下、更に好ましくは70質量部以下である。100質量部を超えると、加工性が低下し、充分な低燃費性が得られないおそれがある。 When the rubber composition contains carbon black and silica, the total content of carbon black and silica is preferably 15 parts by mass or more, more preferably 20 parts by mass or more, further preferably 100 parts by mass of the rubber component. Is 25 parts by mass or more. If it is less than 15 parts by mass, the wear resistance tends to decrease. The total content is preferably 100 parts by mass or less, more preferably 90 parts by mass or less, and still more preferably 70 parts by mass or less. If it exceeds 100 parts by mass, the processability may be reduced and sufficient fuel economy may not be obtained.

本発明のゴム組成物は、シリカを配合する場合、シリカとともに、シランカップリング剤を含有することが好ましい。シランカップリング剤としては、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス−(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラフ、ルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−トリエトキシシリルプロピルベゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、3−メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾールテトラスルフィドなどがあげられる。なかでも、補強性改善効果などの点から、ビス(3−トリエトキシシリルプロピル)テトラスルフィドおよび3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好ましい。これらのシランカップリング剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The rubber composition of the present invention preferably contains a silane coupling agent together with silica when silica is blended. Examples of the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis- (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy). Ethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercapto Ethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetraf, rufide, 3-triethoxysilylpropyl-N, N-dimethylthio Rubamoyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropyl bezothiazolyl tetrasulfide, 3-triethoxy Ethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyl Examples thereof include tetrasulfide and dimethoxymethylsilylpropylbenzothiazole tetrasulfide. Of these, bis (3-triethoxysilylpropyl) tetrasulfide and 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide are preferable from the viewpoint of improving reinforcing properties. These silane coupling agents may be used alone or in combination of two or more.

シランカップリング剤の含有量は、シリカ100質量部に対して、1質量部以上が好ましく、2質量部以上がより好ましい。1質量部未満では、未加硫ゴム組成物の粘度が高く加工性が悪くなる傾向がある。また、該シランカップリング剤の含有量は、20質量部以下が好ましく、15質量部以下がより好ましい。20質量部を超えると、配合量に見合ったシランカップリング剤の配合効果が得られず、コストが高くなる傾向がある。 The content of the silane coupling agent is preferably 1 part by mass or more and more preferably 2 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 1 part by mass, the viscosity of the unvulcanized rubber composition tends to be high and the processability tends to deteriorate. Further, the content of the silane coupling agent is preferably 20 parts by mass or less, and more preferably 15 parts by mass or less. When it exceeds 20 parts by mass, the blending effect of the silane coupling agent corresponding to the blending amount cannot be obtained, and the cost tends to increase.

本発明のゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、クレー等の無機・有機充填剤、ステアリン酸等の加硫促進助剤、各種老化防止剤、オゾン劣化防止剤、酸化亜鉛、オイル、軟化剤、可塑剤、ワックス、硫黄又は硫黄化合物等の加硫剤、加硫促進剤などを必要に応じて適宜配合することができる。 In addition to the above components, the rubber composition of the present invention includes compounding agents conventionally used in the rubber industry, for example, inorganic and organic fillers such as clay, vulcanization acceleration aids such as stearic acid, and various anti-aging agents. In addition, an ozone deterioration inhibitor, zinc oxide, oil, softener, plasticizer, vulcanizing agent such as wax, sulfur or sulfur compound, vulcanization accelerator and the like can be appropriately blended as necessary.

本発明のゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで前記各成分を混練りし、その後加硫する方法等により製造できる。 The rubber composition of the present invention is produced by a general method. That is, it can be produced by a method of kneading the above components with a Banbury mixer, a kneader, an open roll or the like and then vulcanizing.

本発明のゴム組成物は、空気入りタイヤの各部材(特に、トレッド)に好適に使用できる。 The rubber composition of the present invention can be suitably used for each member (particularly tread) of a pneumatic tire.

(空気入りタイヤ)
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造できる。すなわち、ゴム組成物を未加硫の段階で各部材(特に、トレッド)の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧してタイヤを製造できる。
(Pneumatic tire)
The pneumatic tire of the present invention can be produced by a usual method using the rubber composition. That is, the rubber composition is extruded in accordance with the shape of each member (particularly tread) at an unvulcanized stage, molded by a normal method on a tire molding machine, and bonded together with other tire members, Form an unvulcanized tire. This unvulcanized tire can be heated and pressurized in a vulcanizer to produce a tire.

