JP5320658B2 - Low temperature molding polyester resin pellets and preforms - Google Patents

Low temperature molding polyester resin pellets and preforms Download PDF

Info

Publication number
JP5320658B2
JP5320658B2 JP2005315224A JP2005315224A JP5320658B2 JP 5320658 B2 JP5320658 B2 JP 5320658B2 JP 2005315224 A JP2005315224 A JP 2005315224A JP 2005315224 A JP2005315224 A JP 2005315224A JP 5320658 B2 JP5320658 B2 JP 5320658B2
Authority
JP
Japan
Prior art keywords
temperature
polyester resin
molding
resin
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005315224A
Other languages
Japanese (ja)
Other versions
JP2007119644A (en
Inventor
善拡 北野
淳 菊地
実佐 埴田
浩司 中町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2005315224A priority Critical patent/JP5320658B2/en
Publication of JP2007119644A publication Critical patent/JP2007119644A/en
Application granted granted Critical
Publication of JP5320658B2 publication Critical patent/JP5320658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、ポリエステル樹脂ペレット及びプリフォームに関し、より詳細には、低温成形が可能で経済性に優れたポリエステル樹脂ペレット、及びこのポリエステル樹脂ペレットを低温成形して成る、香味保持性及び透明性に優れた容器を提供可能なプリフォームに関する。 The present invention relates to a polyester resin pellets and preforms, and more particularly, polyester resin pellets excellent in possible economical low temperature molding, and the polyester resin pellets formed by cold forming, flavor retention and transparency The present invention relates to a preform capable of providing an excellent container.

ポリエステル樹脂、特にポリエチレンテレフタレートから成る二軸延伸ブロー成形容器は、優れた透明性と適度なガスバリヤー性とにより、液体洗剤、シャンプー、化粧品、醤油、ソース等の液体商品、食品、或いはビール、コーラ、サイダー等の炭酸飲料や、果汁、ミネラルウォーター等の他の飲料等の容器として広く使用されている。   Biaxially stretched blow molded containers made of polyester resin, especially polyethylene terephthalate, are liquid products such as liquid detergents, shampoos, cosmetics, soy sauce, sauces, food, beer, cola, etc. due to their excellent transparency and moderate gas barrier properties. It is widely used as a container for carbonated beverages such as cider and other beverages such as fruit juice and mineral water.

一般に容器の成形に用いられるポリエチレンテレフタレートの融点(Tm)は250乃至265℃の範囲にあり、かかるポリエチレンテレフタレートを用いて透明性に優れた二軸延伸ブロー成形容器を成形するには、融点(Tm)よりも20乃至40℃以上高い温度でプリフォームを成形する必要がある。
しかしながらこのような高温に曝されることにより、ポリエチレンテレフタレートが熱分解し、アセトアルデヒドやオリゴマー等が副生することになる。特に、かかるポリエチレンテレフタレート容器中に残留するアセトアルデヒドは、ボトルの香味保持性を低下させる原因になり、特に内容物としてミネラルウォーター等の水を充填する場合には、少量のアセトアルデヒドでも香味保持性に影響を与えるため問題となる。またこのような高温での成形はエネルギーコストも大きく経済性の点でも不利である。
Generally, the melting point (Tm) of polyethylene terephthalate used for forming a container is in the range of 250 to 265 ° C. In order to form a biaxially stretched blow molded container having excellent transparency using such polyethylene terephthalate, the melting point (Tm It is necessary to mold the preform at a temperature 20 to 40 ° C. higher than
However, when exposed to such high temperatures, polyethylene terephthalate is thermally decomposed and acetaldehyde, oligomers and the like are by-produced. In particular, acetaldehyde remaining in such a polyethylene terephthalate container causes a decrease in the flavor retention of the bottle. Especially when filling water such as mineral water as the contents, even a small amount of acetaldehyde affects the flavor retention. To give a problem. Further, molding at such a high temperature is disadvantageous in terms of economy because of high energy costs.

従来ポリエステル容器の残存アセトアルデヒド濃度を低減させる方法としては、例えば、ポリエステル樹脂を脱気処理しながら溶融混練する方法(例えば、特許文献1)や、或いはポリエステル樹脂を熱水処理した後用いること等が提案されている(例えば、特許文献2)。   Conventional methods for reducing the residual acetaldehyde concentration in a polyester container include, for example, a method of melt-kneading a polyester resin while degassing (for example, Patent Document 1), or using the polyester resin after hydrothermal treatment. It has been proposed (for example, Patent Document 2).

特開2000−117819号公報JP 2000-117819 A 特開2001−31750号公報JP 2001-31750 A

前記特許文献1に記載された方法は、ポリエステル樹脂を用いて成形する際に樹脂中のアセトアルデヒド濃度を低減させるものであるがその低減量には限界がある。また前記特許文献2に記載された方法では、ポリエステル樹脂に後処理を施す必要があり、生産性に劣っている。
またポリエステル容器のアセトアルデヒド濃度を低減させる方法としては、低温で成形を行うことが考えられるが、現在容器の成形に用いられている一般的なポリエチレンテレフタレートでは、低温で成形することは困難であり、成形できたとしても未溶融部分が残り、プリフォームが白化して透明性が著しく低下するという問題を有していた。
The method described in Patent Document 1 reduces the acetaldehyde concentration in a resin when molding using a polyester resin, but the amount of reduction is limited. Moreover, in the method described in the said patent document 2, it is necessary to post-process to a polyester resin, and it is inferior to productivity.
Moreover, as a method of reducing the acetaldehyde concentration of the polyester container, it is conceivable to perform molding at a low temperature, but in general polyethylene terephthalate currently used for molding a container, it is difficult to mold at a low temperature, Even if it was able to be molded, there was a problem that an unmelted portion remained, the preform was whitened, and the transparency was significantly lowered.

従って本発明の目的は、低温成形が可能で経済性に優れたポリエステル樹脂、及びこのポリエステル樹脂から成る、透明性、香味保持性、経済性に優れたプリフォームを提供することである。   Accordingly, an object of the present invention is to provide a polyester resin that can be molded at a low temperature and has excellent economy, and a preform that is made of this polyester resin and has excellent transparency, flavor retention, and economy.

本発明によれば、密度分布曲線における密度の最大値が1.406g/cm以上1.415g/cm未満、DSC測定により20℃から290℃に10℃/minで昇温することにより得られた溶融曲線とベースラインの高温側交点である融解終了温度が270℃未満、265℃で3分間溶融後急冷する操作に続いて10℃/分で昇温した際に得られる発熱曲線での昇温結晶化エネルギーが15J/g以上、且つ固有粘度が0.71dL/g以上であるポリエステル樹脂から成り、該ポリエステル樹脂がポリエチレンテレフタレート又はイソフタル酸共重合ポリエチレンテレフタレートであることを特徴とする低温成形用ポリエステル樹脂ペレットが提供される。
本発明によればまた、前記ポリエステル樹脂ペレットを、Tm≦T≦Tm+20℃(Tmはポリエステル樹脂の融点、Tは溶融ポリエステル樹脂の温度)の範囲の樹脂温度で射出成形又は圧縮成形して成ることを特徴とするプリフォームが提供される。
According to the present invention, the maximum value of density in the density distribution curve is 1.406 g / cm 3 or more and less than 1.415 g / cm 3 , which is obtained by increasing the temperature from 20 ° C. to 290 ° C. at 10 ° C./min by DSC measurement. In the exothermic curve obtained when the melting end temperature, which is the high-temperature side intersection of the obtained melting curve and the baseline, is less than 270 ° C. and melted at 265 ° C. for 3 minutes and then rapidly cooled at 10 ° C./min. Low temperature molding characterized by comprising a polyester resin having a temperature rising crystallization energy of 15 J / g or more and an intrinsic viscosity of 0.71 dL / g or more , wherein the polyester resin is polyethylene terephthalate or isophthalic acid copolymerized polyethylene terephthalate Polyester resin pellets are provided.
According to the present invention, the polyester resin pellets are formed by injection molding or compression molding at a resin temperature in a range of Tm ≦ T ≦ Tm + 20 ° C. (Tm is a melting point of the polyester resin, T is a temperature of the molten polyester resin). A preform characterized by the above is provided.

