JP2015083995A - Infrared sensor - Google Patents

Infrared sensor Download PDF

Info

Publication number
JP2015083995A
JP2015083995A JP2015020651A JP2015020651A JP2015083995A JP 2015083995 A JP2015083995 A JP 2015083995A JP 2015020651 A JP2015020651 A JP 2015020651A JP 2015020651 A JP2015020651 A JP 2015020651A JP 2015083995 A JP2015083995 A JP 2015083995A
Authority
JP
Japan
Prior art keywords
infrared sensor
light receiving
viewing angle
sensor element
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015020651A
Other languages
Japanese (ja)
Inventor
聖一 徳尾
Seiichi Tokuo
聖一 徳尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2015020651A priority Critical patent/JP2015083995A/en
Publication of JP2015083995A publication Critical patent/JP2015083995A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an infrared sensor which: has compact, thin and simple element geometry; and stably detects temperature of a measurement object even with temperature disturbance caused by external thermal emission (radiation) as well as thermal emission from a heat sensitive element and with temperature distribution at an installation location of a sensor element.SOLUTION: An infrared sensor 10 comprises: a sensor element 1 which detects infrared and outputs an electric signal; a connection terminal 4 to transmit the output of the sensor element to an external device; connection wiring 3 which electrically connects the sensor element and the connection terminal; and a sealing member 5 which seals the sensor element together with the connection terminal as well as the connection wiring except an opening for a light receiving surface. The sealing member has a holding section which holds the sensor element and a field angle restriction window 6 which is extended from the holding section so as to surround a periphery of the light receiving surface and thereby restricting a field range with respect to the infrared incident on the light receiving surface. The field angle restriction window has an inverse tapered shape where a width thereof gradually expands in a direction from an incident position of the infrared to the light receiving surface.

Description

本発明は、赤外線センサに関し、より詳細には、赤外線センサの受光面に視野角制限体を一体で配置することにより、赤外線センサの出力が外乱の影響を受けにくいようにした小型・薄型赤外線センサの外乱防止に関する。   The present invention relates to an infrared sensor, and more specifically, a compact and thin infrared sensor in which an output of an infrared sensor is not easily affected by disturbance by integrally arranging a viewing angle restricting body on a light receiving surface of the infrared sensor. Related to the prevention of disturbance.

一般に、赤外線センサは、物体の表面温度の非接触での検知、物体の存在検知、また、大気中のガス濃度の測定など各種の用途に使われている。この赤外線センサとしては、大きく分けて熱型赤外線センサと量子型赤外線センサが知られている。   In general, infrared sensors are used for various applications such as non-contact detection of the surface temperature of an object, detection of the presence of an object, and measurement of gas concentration in the atmosphere. As this infrared sensor, a thermal infrared sensor and a quantum infrared sensor are widely known.

熱型赤外線センサは、赤外線を受光して熱によってセンサ素子が温められ、そのセンサ素子の温度の上昇によって変化する電気的性質を検知するもので、感度や応答速度は低いが、波長帯域が広く常温で使えるのが特徴である。熱起電力効果を原理としたサーモパイル、焦電センサのPZT、温度変化による電気抵抗の変化のサーミスタ、ボロメータなどがある。熱型赤外線センサを使用した場合には、熱の遮断を目的として、缶パッケージの開口部に赤外線を透過させる光学フィルタを接合し、この光学フィルタを透過した赤外線の検出を行う赤外線検出素子を缶パッケージの内部に収納する形状が用いられている。また、サーモパイル型センサとして、簡素化や耐久性の向上を図るために、缶パッケージを使用せずにモールド樹脂中に構成したものが提案されている(例えば、特許文献1参照)。   The thermal infrared sensor detects the electrical properties that are received by infrared rays and heated by the heat and changes as the temperature of the sensor element increases. The sensitivity and response speed are low, but the wavelength band is wide. It can be used at room temperature. There are a thermopile based on the thermoelectromotive force effect, a PZT of a pyroelectric sensor, a thermistor that changes electric resistance due to a temperature change, a bolometer, and the like. When using a thermal infrared sensor, an optical filter that transmits infrared rays is bonded to the opening of the can package for the purpose of blocking heat, and an infrared detection element that detects infrared rays transmitted through the optical filter is canned. A shape that is housed inside the package is used. In addition, as a thermopile sensor, a sensor configured in a mold resin without using a can package has been proposed in order to simplify and improve durability (for example, see Patent Document 1).

この特許文献1に記載のものは、特定の波長帯域の赤外光を選択的に透過させる平板状の光フィルタと、光フィルタを透過した赤外光を検出するための検出素子部が一方の面に形成された赤外線検出素子と、光フィルタと赤外線検出素子における検出素子形成面との間に設けられ、光フィルタと赤外線検出素子とを接着するとともに、光フィルタと検出素子形成面との間に所定の隙間を確保するための支持体とを備えたものである。つまり、この特許文献1に記載のものは、缶パッケージを採用しない簡素化した構成であるが、赤外線センサの検出素子形成面上に所定の隙間を確保して光学フィルタを設ける構造とすることで、前記缶パッケージを用いるのと同様に中空構造にすることが開示されている。   The one described in Patent Document 1 includes a flat plate optical filter that selectively transmits infrared light in a specific wavelength band, and a detection element unit for detecting infrared light transmitted through the optical filter. The infrared detection element formed on the surface, and between the optical filter and the detection element formation surface of the infrared detection element, and adheres the optical filter and the infrared detection element and between the optical filter and the detection element formation surface. And a support for securing a predetermined gap. In other words, the one described in Patent Document 1 is a simplified configuration that does not employ a can package, but has a structure in which an optical filter is provided by securing a predetermined gap on the detection element forming surface of the infrared sensor. It is disclosed that a hollow structure is formed as in the case of using the can package.

一方、量子型赤外線センサは、半導体に赤外線が照射されると、その光量子によって発生する電子や正孔を利用するセンサであり、光導電型(HgCdTeなど)や光起電力型(InAsなど)がある。この量子型赤外線センサは、感度の波長依存性があり、高感度で、応答速度が速いという特長があるが、一般に冷却する必要があり、ペルチェ素子やスターリングクーラーなどの冷却機構とともに用いられる。また、室温で動作可能な量子型赤外線センサも提案されている(例えば、特許文献2参照)。   On the other hand, a quantum infrared sensor is a sensor that uses electrons and holes generated by photons when an infrared ray is irradiated on a semiconductor. Photoconductive types (such as HgCdTe) and photovoltaic types (such as InAs) are available. is there. This quantum infrared sensor has the characteristics that the sensitivity depends on the wavelength, has high sensitivity, and has a high response speed, but generally needs to be cooled, and is used together with a cooling mechanism such as a Peltier element or a Stirling cooler. A quantum infrared sensor that can operate at room temperature has also been proposed (see, for example, Patent Document 2).

この特許文献2に記載の量子型赤外線センサは、基板上に設けられた化合物半導体層により赤外線を検知して電気信号を出力する化合物半導体センサ部と、この化合物半導体センサ部からの電気信号を演算する集積回路部とを備え、この化合物半導体センサ部と集積回路部とを同一パッケージ内に収納したものである。これにより、電磁ノイズや熱ゆらぎの影響を受けにくくするとともに、室温での検知を可能とし、モジュールの小型化を可能にしたものである。   The quantum infrared sensor described in Patent Document 2 calculates a compound semiconductor sensor unit that detects an infrared ray by a compound semiconductor layer provided on a substrate and outputs an electric signal, and calculates an electric signal from the compound semiconductor sensor unit. The compound semiconductor sensor unit and the integrated circuit unit are housed in the same package. This makes it less susceptible to electromagnetic noise and thermal fluctuations, enables detection at room temperature, and enables downsizing of the module.

また、赤外線センサを用いて非接触で表面温度を正確に検知するためには、被測定物以外の対象物から放射される赤外線を受光しないように、赤外線センサの視野角を制限することも重要である。視野角を制限する機能を備えた非接触測温センサとしては、例えば特許文献3のものが知られている。   It is also important to limit the viewing angle of the infrared sensor so that it does not receive infrared rays emitted from objects other than the object to be measured in order to accurately detect the surface temperature without contact using the infrared sensor. It is. As a non-contact temperature sensor having a function of limiting the viewing angle, for example, one disclosed in Patent Document 3 is known.

この特許文献3に記載の非接触測温センサは、赤外線センサ、光学レンズ、自己温度センサを取り付け支持する筐体に、視野角を制限するための導光器を配置した構成となっている。この非接触測温センサにおいて、光学レンズは測定物から放射される赤外線を集光して前記赤外線センサへ送り、赤外線センサが被測定物から放射される赤外線を検出して電気信号を発生する。また、自己温度センサは補正を行うために赤外線センサ自身の温度を検出している。この非接触測温センサにおいて、視野角を制限する視野角制限体として機能する導光器は、前記光学レンズと被測定物との間にレンズ側に収斂するテーパ状の内径を有しており、赤外線センサの視野角を制限することによって周辺への感度を減衰させ視野特性をシャープにしている。   The non-contact temperature sensor described in Patent Document 3 has a configuration in which a light guide for limiting the viewing angle is arranged in a housing that attaches and supports an infrared sensor, an optical lens, and a self-temperature sensor. In this non-contact temperature sensor, the optical lens collects infrared rays radiated from the measurement object and sends them to the infrared sensor, and the infrared sensor detects the infrared rays radiated from the measurement object and generates an electrical signal. The self-temperature sensor detects the temperature of the infrared sensor itself for correction. In this non-contact temperature sensor, the light guide functioning as a viewing angle limiting body that limits the viewing angle has a tapered inner diameter that converges on the lens side between the optical lens and the object to be measured. By limiting the viewing angle of the infrared sensor, the sensitivity to the periphery is attenuated and the viewing characteristics are sharpened.

特開2006−194791号公報JP 2006-194791 A 国際公開第WO2005/027228号パンフレットInternational Publication No. WO2005 / 027228 Pamphlet 特開平10−227697号公報Japanese Patent Laid-Open No. 10-227697

上述したように視野角制限体は、赤外線センサの受光部に対して視野を制限する視野角制限窓として機能することによって赤外線センサの視野範囲を規定できるのであるが、特許文献3のテーパ形態以外にも図1に示すような形態のものも一般に用いられている。図1に記載された視野角制限体17は、赤外線センサを封止した封止部材15の上面に、赤外線センサの受光部18を囲うように設けられている。この視野角制限体17は、上方(高さ方向)に垂直に延びており、その上端の内周が視野角制限窓16として機能し、この視野角制限窓16と受光面18とのなす角によって赤外線センサの視野範囲19を規定している。   As described above, the viewing angle restricting body can define the viewing range of the infrared sensor by functioning as a viewing angle restricting window that restricts the field of view with respect to the light receiving unit of the infrared sensor. In addition, a configuration as shown in FIG. 1 is generally used. The viewing angle restricting body 17 described in FIG. 1 is provided on the upper surface of the sealing member 15 that seals the infrared sensor so as to surround the light receiving portion 18 of the infrared sensor. The viewing angle restricting body 17 extends vertically upward (in the height direction), and the inner periphery of the upper end functions as a viewing angle restricting window 16, and an angle formed by the viewing angle restricting window 16 and the light receiving surface 18. Defines the visual field range 19 of the infrared sensor.

ところで、視野角制限体を用いる場合、視野角制限体と赤外線センサの温度の差が測定誤差となる。従って測定誤差を低減し安定してセンサ出力を得るためには、この温度差を低減するか、温度差を補正する必要がある。   By the way, when a viewing angle restricting body is used, a difference in temperature between the viewing angle restricting body and the infrared sensor becomes a measurement error. Therefore, in order to reduce the measurement error and obtain the sensor output stably, it is necessary to reduce the temperature difference or correct the temperature difference.

この温度差による測定誤差の問題を解決するために、上述した前記特許文献3ではレンズとテーパ状の視野角制限体を用いる事が提案されている。またその他にも、視野角制限体にヒーターを取り付け温度を一定に保つ方法や、視野角制限体を大型化し熱容量を増やす方法や、周辺部との間に空間を空けて周辺部と熱遮断することにより周辺の温度変化の影響を少なくした状態で該視野角制限体の温度を検知して赤外線センサの出力補正する方法が行われてきた。しかし、いずれの方法も視野角制限体の構造の複雑化や大型化を伴うため、制御の複雑化や周囲温度変化時の安定性の悪化と言った問題があった。   In order to solve the problem of measurement error due to this temperature difference, the above-mentioned Patent Document 3 proposes to use a lens and a tapered viewing angle limiter. Other methods include attaching a heater to the viewing angle restriction body to keep the temperature constant, increasing the viewing angle restriction body to increase the heat capacity, and leaving a space between the surrounding area and heat insulation from the surrounding area. Thus, there has been performed a method for correcting the output of the infrared sensor by detecting the temperature of the viewing angle restricting body in a state where the influence of the surrounding temperature change is reduced. However, each method involves a complicated structure and a large size of the viewing angle restricting body. Therefore, there is a problem that the control is complicated and the stability is deteriorated when the ambient temperature changes.

また、赤外線センサの受光部に視野角制限体を用いる場合、図2に示すように、赤外線センサの組み立て公差により受光窓(赤外線センサの受光部18)と視野角制限体17との相対位置ずれが発生する可能性もある。例えば設計上では視野角制限体17を視野範囲19aとなる位置に取り付けるべきであるところ、一体封止する場合は成形用金型の配置位置のずれ、別体として取り付けする場合は接着位置のずれなどの製造時に生ずる誤差の影響から、視野範囲19aと異なる視野角限界となる位置に構成される場合がある。例えばこのズレ位置(製造公差)が、視野範囲19bや視野範囲19cに示す位置であった場合は、センサ素子の受光面(受光部18)を覆い隠すことになる。受光面を覆い隠すこととなると、赤外線センサの受光感度を低下させてしまうため好ましくない。   When a viewing angle restricting body is used for the light receiving portion of the infrared sensor, as shown in FIG. 2, the relative positional deviation between the light receiving window (infrared sensor light receiving portion 18) and the viewing angle restricting body 17 due to the assembly tolerance of the infrared sensor. May occur. For example, in view of design, the viewing angle restricting body 17 should be attached at a position within the viewing range 19a. However, when the sealing is integrally performed, the placement position of the molding die is shifted. When the mounting is performed separately, the bonding position is shifted. Due to the influence of errors that occur during manufacturing, etc., there may be cases where the viewing angle limit is different from the viewing range 19a. For example, when this misalignment position (manufacturing tolerance) is a position shown in the visual field range 19b or the visual field range 19c, the light receiving surface (light receiving unit 18) of the sensor element is covered. Covering the light receiving surface is not preferable because it reduces the light receiving sensitivity of the infrared sensor.

また、視野角制限体17の内周とセンサ素子の受光面との間隔が製造公差よりも小さいと、視野角制限体自体が受光面を覆い隠さない場合でも、接着部材等の滲みにより受光面への悪影響を与えることが考えられる。   If the distance between the inner periphery of the viewing angle restricting body 17 and the light receiving surface of the sensor element is smaller than the manufacturing tolerance, even if the viewing angle restricting body itself does not cover the light receiving surface, the light receiving surface is caused by bleeding of an adhesive member or the like. It is possible to adversely affect

このため、製造公差を考慮して、センサ素子の受光窓(受光面18)の寸法より十分大きな寸法を有する内周の前記視野角制限体17を用いる必要がある。しなしながら、十分大きな寸法の内周の視野角制限体17で視野角を制限する場合は、その高さも十分大きくしなければならない。図3に示すように、受光面に対して同じ視野角制限を与えるためには、視野角制限体の内周寸法が大きくなればなるほど、より高い位置に視野角制限窓(視野角制限体の上端内周)を設ける必要があるからである。従って、小型化する場合には、組み立て時の高い加工精度が要求されるなどの問題があった。   For this reason, in consideration of manufacturing tolerances, it is necessary to use the viewing angle restricting body 17 on the inner periphery having a size sufficiently larger than the size of the light receiving window (light receiving surface 18) of the sensor element. However, when the viewing angle is limited by the viewing angle restricting body 17 having a sufficiently large size on the inner periphery, the height must be sufficiently large. As shown in FIG. 3, in order to give the same viewing angle restriction to the light receiving surface, the larger the inner peripheral dimension of the viewing angle restricting body, the higher the viewing angle restricting window (of the viewing angle restricting body). This is because it is necessary to provide an inner periphery at the upper end. Therefore, when downsizing, there is a problem that high processing accuracy is required at the time of assembly.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、小型薄型でかつ簡便な素子形状を有し、外部からの熱放射(輻射)や感熱素子自体からの熱放射等の温度外乱やセンサ素子の設置場所に温度分布があったとしても、安定して被測定物の温度を検知することができるようにした赤外線センサを提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to have a small, thin and simple element shape, heat radiation (radiation) from the outside, and heat from the thermal element itself. An object of the present invention is to provide an infrared sensor capable of stably detecting the temperature of an object to be measured even if there is a temperature disturbance such as radiation or a temperature distribution at a place where a sensor element is installed.

本発明は、このような目的を達成するためになされたもので、本発明の一態様は、赤外線を受光する受光面を有し、受光した赤外線を検出して電気信号として出力する、基板上に光電変換部を搭載したチップ型の量子型赤外線センサ素子と、前記量子型赤外線センサ素子からの出力を外部装置へ出力するための接続端子と、前記量子型赤外線センサ素子と前記接続端子とを電気的に接続する接続配線と、を具えた赤外線センサであって、前記受光面を開口した状態で前記量子型赤外線センサ素子を前記接続端子と前記接続配線とともに封止し前記量子型赤外線センサ素子を保持する保持部と、前記受光面の周囲を取り囲んで前記保持部から延びるように形成され前記受光面の赤外線に対する視野範囲を制限する視野角制限部とを更に有し、該視野角制限部は、前記赤外線の進入位置から前記受光面に向けて幅広になる逆テーパ状に形成されており、前記接続配線は、前記量子型赤外線センサ素子の受光面と反対側の面に接続されており、前記視野角制限部は、封止用樹脂であることを特徴とする赤外線センサである。   The present invention has been made to achieve such an object, and one embodiment of the present invention has a light receiving surface for receiving infrared light, and detects the received infrared light and outputs it as an electrical signal. A chip-type quantum infrared sensor element having a photoelectric conversion unit mounted thereon, a connection terminal for outputting an output from the quantum infrared sensor element to an external device, the quantum infrared sensor element, and the connection terminal. An infrared sensor comprising a connection wiring for electrical connection, wherein the quantum infrared sensor element is sealed together with the connection terminal and the connection wiring in a state where the light receiving surface is opened. And a viewing angle limiter that surrounds the periphery of the light receiving surface and extends from the holding portion and limits the field of view of the light receiving surface with respect to infrared rays, The field angle restricting portion is formed in a reverse taper shape that becomes wider from the infrared entrance position toward the light receiving surface, and the connection wiring is connected to a surface opposite to the light receiving surface of the quantum infrared sensor element. The viewing angle limiting part is an sealing resin, and is an infrared sensor.

本発明の他の態様は、上述の赤外線センサにおいて、前記量子型赤外線センサ素子の受光面における赤外線の反射防止や帯域制限をするための光学調整部が前記量子型赤外線センサ素子の受光面に設けられていることを特徴とする。   According to another aspect of the present invention, in the infrared sensor described above, an optical adjustment unit for preventing reflection of an infrared ray or limiting a band on the light receiving surface of the quantum infrared sensor element is provided on the light receiving surface of the quantum infrared sensor element. It is characterized by being.

本発明の他の態様は、上述の赤外線センサにおいて、前記保持部と前記視野角制限部とが一体に形成されていることを特徴とする。   Another aspect of the present invention is characterized in that in the above-described infrared sensor, the holding portion and the viewing angle limiting portion are integrally formed.

本発明の他の態様は、上述の赤外線センサにおいて、前記保持部に対して前記視野角制限部を接着する接着層をさらに具えることを特徴とする。   Another aspect of the present invention is the above infrared sensor, further comprising an adhesive layer that adheres the viewing angle limiting portion to the holding portion.

本発明の他の態様は、上述の赤外線センサにおいて、前記接続配線は、ワイヤーボンディングであることを特徴とする。   Another aspect of the present invention is the above infrared sensor, wherein the connection wiring is wire bonding.

本発明の他の態様は、上述の赤外線センサにおいて、前記接続配線は、フリップチップボンドであることを特徴とする。   According to another aspect of the present invention, in the above infrared sensor, the connection wiring is a flip chip bond.

本発明によれば、赤外線センサを構成するセンサ素子と同一構造内で近接して一体的に視野角制限体を設け、視野角制限体の形状を逆テーパにしたので、視野角制限体を小型薄型でき、かつ、赤外線センサと視野角制限体の温度差が低減し、小型薄型で安定性の高い赤外線センサを構成できるという効果を有する。   According to the present invention, the viewing angle restricting body is provided in close proximity within the same structure as the sensor element constituting the infrared sensor, and the shape of the viewing angle restricting body is inversely tapered. The temperature difference between the infrared sensor and the viewing angle restricting body can be reduced, and an infrared sensor having a small size and high stability can be configured.

赤外線センサの視野を説明するための断面図である。It is sectional drawing for demonstrating the visual field of an infrared sensor. 従来の視野角制限体ずれを説明するための断面図である。It is sectional drawing for demonstrating the conventional viewing angle limit body shift | offset | difference. 従来の視野角制限体ずれを考慮した場合の視野角制限体の高さを説明するための断面図である。It is sectional drawing for demonstrating the height of the viewing angle restriction body when the conventional viewing angle restriction body deviation is considered. 本発明に係る赤外線センサの第1の実施形態を説明するための断面図である。It is sectional drawing for demonstrating 1st Embodiment of the infrared sensor which concerns on this invention. 本発明に係る赤外線センサの視野を説明するための断面図である。It is sectional drawing for demonstrating the visual field of the infrared sensor which concerns on this invention. 本発明に係る赤外線センサの視野を説明するための断面図である。It is sectional drawing for demonstrating the visual field of the infrared sensor which concerns on this invention. 本発明に係る赤外線センサの第2の実施形態を説明するための断面図である。It is sectional drawing for demonstrating 2nd Embodiment of the infrared sensor which concerns on this invention. 本発明に係る赤外線センサの第3の実施形態を説明するための断面図である。It is sectional drawing for demonstrating 3rd Embodiment of the infrared sensor which concerns on this invention. 本発明に係る赤外線センサの第4の実施形態を説明するための断面図である。It is sectional drawing for demonstrating 4th Embodiment of the infrared sensor which concerns on this invention.

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図4は、本発明に係る赤外線センサの第1の実施形態を説明するための構成図である。図4において、赤外線センサ10は、赤外線センサ素子1と、光学調整部2と、接続配線3と、パッケージの接続端子4と、パッケージの封止部材5と、視野角制限窓6とを具えている。
(First embodiment)
FIG. 4 is a configuration diagram for explaining the first embodiment of the infrared sensor according to the present invention. In FIG. 4, the infrared sensor 10 includes an infrared sensor element 1, an optical adjustment unit 2, a connection wiring 3, a package connection terminal 4, a package sealing member 5, and a viewing angle restriction window 6. Yes.

本実施形態の赤外線センサ10では、赤外線を検出するための赤外線センサ素子1と赤外線センサ素子1の受光側に配置された光学調整部2とが赤外線センサ素子1の受光面が開口された状態で封止部材5によって封止されている。封止部材5は赤外光を遮ることができる、例えば、エポキシ系樹脂、シリコン系樹脂、ホットメルト型樹脂など、一般的な電子部品の封止用樹脂を用いることができる。また、該赤外線センサ素子1の周辺には複数の接続端子4が配置されており、複数のワイヤーボンディングからなる接続配線3によって赤外線センサ素子1と接続され、これらも封止部材5によって封止されている。また、封止部材5には視野角制限窓6が形成されており、赤外線を光学調整部2へ導入している。   In the infrared sensor 10 of the present embodiment, the infrared sensor element 1 for detecting infrared rays and the optical adjustment unit 2 arranged on the light receiving side of the infrared sensor element 1 are in a state where the light receiving surface of the infrared sensor element 1 is opened. It is sealed by the sealing member 5. The sealing member 5 can block infrared light. For example, a general resin for sealing electronic parts such as an epoxy resin, a silicon resin, and a hot melt resin can be used. In addition, a plurality of connection terminals 4 are arranged around the infrared sensor element 1 and are connected to the infrared sensor element 1 by connection wires 3 formed by a plurality of wire bondings, and these are also sealed by the sealing member 5. ing. In addition, a viewing angle limiting window 6 is formed in the sealing member 5, and infrared rays are introduced into the optical adjustment unit 2.

光学調整部2は、反射防止フィルタであり、赤外線センサ素子1の受光面での赤外線の反射を防止している。赤外線センサ素子1は、光学調整部2を透過した赤外線を受光し、その赤外線を検出して電気信号を出力する。赤外線センサ素子1から出力された電気信号は接続配線3を介して接続端子4に出力される。接続端子4は、外部機器と電気的に接続され、赤外線センサ素子1からの出力信号を外部機器に出力する。   The optical adjustment unit 2 is an antireflection filter and prevents reflection of infrared rays on the light receiving surface of the infrared sensor element 1. The infrared sensor element 1 receives the infrared light transmitted through the optical adjustment unit 2, detects the infrared light, and outputs an electrical signal. The electrical signal output from the infrared sensor element 1 is output to the connection terminal 4 via the connection wiring 3. The connection terminal 4 is electrically connected to an external device, and outputs an output signal from the infrared sensor element 1 to the external device.

赤外線センサ素子1は、封止部材5に直接接触しているため、センサ素子を基板の裏側の面(光学調整部2とは反対側の面)に設けた構成であることが望ましい。具体的には赤外線センサ素子1基板に光電変換部を搭載したチップ型の赤外線センサ素子を用いることができる。このようなチップ型の赤外線センサ素子としては、代表的には赤外線を電気信号に直接変換する機能を有する量子型の赤外線センサが考えられるがこれに限定されない。チップ型に構成可能な赤外線センサ素子であれば、赤外線を一旦熱に変換してから電気信号に変換する機能を有するMEMS技術を用いたサーモパイルなどのいわゆる熱型センサでも同様の構成とすることができる。また、光学調整部2は、LPFやBPF等の光学フィルタであってもよく、Si基板やサファイヤ基板などを用いて製作されたLPFやBPF等の光学フィルタであってもよい。Si基板やサファイヤ基板などを用いて製作された該光学フィルタの場合は、封止部材5で保持される構造であっても良い。   Since the infrared sensor element 1 is in direct contact with the sealing member 5, it is desirable that the sensor element is provided on the back surface of the substrate (surface opposite to the optical adjustment unit 2). Specifically, a chip-type infrared sensor element in which a photoelectric conversion unit is mounted on the infrared sensor element 1 substrate can be used. As such a chip-type infrared sensor element, a quantum-type infrared sensor having a function of directly converting infrared light into an electrical signal can be considered, but is not limited thereto. In the case of an infrared sensor element that can be configured in a chip type, a similar configuration may be used for a so-called thermal sensor such as a thermopile using MEMS technology that has a function of converting infrared light into heat and then converting it into an electrical signal. it can. The optical adjustment unit 2 may be an optical filter such as LPF or BPF, or may be an optical filter such as LPF or BPF manufactured using a Si substrate or a sapphire substrate. In the case of the optical filter manufactured using a Si substrate, a sapphire substrate, or the like, a structure held by the sealing member 5 may be used.

封止部材5は、その機能から、赤外線センサ素子1を保持する保持部と、前記受光面の周囲を取り囲んで前記保持部から延びるように形成することにより前記受光面の赤外線に対する視野範囲(視野角)を制限している視野角制限部とに分けられる。   In view of its function, the sealing member 5 is formed so as to surround the light receiving surface and to hold the infrared sensor element 1 and to extend from the holding portion so as to surround the light receiving surface. It is divided into a viewing angle restricting portion that restricts the angle).

ここで、本発明の赤外線センサ10における、赤外線センサ素子1の受光面への視野角を制限する視野角制限部の構成について説明する。図5、6は、本発明に係る赤外線センサ10の視野を説明するための断面図である。図5、6において、パッケージの封止部5aと、視野角制限体7と、受光部8と、視野範囲9(9a、9b、9c)とが示されている。なお、図5、6においては、センサ素子1の受光面8と視野角制限部7との関係が明確になるようにセンサ素子1の受光面8以外を省略して示している。   Here, in the infrared sensor 10 of the present invention, the configuration of the viewing angle limiting unit that limits the viewing angle to the light receiving surface of the infrared sensor element 1 will be described. 5 and 6 are cross-sectional views for explaining the field of view of the infrared sensor 10 according to the present invention. 5 and 6, a package sealing portion 5a, a viewing angle limiting body 7, a light receiving portion 8, and a viewing range 9 (9a, 9b, 9c) are shown. 5 and 6, the portions other than the light receiving surface 8 of the sensor element 1 are omitted so as to clarify the relationship between the light receiving surface 8 of the sensor element 1 and the viewing angle limiting unit 7.

視野角制限体7は、封止部材5に視野角制限窓6(視野各制限部上端の内周部分)を形成するための構造部であり、本実施形態では封止部5aと一体に形成されている。受光部8は、赤外線センサ素子1の受光窓部である。視野範囲9は、受光部8と視野角制限体7によって決まる赤外線センサの視野範囲である。   The viewing angle restricting body 7 is a structural part for forming a viewing angle restricting window 6 (inner peripheral part at the upper end of each restricting part of the viewing field) in the sealing member 5, and is formed integrally with the sealing part 5a in this embodiment. Has been. The light receiving portion 8 is a light receiving window portion of the infrared sensor element 1. The visual field range 9 is a visual field range of the infrared sensor determined by the light receiving unit 8 and the viewing angle restricting body 7.

本発明の赤外線センサ10では、図5、6に示すように、視野角制限部(視野角制限体)7が受光部8に向かって幅広になる逆テーパ形状となるように形成されている。図6から明らかなように、受光部8における赤外線受光が可能な視野範囲9は、受光部8と視野角制限体7の上端(最狭部)における視野角制限窓6とのなす角で決まる。本発明の赤外線センサでは視野角制限体7が逆テーパ形状に形成されているので、封止部5aと視野角制限体7との境界部分における視野角制限窓6の寸法にかかわらず、視野角制限体7の上端における視野角制限窓6の寸法は小さく構成することができる。これにより、視野角制限体7の上端を受光部8に近い位置に形成することが可能となる。   In the infrared sensor 10 of the present invention, as shown in FIGS. 5 and 6, the viewing angle restricting portion (viewing angle restricting body) 7 is formed to have an inversely tapered shape that becomes wider toward the light receiving portion 8. As is apparent from FIG. 6, the visual field range 9 in which the light receiving unit 8 can receive infrared rays is determined by the angle formed by the light receiving unit 8 and the viewing angle limiting window 6 at the upper end (narrowest portion) of the viewing angle limiting body 7. . In the infrared sensor of the present invention, since the viewing angle restricting body 7 is formed in a reverse taper shape, the viewing angle is limited regardless of the size of the viewing angle restricting window 6 at the boundary portion between the sealing portion 5a and the viewing angle restricting body 7. The size of the viewing angle limiting window 6 at the upper end of the limiting body 7 can be configured to be small. As a result, the upper end of the viewing angle restricting body 7 can be formed at a position close to the light receiving unit 8.

逆テーパ上部の最狭部の視野角制限窓6の寸法は、目標とする視野範囲9と視野角制限体7の高さを決めることで規定すればよく、受光部8と視野角制限体7との位置ずれ幅などの製造公差を考慮する必要がない。すなわち、これらの製造公差があっても、視野角制限体7の上端における視野角制限窓6の寸法を広げる必要がない。上記製造公差を吸収するためには、逆テーパ下部の最広部(図中の視野角制限体7と封止部材5との境界部)の寸法を大きさが十分大きければよいためである。また、逆テーパ上部の最狭部である視野角制限窓6の寸法を広げないので、従来の視野角制限体17a〜17c(図3参照)のように視野角制限体7の上端位置(最狭部の視野角制限窓6の位置)を高くする必要がない。また、上面から見た(平面視の)視野角制限窓6の形状は、四角形でも丸形でもよいが、加工の容易さから丸形であることが好ましい。   The size of the narrowest viewing angle limiting window 6 on the upper part of the reverse taper may be defined by determining the target viewing range 9 and the height of the viewing angle limiting body 7. There is no need to take into account manufacturing tolerances such as misalignment width. That is, even if these manufacturing tolerances exist, it is not necessary to increase the size of the viewing angle limiting window 6 at the upper end of the viewing angle limiting body 7. This is because, in order to absorb the manufacturing tolerance, it is sufficient that the size of the widest portion (the boundary portion between the viewing angle limiter 7 and the sealing member 5 in the drawing) below the reverse taper is sufficiently large. In addition, since the size of the viewing angle limiting window 6 that is the narrowest portion of the upper portion of the reverse taper is not widened, the upper end position (maximum position) of the viewing angle limiting body 7 as in the conventional viewing angle limiting bodies 17a to 17c (see FIG. 3). It is not necessary to increase the position of the narrow viewing angle restriction window 6. Further, the shape of the viewing angle limiting window 6 as viewed from above (in plan view) may be square or round, but is preferably round from the viewpoint of ease of processing.

また、逆テーパ下部の最広部の寸法は、受光部6の受光面面積に受光部8と視野角制限体7の位置ずれ幅を加えた寸法より広く規定すれば良い。図6は、本発明に係る赤外線センサの視野角制限体7のずれを説明するための断面図である。図6に示すように、受光部8と視野角制限体7との位置ずれにより、相対的に視野範囲9aから視野範囲9bや視野範囲9cの範囲でずれたとしても、逆テーパ下部の最広部の寸法は位置ずれ幅より広く規定されているので、受光部8の受光面を塞ぐことなくセンサ感度を低下させることがない。   The dimension of the widest part below the reverse taper may be defined wider than the dimension obtained by adding the positional deviation width of the light receiving unit 8 and the viewing angle restricting body 7 to the light receiving surface area of the light receiving unit 6. FIG. 6 is a cross-sectional view for explaining the displacement of the viewing angle restricting body 7 of the infrared sensor according to the present invention. As shown in FIG. 6, even if the light receiving unit 8 and the viewing angle restricting body 7 are displaced relatively from the visual field range 9a to the visual field range 9b or the visual field range 9c, Since the dimension of the part is defined wider than the positional deviation width, the sensor sensitivity is not lowered without blocking the light receiving surface of the light receiving part 8.

以上説明したように、本実施形態の構成によれば、一体的に視野角制限体を設けた従来の赤外線センサよりも、視野角制限体を小型薄型でき、これにより赤外線センサと視野角制限体の温度差が低減するので、小型薄型で安定性の高い赤外線センサを構成することができる。   As described above, according to the configuration of the present embodiment, the viewing angle restricting body can be made smaller and thinner than the conventional infrared sensor provided with the viewing angle restricting body integrally, whereby the infrared sensor and the viewing angle restricting body can be reduced. Therefore, a small and thin infrared sensor with high stability can be configured.

(第2の実施形態)
図7は本発明にかかる赤外線センサ20の本実施形態を示す図である。この実施形態は、第1の実施形態では封止部材の一部として形成されていた視野角制限部を、封止部とは別体に形成し、これらを接着層11等を介して貼り合せて封止部材とした構成である。
(Second Embodiment)
FIG. 7 is a diagram showing this embodiment of the infrared sensor 20 according to the present invention. In this embodiment, the viewing angle limiting portion formed as a part of the sealing member in the first embodiment is formed separately from the sealing portion, and these are bonded together via the adhesive layer 11 or the like. The sealing member is used.

この実施形態の赤外線センサ20では、封止部5aと視野角制限部7との間に接着層11を有することから、接着部材等の滲み幅などもの製造公差として考慮する必要がある。なお、接着層11における接着方法は、接着剤を用いた方法以外にも超音波や加熱等により貼り合わせることも可能である。超音波や加熱等により貼り合わせた場合は、接着部材の滲み幅は考慮しなくてよい。   In the infrared sensor 20 of this embodiment, since the adhesive layer 11 is provided between the sealing portion 5a and the viewing angle restricting portion 7, it is necessary to consider it as a manufacturing tolerance such as a spread width of an adhesive member or the like. In addition, the adhesion method in the contact bonding layer 11 can also be bonded together by an ultrasonic wave, heating, etc. other than the method using an adhesive agent. When pasted together by ultrasonic waves or heating, the spread width of the adhesive member need not be considered.

よって、本実施形態の構成によれば、封止部と視野角制限部とを貼り合せて封止部材とした赤外線センサの場合でも、従来よりも視野角制限体を小型薄型でき、これにより赤外線センサと視野角制限体の温度差が低減するので、小型薄型で安定性の高い赤外線センサを構成することができる。   Therefore, according to the configuration of the present embodiment, even in the case of an infrared sensor in which a sealing portion and a viewing angle limiting portion are bonded to form a sealing member, the viewing angle limiting body can be made smaller and thinner than conventional ones. Since the temperature difference between the sensor and the viewing angle restricting body is reduced, a small and thin infrared sensor with high stability can be configured.

(第3の実施形態)
図8は、本発明に係る赤外線センサの第3の実施形態を説明するための構成図である。この実施形態は、第1の実施形態においてセンサ素子と接続端子との接続配線としてワイヤーボンディングを採用していたのに対し、センサ素子と接続端子との接続配線としてフリップチップボンドを採用した構成である。
(Third embodiment)
FIG. 8 is a configuration diagram for explaining a third embodiment of the infrared sensor according to the present invention. In this embodiment, the wire bonding is adopted as the connection wiring between the sensor element and the connection terminal in the first embodiment, whereas the flip chip bond is adopted as the connection wiring between the sensor element and the connection terminal. is there.

本実施形態の構成によれば、図8に示すように、赤外線センサ素子1と接続端子4との接続のために要するスペースが第1の実施形態の構成よりも削減できる。したがって、第1の実施形態よりも、パッケージ幅の狭い小型の赤外線センサ30を構成することができるので、一体的に視野角制限体を設けた赤外線センサを小型薄型で安定性のより高い構成とすることができる。   According to the configuration of the present embodiment, as shown in FIG. 8, the space required for connecting the infrared sensor element 1 and the connection terminal 4 can be reduced as compared with the configuration of the first embodiment. Therefore, since the small infrared sensor 30 having a narrow package width can be configured as compared with the first embodiment, the infrared sensor integrally provided with the viewing angle limiter is small and thin, and has a higher stability. can do.

(第4の実施形態)
図9は、本発明に係る赤外線センサの第4の実施形態を説明するための構成図である。この実施形態は、第3の実施形態では封止部材の一部として形成されていた視野角制限部を、封止部とは別体に形成し、接着層11等を介して貼り合せて封止部材とした構成である。
(Fourth embodiment)
FIG. 9 is a configuration diagram for explaining a fourth embodiment of an infrared sensor according to the present invention. In this embodiment, the viewing angle limiting portion formed as a part of the sealing member in the third embodiment is formed separately from the sealing portion, and is bonded and sealed via the adhesive layer 11 or the like. The structure is a stop member.

この実施形態の赤外線センサ40では、封止部5と視野角制限部7との間に接着層11を有することから、接着部材等の滲み幅などもの製造公差として考慮する必要がある。なお、接着層11における接着方法は、接着剤を用いた方法以外にも超音波により貼り合わせることも可能である。超音波により貼り合わせた場合は、接着部材の滲み幅は考慮しなくてよい。   In the infrared sensor 40 of this embodiment, since the adhesive layer 11 is provided between the sealing portion 5 and the viewing angle limiting portion 7, it is necessary to consider manufacturing tolerances such as a spread width of an adhesive member or the like. In addition, the adhesion method in the contact bonding layer 11 can also be bonded together with an ultrasonic wave other than the method using an adhesive agent. When pasted by ultrasonic waves, the spread width of the adhesive member need not be considered.

本実施形態の構成によれば、図9に示すように、赤外線センサ素子1と接続端子4との接続のために要するスペースが第2の実施形態の構成よりも削減できる。したがって、第2の実施形態よりも、パッケージ幅の狭い小型の赤外線センサ40を構成することができるので、封止部材と視野角制限体とを貼り合せて形成した赤外線センサを小型薄型で安定性のより高い構成とすることができる。   According to the configuration of the present embodiment, as shown in FIG. 9, the space required for connecting the infrared sensor element 1 and the connection terminal 4 can be reduced as compared with the configuration of the second embodiment. Therefore, since the small infrared sensor 40 having a narrower package width than that of the second embodiment can be configured, the infrared sensor formed by bonding the sealing member and the viewing angle restricting body is small, thin and stable. Higher configuration.

1 センサ素子
2 光学調整部
3 接続配線
4 接続端子
5 封止部材
5a 封止部
6 視野角制限窓
7、7a〜7c 視野角制限体(視野角制限部)
8 受光部
9、9a〜9c 視野範囲
11 接着層
10、20、30、40 赤外線センサ
DESCRIPTION OF SYMBOLS 1 Sensor element 2 Optical adjustment part 3 Connection wiring 4 Connection terminal 5 Sealing member 5a Sealing part 6 View angle limit window 7, 7a-7c View angle limit body (view angle limit part)
8 Light-receiving part 9, 9a to 9c Field of view 11 Adhesive layer
10, 20, 30, 40 Infrared sensor

Claims (6)