本発明の空気入りタイヤは、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ等として好適に用いられ、特に乗用車用タイヤ、二輪車用タイヤとして好適に用いられる。本発明により得られる空気入りタイヤは、低燃費性とウェットグリップ性能を両立できる。 The pneumatic tire of the present invention is preferably used as a tire for passenger cars, a tire for trucks and buses, a tire for motorcycles, a tire for competitions, and the like, and particularly preferably used as a tire for passenger cars and a tire for motorcycles. The pneumatic tire obtained by the present invention can achieve both low fuel consumption and wet grip performance.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下、製造例1〜4で使用した各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
リチウムジイソプロピルアミド:関東化学(株)製の1Mリチウムジイソプロピルアミド,n−ヘキサン−テトラヒドロフラン溶液
ピロリジン:関東化学(株)製のピロリジン
ヘキサメチレンイミン:関東化学(株)製のへキサメチレンイミン
モルホリン:関東化学(株)製のモルホリン
1.6M n−ブチルリチウムヘキサン溶液:関東化学(株)製の1.6M n−ブチルリチウムヘキサン溶液
1,1−ジメチル−1−シラシクロブタン:信越シリコーン(株)製のLS−700
n−ヘキサン:関東化学(株)製のn−ヘキサン
THF:関東化学(株)製のテトラヒドロフラン
Hereinafter, various chemicals used in Production Examples 1 to 4 will be described together. In addition, the chemical | medical agent refine | purified according to the usual method as needed.
Lithium diisopropylamide: 1M lithium diisopropylamide manufactured by Kanto Chemical Co., Inc., n-hexane-tetrahydrofuran solution Pyrrolidine: Pyrrolidine hexamethyleneimine manufactured by Kanto Chemical Co., Ltd .: Hexamethyleneimine morpholine manufactured by Kanto Chemical Co., Inc .: Kanto Morpholine 1.6M n-butyllithium hexane solution manufactured by Chemical Co., Ltd .: 1.6M n-butyllithium hexane solution 1,1-dimethyl-1-silacyclobutane manufactured by Kanto Chemical Co., Ltd .: Shin-Etsu Silicone Co., Ltd. LS-700
n-hexane: n-hexane THF manufactured by Kanto Chemical Co., Ltd .: tetrahydrofuran manufactured by Kanto Chemical Co., Ltd.

(製造例1)
(重合開始剤溶液(1)の合成)
十分に窒素置換した200ml容器に、n−ヘキサン88ml、1,1−ジメチル−1−シラシクロブタン1.3mlを加え、0℃にて1.0Mリチウムジイソプロピルアミド,n−ヘキサン−テトラヒドロフラン溶液10mlを滴下し、1時間攪拌することで重合開始剤(下記式(1))溶液(1)を得た。
(Production Example 1)
(Synthesis of polymerization initiator solution (1))
To a 200 ml container sufficiently purged with nitrogen, add 88 ml of n-hexane and 1.3 ml of 1,1-dimethyl-1-silacyclobutane, and add dropwise 10 ml of 1.0 M lithium diisopropylamide, n-hexane-tetrahydrofuran solution at 0 ° C. And the polymerization initiator (following formula (1)) solution (1) was obtained by stirring for 1 hour.

Figure 0005324384
Figure 0005324384

(製造例2)
(重合開始剤溶液(2)の合成)
十分に窒素置換した100ml容器に、n−ヘキサン40ml、ピロリジン0.83ml、THF4mlを加え、0℃にて1.6M n−ブチルリチウムヘキサン溶液6.25mlを滴下し、1時間撹拌してリチウムアミド化合物(リチウムピロリジン−1−イド)の溶液を調製した。次に十分に窒素置換した200ml容器に、n−ヘキサン44ml、1,1−ジメチル−1−シラシクロブタン1.3mlを加え、0℃にて調製したリチウムアミド化合物の溶液を滴下し、1時間撹拌することで重合開始剤(下記式(2))溶液(2)を得た。
(Production Example 2)
(Synthesis of polymerization initiator solution (2))
To a 100 ml container thoroughly purged with nitrogen, add 40 ml of n-hexane, 0.83 ml of pyrrolidine, and 4 ml of THF, and dropwise add 6.25 ml of 1.6M n-butyllithium hexane solution at 0 ° C. A solution of the compound (lithium pyrrolidine-1-id) was prepared. Next, 44 ml of n-hexane and 1.3 ml of 1,1-dimethyl-1-silacyclobutane were added to a 200 ml container sufficiently purged with nitrogen, and a solution of the lithium amide compound prepared at 0 ° C. was added dropwise and stirred for 1 hour. Thus, a polymerization initiator (following formula (2)) solution (2) was obtained.