本発明のポリエステル樹脂は、低温成形が可能であることから、加熱のためのエネルギーを低減でき、経済性に優れている。
またこのポリエステル樹脂から成るプリフォームは、低温で成形されているため、ポリエチレンテレフタレートが熱分解することがなく、アセトアルデヒドやオリゴマー等による香味保持性の問題がなく、しかも低温成形に起因した白化を生じることもなく、透明性にも優れている。
Since the polyester resin of the present invention can be molded at a low temperature, it can reduce energy for heating and is excellent in economic efficiency.
In addition, since the preform made of this polyester resin is molded at a low temperature, the polyethylene terephthalate does not thermally decompose, there is no problem of flavor retention due to acetaldehyde, oligomers, etc., and whitening due to low temperature molding occurs. It is also excellent in transparency.

ポリエステル樹脂からプリフォーム等の成形物を成形する場合、一般的にはポリエステル樹脂の融点(Tm)よりも20℃以上高い温度、特に射出成形の場合には、35℃以上高い温度で樹脂を溶融混練する必要があり、この際樹脂の熱分解を生じてアセトアルデヒドやオリゴマーの副生による容器の香味保持性や金型汚れによる透明性の低下という問題が生じていた。一方、前記温度より低い温度で成形した場合には、未溶融部分が残って白化し、透明性が低下するという問題を有していた。   When molding a molded product such as a preform from a polyester resin, the resin is generally melted at a temperature that is 20 ° C or higher than the melting point (Tm) of the polyester resin, especially 35 ° C or higher in the case of injection molding. It was necessary to knead. At this time, the resin was thermally decomposed, resulting in problems such as a flavor retention of the container due to a by-product of acetaldehyde and oligomer and a decrease in transparency due to mold contamination. On the other hand, when the molding is performed at a temperature lower than the above temperature, there is a problem that the unmelted portion remains and whitens, and the transparency is lowered.

本発明においては、このような観点からポリエステル樹脂の熱分解を低減することが可能な低温で成形しても白化することのない低温成形用のポリエステル樹脂を提供するものであり、密度分布曲線における密度の最大値(以下、「密度分布曲線の最大値の密度」と表記することがある)が1.406g/cm 以上1.415g/cm未満、DSC測定により20℃から290℃に10℃/minで昇温することにより得られた溶融曲線とベースラインの高温側交点である融解終了温度が270℃未満、265℃で3分間溶融後急冷する操作に続いて10℃/分で昇温した際に得られる発熱曲線での昇温結晶化エネルギーが15J/g以上、且つ固有粘度が0.71dL/g以上であることが重要な特徴である。
尚、前述した発熱曲線での昇温結晶化エネルギーとは、示差走査熱量系(DSC)で測定したポリエステルペレットの昇温結晶化における結晶化熱量であり、この値が小さいほど未溶融成分が多く残存しており、低温成形での白化の原因になる。
The present invention provides a polyester resin for low temperature molding that does not whiten even when molded at a low temperature that can reduce the thermal decomposition of the polyester resin from such a viewpoint. The maximum value of density (hereinafter sometimes referred to as “the density of the maximum value of the density distribution curve”) is 1.406 g / cm 3 or more and less than 1.415 g / cm 3 , and 10 from 20 ° C. to 290 ° C. by DSC measurement. The melting end temperature, which is the intersection of the melting curve obtained by raising the temperature at ° C / min and the baseline, is less than 270 ° C, melted at 265 ° C for 3 minutes, and then rapidly cooled at 10 ° C / min. It is an important feature that the temperature rising crystallization energy in the exothermic curve obtained when heated is 15 J / g or more and the intrinsic viscosity is 0.71 dL / g or more.
The temperature rising crystallization energy in the exothermic curve described above is the amount of crystallization heat in temperature rising crystallization of polyester pellets measured by a differential scanning calorimetry system (DSC). The smaller this value, the more unmelted components. It remains and causes whitening in low temperature molding.

本発明のポリエステル樹脂においては、密度分布曲線の最大値の密度、融解終了温度、265℃で3分間溶融後急冷する操作に続いて10℃/分で昇温した際に得られる発熱曲線での昇温結晶化エネルギー、固有粘度のすべての値が上述した範囲を満足することが重要であり、これらの何れが前記範囲を外れても、低温成形により、白化していないプリフォームを成形することができないのである。
すなわち後述する実施例の結果から明らかなように、密度分布曲線の最大値の密度が1.415g/cm以上、融解終了温度が270℃以上、且つ前述した発熱曲線での昇温結晶化エネルギーが15J/g未満であるポリエステル樹脂では低温成形により白化が生じ(比較例5、6、7)、同様に、融解終了温度が270℃以上である以外は、前記値を満たすポリエステル樹脂では低温成形により白化が生じ(比較例2)、前述した発熱曲線での昇温結晶化エネルギーが15J/g未満である以外は、前記値を満たすポリエステル樹脂では低温成形により白化が生じてしまうのである(比較例8)。また固有粘度が0.71dL/g未満の場合には、低温成形するため必要な溶融粘度を呈することができず、成形性に劣っている(比較例1)。
これに対し、上述した特性のすべてを満たすポリエステル樹脂から成る本発明のプリフォームは、白化がなく、透明性に優れたているのである(実施例1〜18)。
また、2種類以上のポリエステル樹脂をブレンドして用いる場合においても、上述した特性を満たさない樹脂を1種類でも用いることで、低温成形によりプリフォームの白化が生じてしまう(比較例9、10、11)。
In the polyester resin of the present invention, the maximum density of the density distribution curve, the melting end temperature, and the exothermic curve obtained when the temperature is raised at 10 ° C./min following the operation of melting at 265 ° C. for 3 minutes and then rapidly cooling. It is important that all the values of the temperature rising crystallization energy and the intrinsic viscosity satisfy the above-mentioned ranges. Even if any of these values is out of the above range, a preform that is not whitened is formed by low-temperature molding. It is not possible.
That is, as is clear from the results of the examples described later, the maximum density of the density distribution curve is 1.415 g / cm 3 or more, the melting end temperature is 270 ° C. or more, and the temperature-rise crystallization energy in the above-described exothermic curve. Polyester resin having a J of less than 15 J / g causes whitening by low-temperature molding (Comparative Examples 5, 6, and 7). Similarly, polyester resin satisfying the above values is low-temperature molded except that the melting end temperature is 270 ° C. or higher. (Comparative Example 2), except that the temperature rising crystallization energy in the exothermic curve is less than 15 J / g, polyester resin satisfying the above values causes whitening due to low temperature molding (Comparison) Example 8). On the other hand, when the intrinsic viscosity is less than 0.71 dL / g, the melt viscosity necessary for low temperature molding cannot be exhibited and the moldability is poor (Comparative Example 1).
On the other hand, the preform of the present invention made of a polyester resin satisfying all of the above-described characteristics is not whitened and has excellent transparency (Examples 1 to 18).
Further, even when two or more kinds of polyester resins are blended and used, even if one kind of resin that does not satisfy the above-described characteristics is used, whitening of the preform occurs due to low temperature molding (Comparative Examples 9, 10 and 10). 11).

(ポリエステル樹脂)
本発明のポリエステル樹脂はペレット化された状態で、密度分布曲線の最大値の密度が1.415g/cm未満、融解終了温度が270℃未満、265℃で3分間溶融後急冷する操作に続いて10℃/分で昇温した際に得られる発熱曲線での昇温結晶化エネルギーが15J/g以上、且つ固有粘度が0.71dL/g以上という物性を有するものであり、このような物性を有する限り、基本的には従来公知のポリエステル樹脂の製造法と同様に調製することができる。
ポリエステル樹脂の製造方法としては、テレフタル酸又はそのエステル形成性誘導体とエチレングリコール又はそのエステル形成性誘導体とを主体とする原料を、エステル化反応或いはエステル交換反応を経て重縮合させることにより得られたものであることが好ましい。
(Polyester resin)
The polyester resin of the present invention is in a pelletized state, followed by an operation in which the maximum density of the density distribution curve is less than 1.415 g / cm 3 , the melting end temperature is less than 270 ° C., melting at 265 ° C. for 3 minutes and then rapidly cooled. The temperature rise crystallization energy in the exothermic curve obtained when the temperature is raised at 10 ° C./min is 15 J / g or more, and the intrinsic viscosity is 0.71 dL / g or more. As long as it has, it can be prepared basically in the same manner as a conventionally known method for producing a polyester resin.
The polyester resin was produced by polycondensing a raw material mainly composed of terephthalic acid or an ester-forming derivative thereof and ethylene glycol or an ester-forming derivative thereof through an esterification reaction or an ester exchange reaction. It is preferable.