赤外線を受光する受光面を有し、受光した赤外線を検出して電気信号として出力する、基板上に光電変換部を搭載したチップ型の量子型赤外線センサ素子と、
前記量子型赤外線センサ素子からの出力を外部装置へ出力するための接続端子と、
前記量子型赤外線センサ素子と前記接続端子とを電気的に接続する接続配線と、
を備えた赤外線センサであって、
前記受光面を開口した状態で前記量子型赤外線センサ素子を前記接続端子と前記接続配線とともに封止し前記量子型赤外線センサ素子を保持する保持部と、前記受光面の周囲を取り囲んで前記保持部から延びるように形成され前記受光面の赤外線に対する視野範囲を制限する視野角制限部とを更に有し、該視野角制限部は、前記赤外線の進入位置から前記受光面に向けて幅広になる逆テーパ状に形成されており、
前記接続配線は、前記量子型赤外線センサ素子の受光面と反対側の面に接続されており、前記視野角制限部は、封止用樹脂であることを特徴とする赤外線センサ。
A chip-type quantum infrared sensor element having a light-receiving surface for receiving infrared light, detecting the received infrared light and outputting it as an electrical signal, having a photoelectric conversion unit mounted on a substrate;
A connection terminal for outputting an output from the quantum infrared sensor element to an external device;
Connection wiring for electrically connecting the quantum infrared sensor element and the connection terminal;
An infrared sensor comprising:
The quantum infrared sensor element is sealed together with the connection terminal and the connection wiring in a state where the light receiving surface is opened, and a holding unit that holds the quantum infrared sensor element, and surrounds the periphery of the light receiving surface. And a viewing angle limiting part that limits the viewing range of the light receiving surface with respect to infrared light, and the viewing angle limiting part is a reverse that becomes wider from the infrared light entrance position toward the light receiving surface. It is formed in a taper shape,
The connection wiring is connected to a surface opposite to the light receiving surface of the quantum infrared sensor element, and the viewing angle limiting portion is a sealing resin.
前記量子型赤外線センサ素子の受光面における赤外線の反射防止や帯域制限をするための光学調整部が前記量子型赤外線センサ素子の受光面に設けられていることを特徴とする請求項1に記載の赤外線センサ。   2. The optical adjustment unit for preventing reflection of infrared rays and limiting a band on the light receiving surface of the quantum infrared sensor element is provided on the light receiving surface of the quantum infrared sensor element. Infrared sensor. 前記保持部と前記視野角制限部とが一体に形成されていることを特徴とする請求項1または2に記載の赤外線センサ。   The infrared sensor according to claim 1, wherein the holding portion and the viewing angle limiting portion are integrally formed. 前記保持部に対して前記視野角制限部を接着する接着層をさらに備えることを特徴とする請求項1または2に記載の赤外線センサ。   The infrared sensor according to claim 1, further comprising an adhesive layer that adheres the viewing angle restriction portion to the holding portion. 前記接続配線は、ワイヤーボンディングであることを特徴とする請求項1から4のいずれかに記載の赤外線センサ。   The infrared sensor according to claim 1, wherein the connection wiring is wire bonding. 前記接続配線は、フリップチップボンドであることを特徴とする請求項1から4のいずれかに記載の赤外線センサ。   The infrared sensor according to claim 1, wherein the connection wiring is a flip chip bond.
JP2015020651A 2015-02-04 2015-02-04 Infrared sensor Pending JP2015083995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020651A JP2015083995A (en) 2015-02-04 2015-02-04 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020651A JP2015083995A (en) 2015-02-04 2015-02-04 Infrared sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011079913A Division JP5706217B2 (en) 2011-03-31 2011-03-31 Infrared sensor

Publications (1)

Publication Number Publication Date
JP2015083995A true JP2015083995A (en) 2015-04-30

Family

ID=53047636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020651A Pending JP2015083995A (en) 2015-02-04 2015-02-04 Infrared sensor

Country Status (1)

Country Link
JP (1) JP2015083995A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135320A (en) * 1984-07-27 1986-02-19 Matsushita Electric Ind Co Ltd Pyroelectric type infrared detecting element and its manufacture
JPS6177728A (en) * 1984-09-25 1986-04-21 Matsushita Electric Ind Co Ltd Thermocouple type infrared detecting element
WO2006095834A1 (en) * 2005-03-09 2006-09-14 Asahi Kasei Emd Corporation Optical device and optical device manufacturing method
JP2011079913A (en) * 2009-10-05 2011-04-21 Sumitomo Rubber Ind Ltd Polymer, rubber composition for tire and pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135320A (en) * 1984-07-27 1986-02-19 Matsushita Electric Ind Co Ltd Pyroelectric type infrared detecting element and its manufacture
JPS6177728A (en) * 1984-09-25 1986-04-21 Matsushita Electric Ind Co Ltd Thermocouple type infrared detecting element
WO2006095834A1 (en) * 2005-03-09 2006-09-14 Asahi Kasei Emd Corporation Optical device and optical device manufacturing method
JP2011079913A (en) * 2009-10-05 2011-04-21 Sumitomo Rubber Ind Ltd Polymer, rubber composition for tire and pneumatic tire

Similar Documents

Publication Publication Date Title
US7005642B2 (en) Infrared sensor and electronic device using the same
US8952331B2 (en) Infrared sensor module
TWI747887B (en) Light detection device
JP2021009152A (en) Thermal infrared sensor array in wafer level package
JP5287906B2 (en) Infrared temperature sensor, electronic device, and method of manufacturing infrared temperature sensor
JP5001007B2 (en) Infrared sensor utilizing optimized surface
JP5706217B2 (en) Infrared sensor
US11604093B2 (en) Spectrometer device and method for producing a spectrometer device
JP5564681B2 (en) Infrared sensor
JP2011095143A (en) Infrared sensor
US9534959B2 (en) Infrared sensor package
US20200232853A1 (en) Non-contact type infrared temperature sensor module
WO2012063915A1 (en) Infrared sensor module and method of manufacturing same
JP2011203226A (en) Infrared sensor module
JP2012215439A (en) Infrared sensor
JP2015083995A (en) Infrared sensor
JP2012215431A (en) Infrared sensor
JP2013190243A (en) Sensor device
JP2015060869A (en) Optical coupling device
JP2011216741A (en) Optical device and method for manufacturing optical device
JP2014098671A (en) Infrared sensor
JP2011128066A (en) Infrared sensor module
JP2013050460A (en) Infrared temperature sensor, electronic apparatus, and manufacturing method for infrared temperature sensor
KR101469238B1 (en) Infrared ray apparatus and gas measurement optical system including the same
KR20180016143A (en) Non-contact infrared temperature sensor mudule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308