Figure 0005324384
Figure 0005324384

(製造例3)
(重合開始剤溶液(3)の合成)
十分に窒素置換した100ml容器に、n−ヘキサン40ml、ヘキサメチレンイミン1.13ml、THF4mlを加え、0℃にて1.6M n−ブチルリチウムヘキサン溶液6.25mlを滴下し、1時間撹拌してリチウムアミド化合物(リチウムアゼパン−1−イド)の溶液を調製した。次に十分に窒素置換した200ml容器に、n−ヘキサン44ml、1,1−ジメチル−1−シラシクロブタン1.3mlを加え、0℃にて調製したリチウムアミド化合物の溶液を滴下し、1時間撹拌することで重合開始剤(下記式(3))溶液(3)を得た。
(Production Example 3)
(Synthesis of polymerization initiator solution (3))
To a 100 ml container sufficiently purged with nitrogen, add 40 ml of n-hexane, 1.13 ml of hexamethyleneimine, and 4 ml of THF, and drop 6.25 ml of 1.6M n-butyllithium hexane solution at 0 ° C., and stir for 1 hour. A solution of a lithium amide compound (lithium azepan-1-id) was prepared. Next, 44 ml of n-hexane and 1.3 ml of 1,1-dimethyl-1-silacyclobutane were added to a 200 ml container sufficiently purged with nitrogen, and a solution of the lithium amide compound prepared at 0 ° C. was added dropwise and stirred for 1 hour. As a result, a polymerization initiator (following formula (3)) solution (3) was obtained.

Figure 0005324384
Figure 0005324384

(製造例4)
(重合開始剤溶液(4)の合成)
十分に窒素置換した100ml容器に、n−ヘキサン40ml、モルホリン0.87ml、THF4mlを加え、0℃にて1.6M n−ブチルリチウムヘキサン溶液6.25mlを滴下し、1時間撹拌してリチウムアミド化合物(リチウムモルホリン−4−イド)の溶液を調製した。次に十分に窒素置換した200ml容器に、n−ヘキサン44ml、1,1−ジメチル−1−シラシクロブタン1.3mlを加え、0℃にて調製したリチウムアミド化合物の溶液を滴下し、1時間撹拌することで重合開始剤(下記式(4))溶液(4)を得た。
(Production Example 4)
(Synthesis of polymerization initiator solution (4))
Add 100 ml of n-hexane, 0.87 ml of morpholine, and 4 ml of THF to a 100 ml container thoroughly purged with nitrogen, drop dropwise 6.25 ml of 1.6M n-butyllithium hexane solution at 0 ° C., and stir for 1 hour to obtain lithium amide. A solution of the compound (lithium morpholine-4-id) was prepared. Next, 44 ml of n-hexane and 1.3 ml of 1,1-dimethyl-1-silacyclobutane were added to a 200 ml container sufficiently purged with nitrogen, and a solution of the lithium amide compound prepared at 0 ° C. was added dropwise and stirred for 1 hour. Thus, a polymerization initiator (following formula (4)) solution (4) was obtained.

Figure 0005324384
Figure 0005324384

表1に製造例1〜4で使用した試薬およびその使用量をまとめて示す。 Table 1 summarizes the reagents used in Production Examples 1 to 4 and the amounts used.