以下、ポリエチレンテレフタレートの合成を例にとって説明する。
ポリエチレンテレフタレートの合成は一般に、高純度テレフタル酸(TPA)とエチレングリコール(EG)とを直接反応させてポリエチレンテレフタレート(PET)を合成する方法により行われ、通常2つの工程に分けられており、(A)TPAとEGとを反応させて、ビス−β−ヒドロキエチルテレフタレート(BHET)又はその低重縮合体を合成する工程、(B)BHET又はその低重縮合体からエチレングリコールを留去して重縮合を行う工程から成っている。
Hereinafter, the synthesis of polyethylene terephthalate will be described as an example.
The synthesis of polyethylene terephthalate is generally performed by a method of directly reacting high-purity terephthalic acid (TPA) and ethylene glycol (EG) to synthesize polyethylene terephthalate (PET), and is usually divided into two steps. A) reacting TPA and EG to synthesize bis-β-hydroxyethyl terephthalate (BHET) or a low polycondensate thereof; (B) removing ethylene glycol from BHET or a low polycondensate thereof; It consists of a process of polycondensation.

BHET又はその低重縮合体の合成はそれ自体公知の条件で行うことができ、例えばTPAに対するEGの量を1.1〜1.5モル倍として、EGの沸点以上、例えば220〜260℃の温度に加熱して、1〜5kg/cm の加圧下に、水を系外に留去しながら、エステル化を行う。
この場合、エステル化触媒として、例えば酢酸亜鉛、ホウ酸亜鉛、金属マグネシウム等を用いることが公知であるが、TPA自体が触媒となることから触媒を用いなくてもよい。
The synthesis of BHET or a low polycondensate thereof can be carried out under conditions known per se. For example, the amount of EG with respect to TPA is 1.1 to 1.5 mole times, and the boiling point of EG or higher, for example, 220 to 260 ° C. Esterification is performed while heating to temperature and distilling water out of the system under a pressure of 1 to 5 kg / cm 2 .
In this case, it is known to use, for example, zinc acetate, zinc borate, magnesium metal, etc. as the esterification catalyst, but it is not necessary to use a catalyst since TPA itself becomes a catalyst.

第二段階の重縮合工程では、第一段階で得られたBHET又はその低重縮合体にそれ自体公知の重縮合触媒を加えた後、反応系を260〜290℃に保ちながら徐々に圧力を低下させ、最終的に1〜3mmHgの減圧下に撹拌し、生成するEGを系外に留去しながら、反応を進行させる。反応系の粘度によって分子量を検出し、所定の値に達したら、系外に吐出させ、冷却後ペレタイズして、樹脂ペレットとすることもできる。
重縮合触媒としては、一般にゲルマニウム化合物、チタン化合物、アンチモン化合物等が使用されるが、本発明においては、触媒濃度として0.01乃至0.03mol/mol(BHET)の範囲にあることが好ましい。
In the second stage polycondensation step, a known polycondensation catalyst is added to BHET obtained in the first stage or a low polycondensate thereof, and then the pressure is gradually increased while maintaining the reaction system at 260 to 290 ° C. The reaction is allowed to proceed, while stirring under reduced pressure of 1 to 3 mmHg and finally distilling the produced EG out of the system. When the molecular weight is detected by the viscosity of the reaction system and reaches a predetermined value, it can be discharged out of the system, cooled and pelletized to form resin pellets.
As the polycondensation catalyst, germanium compounds, titanium compounds, antimony compounds and the like are generally used. In the present invention, the catalyst concentration is preferably in the range of 0.01 to 0.03 mol / mol (BHET).

本発明のポリエステル樹脂の固有粘度は0.71dL/g以上、特に0.72乃至0.95dL/gの範囲にあることが望ましく、このような範囲の固有粘度を有するため、本発明のポリエステル樹脂は溶融重合後、固相重合を行うことが必要である。
本発明においては、得られるポリエステル樹脂が上述した特性を有するために、固相重合を、240℃以下、特に190乃至230℃の温度範囲で4乃至24時間行うことが重要である。前記範囲よりも温度が高く、或いは重合時間が長い場合には、特に密度分布曲線における最大値の密度及び融解終了温度が本発明のものより大きくなってしまう。
The intrinsic viscosity of the polyester resin of the present invention is preferably 0.71 dL / g or more, particularly preferably in the range of 0.72 to 0.95 dL / g. Since the intrinsic viscosity is in such a range, the polyester resin of the present invention It is necessary to perform solid phase polymerization after melt polymerization.
In the present invention, since the resulting polyester resin has the above-mentioned characteristics, it is important to perform solid-state polymerization at 240 ° C. or lower, particularly 190 to 230 ° C. for 4 to 24 hours. When the temperature is higher than the above range or the polymerization time is long, the maximum density and melting end temperature in the density distribution curve are particularly higher than those of the present invention.

一般にアセトアルデヒドや低分子量成分を除去すべく、得られたポリエステル樹脂を短時間加熱し、アセトアルデヒドや環状三量体等の低分子量成分を低減させる予備結晶化工程に付されるが、本発明のプリフォームにおいては、樹脂の熱分解を抑制すべく低温で成形されるため、環状三量体等の低分子量成分やアセトアルデヒドの発生が低減されており、またポリエステル樹脂の加熱温度が高く、加熱時間が長いほど上述した密度及び融解終了温度の上昇につながることから必ずしも行う必要はなく、行うとしても200℃未満の温度で3乃至120分程度行うことが好ましい。   In general, in order to remove acetaldehyde and low molecular weight components, the obtained polyester resin is heated for a short time to be subjected to a precrystallization step for reducing low molecular weight components such as acetaldehyde and cyclic trimers. In reforming, the resin is molded at a low temperature to suppress thermal decomposition of the resin, so that the generation of low molecular weight components such as cyclic trimers and acetaldehyde is reduced, the heating temperature of the polyester resin is high, and the heating time is low. The longer the time, the higher the density and the melting end temperature, which are not necessarily performed. Even if it is performed, it is preferably performed at a temperature of less than 200 ° C. for about 3 to 120 minutes.

更に溶融重合後の樹脂をペレタイズする際の押出機中にベントを設けて減圧雰囲気にすることで樹脂中のアセトアルデヒドを低減することができる。
更にまた、固相重合後の樹脂ペレットに水処理を行うことで、樹脂中のアセトアルデヒド、環状三量体等の低分子量成分を減らすことができる。水処理は、樹脂ペレットを水、水蒸気、水蒸気含有ガス或いは水蒸気含有空気等と接触させることにより行うことができ、樹脂ペレットと水との接触は、40〜100℃の水に3分〜5時間、特に好ましくは50〜100℃の熱水に5分間〜3時間浸積することにより行うことができる。また50〜150℃の水蒸気又は水蒸気含有ガスと樹脂ペレットを通常5分間〜14日間、好ましくは10分間〜2日間、特に好ましくは20分間〜10時間接触させることにより行うことができる。
Furthermore, acetaldehyde in the resin can be reduced by providing a vent in the extruder when pelletizing the resin after melt polymerization to provide a reduced pressure atmosphere.
Furthermore, by performing water treatment on the resin pellets after solid phase polymerization, low molecular weight components such as acetaldehyde and cyclic trimer in the resin can be reduced. The water treatment can be carried out by bringing the resin pellets into contact with water, water vapor, water vapor-containing gas or water vapor-containing air, and the contact between the resin pellet and water is carried out at 40 to 100 ° C. for 3 minutes to 5 hours. Particularly preferably, it can be carried out by immersing in hot water at 50 to 100 ° C. for 5 minutes to 3 hours. Moreover, it can carry out by making 50-150 degreeC water vapor | steam or water vapor containing gas and a resin pellet contact normally for 5 minutes-14 days, Preferably it is 10 minutes-2 days, Most preferably, it is 20 minutes-10 hours.