Figure 0005324384
Figure 0005324384

以下、製造例5〜14で使用した各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
ブタジエン:高千穂化学工業(株)製の1,3−ブタジエン
スチレン:関東化学(株)製のスチレン
イソプレン:関東化学(株)製のイソプレン
n−ヘキサン:関東化学(株)製のn−ヘキサン
THF:関東化学(株)製のテトラヒドロフラン
重合開始剤(1)〜(4):上記製造例(1)〜(4)で調製した重合開始剤溶液(1)〜(4)
sec−ブチルリチウム:関東化学(株)製の1.0Msec−ブチルリチウム,ヘキサン−シクロヘキサン溶液
変性剤(1):アヅマックス社製の3−(N,N−ジメチルアミノプロピル)トリメトキシシラン(式(V)において、R、R及びR=メトキシ基、R及びR10=メチル基、r=3)
変性剤(2):アヅマックス社製の3−グリシドキシプロピルトリメトキシシラン(式(VI)において、R11、R12及びR13=メトキシ基、R14=オキシラン基、p=3、q=1)
変性剤(3):アジマックス社製の3−トリエトキシシリルプロピル無水コハク酸(式(VII)において、R15、R16及びR17=エトキシ基、s=3)
イソプロパノール:関東化学(株)製のイソプロパノール
2,6−tert−ブチル−p−クレゾール:関東化学(株)製の2,6−tert−ブチル−p−クレゾール
メタノール:関東化学(株)製メタノール
Hereinafter, various chemicals used in Production Examples 5 to 14 will be described together. In addition, the chemical | medical agent refine | purified according to the usual method as needed.
Butadiene: 1,3-butadiene styrene manufactured by Takachiho Chemical Co., Ltd .: Styrene isoprene manufactured by Kanto Chemical Co., Ltd .: Isoprene manufactured by Kanto Chemical Co., Ltd. n-hexane THF manufactured by Kanto Chemical Co., Ltd. : Tetrahydrofuran polymerization initiators (1) to (4) manufactured by Kanto Chemical Co., Ltd .: polymerization initiator solutions (1) to (4) prepared in the above production examples (1) to (4)
sec-Butyllithium: 1.0Msec-Butyllithium, hexane-cyclohexane solution modifier manufactured by Kanto Chemical Co., Ltd. (1): 3- (N, N-dimethylaminopropyl) trimethoxysilane (formula (A) V), R 6 , R 7 and R 8 = methoxy group, R 9 and R 10 = methyl group, r = 3)
Denaturant (2): 3-glycidoxypropyltrimethoxysilane manufactured by AMAX Co. (in formula (VI), R 11 , R 12 and R 13 = methoxy group, R 14 = oxirane group, p = 3, q = 1)
Denaturant (3): 3-triethoxysilylpropyl succinic anhydride manufactured by Azimax (in formula (VII), R 15 , R 16 and R 17 = ethoxy group, s = 3)
Isopropanol: Isopropanol 2,6-tert-butyl-p-cresol manufactured by Kanto Chemical Co., Ltd .: 2,6-tert-butyl-p-cresol methanol manufactured by Kanto Chemical Co., Ltd .: Methanol manufactured by Kanto Chemical Co., Inc.

(製造例5)
(重合体(1)の合成)
十分に窒素置換した2000ml耐圧製容器に、n−ヘキサン1500ml、スチレン25ml、ブタジエン150ml、THF10mlを加え、40℃で重合開始剤溶液(1)4.5mlを加えて撹拌した。3時問後、イソプロパノール3mlを加えて重合を停止させた。反応溶液に2,6−tert−ブチル−p−クレゾール1gを添加後、メタノールで再沈殿処理を行い、加熱乾燥させて重合体(1)を得た。
(Production Example 5)
(Synthesis of polymer (1))
To a 2000 ml pressure-resistant container sufficiently purged with nitrogen, 1500 ml of n-hexane, 25 ml of styrene, 150 ml of butadiene, and 10 ml of THF were added, and 4.5 ml of the polymerization initiator solution (1) was added and stirred at 40 ° C. After 3 hours, 3 ml of isopropanol was added to terminate the polymerization. After adding 1 g of 2,6-tert-butyl-p-cresol to the reaction solution, reprecipitation treatment was performed with methanol, followed by heating and drying to obtain a polymer (1).

(製造例6〜9、14)
(重合体(2)〜(5)、(10)の合成)
表2に示す処方に従って、重合体(1)と同様の方法にて重合体(2)〜(5)、(10)を得た。
(Production Examples 6-9, 14)
(Synthesis of polymers (2) to (5) and (10))
According to the formulation shown in Table 2, polymers (2) to (5) and (10) were obtained in the same manner as for polymer (1).

(製造例10)
(重合体(6)の合成)
十分に窒素置換した2000ml耐圧製容器に、n−ヘキサン1500ml、スチレン25ml、ブタジエン150ml、THF10mlを加え、40℃で重合開始剤溶液(1)4.5mlを加えて撹拌した。3時間後、変性剤(1)0.1mlを加えて撹拌した。30分後、イソプロパノール3mlを加えて重合を停止させた。反応溶液に2,6−tert−ブチル−p−クレゾール1gを添加後、メタノールで再沈殿処理を行い、加熱乾燥させて重合体(6)を得た。
(Production Example 10)
(Synthesis of polymer (6))
To a 2000 ml pressure-resistant container sufficiently purged with nitrogen, 1500 ml of n-hexane, 25 ml of styrene, 150 ml of butadiene, and 10 ml of THF were added, and 4.5 ml of the polymerization initiator solution (1) was added and stirred at 40 ° C. After 3 hours, 0.1 ml of the modifier (1) was added and stirred. After 30 minutes, 3 ml of isopropanol was added to stop the polymerization. After adding 1 g of 2,6-tert-butyl-p-cresol to the reaction solution, it was reprecipitated with methanol and dried by heating to obtain a polymer (6).

(製造例11〜13)
(重合体(7)〜(9)の合成)
表2に示す処方に従って、重合体(6)と同様の方法にて重合体(7)〜(9)を得た。
(Production Examples 11 to 13)
(Synthesis of polymers (7) to (9))
According to the formulation shown in Table 2, polymers (7) to (9) were obtained in the same manner as the polymer (6).

得られた重合体(1)〜(10)について、以下の評価を行った。結果を表2に示す。 The following evaluation was performed about the obtained polymers (1)-(10). The results are shown in Table 2.

(スチレン量およびビニル量の測定)
日本電子(株)製の核磁気共鳴装置(JNM−ECAシリーズ)を用いて測定した。
(Measurement of styrene content and vinyl content)
Measurement was performed using a nuclear magnetic resonance apparatus (JNM-ECA series) manufactured by JEOL.

(重量平均分子量(Mw)の測定)
ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC−8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ−M)を用い、標準ポリスチレンより換算した値である。
(Measurement of weight average molecular weight (Mw))
Using gel permeation chromatograph (GPC) (GPC-8000 series, manufactured by Tosoh Corp., detector: differential refractometer, column: TSKGEL SUPERMALTPORE HZ-M, manufactured by Tosoh Corp.), a value converted from standard polystyrene. is there.

Figure 0005324384
Figure 0005324384

以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
NR:RSS#3
BR:宇部興産(株)製のウベポールBR150L(シス含量:98質量%)
重合体(1)〜(10):製造例5〜14で調製した重合体(1)〜(10)
カーボンブラック:キャボットジャパン(株)製のショウブラックN220(NSA:111m2/g)
シリカ;デグッサ社製のウルトラシルVN3(NSA:175m2/g)
シランカップリング剤:デグッサ社製のSi69((ビス(3−トリエトキシシリルプロピル)テトラスルフィド))
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
ステアリン酸:日油(株)製のステアリン酸
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
硫黄:鶴見化学(株)製の粉未硫黄
加硫促進剤(1):大内新興化学工業(株)製のノクセラ−NS
加硫促進剤(2):大内新興化学工業(株)製のノクセラーD
Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.
NR: RSS # 3
BR: Ubepol BR150L manufactured by Ube Industries, Ltd. (cis content: 98% by mass)
Polymers (1) to (10): Polymers (1) to (10) prepared in Production Examples 5 to 14
Carbon Black: Show Black N220 (N 2 SA: 111 m 2 / g) manufactured by Cabot Japan
Silica: Ultrasil VN3 manufactured by Degussa (N 2 SA: 175 m 2 / g)
Silane coupling agent: Si69 ((bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Degussa)
Anti-aging agent: NOCRACK 6C (N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Stearic acid: Zinc stearate manufactured by NOF Corporation: Zinc Hua No. 1 manufactured by Mitsui Mining & Smelting Co., Ltd. Sulfur: Powdered sulfur-free vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd. (1): Emerging Ouchi NOXERA-NS manufactured by Chemical Industry Co., Ltd.
Vulcanization accelerator (2): Noxeller D manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

実施例1〜9及び比較例1
表3に示す配合内容に従い、バンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で3分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、50℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
Examples 1 to 9 and Comparative Example 1
According to the contents shown in Table 3, materials other than sulfur and a vulcanization accelerator were kneaded for 3 minutes at 150 ° C. using a Banbury mixer to obtain a kneaded product. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded for 5 minutes at 50 ° C. using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized with a 0.5 mm thick mold at 170 ° C. for 20 minutes to obtain a vulcanized rubber composition.