本発明のポリエステル樹脂の合成に用いられるジカルボン酸成分としては、ジカルボン酸成分の50%以上、特に80%がテレフタル酸であることが機械的性質や熱的性質から好ましいが、テレフタル酸以外のカルボン酸成分を含有することも勿論できる。テレフタル酸以外のカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、p−β−オキシエトキシ安息香酸、ビフェニル−4,4’−ジカルボン酸、ジフェノキシエタン−4,4’−ジカルボン酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、アジピン酸、セバシン酸、トリメリット酸、ピロメリット酸、ヘミメリット酸,1,1,2,2−エタンテトラカルボン酸、1,1,2−エタントリカルボン酸、1,3,5−ペンタントリカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、ビフェニル−3,4,3’,4’−テトラカルボン酸等を挙げることができる。   As the dicarboxylic acid component used for the synthesis of the polyester resin of the present invention, 50% or more, particularly 80% of the dicarboxylic acid component is preferably terephthalic acid from the viewpoint of mechanical properties and thermal properties. Of course, an acid component can be contained. Examples of carboxylic acid components other than terephthalic acid include isophthalic acid, naphthalenedicarboxylic acid, p-β-oxyethoxybenzoic acid, biphenyl-4,4′-dicarboxylic acid, diphenoxyethane-4,4′-dicarboxylic acid, 5- Sodium sulfoisophthalic acid, hexahydroterephthalic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic acid, hemimellitic acid, 1,1,2,2-ethanetetracarboxylic acid, 1,1,2-ethanetricarboxylic acid 1,3,5-pentanetricarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, biphenyl-3,4,3 ′, 4′-tetracarboxylic acid and the like.

ジオール成分としては、ジオール成分の50%以上、特に80%以上がエチレングリコールであることが、機械的性質や熱的性質から好ましく、エチレングリコール以外のジオール成分としては、1,4−ブタンジオール、プロピレングリコール、ネオペンチルグリコール、1,6−へキシレングリコール、ジエチレングリコール、トリエチレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物、グリセロール、トリメチロールプロパン、ペンタエリスリトール、グリセロール、トリメチロールプロパン、1,2,6−ヘキサントリオール、ソルビトール、1,1,4,4−テトラキス(ヒドロキシメチル)シクロヘキサン等を挙げることができる。   As the diol component, 50% or more, particularly 80% or more of the diol component is preferably ethylene glycol in view of mechanical properties and thermal properties. As diol components other than ethylene glycol, 1,4-butanediol, Propylene glycol, neopentyl glycol, 1,6-hexylene glycol, diethylene glycol, triethylene glycol, cyclohexanedimethanol, ethylene oxide adduct of bisphenol A, glycerol, trimethylolpropane, pentaerythritol, glycerol, trimethylolpropane, 1, Examples include 2,6-hexanetriol, sorbitol, 1,1,4,4-tetrakis (hydroxymethyl) cyclohexane and the like.

本発明のポリエステル樹脂には、それ自体公知の樹脂用配合剤、例えば着色剤、抗酸化剤、安定剤、各種帯電防止剤、離型剤、滑剤、核剤、増粘剤等を配合することが可能であるが、本発明のポリエステル樹脂においては樹脂中の金属量が240ppm以下であることから、この範囲を損なわないように公知の処方に従って配合することができる。   In the polyester resin of the present invention, a compounding agent known per se, for example, a colorant, an antioxidant, a stabilizer, various antistatic agents, a release agent, a lubricant, a nucleating agent, a thickener, and the like are blended. However, in the polyester resin of the present invention, since the amount of metal in the resin is 240 ppm or less, it can be blended according to a known formulation so as not to impair this range.

(プリフォーム)
本発明のポリエステル樹脂を用いたプリフォームの成形は、射出成形又は圧縮成形の何れの方法によっても成形することができるが、本発明のポリエステル樹脂は特に射出成形に有利に用いることができる。
すなわち、射出成形では圧縮成形に比してポリエステル樹脂が長時間高温に曝されることから樹脂の熱分解が生じやすいという問題を有しているが、本発明のポリエステル樹脂は、前述した通り、Tm≦T≦Tm+20℃(Tmはポリエステル樹脂の融点、Tは溶融ポリエステル樹脂の温度)の範囲の樹脂温度で射出成形が可能であることから、樹脂の熱分解による分子量の低下、アセトアルデヒドやオリゴマーの副生を有効に抑制することができ、透明性、香味保持性に優れたプリフォームを成形することが可能となるのである。
(preform)
The preform using the polyester resin of the present invention can be molded by either injection molding or compression molding, but the polyester resin of the present invention can be used particularly advantageously for injection molding.
That is, in the injection molding, the polyester resin has a problem that the resin is easily decomposed because it is exposed to a high temperature for a long time as compared with the compression molding. Since injection molding is possible at a resin temperature in the range of Tm ≦ T ≦ Tm + 20 ° C. (Tm is the melting point of the polyester resin and T is the temperature of the molten polyester resin), the molecular weight decreases due to thermal decomposition of the resin, and acetaldehyde and oligomers By-products can be effectively suppressed, and a preform excellent in transparency and flavor retention can be formed.

本発明のポリエステル樹脂を用いてプリフォームの成形をする場合、前述した通り、固相重合後のペレット化されたポリエステル樹脂を、押出機中で前記温度範囲に加熱して溶融混練し、射出成形機或いは圧縮成形に供給する。
射出成形による場合では、溶融ポリエステル樹脂を射出して、最終容器に対応する口頸部を備えた前記形状のプリフォームを非晶質の状態で製造する。射出温度以外の射出条件は特に限定されないが、特にホットランナーの部分で上述した樹脂温度を満足することが重要である。また射出圧力は、一般に30乃至60kg/cmの範囲であることが好ましい。また所望により、得られたプリフォームに耐熱性及び剛性を与えるべく、プリフォームの段階で螺合部、嵌合部、支持リング等を有する口頚部を熱処理により結晶化し白化させることもできる。
When the preform is molded using the polyester resin of the present invention, as described above, the pelletized polyester resin after solid-phase polymerization is melted and kneaded by heating to the above temperature range in an extruder, and injection molding is performed. Supply to machine or compression molding.
In the case of injection molding, a molten polyester resin is injected, and the preform having the above-mentioned shape including the mouth and neck corresponding to the final container is manufactured in an amorphous state. The injection conditions other than the injection temperature are not particularly limited, but it is important to satisfy the above resin temperature particularly in the hot runner portion. In general, the injection pressure is preferably in the range of 30 to 60 kg / cm 2 . If desired, the neck portion having a threaded portion, a fitting portion, a support ring and the like can be crystallized and whitened by heat treatment at the preform stage in order to impart heat resistance and rigidity to the obtained preform.

圧縮成形による場合は、合成樹脂供給装置に供給された溶融ポリエステル樹脂が、溶融樹脂塊に切断され、保持されて、雄型及び雌型から成る圧縮成形機に供給されて圧縮成形され、射出成形の場合と同様にプリフォームを非晶質の状態で製造する。
圧縮成形の場合においても、溶融ポリエステル樹脂の溶融押出温度が、射出成形の場合と同様にTm≦T≦Tm+20℃(Tmはポリエステル樹脂の融点)の範囲にあることにより、一様な溶融押出物を形成できると共に、樹脂の熱劣化やドローダウンを防止することが可能となる。
In the case of compression molding, the molten polyester resin supplied to the synthetic resin supply device is cut into a molten resin lump, held, supplied to a compression molding machine comprising a male mold and a female mold, compression molded, and injection molded. As in the case of, the preform is produced in an amorphous state.
Even in the case of compression molding, the melt extrusion temperature of the molten polyester resin is in the range of Tm ≦ T ≦ Tm + 20 ° C. (Tm is the melting point of the polyester resin) as in the case of injection molding. It is possible to prevent thermal degradation and drawdown of the resin.

本発明のポリエステル樹脂を用いて成形されたプリフォームは、延伸ブロー成形されることにより、ボトル、広口カップ等の延伸成形容器に成形される。
延伸ブロー成形においては、本発明の圧縮成形用ポリエステル樹脂を用いて成形されたプリフォームを延伸温度に加熱し、このプリフォームを軸方向に延伸すると共に周方向に二軸延伸ブロー成形して二軸延伸容器を製造する。
尚、プリフォームの成形とその延伸ブロー成形とは、コールドパリソン方式の他、プリフォームを完全に冷却しないで延伸ブロー成形を行うホットパリソン方式にも適用できる。
得られたポリエステル容器は、それ自体公知の手段で熱固定することもできる。熱固定は、ブロー成形金型中で行うワンモールド法で行うこともできるし、ブロー成形金型とは別個の熱固定用の金型中で行うツーモールド法で行うこともできる。
The preform formed using the polyester resin of the present invention is formed into a stretch-molded container such as a bottle or a wide-mouthed cup by stretch blow molding.
In stretch blow molding, a preform molded using the polyester resin for compression molding of the present invention is heated to a stretching temperature, and the preform is stretched in the axial direction and biaxially stretched blow molded in the circumferential direction. An axial stretch container is manufactured.
The preform molding and the stretch blow molding can be applied to a hot parison system in which stretch blow molding is performed without completely cooling the preform, in addition to the cold parison system.
The obtained polyester container can be heat-set by a means known per se. The heat setting can be performed by a one-mold method performed in a blow molding die, or can be performed by a two-mold method performed in a heat fixing die separate from the blow molding die.