得られた未加硫ゴム組成物をトレッド形状に成形し、他のタイヤ部材と貼り合わせてタイヤに成形し、170℃で10分間加硫することで試験用タイヤ(タイヤサイズ:195/65R15)を製造した。 The obtained unvulcanized rubber composition is molded into a tread shape, bonded to another tire member, molded into a tire, and vulcanized at 170 ° C. for 10 minutes to test tires (tire size: 195 / 65R15) Manufactured.

得られた加硫ゴム組成物、試験用タイヤを使用して、下記の評価を行った。それぞれの試験結果を表3に示す。 The following evaluation was performed using the obtained vulcanized rubber composition and test tire. Table 3 shows the test results.

(低燃費性)
(株)上島製作所製スペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度60℃でtanδを測定した。tanδの逆数の値について比較例1を100として指数表示した。指数が大きいほど低燃費性に優れることを示している。
(Low fuel consumption)
Using a spectrometer manufactured by Ueshima Seisakusho, tan δ was measured at a dynamic strain amplitude of 1%, a frequency of 10 Hz, and a temperature of 60 ° C. The reciprocal value of tan δ was expressed as an index with Comparative Example 1 being 100. The larger the index, the better the fuel efficiency.

(ウェットグリップ性能(1))
(株)上島製作所製フラットベルト式摩擦試験機(FR5010型)を用いてグリップ性能を評価した。幅20mm、直径100mmの円筒形のゴム試験片を用い、速度20km/時間、荷重4kgf、路面温度20℃の条件で、路面に対するサンプルのスリップ率を0〜50%まで変化させ、その際に検出される摩擦係数の最大値を読みとった。比較例1を100として指数表示した。指数が大きいほどウェットグリッブ性能が高いことを示す。
(Wet grip performance (1))
Grip performance was evaluated using a flat belt friction tester (FR5010 type) manufactured by Ueshima Seisakusho. Using a cylindrical rubber test piece with a width of 20 mm and a diameter of 100 mm, the slip ratio of the sample with respect to the road surface is changed from 0 to 50% under the conditions of a speed of 20 km / hour, a load of 4 kgf, and a road surface temperature of 20 ° C. The maximum value of the coefficient of friction to be used was read. Comparative example 1 was taken as 100 and displayed as an index. The larger the index, the higher the wet grip performance.

(ウェットグリップ性能(2))
水を撒いて湿潤路面としたテストコースにて、タイヤを排気量2000ccの国産FR車に装着し、速度70km/hで制動し、タイヤに制動をかけてから停車するまでの走行距離(制動距離)を測定し、その距離の逆数の値を比較例1を100として、それぞれ指数表示した。指数が大きいほどウェットグリッブ性能が高いことを示す。
(Wet grip performance (2))
On a test course with wet water and wet road surface, the tire is mounted on a 2000cc domestic FR vehicle, braked at a speed of 70km / h, and the distance traveled from braking the tire to stopping (braking distance) ), And the reciprocal value of the distance was expressed as an index with Comparative Example 1 as 100. The larger the index, the higher the wet grip performance.

Figure 0005324384
Figure 0005324384

表3に示すように、特定のアミノシラン構造を有する重合体(1)〜(9)を配合した実施例は、特定のアミノシラン構造を有さない重合体(10)を配合した比較例に比べて、低燃費性とウェットグリップ性能のバランスに優れたゴム組成物を提供できることが明らかとなった。 As shown in Table 3, the examples in which the polymers (1) to (9) having a specific aminosilane structure were blended were compared to the comparative example in which the polymer (10) having no specific aminosilane structure was blended. It has been clarified that a rubber composition excellent in balance between low fuel consumption and wet grip performance can be provided.

Claims (5)

下記一般式(I)で表されるリチウムアミド化合物と下記一般式(II)で表されるシラン化合物とを反応させて得られる重合開始剤を用いて、共役ジエン化合物または共役ジエン化合物と芳香族ビニル化合物を重合して得られる重合体。
Figure 0005324384
Figure 0005324384
(RおよびRは、それぞれ独立して炭素数1〜18の一価の炭化水素基であり、該一価の炭化水素基は置換アミノ基またはエーテル基を有していてもよく、また、R及びRは互いに結合して環構造を形成してもよい。Rは炭素数3〜9の二価の炭化水素基、RおよびRはそれぞれ独立して炭素数1〜18の一価の炭化水素基を示す。)
Using a polymerization initiator obtained by reacting a lithium amide compound represented by the following general formula (I) with a silane compound represented by the following general formula (II), a conjugated diene compound or a conjugated diene compound and an aromatic A polymer obtained by polymerizing a vinyl compound.
Figure 0005324384
Figure 0005324384
(R 1 and R 2 are each independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, and the monovalent hydrocarbon group may have a substituted amino group or an ether group, , R 1 and R 2 may be bonded to each other to form a ring structure, R 3 is a divalent hydrocarbon group having 3 to 9 carbon atoms, and R 4 and R 5 are each independently 1 to 1 carbon atoms. 18 represents a monovalent hydrocarbon group.)
前記重合体の停止末端が、窒素、酸素、およびケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する化合物により変性されている請求項1記載の重合体。 The polymer according to claim 1, wherein a terminal end of the polymer is modified with a compound having a functional group containing at least one atom selected from the group consisting of nitrogen, oxygen, and silicon. 前記共役ジエン化合物が1,3−ブタジエンまたはイソプレンであり、前記芳香族ビニル化合物がスチレンである請求項1または2記載の重合体。 The polymer according to claim 1 or 2, wherein the conjugated diene compound is 1,3-butadiene or isoprene, and the aromatic vinyl compound is styrene. ゴム成分100質量%中の請求項1〜3のいずれかに記載の重合体の含有量が5質量%以上であるタイヤ用ゴム組成物。 The rubber composition for tires whose content of the polymer in any one of Claims 1-3 in 100 mass% of rubber components is 5 mass% or more. 請求項4記載のタイヤ用ゴム組成物を用いて作製した空気入りタイヤ。 A pneumatic tire produced using the tire rubber composition according to claim 4.
JP2009231891A 2009-10-05 2009-10-05 POLYMER, TIRE RUBBER COMPOSITION AND PNEUMATIC TIRE Expired - Fee Related JP5324384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231891A JP5324384B2 (en) 2009-10-05 2009-10-05 POLYMER, TIRE RUBBER COMPOSITION AND PNEUMATIC TIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231891A JP5324384B2 (en) 2009-10-05 2009-10-05 POLYMER, TIRE RUBBER COMPOSITION AND PNEUMATIC TIRE

Publications (2)

Publication Number Publication Date
JP2011079913A JP2011079913A (en) 2011-04-21
JP5324384B2 true JP5324384B2 (en) 2013-10-23

Family

ID=44074302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231891A Expired - Fee Related JP5324384B2 (en) 2009-10-05 2009-10-05 POLYMER, TIRE RUBBER COMPOSITION AND PNEUMATIC TIRE

Country Status (1)