1.[ペレットの密度測定]
1000mlのメスシリンダーにn−ヘプタンと四塩化炭素を用いて1.400g/cm の溶液を作成し、その中に50gのペレットを入れる。この溶液に四塩化炭素を添加して0.001g/cm 密度が上昇するよう調整する。密度調整後に静置して浮上したペレットを回収する。四塩化炭素の添加による密度調整とペレットの回収を繰り返し、各密度のペレット分取した。分取したペレットを数えることでペレットの密度分布曲線を求め、密度分布曲線における密度の最大値を決定した。
1. [Measurement of pellet density]
A solution of 1.400 g / cm 3 is prepared using n-heptane and carbon tetrachloride in a 1000 ml graduated cylinder, and 50 g of pellets are placed therein. Carbon tetrachloride is added to this solution to adjust the density to 0.001 g / cm 3 . Collect pellets floating after standing after density adjustment. Density adjustment by adding carbon tetrachloride and collection of pellets were repeated, and pellets of each density were collected. The density distribution curve of the pellet was obtained by counting the collected pellets, and the maximum value of the density in the density distribution curve was determined.

2.[融点および融解終了温度の測定]
密度分布曲線の最大値の密度となるペレットの試料(8mg)について、示差走査熱量計(PERKIN ELMER社製DSC7)を用いてDSC測定を行った。ペレットはペレットカット面及びサイド部分を切削して使用した。
試料温度は、
(1)20℃で3分間保持
(2)20℃から290℃に10℃/minで昇温
の順で走査し、(2)における溶融ピーク温度を融点とし、溶融曲線とベースラインの交点を融解終了温度とした。溶融ピークが複数現れた場合は最も高温のピークを融点とした。
2. [Measurement of melting point and end of melting temperature]
About the sample (8 mg) of the pellet used as the density of the maximum value of a density distribution curve, DSC measurement was performed using the differential scanning calorimeter (DSC7 by PERKIN ELMER). The pellet was used by cutting the pellet cut surface and side portion.
The sample temperature is
(1) Hold at 20 ° C. for 3 minutes (2) Scan from 20 ° C. to 290 ° C. in the order of temperature increase at 10 ° C./min, the melting peak temperature in (2) as the melting point, and the intersection of the melting curve and the baseline It was set as the melting end temperature. When a plurality of melting peaks appeared, the highest temperature peak was taken as the melting point.

3.[結晶化エネルギーの測定]
密度分布曲線の最大値の密度となるペレットの試料(8mg)について、示差走査熱量計(PERKIN ELMER社製DSC7)を用いてDSC測定を行った。
試料温度は、
(1)20℃で3分間保持
(2)20℃から265℃に300℃/minで昇温
(3)265℃で3分間保持し溶解
(4)20℃に300℃/minで急冷
(5)20℃で3分間保持
(6)20℃から290℃に10℃/minで昇温
の順で走査し、(6)における昇温結晶化の発熱曲線の面積から結晶化エネルギーを求めた。
3. [Measurement of crystallization energy]
About the sample (8 mg) of the pellet used as the density of the maximum value of a density distribution curve, DSC measurement was performed using the differential scanning calorimeter (DSC7 by PERKIN ELMER).
The sample temperature is
(1) Hold at 20 ° C. for 3 minutes (2) Temperature rise from 20 ° C. to 265 ° C. at 300 ° C./min (3) Hold at 265 ° C. for 3 minutes and dissolve (4) Rapid cooling to 20 ° C. at 300 ° C./min (5 ) Hold at 20 ° C. for 3 minutes. (6) Scan from 20 ° C. to 290 ° C. in the order of temperature increase at 10 ° C./min.

4.[固有粘度の測定]
150℃4時間乾燥させたポリエステル樹脂のペレットを0.20g計量し、1,1,2,2−テトラクロロエタン/フェノール(1/1)(重量比)の混合溶媒を20ml用いて120℃で20分間撹拌させて完全に溶解させる。溶解後、室温まで冷却し、グラスフィルターを通した溶液を30℃に温調されたウベローデ粘度計((株)草野科学機械製作所社製)を用いて固有粘度を求めた。
またペレットをドライブレンドして用いた場合は、単体のペレットの固有粘度から算出した。
4). [Measurement of intrinsic viscosity]
0.20 g of polyester resin pellets dried at 150 ° C. for 4 hours was weighed, and 20 ml of a mixed solvent of 1,1,2,2-tetrachloroethane / phenol (1/1) (weight ratio) was used at 120 ° C. for 20 hours. Allow to stir for minutes to dissolve completely. After dissolution, the solution was cooled to room temperature, and the intrinsic viscosity was determined using an Ubbelohde viscometer (manufactured by Kusano Kagaku Kikai Co., Ltd.) whose temperature was adjusted to 30 ° C.
Further, when the pellet was used by dry blending, it was calculated from the intrinsic viscosity of a single pellet.

5.[プリフォーム成形]
(1)射出成形
150℃4時間乾燥したポリエステル樹脂をホッパーへ供給し、所定の成形温度に設定された射出成形機を用いて28g500ml用耐熱型プリフォームを作成した。このとき金型温度は20℃に設定し、成形サイクルを30秒とした。成形温度のプロファイルを表1に示した。条件1ではホットランナーの温度も290℃である従来の方法に対して、条件2から条件6ではホットランナーの温度が270℃以下の低温成形になっている。
5. [Preform molding]
(1) Injection molding A polyester resin dried at 150 ° C. for 4 hours was supplied to a hopper, and a 28 g 500 ml heat resistant preform was prepared using an injection molding machine set to a predetermined molding temperature. At this time, the mold temperature was set to 20 ° C., and the molding cycle was set to 30 seconds. The molding temperature profile is shown in Table 1. In condition 1, the temperature of the hot runner is 290 ° C., whereas in conditions 2 to 6, the hot runner temperature is 270 ° C. or lower.

Figure 0005320658
Figure 0005320658

(2)圧縮成形
150℃、4時間乾燥したポリエステル樹脂をホッパーへ供給し、成形温度が条件7または条件8のダイ下部のノズルから押出されたポリエステルを切断した溶融樹脂塊を圧縮成形装置へ搬送し、圧縮成形して28g、500ml用耐熱型プリフォームを作成した。このとき金型温度は20℃に設定し、溶融樹脂塊が圧縮成形装置へ搬送されてから圧縮成形が完了し、冷却後プリフォームを取り出すまでの成形サイクルを30秒とした。成形温度のプロファイルを表2に示した。
(2) Compression molding Supplying polyester resin dried at 150 ° C. for 4 hours to the hopper, and transporting the molten resin mass obtained by cutting the polyester extruded from the nozzle at the bottom of the die under molding conditions 7 or 8 to the compression molding machine Then, a heat-resistant preform for 28 g and 500 ml was prepared by compression molding. At this time, the mold temperature was set to 20 ° C., and the molding cycle from when the molten resin mass was conveyed to the compression molding apparatus until compression molding was completed and before the preform was taken out after cooling was 30 seconds. Table 2 shows the molding temperature profile.

Figure 0005320658
Figure 0005320658

6.評価、測定
(1)[プリフォームの白化状態の評価]
前記作成したプリフォームの白化状態を目視で観察した。
6). Evaluation, measurement (1) [Evaluation of whitening state of preform]
The whitening state of the prepared preform was visually observed.

(2)[アセトアルデヒド濃度の測定]
成形したプリフォームを切り出し、凍結粉砕した後1gをバイアル瓶に精秤し、超純水5mlを加えて蓋をした。超純水と試料を良く振り混ぜてから、あらかじめ120℃に設定した電気オーブンにて60分加熱した。加熱後、氷冷して静置し、上澄みを1ml取り出して0.1%2,4−ジニトロフェニルヒドラジン・リン酸0.2mlを加えてキャップを閉め、30分以上室温で放置した。高速液体クロマトグラフィー(東ソー(株)製・高速液体クロマトグラフィーシステム:CCP&8020システム、カラム:TSK−GEL ODS−80Ts 4.6mm×250mm、検知器:UV、360nm、溶媒:蒸留水:アセトニトリル=0.47:0.53混合溶媒、注入量:0μL)を用いて、得られた試料溶液中のアセトアルデヒド濃度を測定した。
尚、香味保持性の観点から、アセトアルデヒド濃度の上限許容量を13ppmとした。
(2) [Measurement of acetaldehyde concentration]
The molded preform was cut out, freeze-pulverized, and 1 g was precisely weighed into a vial, and 5 ml of ultrapure water was added to the lid. After ultrapure water and the sample were shaken well, the sample was heated in an electric oven set at 120 ° C. for 60 minutes. After heating, the mixture was cooled on ice and allowed to stand. 1 ml of the supernatant was taken out, 0.2 ml of 0.1% 2,4-dinitrophenylhydrazine / phosphoric acid was added, the cap was closed, and the mixture was allowed to stand at room temperature for 30 minutes or more. High performance liquid chromatography (manufactured by Tosoh Corporation, high performance liquid chromatography system: CCP & 8020 system, column: TSK-GEL ODS-80Ts 4.6 mm × 250 mm, detector: UV, 360 nm, solvent: distilled water: acetonitrile = 0. 47: 0.53 mixed solvent, injection amount: 0 μL), the acetaldehyde concentration in the obtained sample solution was measured.
In addition, from the viewpoint of flavor retention, the upper limit allowable amount of the acetaldehyde concentration was set to 13 ppm.

[実施例1]
密度分布曲線の最大値の密度が1.408g/cm、融点が253℃、融解終了温度が261℃、265℃で3分間溶融後急冷する操作に続いて10℃/分で昇温した際に得られる発熱曲線での昇温結晶化エネルギーが36J/g、固有粘度0.71dL/gのポリエチレンテレフタレート樹脂を150℃、4時間乾燥させた後、射出成形機に供給して成形温度を条件4でプリフォームを成形した。
次いで、得られたプリフォームの白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 1]
When the maximum density of the density distribution curve is 1.408 g / cm 3 , the melting point is 253 ° C., the melting end temperature is 261 ° C., 265 ° C., and the temperature is increased at 10 ° C./min following the operation of quenching for 3 minutes. A polyethylene terephthalate resin having a temperature rise crystallization energy of 36 J / g and an intrinsic viscosity of 0.71 dL / g in an exothermic curve obtained after drying at 150 ° C. for 4 hours is then supplied to an injection molding machine to set the molding temperature. A preform was formed at 4.
Subsequently, the whitening state of the obtained preform was observed and the acetaldehyde concentration was measured.

[実施例2]
密度分布曲線の最大値の密度が1.411g/cm、融点が261℃、融解終了温度が267℃、前記発熱曲線での昇温結晶化エネルギーが32J/g、固有粘度0.73dL/gのポリエチレンテレフタレート樹脂を用い、成形温度を条件2にした以外は、実施例1と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 2]
The maximum density of the density distribution curve is 1.411 g / cm 3 , the melting point is 261 ° C., the melting end temperature is 267 ° C., the temperature rising crystallization energy in the exothermic curve is 32 J / g, and the intrinsic viscosity is 0.73 dL / g. The preform was molded in the same manner as in Example 1 except that the polyethylene terephthalate resin was used and the molding temperature was changed to Condition 2, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例3]
成形温度を条件4にした以外は、実施例2と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 3]
A preform was molded in the same manner as in Example 2 except that the molding temperature was set to Condition 4, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例4]
プリフォームの成形を圧縮成形機でおこない、成形温度を条件7にした以外は、実施例4と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 4]
The preform was molded with a compression molding machine and the molding temperature was changed to Condition 7. A preform was molded in the same manner as in Example 4, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例5]
密度分布曲線の最大値の密度が1.409g/cm、融点が258℃、融解終了温度が265℃、前記発熱曲線での昇温結晶化エネルギーが31J/g、固有粘度0.84dL/gのポリエチレンテレフタレート樹脂を用いた以外は、実施例2と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 5]
The maximum density of the density distribution curve is 1.409 g / cm 3 , the melting point is 258 ° C., the melting end temperature is 265 ° C., the temperature rising crystallization energy in the exothermic curve is 31 J / g, and the intrinsic viscosity is 0.84 dL / g. A preform was molded in the same manner as in Example 2 except that the polyethylene terephthalate resin was used, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例6]
成形温度を条件4にした以外は、実施例5と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 6]
A preform was molded in the same manner as in Example 5 except that the molding temperature was set to Condition 4, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例7]
密度分布曲線の最大値の密度が1.408g/cm、融点が251℃、融解終了温度が262℃、前記発熱曲線での昇温結晶化エネルギーが35J/g、固有粘度0.91dL/gのポリエチレンテレフタレート樹脂を用いた以外は、実施例3と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 7]
The maximum density of the density distribution curve is 1.408 g / cm 3 , the melting point is 251 ° C., the melting end temperature is 262 ° C., the temperature rising crystallization energy in the exothermic curve is 35 J / g, and the intrinsic viscosity is 0.91 dL / g. A preform was molded in the same manner as in Example 3 except that the polyethylene terephthalate resin was used, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例8]
成形温度を条件5にした以外は、実施例5と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 8]
A preform was molded in the same manner as in Example 5 except that the molding temperature was changed to Condition 5, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例9]
密度分布曲線の最大値の密度が1.406g/cm、融点が263℃、融解終了温度が268℃、前記発熱曲線での昇温結晶化エネルギーが30J/g、固有粘度0.82dL/gのイソフタル酸を共重合したポリエチレンテレフタレート樹脂を用いた以外は、実施例1と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 9]
The maximum density of the density distribution curve is 1.406 g / cm 3 , the melting point is 263 ° C., the melting end temperature is 268 ° C., the temperature rising crystallization energy in the exothermic curve is 30 J / g, and the intrinsic viscosity is 0.82 dL / g. A preform was molded in the same manner as in Example 1 except that a polyethylene terephthalate resin copolymerized with isophthalic acid was used, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例10]
成形温度を条件5にした以外は、実施例9と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 10]
A preform was molded in the same manner as in Example 9 except that the molding temperature was changed to Condition 5, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例11]
プリフォームの成形を圧縮成形機で行い、成形温度を条件7にした以外は、実施例9と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 11]
A preform was molded in the same manner as in Example 9 except that the preform was molded using a compression molding machine and the molding temperature was changed to Condition 7, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例12]
成形温度を条件8にした以外は、実施例11と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 12]
A preform was molded in the same manner as in Example 11 except that the molding temperature was set to Condition 8, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例13]
樹脂Aとして密度分布曲線の最大値の密度が1.408g/cm、融点が253℃、融解終了温度が261℃、前記発熱曲線での昇温結晶化エネルギーが36J/g、固有粘度0.71dL/gのポリエチレンテレフタレート樹脂と、樹脂Bとして密度分布曲線の最大値の密度が1.409g/cm、融点が258℃、融解終了温度が265℃、前記発熱曲線での昇温結晶化エネルギーが31J/g、固有粘度0.84dL/gのポリエチレンテレフタレート樹脂を、重量比70:30でドライブレンドしたペレットを用いた以外は、実施例8と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 13]
As the resin A, the density of the maximum value of the density distribution curve is 1.408 g / cm 3 , the melting point is 253 ° C., the melting end temperature is 261 ° C., the temperature rising crystallization energy in the exothermic curve is 36 J / g, and the intrinsic viscosity is 0. 71 dL / g polyethylene terephthalate resin, and resin B has a maximum density density of 1.409 g / cm 3 , a melting point of 258 ° C., a melting end temperature of 265 ° C., and a temperature rising crystallization energy in the exothermic curve Was preformed in the same manner as in Example 8 except that pellets obtained by dry blending a polyethylene terephthalate resin having an intrinsic viscosity of 0.84 dL / g at a weight ratio of 70:30 were used, and the whitening state was observed. Acetaldehyde concentration was measured.

[実施例14]
樹脂Aと樹脂Bの重量比を、30:70でドライブレンドしたペレットを用いた以外は、実施例13と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 14]
Preform molding was performed in the same manner as in Example 13 except that pellets dry-blended at a weight ratio of resin A and resin B of 30:70 were used, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例15]
樹脂Aとして度分布曲線の最大値の密度が1.409g/cm、融点が258℃、融解終了温度が265℃、前記発熱曲線での昇温結晶化エネルギーが31J/g、固有粘度0.84dL/gのポリエチレンテレフタレート樹脂と、樹脂Bとして密度分布曲線の最大値の密度が1.406g/cm、融点が263℃、融解終了温度が268℃、前記発熱曲線での昇温結晶化エネルギーが30J/g、固有粘度0.82dL/gのイソフタル酸を共重合したポリエチレンテレフタレート樹脂を用い、成形温度を条件にした以外は、実施例13と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 15]
As resin A, the density of the maximum value of the degree distribution curve is 1.409 g / cm 3 , the melting point is 258 ° C., the melting end temperature is 265 ° C., the temperature rising crystallization energy in the exothermic curve is 31 J / g, and the intrinsic viscosity is 0. 84 dL / g polyethylene terephthalate resin, and resin B has a maximum density density of 1.406 g / cm 3 , a melting point of 263 ° C., a melting end temperature of 268 ° C., and an elevated temperature crystallization energy in the exothermic curve Was preformed in the same manner as in Example 13 except that a polyethylene terephthalate resin copolymerized with isophthalic acid having a viscosity of 30 J / g and an intrinsic viscosity of 0.82 dL / g was used, and the whitening state was observed. Acetaldehyde concentration was measured.

[実施例16]
樹脂Aと樹脂Bの重量比を、30:70でドライブレンドしたペレットを用いた以外は、実施例15と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 16]
Preform molding was performed in the same manner as in Example 15 except that pellets dry-blended at a weight ratio of resin A and resin B of 30:70 were used, and the whitening state was observed and the acetaldehyde concentration was measured.

[実施例17]
樹脂Aとして密度分布曲線の最大値の密度が1.411g/cm、融点が261℃、融解終了温度が267℃、前記発熱曲線での昇温結晶化エネルギーが32J/g、固有粘度0.73dL/gのポリエチレンテレフタレート樹脂と、樹脂Bとして密度分布曲線の最大値の密度が1.408g/cm、融点が251℃、融解終了温度が262℃、前記発熱曲線での昇温結晶化エネルギーが35J/g、固有粘度0.91dL/gのポリエチレンテレフタレート樹脂を、重量比70:30でドライブレンドしたペレットを用いた以外は、実施例4と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 17]
As the resin A, the density of the maximum value of the density distribution curve is 1.411 g / cm 3 , the melting point is 261 ° C., the melting end temperature is 267 ° C., the temperature rising crystallization energy in the exothermic curve is 32 J / g, and the intrinsic viscosity is 0. 73 dL / g of polyethylene terephthalate resin, and the maximum density of the density distribution curve as resin B is 1.408 g / cm 3 , melting point is 251 ° C., melting end temperature is 262 ° C., temperature rising crystallization energy in the exothermic curve Was preformed in the same manner as in Example 4 except that pellets obtained by dry blending a polyethylene terephthalate resin having an inherent viscosity of 0.91 dL / g at a weight ratio of 70:30 were used, and the whitening state was observed. Acetaldehyde concentration was measured.

[実施例18]
樹脂Aとして密度分布曲線の最大値の密度が1.407g/cm、融点が253℃、融解終了温度が264℃、前記発熱曲線での昇温結晶化エネルギーが50J/g、固有粘度0.62dL/gのポリエチレンテレフタレート樹脂と、樹脂Bとして密度分布曲線の最大値の密度が1.408g/cm、融点が251℃、融解終了温度が262℃、前記発熱曲線での昇温結晶化エネルギーが35J/g、固有粘度0.91dL/gのポリエチレンテレフタレート樹脂を、重量比30:70でドライブレンドしたペレットを用いた以外は、実施例4と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Example 18]
As the resin A, the density of the maximum value of the density distribution curve is 1.407 g / cm 3 , the melting point is 253 ° C., the melting end temperature is 264 ° C., the temperature rising crystallization energy in the exothermic curve is 50 J / g, and the intrinsic viscosity is 0. 62 dL / g polyethylene terephthalate resin, and resin B has a maximum density density of 1.408 g / cm 3 , a melting point of 251 ° C., a melting end temperature of 262 ° C., and an elevated temperature crystallization energy in the exothermic curve Was preformed in the same manner as in Example 4 except that pellets obtained by dry blending a polyethylene terephthalate resin having an intrinsic viscosity of 0.91 dL / g at a weight ratio of 30:70 were used, and the whitening state was observed. Acetaldehyde concentration was measured.

[比較例1]
密度分布曲線の最大値の密度が1.407g/cm、融点が253℃、融解終了温度が264℃、前記発熱曲線での昇温結晶化エネルギーが50J/g、固有粘度0.62dL/gのポリエチレンテレフタレート樹脂を用いた以外は、実施例4と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Comparative Example 1]
The maximum density of the density distribution curve is 1.407 g / cm 3 , the melting point is 253 ° C., the melting end temperature is 264 ° C., the temperature rising crystallization energy in the exothermic curve is 50 J / g, and the intrinsic viscosity is 0.62 dL / g. A preform was molded in the same manner as in Example 4 except that the polyethylene terephthalate resin was used, and the whitening state was observed and the acetaldehyde concentration was measured.

[比較例2]
密度分布曲線の最大値の密度が1.412g/cm、融点が270℃、融解終了温度が280℃、前記発熱曲線での昇温結晶化エネルギーが28J/g、固有粘度0.71dL/gのポリエチレンテレフタレート樹脂を用いる以外は実施例1と同様にプリフォーム成形し、白化の状態を観察し、アセトアルデヒドの濃度の測定を行った。
[Comparative Example 2]
The maximum density of the density distribution curve is 1.412 g / cm 3 , the melting point is 270 ° C., the melting end temperature is 280 ° C., the temperature rising crystallization energy in the exothermic curve is 28 J / g, and the intrinsic viscosity is 0.71 dL / g. Except for using polyethylene terephthalate resin, preform molding was performed in the same manner as in Example 1, the whitening state was observed, and the concentration of acetaldehyde was measured.

[比較例3]
成形温度を条件1にした以外は、実施例2と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド含有量の測定を行った。
[Comparative Example 3]
A preform was molded in the same manner as in Example 2 except that the molding temperature was changed to Condition 1, and the whitening state was observed and the acetaldehyde content was measured.

[比較例4]
成形温度を条件6にした以外は、実施例2と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Comparative Example 4]
A preform was molded in the same manner as in Example 2 except that the molding temperature was set to Condition 6, and the whitening state was observed and the acetaldehyde concentration was measured.

[比較例5]
密度分布曲線の最大値の密度が1.415g/cm、融点が268℃、融解終了温度が275℃、前記発熱曲線での昇温結晶化エネルギーが11J/g、固有粘度0.73dL/gのポリエチレンテレフタレート樹脂を用い、成形温度を条件3にした以外は、実施例1と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Comparative Example 5]
The maximum density of the density distribution curve is 1.415 g / cm 3 , the melting point is 268 ° C., the melting end temperature is 275 ° C., the temperature rising crystallization energy in the exothermic curve is 11 J / g, and the intrinsic viscosity is 0.73 dL / g. The polyethylene terephthalate resin was subjected to preform molding in the same manner as in Example 1 except that the molding temperature was changed to Condition 3, and the whitening state was observed and the acetaldehyde concentration was measured.

[比較例6]
成形温度を条件4にした以外は、比較例5と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Comparative Example 6]
A preform was molded in the same manner as in Comparative Example 5 except that the molding temperature was changed to Condition 4, and the whitening state was observed and the acetaldehyde concentration was measured.

[比較例7]
プリフォームの成形を圧縮成形機で行い、成形温度を条件7にした以外は、実施例6と同様にプリフォームを成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Comparative Example 7]
The preform was molded with a compression molding machine and the molding temperature was changed to condition 7, and the preform was molded in the same manner as in Example 6, and the whitening state was observed and the acetaldehyde concentration was measured.

[比較例8]
密度分布曲線の最大値の密度が1.414g/cm、融点が251℃、融解終了温度が263℃、前記発熱曲線での昇温結晶化エネルギーが4J/g、固有粘度0.74dL/gのポリエチレンテレフタレート樹脂を用いた以外は、実施例1と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Comparative Example 8]
The maximum density of the density distribution curve is 1.414 g / cm 3 , the melting point is 251 ° C., the melting end temperature is 263 ° C., the temperature rising crystallization energy in the exothermic curve is 4 J / g, and the intrinsic viscosity is 0.74 dL / g. Except for using the polyethylene terephthalate resin, preform molding was performed in the same manner as in Example 1, and the whitening state was observed and the acetaldehyde concentration was measured.

[比較例9]
樹脂Aとして密度分布曲線の最大値の密度が1.412g/cm、融点が270℃、融解終了温度が280℃、前記発熱曲線での昇温結晶化エネルギーが28J/g、固有粘度0.71dL/gのポリエチレンテレフタレート樹脂を用いた以外は、実施例13と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Comparative Example 9]
As the resin A, the density of the maximum value of the density distribution curve is 1.412 g / cm 3 , the melting point is 270 ° C., the melting end temperature is 280 ° C., the temperature rising crystallization energy in the exothermic curve is 28 J / g, and the intrinsic viscosity is 0. Except that a 71 dL / g polyethylene terephthalate resin was used, a preform was formed in the same manner as in Example 13, and the whitening state was observed and the acetaldehyde concentration was measured.

[比較例10]
重量比30:70でドライブレンドしたペレットを用いた以外は、比較例9と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Comparative Example 10]
Except for using dry blended pellets at a weight ratio of 30:70, the preform was molded in the same manner as in Comparative Example 9, and the whitening state was observed and the acetaldehyde concentration was measured.

[比較例11]
樹脂Aとして密度分布曲線の最大値の密度が1.415g/cm、融点が268℃、融解終了温度が275℃、前記発熱曲線での昇温結晶化エネルギーが11J/g、固有粘度0.73dL/gのポリエチレンテレフタレート樹脂を用いた以外は、実施例17と同様にプリフォーム成形し、白化状態の観察とアセトアルデヒド濃度の測定を行った。
[Comparative Example 11]
As the resin A, the density of the maximum value of the density distribution curve is 1.415 g / cm 3 , the melting point is 268 ° C., the melting end temperature is 275 ° C., the temperature rising crystallization energy in the exothermic curve is 11 J / g, the intrinsic viscosity is 0. Except that 73 dL / g polyethylene terephthalate resin was used, a preform was formed in the same manner as in Example 17, and the whitening state was observed and the acetaldehyde concentration was measured.

前記実施例、比較例における成形条件、評価、測定結果を表3に示す。 Table 3 shows molding conditions, evaluations, and measurement results in the examples and comparative examples.

Figure 0005320658
Figure 0005320658

Claims (2)

密度分布曲線における密度の最大値が1.406g/cm以上1.415g/cm未満、DSC測定により20℃から290℃に10℃/minで昇温することにより得られた溶融曲線とベースラインの高温側交点である融解終了温度が270℃未満、265℃で3分間溶融後急冷する操作に続いて10℃/分で昇温した際に得られる発熱曲線での昇温結晶化エネルギーが15J/g以上、且つ固有粘度が0.71dL/g以上であるポリエステル樹脂から成り、該ポリエステル樹脂がポリエチレンテレフタレート又はイソフタル酸共重合ポリエチレンテレフタレートであることを特徴とする低温成形用ポリエステル樹脂ペレットThe maximum value of density in the density distribution curve is 1.406 g / cm 3 or more and less than 1.415 g / cm 3 , and the melting curve and base obtained by heating from 20 ° C. to 290 ° C. at 10 ° C./min by DSC measurement The crystallization crystallization energy in the exothermic curve obtained when the temperature is increased at 10 ° C / min following the operation of melting at a high temperature side intersection of less than 270 ° C and melting at 265 ° C for 3 minutes followed by rapid cooling A polyester resin pellet for low temperature molding comprising a polyester resin having an intrinsic viscosity of 15 J / g or more and an intrinsic viscosity of 0.71 dL / g or more , wherein the polyester resin is polyethylene terephthalate or isophthalic acid copolymerized polyethylene terephthalate . 請求項1記載のポリエステル樹脂ペレットを、Tm≦T≦Tm+20℃(Tmはポリエステル樹脂の融点、Tは溶融ポリエステル樹脂の温度)の範囲の樹脂温度で射出成形又は圧縮成形して成ることを特徴とするプリフォーム。 The polyester resin pellet according to claim 1 is formed by injection molding or compression molding at a resin temperature in a range of Tm ≦ T ≦ Tm + 20 ° C. (Tm is a melting point of the polyester resin, T is a temperature of the molten polyester resin). Preform to do.
JP2005315224A 2005-10-28 2005-10-28 Low temperature molding polyester resin pellets and preforms Active JP5320658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315224A JP5320658B2 (en) 2005-10-28 2005-10-28 Low temperature molding polyester resin pellets and preforms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315224A JP5320658B2 (en) 2005-10-28 2005-10-28 Low temperature molding polyester resin pellets and preforms

Publications (2)

Publication Number Publication Date
JP2007119644A JP2007119644A (en) 2007-05-17
JP5320658B2 true JP5320658B2 (en) 2013-10-23

Family

ID=38143822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315224A Active JP5320658B2 (en) 2005-10-28 2005-10-28 Low temperature molding polyester resin pellets and preforms

Country Status (1)

Country Link
JP (1) JP5320658B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103554450B (en) * 2008-12-26 2015-07-29 东洋制罐集团控股株式会社 Container forming ethylene glycol terephthalate type vibrin and production method thereof
JP2010150487A (en) * 2008-12-26 2010-07-08 Toyo Seikan Kaisha Ltd Ethylene terephthalate-based polyester resin for molding container and method for manufacturing the same
JP2010150488A (en) * 2008-12-26 2010-07-08 Toyo Seikan Kaisha Ltd Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin
JP6056755B2 (en) * 2011-07-07 2017-01-11 東洋製罐株式会社 Ethylene terephthalate polyester resin for container molding and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253563A (en) * 1989-03-31 1996-10-01 Mitsui Petrochem Ind Ltd Method for treating polyethylene terephthalate
JP3121876B2 (en) * 1991-08-15 2001-01-09 帝人株式会社 Cooling method of solid phase polymerized polyester
JP3737302B2 (en) * 1998-02-25 2006-01-18 三井化学株式会社 New polyester pellets and method for producing polyester pellets

Also Published As

Publication number Publication date
JP2007119644A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
TW201833175A (en) Polyester, method for producing the same and shaped article of the same
KR101553134B1 (en) Ethylene terephthalate type polyester resin for forming containers, and method of producing the same
JP2005503462A (en) Polyesters with improved crystallization behavior and extrusion blow molded articles made therefrom
CA2592391A1 (en) Poly(trimethylene terephthalate) composition and shaped articles prepared therefrom
JP5320658B2 (en) Low temperature molding polyester resin pellets and preforms
CN1898297A (en) Aromatic polyester composition for making stretch blow molded containers
JP2006070101A (en) Polyester resin, resin composition, preform for stretch blow molding and hollow container
JP5568846B2 (en) Method for producing polyester resin and molded body comprising this polyester resin
JP5470992B2 (en) Polyester resin for blending
JP3331719B2 (en) Copolyester for direct blow bottle
JP2010150488A (en) Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin
JP4882230B2 (en) Polyester resin and preform manufacturing method
US8318842B2 (en) Titanium-containing PET copolyester resin suitable for use in producing refillable large volume container up to 20 loops of returning
JP2007002240A (en) Stretch blow molded polyester article and method for producing the same
JP2010150487A (en) Ethylene terephthalate-based polyester resin for molding container and method for manufacturing the same
JP2723141B2 (en) Polyester resin composition and use thereof
US20110263812A1 (en) Ethylene terephthalate type polyester resin for forming containers and process for producing the same
TW562731B (en) Process for manufacturing hollow articles, and the hollow articles, preforms and bottles obtained by this process
EP2270065A2 (en) Poly(trimethylene terephthalate) composition and shaped articles prepared therefrom
JP2004330715A (en) Polyester vessel and manufacturing method thereof
JPH02165911A (en) Molding method for saturable crystalline polyester
JP3730398B2 (en) Thermoplastic polyester resin composition and injection blow molded article comprising the same
JP2006192890A (en) Manufacturing method of polyester preform and polyester stretched body, and polyester shaped body obtained by manufacturing method of them
WO2013077294A1 (en) Polyester resin
JPH06157879A (en) Polyester resin composition and bottle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130510

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5320658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150