Country Link
JP (1) JP5324384B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702697B1 (en) * 2010-02-26 2017-02-06 제온 코포레이션 Conjugated diene rubber, rubber composition, crosslinked rubber, tire, and process for production of conjugated diene rubber
JP5681575B2 (en) * 2011-06-28 2015-03-11 住友ゴム工業株式会社 Rubber composition and pneumatic tire
WO2013018424A1 (en) 2011-08-03 2013-02-07 住友ゴム工業株式会社 Rubber composition and pneumatic tire
WO2013077016A1 (en) * 2011-11-24 2013-05-30 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP5918259B2 (en) * 2011-11-24 2016-05-18 住友ゴム工業株式会社 Rubber composition and pneumatic tire
WO2013077017A1 (en) * 2011-11-24 2013-05-30 住友ゴム工業株式会社 Rubber composition and pneumatic tire
US20140213693A1 (en) * 2011-11-24 2014-07-31 Sumitomo Rubber Industries, Ltd. Rubber composition and studless tire
BR112014011261A2 (en) * 2011-11-24 2017-04-25 Sumitomo Rubber Ind rubber, and pneumatic composition
JP5917895B2 (en) * 2011-11-24 2016-05-18 住友ゴム工業株式会社 Rubber composition and pneumatic tire
CN103946299B (en) * 2011-11-24 2018-10-09 住友橡胶工业株式会社 Rubber composition and pneumatic tire
US9120890B2 (en) 2011-11-24 2015-09-01 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
JP5864400B2 (en) * 2011-12-13 2016-02-17 台橡股▲ふん▼有限公司 Process for producing modified conjugated diene rubber, modified conjugated diene rubber, and conjugated diene rubber composition
CN103987774B (en) * 2011-12-26 2018-10-26 住友橡胶工业株式会社 Rubber composition and pneumatic tire
WO2013099325A1 (en) * 2011-12-26 2013-07-04 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP6041530B2 (en) * 2012-05-23 2016-12-07 旭化成株式会社 Modified butadiene polymer, method for producing modified butadiene polymer, rubber composition, and tire
JP6055204B2 (en) * 2012-05-31 2016-12-27 株式会社ブリヂストン Modified diene polymer, method for producing modified diene polymer, rubber composition and tire
KR101705947B1 (en) * 2014-11-12 2017-02-10 한화토탈 주식회사 Polymerization of modified conjugated diene polymer using silyl anion initiator
JP2015083995A (en) * 2015-02-04 2015-04-30 旭化成エレクトロニクス株式会社 Infrared sensor
MX2017013010A (en) 2015-04-10 2018-04-24 Synthos Sa Initiators for the copolymerisation of diene monomers and vinyl aromatic monomers.
PL3341424T3 (en) 2016-10-06 2019-09-30 Synthos Dwory 7 spółka z ograniczoną odpowiedzialnością spółka jawna Elastomeric copolymers based on [bis(trihydrocarbylsilyl)aminosilyl]-functionalized styrene and their use in the preparation of rubbers
JP6811250B2 (en) 2016-10-06 2021-01-13 シントス ドボリ 7 スプウカ ズ オグラニザツィーノン オトゥポビエジャルノシチョン スプウカ ヤフナSynthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia Spolka Jawna [Bis (trihydrocarbylsilyl) aminosilyl] -functionalized styrene and its preparation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329005A (en) * 1992-10-02 1994-07-12 Bridgestone Corporation Soluble anionic polymerization initiators and preparation thereof
BRPI0813678B1 (en) * 2007-06-18 2019-02-19 Bridgestone Corporation FUNCTIONALIZED POLYMERS WITH HALOSILANS CONTAINING AN AMINE GROUP
JP5282531B2 (en) * 2007-11-07 2013-09-04 Jsr株式会社 Method for producing hydrogenated conjugated diene polymer rubber, hydrogenated conjugated diene polymer rubber, composition thereof, and rubber molded product

Also Published As

Publication number Publication date
JP2011079913A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5324384B2 (en) POLYMER, TIRE RUBBER COMPOSITION AND PNEUMATIC TIRE
JP5244064B2 (en) Polymer, rubber composition and tire using the same
JP5394878B2 (en) Rubber composition and tire
JP5394877B2 (en) Rubber composition and tire
JP2011132298A (en) Modified copolymer and rubber composition and pneumatic tire using the same
JP5466473B2 (en) Rubber composition and tire using the same
JP5681575B2 (en) Rubber composition and pneumatic tire
JP2011089086A (en) Modified copolymer and rubber composition using the same
JP6267420B2 (en) Rubber composition for tire and pneumatic tire
JP2013043954A (en) Rubber composition and pneumatic tire
JP2012158679A (en) Rubber composition for tire and pneumatic tire
JP6267419B2 (en) Rubber composition for tire and pneumatic tire
JP5543392B2 (en) Copolymer, rubber composition and pneumatic tire
JP2012167207A (en) Copolymer, rubber composition, and pneumatic tire
JP2011132411A (en) Rubber composition for tire and pneumatic tire
JP5592809B2 (en) Copolymer, rubber composition and pneumatic tire
JP2012057097A (en) Copolymer, rubber composition, and pneumatic tire
JP2013173893A (en) Rubber composition for tire and pneumatic tire
JP2012229383A (en) Rubber composition for tire and pneumatic tire
JP5437765B2 (en) Rubber composition for tire and studless tire
JP5571627B2 (en) Rubber composition and pneumatic tire
JP2012224768A (en) Rubber composition for tire, and pneumatic tire
JP2012172138A (en) Copolymer, rubber composition and pneumatic tire
JP2013173892A (en) Rubber composition for tire and pneumatic tire
JP2013035991A (en) Rubber composition for tire, and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5324384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees