JP2010150488A - Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin - Google Patents

Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin Download PDF

Info

Publication number
JP2010150488A
JP2010150488A JP2008333174A JP2008333174A JP2010150488A JP 2010150488 A JP2010150488 A JP 2010150488A JP 2008333174 A JP2008333174 A JP 2008333174A JP 2008333174 A JP2008333174 A JP 2008333174A JP 2010150488 A JP2010150488 A JP 2010150488A
Authority
JP
Japan
Prior art keywords
polyester resin
preform
less
crystallization
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008333174A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kitano
善拡 北野
Kazuhiko Nakamura
和彦 中村
Atsushi Kikuchi
淳 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2008333174A priority Critical patent/JP2010150488A/en
Priority to PCT/JP2009/071592 priority patent/WO2010074230A1/en
Priority to CN201310471268.9A priority patent/CN103554450B/en
Priority to CN200980157617.1A priority patent/CN102333810B/en
Priority to US13/142,047 priority patent/US20110263812A1/en
Priority to EP09835026.7A priority patent/EP2371874A4/en
Publication of JP2010150488A publication Critical patent/JP2010150488A/en
Priority to US13/770,244 priority patent/US20130158228A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester resin in which monomers such as monohydroxyethyl terephthalate (MHET) and bishydroxyethyl terephthalate (BHET) are reduced to prevent problems from occurring at the time of molding a container. <P>SOLUTION: The polyester resin is characterized in that intrinsic viscosity is in a range of 0.65 to 0.80 dL/g, total content of monohydroxyethyl terephthalate and bishydroxyethyl terephthalate is less than 0.005 wt.%, acetaldehyde concentration is 2 to 10 ppm, the peak time of crystallization in isothermal crystallization at 210°C is 360 seconds or less and the crystallization energy (ΔH) is 30 J/g or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エチレンテレフタレート系ポリエステル樹脂に関するものであり、より詳細には、モノヒドロキシエチルテレフタレートとビスヒドロキシエチルテレフタレートの含有量が低減された耐熱容器成形用のエチレンテレフタレート系ポリエステル樹脂及びこの樹脂から成るプリフォームに関する。   The present invention relates to an ethylene terephthalate-based polyester resin, and more specifically, an ethylene terephthalate-based polyester resin for molding a heat-resistant container having a reduced content of monohydroxyethyl terephthalate and bishydroxyethyl terephthalate, and the resin. Regarding preform.

ポリエチレンテレフタレートに代表されるポリエステル樹脂から成る容器は、透明性、機械的強度等の特性に優れていることから、飲料、油、調味料等の容器として広く用いられている。
容器成形に用いられるポリエステル樹脂としては一般に、溶融重合により得られるポリエステル樹脂、或いは溶融重合後に固相重合を経て得られるポリエステル樹脂が用いられている。
溶融重合により製造されたポリエステル樹脂は、固相重合を経て得られる同等の固有粘度のポリエステル樹脂に比して安価であると共に、モノヒドロキシエチルテレフタレート(以下、単に「MHET」という)やビスヒドロキシエチルテレフタレート(以下、単に「BHET」という)等の低融点を有するモノマー、環状三量体等のオリゴマー、アセトアルデヒド等の揮発成分、更に分子量が10000以下の低分子量成分の含有量が固相重合を経て得られる同等の固有粘度のポリエステル樹脂に比して多いという特徴を有している。
Containers made of a polyester resin typified by polyethylene terephthalate are widely used as containers for beverages, oils, seasonings and the like because of their excellent properties such as transparency and mechanical strength.
As a polyester resin used for container molding, a polyester resin obtained by melt polymerization or a polyester resin obtained by solid-phase polymerization after melt polymerization is generally used.
Polyester resins produced by melt polymerization are less expensive than polyester resins of the same intrinsic viscosity obtained through solid phase polymerization, and are monohydroxyethyl terephthalate (hereinafter simply referred to as “MHET”) or bishydroxyethyl. The content of a monomer having a low melting point such as terephthalate (hereinafter simply referred to as “BHET”), an oligomer such as a cyclic trimer, a volatile component such as acetaldehyde, and a low molecular weight component having a molecular weight of 10,000 or less undergoes solid phase polymerization. It has the characteristic that there are many compared with the polyester resin of the equivalent intrinsic viscosity obtained.

このようなモノマーやオリゴマーを多く含んだ状態のポリエステル樹脂を用いて容器の成形を行うと、成形時にポリエステル樹脂中のモノマーやオリゴマーが析出し、上記MHETやBHETの存在を原因として、圧縮成形の場合には、ドロップの搬送金型表面に付着して、溶融樹脂塊をキャビティに正確に供給することが困難になって、生産性に劣るようになり、また射出成形の場合には、金型のエアーベント口に環状三量体などのオリゴマーが付着して詰まって、頻繁な清掃が必要になる。更に容器に耐熱性を付与するために行う熱固定の際には、上記MHETやBHETの存在を原因として環状三量体が金型表面に付着して、肌荒れによる透明性低下の原因になる、或いは頻繁な金型の清掃が必要になる等の問題があった。   When the container is molded using a polyester resin containing a large amount of such monomers and oligomers, the monomers and oligomers in the polyester resin are precipitated during molding, and the presence of MHET and BHET causes the compression molding. In this case, it becomes difficult to accurately supply the molten resin lump to the cavity by adhering to the surface of the drop conveyance mold, resulting in poor productivity, and in the case of injection molding, the mold Oligomer such as a cyclic trimer adheres to the air vent port and becomes clogged, and frequent cleaning is required. Furthermore, when heat setting is performed to impart heat resistance to the container, the cyclic trimer adheres to the mold surface due to the presence of the MHET and BHET, causing a decrease in transparency due to rough skin. Or there was a problem such as frequent cleaning of the mold.

このような問題を解決するものとして、例えば下記特許文献1には、ポリエステル樹脂組成物を、50℃以上110℃以下の水に5分間以上5時間以下接触させ、且つ、110℃以上180℃以下の温度で4kPa以下にまで減圧した状態に3時間以上保持することを特徴とするポリエステル樹脂組成物の製造方法が提案されている。   As a solution to such a problem, for example, in Patent Document 1 below, a polyester resin composition is brought into contact with water at 50 ° C. or higher and 110 ° C. or lower for 5 minutes or longer and 5 hours or shorter, and 110 ° C. or higher and 180 ° C. or lower. A method for producing a polyester resin composition has been proposed, which is maintained for 3 hours or more in a state where the pressure is reduced to 4 kPa or less at a temperature of 5 ° C.

特開2001−121273号公報JP 2001-121273 A

上記特許文献1においては、熱水処理によりポリエステル樹脂中に存在する触媒を失活させ、更に加熱処理が必要であることから、工程数が多く、経済性の点で充分満足するものではない。
また、溶融重合後に固相重合に付されたポリエステル樹脂は、MHETやBHET、或いは環状三量体やアセトアルデヒド等が低減されているが、高価であり、汎用容器に用いるには経済性の点で問題がある。加えて固相重合に付されたポリエステル樹脂ペレットは高い結晶化度を有しており溶融性が悪いため、溶融成形時において、未溶融成分の存在を原因とする成形物の曇りが生じる、またそれを防ぐために成形温度を高温に設定すると樹脂が劣化する、といった問題を引き起こす。更に樹脂の結晶化速度が遅いという特徴を有することから、耐熱性容器の製造において行われる、口部の結晶化及び熱固定を効率的に行うことが困難である。
In the above-mentioned Patent Document 1, the catalyst present in the polyester resin is deactivated by hot water treatment, and further heat treatment is required. Therefore, the number of steps is large, and it is not sufficiently satisfactory in terms of economy.
In addition, MHET, BHET, cyclic trimer, acetaldehyde, etc. are reduced in the polyester resin subjected to solid phase polymerization after melt polymerization, but it is expensive and economical in terms of use for general purpose containers. There's a problem. In addition, the polyester resin pellets subjected to solid-phase polymerization have high crystallinity and poor meltability, and therefore, during melt molding, the molded product becomes cloudy due to the presence of unmelted components. In order to prevent this, if the molding temperature is set to a high temperature, a problem that the resin deteriorates is caused. Furthermore, since it has the characteristic that the crystallization speed | rate of resin is slow, it is difficult to perform efficiently the crystallization and heat setting of a mouth part performed in manufacture of a heat resistant container.

従って本発明の目的は、MHET及びBHET等のモノマーが低減され、容器成形の際に生じる上述した問題を生じることがないポリエステル樹脂を提供することである。
また本発明の他の目的は、効率よく口部の結晶化及び熱固定を行うことができ、生産性及び経済性に優れた耐熱容器を成形可能なプリフォームを提供することである。
本発明の更に他の目的は、アセトアルデヒド濃度が低減され、フレーバー性に優れた耐熱容器を成形可能なプリフォームを提供することである。
Accordingly, an object of the present invention is to provide a polyester resin in which monomers such as MHET and BHET are reduced and the above-mentioned problems that occur during container molding do not occur.
Another object of the present invention is to provide a preform that can efficiently crystallize and heat-set the mouth and can form a heat-resistant container excellent in productivity and economy.
Still another object of the present invention is to provide a preform capable of forming a heat-resistant container having a reduced acetaldehyde concentration and excellent flavor properties.

本発明によれば、固有粘度が0.65乃至0.80dL/gの範囲にあると共に、モノヒドロキシエチルテレフタレートとビスヒドロキシエチルテレフタレートとの合計含有量が0.005重量%未満であり、アセトアルデヒド濃度が2乃至10ppmであり、且つ210℃の等温結晶化における結晶化のピーク時間が360秒以下及び結晶化エネルギー(ΔH)が30J/g以上であることを特徴とする耐熱容器成形用エチレンテレフタレート系ポリエステル樹脂が提供される。
本発明によればまた、固有粘度が0.65乃至0.80dL/gの範囲にあると共に、モノヒドロキシエチルテレフタレートとビスヒドロキシエチルテレフタレートとの合計含有量が0.005重量%未満であり、アセトアルデヒド濃度が2乃至10ppmであり、且つ10000以下の分子量成分が8%以上であることを特徴とする耐熱容器成形用エチレンテレフタレート系ポリエステル樹脂が提供される。
本発明のポリエステル樹脂においては、共重合成分として含有されるジエチレングリコール及びイソフタル酸の合計量が1.5重量%以下であることが好適である。
According to the present invention, the intrinsic viscosity is in the range of 0.65 to 0.80 dL / g, the total content of monohydroxyethyl terephthalate and bishydroxyethyl terephthalate is less than 0.005% by weight, and the acetaldehyde concentration Is an ethylene terephthalate system for molding heat-resistant containers, characterized in that the crystallization peak time in isothermal crystallization at 210 ° C. is 360 seconds or less and the crystallization energy (ΔH) is 30 J / g or more. A polyester resin is provided.
According to the invention, the intrinsic viscosity is in the range of 0.65 to 0.80 dL / g, the total content of monohydroxyethyl terephthalate and bishydroxyethyl terephthalate is less than 0.005% by weight, and acetaldehyde An ethylene terephthalate-based polyester resin for forming a heat-resistant container is provided, which has a concentration of 2 to 10 ppm and a molecular weight component of 10,000 or less is 8% or more.
In the polyester resin of the present invention, the total amount of diethylene glycol and isophthalic acid contained as copolymerization components is preferably 1.5% by weight or less.

本発明によればまた、上記エチレンテレフタレート系ポリエステル樹脂から成り、固有粘度が0.65乃至0.80dL/gの範囲にあると共に、モノヒドロキシエチルテレフタレートとビスヒドロキシエチルテレフタレートとの合計含有量が0.010重量%未満であり、アセトアルデヒド濃度が15ppm以下であり、且つ210℃の等温結晶化における結晶化のピーク時間が60秒以下及び結晶化エネルギー(ΔH)が20J/g以上であることを特徴とするプリフォームが提供される。
本発明のプリフォームにおいては、共重合成分として含有されるジエチレングリコール及びイソフタル酸の合計量が2.7重量%以下であることが好適である。
本発明によれば更に、溶融重合により得られたエチレンテレフタレート系ポリエステル樹脂を170乃至200℃の温度で1時間以上5時間未満加熱処理を行うことを特徴とする上記エチレンテレフタレート系ポリエステル樹脂の製造方法が提供される。
According to the present invention, it is also composed of the above-mentioned ethylene terephthalate polyester resin, has an intrinsic viscosity in the range of 0.65 to 0.80 dL / g, and has a total content of monohydroxyethyl terephthalate and bishydroxyethyl terephthalate of 0. .010% by weight, the acetaldehyde concentration is 15 ppm or less, the peak time of crystallization in isothermal crystallization at 210 ° C. is 60 seconds or less, and the crystallization energy (ΔH) is 20 J / g or more. A preform is provided.
In the preform of the present invention, the total amount of diethylene glycol and isophthalic acid contained as copolymerization components is preferably 2.7% by weight or less.
According to the present invention, the ethylene terephthalate-based polyester resin obtained by melt polymerization is further subjected to a heat treatment at a temperature of 170 to 200 ° C. for 1 hour or more and less than 5 hours. Is provided.

本発明の耐熱容器成形用エチレンテレフタレート系ポリエステル樹脂においては、環状三量体等のオリゴマー成分及び高分子成分付着のバインダーとなるモノマー成分のうち、特に低融点で粘着の原因になると考えられるMHET及びBHETが低減されているため、従来容器成形の際に生じていた問題、すなわち圧縮成形の際に搬送金型表面に樹脂が付着して、成形性が低下することや、射出成形の際に金型のエアーベント口に樹脂が詰まって、頻繁な清掃が余儀なくされること、或いは熱固定の際に環状三量体や樹脂が金型表面に付着して、肌荒れによる透明性低下の原因になったり、或いは頻繁な金型の清掃が余儀なくされたりすること、等の問題が生じることがない。   In the ethylene terephthalate-based polyester resin for molding a heat-resistant container of the present invention, among the oligomer component such as a cyclic trimer and the monomer component serving as a binder for the polymer component, MHET which is considered to cause adhesion particularly at a low melting point and Since BHET has been reduced, problems that have occurred during container molding in the past, that is, resin adheres to the surface of the conveying mold during compression molding, resulting in a decrease in moldability, and mold during injection molding. Resin clogs the mold's air vent and requires frequent cleaning, or cyclic trimer or resin adheres to the mold surface during heat setting, leading to reduced transparency due to rough skin. Or the need to frequently clean the mold does not occur.

また本発明の耐熱容器成形用エチレンテレフタレート系ポリエステル樹脂においては、210℃の等温結晶化における結晶化のピーク時間が360秒以下と、固相重合を経て得られるポリエステル樹脂の結晶化のピーク時間(例えば、後述する比較例7〜9)に比して短いことから明らかなように、結晶化しやすく、しかも結晶化エネルギー(ΔH)が30J/g以上と大きいことから結晶が成長しやすいので、結晶化速度が速く、耐熱容器成形のために必要な口部結晶化や熱固定を効率よく行うことができ、生産性及び経済性よく成形することが可能となる。
尚、結晶化のピーク時間及び結晶化エネルギーの等温結晶化の測定基準を210℃にするのは、本発明のポリエステル樹脂からなるプリフォームの口部結晶化温度が210℃前後であることから、この温度範囲での結晶化特性がプリフォーム口部の結晶化時間に関与するからである。
更に本発明の耐熱容器成形用エチレンテレフタレート系ポリエステル樹脂においては、分子量が10000以下の低分子量成分が8%以上の量で含有されており、この分子量が10000以下の低分子量成分が結晶核剤として作用するため、結晶化速度が速く、やはり口部結晶化や熱固定を効率よく行うことが可能となるのである。
Further, in the ethylene terephthalate-based polyester resin for molding heat-resistant containers of the present invention, the peak time of crystallization in isothermal crystallization at 210 ° C. is 360 seconds or less, and the peak time of crystallization of the polyester resin obtained through solid-phase polymerization ( For example, as apparent from the fact that it is shorter than Comparative Examples 7 to 9) to be described later, it is easy to crystallize, and since the crystallization energy (ΔH) is as large as 30 J / g or more, the crystal is likely to grow. The crystallization speed is fast, the mouth crystallization and heat setting necessary for forming the heat-resistant container can be performed efficiently, and the molding can be performed with high productivity and economy.
Note that the crystallization peak time and the crystallization energy isothermal crystallization measurement standard are 210 ° C because the mouth crystallization temperature of the preform made of the polyester resin of the present invention is around 210 ° C. This is because the crystallization characteristics in this temperature range are related to the crystallization time of the preform mouth.
Furthermore, in the ethylene terephthalate polyester resin for molding heat-resistant containers of the present invention, a low molecular weight component having a molecular weight of 10,000 or less is contained in an amount of 8% or more, and the low molecular weight component having a molecular weight of 10,000 or less is used as a crystal nucleating agent. Therefore, the crystallization speed is high, and the mouth crystallization and heat setting can be efficiently performed.

すなわち、本発明のポリエステル樹脂から成るプリフォーム(実施例1)と固相重合を経て得られたポリエステル樹脂から成るプリフォーム(比較例7)の口部の結晶化時間と到達結晶化度(χc)の関係を示す図1から明らかなように、本発明のポリエステル樹脂から成るプリフォームは、結晶化度が0.30に達するのに70秒程度しかかからないのに対して、固相重合を経て得られたポリエステル樹脂では、結晶化度が0.30に達するのに90秒以上必要であり、本発明のポリエステル樹脂からなるプリフォームが効率よく口部結晶化できることが明らかである。
また本発明のポリエステル樹脂は、固相重合を経て得られるポリエステル樹脂のようにペレットの結晶化度が高くないため、ペレットの内面から外側へのアセトアルデヒドの拡散速度が遅くなることがなく、固相重合より低温の処理においても短時間にてアセトアルデヒドを低減することができる。さらに、溶融性が良く、融点終了温度が固相重合によるポリエステル樹脂に比して低いため、低温で成形することが可能であり、MHETやBHETおよびアセトアルデヒドを増加させることなくプリフォーム或いは容器を成形することができる。
That is, the crystallization time and ultimate crystallinity (χc) of the mouth of the preform made of the polyester resin of the present invention (Example 1) and the preform made of the polyester resin obtained through solid phase polymerization (Comparative Example 7). As is clear from FIG. 1 showing the relationship of), the preform made of the polyester resin of the present invention takes only about 70 seconds to reach a crystallinity of 0.30, whereas it undergoes solid-state polymerization. In the obtained polyester resin, it takes 90 seconds or more for the crystallinity to reach 0.30, and it is clear that the preform made of the polyester resin of the present invention can be efficiently crystallized at the mouth.
Further, since the polyester resin of the present invention is not high in the crystallinity of the pellet as in the polyester resin obtained through solid phase polymerization, the diffusion rate of acetaldehyde from the inner surface to the outer side of the pellet does not slow down, Acetaldehyde can be reduced in a short time even in a treatment at a lower temperature than the polymerization. Furthermore, it has good meltability and its melting point end temperature is lower than that of polyester resin by solid-phase polymerization, so it can be molded at low temperature, and preforms or containers can be molded without increasing MHET, BHET and acetaldehyde. can do.

更に本発明のポリエステル樹脂を、本発明のポリエステル樹脂以外のポリエステル樹脂とブレンドしてプリフォーム成形に用いることもできる。
例えば固相重合を経て得られたポリエステル樹脂とのブレンド物(実施例6)、或いは溶融重合ポリエステル樹脂とのブレンド物(実施例7)を用いて成形されたプリフォームは、本発明のポリエステル樹脂を少量しか用いていないにもかかわらず、本発明のポリエステル樹脂のみから成るプリフォームと同様の特性を有することが可能であり、固相重合を経て得られたポリエステル樹脂等を効率よく結晶化速度を速めることが可能となる。
更に本発明のポリエステル樹脂はアセトアルデヒド濃度が15ppm以下に低減されているため、これを用いて成形される容器はフレーバー性にも優れている。
また本発明のポリエステル樹脂の製造方法においては、溶融重合による汎用ポリエステル樹脂を用いて、上述した特徴を有するポリエステル樹脂を製造することが可能となる。
Furthermore, the polyester resin of the present invention can be blended with a polyester resin other than the polyester resin of the present invention and used for preform molding.
For example, a preform formed using a blend with a polyester resin obtained through solid-phase polymerization (Example 6) or a blend with a melt-polymerized polyester resin (Example 7) is used as the polyester resin of the present invention. Despite the fact that only a small amount is used, it is possible to have the same characteristics as a preform made of only the polyester resin of the present invention, and the polyester resin obtained through solid phase polymerization can be efficiently crystallized. Can be accelerated.
Furthermore, since the acetaldehyde concentration of the polyester resin of the present invention is reduced to 15 ppm or less, a container molded using the polyester resin has excellent flavor properties.
Moreover, in the manufacturing method of the polyester resin of this invention, it becomes possible to manufacture the polyester resin which has the characteristic mentioned above using the general purpose polyester resin by melt polymerization.

(ポリエステル樹脂の合成)
本発明のエチレンテレフタレート系ポリエステル樹脂は、溶融重合後に後述する加熱処理を行い、固有粘度が0.65乃至0.80dL/gの範囲にあると共に、MHETとBHETとの合計含有量が0.005重量%未満であり、アセトアルデヒド濃度が2乃至10ppmであり、且つ210℃の等温結晶化における結晶化のピーク時間が360秒以下及び結晶化エネルギー(ΔH)が30J/g以上、或いは10000以下の分子量成分が8%以上となるようにする以外は、従来公知のポリエステル樹脂の合成法により調製することができる。
すなわち、テレフタル酸又はそのエステル形成性誘導体とエチレングリコール又はそのエステル形成性誘導体とを主体とする原料を、触媒の存在下に溶融重合を行うことにより得られる。
(Synthesis of polyester resin)
The ethylene terephthalate-based polyester resin of the present invention is subjected to heat treatment described later after melt polymerization, has an intrinsic viscosity in the range of 0.65 to 0.80 dL / g, and a total content of MHET and BHET of 0.005. The molecular weight is less than wt%, the acetaldehyde concentration is 2 to 10 ppm, the peak time of crystallization in isothermal crystallization at 210 ° C. is 360 seconds or less, and the crystallization energy (ΔH) is 30 J / g or more, or 10,000 or less. It can be prepared by a conventionally known polyester resin synthesis method except that the component is 8% or more.
That is, it can be obtained by subjecting a raw material mainly composed of terephthalic acid or its ester-forming derivative and ethylene glycol or its ester-forming derivative to melt polymerization in the presence of a catalyst.

ポリエステル樹脂の合成は一般に、高純度テレフタル酸(TPA)とエチレングリコール(EG)とを直接反応させてポリエチレンテレフタレート(PET)を合成する方法により行われ、通常2つの工程に分けられており、(A)TPAとEGとを反応させて、BHET又はその低重縮合体を合成する工程、(B)BHET又はその低重縮合体からエチレングリコールを留去して重縮合を行う工程から成っている。   The synthesis of the polyester resin is generally performed by a method of directly reacting high-purity terephthalic acid (TPA) and ethylene glycol (EG) to synthesize polyethylene terephthalate (PET), and is usually divided into two steps. A) A step of reacting TPA and EG to synthesize BHET or a low polycondensate thereof, and (B) A step of performing polycondensation by distilling off ethylene glycol from BHET or the low polycondensate thereof. .

BHET又はその低重縮合体の合成はそれ自体公知の条件で行うことができ、例えばTPAに対するEGの量を1.1〜1.5モル倍として、EGの沸点以上、例えば220〜260℃の温度に加熱して、1〜5kg/cmの加圧下に、水を系外に留去しながら、エステル化を行う。この場合、TPA自体が触媒となるので、通常触媒は必要ないが、それ自体公知のエステル化触媒を用いることもできる。 The synthesis of BHET or a low polycondensate thereof can be carried out under conditions known per se. For example, the amount of EG with respect to TPA is 1.1 to 1.5 mole times, and the boiling point of EG or higher, for example, 220 to 260 ° C. Esterification is performed while heating to temperature and distilling water out of the system under a pressure of 1 to 5 kg / cm 2 . In this case, since TPA itself becomes a catalyst, a catalyst is usually not necessary, but a known esterification catalyst can also be used.

第二段階の重縮合工程では、第一段階で得られたBHET又はその低重縮合体にそれ自体公知の重縮合触媒を加えた後、反応系を260〜290℃に保ちながら徐々に圧力を低下させ、最終的に1〜3mmHgの減圧下に撹拌し、生成するEGを系外に留去しながら、反応を進行させる。反応系の粘度によって分子量を検出し、所定の値に達したら、系外に吐出させ、冷却後チップとする。重縮合触媒としては、一般に二酸化ゲルマニウムなどのゲルマニウム化合物、テトラエチルチタネートなどのチタン化合物、三酸化アンチモンなどのアンチモン化合物等が使用されるが、チタン化合物やアンチモン化合物を用いることが重縮合反応の効率や経済的な面において好ましい。   In the second stage polycondensation step, a known polycondensation catalyst is added to BHET obtained in the first stage or a low polycondensate thereof, and then the pressure is gradually increased while maintaining the reaction system at 260 to 290 ° C. The reaction is allowed to proceed, while stirring under reduced pressure of 1 to 3 mmHg and finally distilling the produced EG out of the system. The molecular weight is detected based on the viscosity of the reaction system. When the molecular weight reaches a predetermined value, it is discharged out of the system to form a chip after cooling. As the polycondensation catalyst, germanium compounds such as germanium dioxide, titanium compounds such as tetraethyl titanate, antimony compounds such as antimony trioxide, etc. are generally used. However, using a titanium compound or an antimony compound can improve the efficiency of the polycondensation reaction. It is preferable in terms of economy.

本発明のポリエステル樹脂においては、エチレンテレフタレート単位を主体とする、すなわちエステル反復単位の50モル%以上がエチレンテレフタレート単位から成るポリエステル樹脂であるが、エステル反復単位の大部分、一般に70モル%以上、特に80モル%以上をエチレンテレフタレート単位が占めるものが特に好ましく、ガラス転移点(Tg)が50乃至90℃、特に55乃至85℃で、融点(Tm)が200乃至270℃、特に220乃至265℃にあることが好適である。   In the polyester resin of the present invention, it is a polyester resin mainly composed of ethylene terephthalate units, that is, 50 mol% or more of ester repeating units are composed of ethylene terephthalate units, but most of the ester repeating units are generally 70 mol% or more, Particularly preferred are those in which ethylene terephthalate units occupy 80 mol% or more, glass transition point (Tg) of 50 to 90 ° C., particularly 55 to 85 ° C., melting point (Tm) of 200 to 270 ° C., particularly 220 to 265 ° C. It is preferable that it exists in.

本発明のポリエステル樹脂においては、エチレンテレフタレート単位以外のエステル単位が少ないことが、上述した結晶化特性及び分子量分布を有する上で重要であり、特に共重合成分としてジエチレングリコール及びイソフタル酸を含んでいる場合に、これらの合計量が1.5重量%以下であることが好ましい。
他の共重合成分としては、ジカルボン酸成分として、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;コハク酸、アジピン酸、セバチン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;の1種又は2種以上の組合せが挙げられ、ジオール成分としては、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等の1種又は2種以上が挙げられる。
In the polyester resin of the present invention, a small amount of ester units other than ethylene terephthalate units is important in order to have the above-described crystallization characteristics and molecular weight distribution, and particularly when diethylene glycol and isophthalic acid are included as copolymerization components. In addition, the total amount of these is preferably 1.5% by weight or less.
Other copolymer components include dicarboxylic acid components, aromatic dicarboxylic acids such as phthalic acid and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, sebacic acid, dodecanedioic acid, etc. Or a combination of two or more of the following: As the diol component, propylene glycol, 1,4-butanediol, 1,6-hexylene glycol, cyclohexanedimethanol, ethylene of bisphenol A 1 type, or 2 or more types, such as an oxide adduct, are mentioned.

溶融重合後にペレット化されたポリエステル樹脂を結晶化するための熱処理は、たとえば加熱窒素ガス等の加熱不活性ガスを用いて流動床または固定床で行う方法、真空加熱炉内で行う方法があり、好適には、130乃至165℃、特に140乃至160℃の結晶化温度範囲で、130乃至200分間、特に150乃至180分間の熱処理を行うことが好ましい。または溶融ポリエステル樹脂をペレット化した際の潜熱で結晶化を行うこともできる。
本発明においては、この結晶化されたポリエステル樹脂のペレットを真空中又は不活性ガス雰囲気下において、170乃至200℃、特に180乃至200℃の温度で、1時間以上5時間未満、特に3乃至4時間の加熱処理を行う。上記範囲よりも加熱温度が低い場合には、MHET及びBHETを十分低減させることができず、また上記範囲よりも加熱温度が高い場合には、樹脂がゲル化したり、樹脂ペレットの結晶化度が上がりすぎて溶融性が悪くなったりするおそれがある。また加熱時間が5時間以上であっても、MHET及びBHETの含有量をこれ以上効果的に低減することができず、かえって長時間にわたる処理により生産性が低下する。
The heat treatment for crystallizing the polyester resin pelletized after the melt polymerization includes, for example, a method in a fluidized bed or a fixed bed using a heated inert gas such as heated nitrogen gas, and a method in a vacuum heating furnace. Preferably, heat treatment is performed at a crystallization temperature range of 130 to 165 ° C., particularly 140 to 160 ° C., for 130 to 200 minutes, particularly 150 to 180 minutes. Alternatively, crystallization can be performed by latent heat when pelletizing the molten polyester resin.
In the present invention, the crystallized polyester resin pellets are in a vacuum or under an inert gas atmosphere at a temperature of 170 to 200 ° C., particularly 180 to 200 ° C., for 1 hour or more and less than 5 hours, particularly 3 to 4 Heat treatment for hours. When the heating temperature is lower than the above range, MHET and BHET cannot be sufficiently reduced, and when the heating temperature is higher than the above range, the resin gels or the crystallinity of the resin pellets is low. There is a possibility that the meltability may deteriorate due to excessive rise. Further, even if the heating time is 5 hours or longer, the contents of MHET and BHET cannot be effectively reduced any more, and the productivity is lowered by the treatment over a long time.

この加熱処理は、上述したポリエステル樹脂ペレットの結晶化工程と同様に、例えば加熱窒素ガス等の加熱不活性ガスを用いて、流動床または固定床で行うことができ、また真空加熱炉内で行うことができる。加熱不活性ガスを用いる場合には、ペレットの黄変を防ぐため、加熱槽内の酸素濃度を15%以下にすることが望ましい。
この加熱処理により、金型表面等への付着の原因となるMHETやBHETを0.005重量%未満、特に0.004重量%以下に低減させることができると共に、環状三量体等のオリゴマー、或いはフレーバー低下の原因となるアセトアルデヒド等の揮発成分を低下させることができる。
This heat treatment can be performed in a fluidized bed or a fixed bed using, for example, a heated inert gas such as heated nitrogen gas, as in the above-described polyester resin pellet crystallization step, and is performed in a vacuum heating furnace. be able to. When using a heated inert gas, it is desirable that the oxygen concentration in the heating tank be 15% or less in order to prevent yellowing of the pellets.
By this heat treatment, MHET and BHET causing adhesion to the mold surface and the like can be reduced to less than 0.005% by weight, particularly 0.004% by weight or less, and oligomers such as cyclic trimers, Alternatively, volatile components such as acetaldehyde that cause a reduction in flavor can be reduced.

本発明のポリエステル樹脂の製造方法における加熱処理においては、固相重合のように固有粘度が上昇することがほとんどなく、その結果本発明のポリエステル樹脂は、固有粘度が0.65乃至0.80dL/g、特に0.66乃至0.75dL/gの範囲にある。上記範囲よりも固有粘度が低いと、得られる容器の機械的強度や耐衝撃性が不十分になる、圧縮成形等においては溶融樹脂のドローダウン傾向が生じる、といった問題が発生する。一方、上記範囲よりも固有粘度が高いと、溶融樹脂の押出性に劣り、成形性が低下すると共に、圧縮成形等ではカッターマークに起因する疵が発生するおそれがある。加えて、溶融粘度が高くスクリューのせん断を受けやすいことから、容器中のアセトアルデヒド含有量や溶融成形による樹脂の劣化を目的の値以下に抑えることが困難になる。
また210℃の等温結晶化における結晶化のピーク時間が360秒以下及び結晶化エネルギー(ΔH)が30J/g以上、或いは1000以下の分子量成分が8%以上であることから、プリフォーム成形の際の口部結晶化や耐熱容器成形の際の熱固定を低温且つ短時間で行うことが可能であり、経済性及び生産性よくプリフォーム等を成形することができる。
In the heat treatment in the method for producing a polyester resin of the present invention, the intrinsic viscosity hardly increases as in solid phase polymerization. As a result, the polyester resin of the present invention has an intrinsic viscosity of 0.65 to 0.80 dL / g, particularly in the range of 0.66 to 0.75 dL / g. When the intrinsic viscosity is lower than the above range, problems such as insufficient mechanical strength and impact resistance of the resulting container and a tendency to draw down the molten resin in compression molding and the like occur. On the other hand, if the intrinsic viscosity is higher than the above range, the extrudability of the molten resin is inferior, the moldability is lowered, and wrinkles due to the cutter mark may occur in compression molding or the like. In addition, since the melt viscosity is high and it is easily subjected to shearing of the screw, it is difficult to suppress the acetaldehyde content in the container and the deterioration of the resin due to melt molding to a target value or less.
In addition, the peak time of crystallization in isothermal crystallization at 210 ° C. is 360 seconds or less and the crystallization energy (ΔH) is 30 J / g or more, or the molecular weight component of 1000 or less is 8% or more. It is possible to perform heat fixation at the time of crystallization of the mouth and molding of the heat-resistant container at a low temperature and in a short time, and a preform or the like can be molded with good economic efficiency and productivity.

(プリフォーム)
本発明のプリフォームは、上述したエチレンテレフタレート系ポリエステル樹脂を用いて、従来公知の圧縮成形又は射出成形法により成形されたプリフォームの口部を結晶化することにより得ることができる。
本発明のプリフォームは、固有粘度が0.65乃至0.80dL/gの範囲にあると共に、MHETとBHETとの合計含有量が0.010重量%未満であり、アセトアルデヒド濃度が15ppm以下であり、且つ210℃の等温結晶化における結晶化のピーク時間が60秒以下及び結晶化エネルギー(ΔH)が20J/g以上であるという特徴を有している。
プリフォーム成形に用いられる本発明のポリエステル樹脂は、加熱処理を経ていることからアセトアルデヒド含有量が少なく、低温成形を行うことによってアセトアルデヒドの生成を抑制できるため、本発明のプリフォームもアセトアルデヒド含有量が15ppm以下であり、フレーバー性に優れた容器を提供することができる。
(preform)
The preform of the present invention can be obtained by crystallizing the mouth portion of a preform molded by a conventionally known compression molding or injection molding method using the above-described ethylene terephthalate polyester resin.
The preform of the present invention has an intrinsic viscosity in the range of 0.65 to 0.80 dL / g, a total content of MHET and BHET of less than 0.010% by weight, and an acetaldehyde concentration of 15 ppm or less. In addition, the crystallization peak time in isothermal crystallization at 210 ° C. is 60 seconds or less and the crystallization energy (ΔH) is 20 J / g or more.
The polyester resin of the present invention used for preform molding has a low acetaldehyde content because it has undergone heat treatment, and since the formation of acetaldehyde can be suppressed by performing low temperature molding, the preform of the present invention also has an acetaldehyde content. It is 15 ppm or less, and a container excellent in flavor properties can be provided.

また前述した通り、本発明のプリフォームにおいては、本発明のポリエステル樹脂と他のポリエステル樹脂のブレンド物を用いて成形することもできる。
本発明のポリエステル樹脂とブレンドして用いることができるポリエステル樹脂としては、固有粘度が0.80dL/g以上のものが結晶化速度の調整を行う点で好適であり、特に固相重合を経て得られたポリエステル樹脂や、或いは溶融重合により得られたポリエステル樹脂で加熱処理を経たポリエステル樹脂を好適に用いることができる。
ブレンド物の配合割合は、ブレンドすべきポリエステル樹脂によって異なり一概に規定することができないが、ブレンド物中の共重合成分として含有されるジエチレングリコール及びイソフタル酸の合計量が2.7重量%以下となるようにブレンドすることが好適である。
Further, as described above, the preform of the present invention can be molded using a blend of the polyester resin of the present invention and another polyester resin.
As the polyester resin that can be used by blending with the polyester resin of the present invention, those having an intrinsic viscosity of 0.80 dL / g or more are suitable in terms of adjusting the crystallization speed, and particularly obtained through solid phase polymerization. A polyester resin that has been heat-treated with the obtained polyester resin or a polyester resin obtained by melt polymerization can be suitably used.
The blending ratio of the blend varies depending on the polyester resin to be blended and cannot be specified unconditionally, but the total amount of diethylene glycol and isophthalic acid contained as copolymerization components in the blend is 2.7% by weight or less. It is preferable to blend them.

圧縮成形によるプリフォーム成形においては、押出機により本発明のポリエステル樹脂の溶融物を連続的に押し出すと共に、合成樹脂供給装置の切断手段(カッター)によりこれを切断して、溶融状態にあるプリフォーム用の前駆成形体である溶融樹脂塊(ドロップ)を製造し、この溶融樹脂塊を保持手段(ホルダー)で保持し、圧縮成形機のキャビティ型に案内手段(スロート)を介して投入した後、これをコア型で圧縮成形し、冷却固化することによりプリフォームを成形する。
また射出成形によるプリフォーム成形においては、射出条件は特に限定されたものではないが、一般に260乃至300℃の射出温度、30乃至60kg/cmの射出圧力で、有底プリフォームを成形することができる。
In the preform molding by compression molding, the melt of the polyester resin of the present invention is continuously extruded by an extruder and the melt is cut by a cutting means (cutter) of a synthetic resin supply device, so that the preform is in a molten state. A molten resin lump (drop), which is a precursor molded body for use, is held by holding means (holder), and is introduced into a cavity mold of a compression molding machine via a guiding means (throat). The preform is molded by compression molding with a core mold and cooled and solidified.
In the preform molding by injection molding, the injection conditions are not particularly limited, but the bottomed preform is generally molded at an injection temperature of 260 to 300 ° C. and an injection pressure of 30 to 60 kg / cm 2. Can do.

プリフォームの製法においては、溶融ポリエステル樹脂の溶融押出温度が、ポリエステル樹脂の融点(Tm)を基準として、Tm+5℃乃至Tm+40℃、特にTm+10℃乃至Tm+30℃の範囲であることが、一様な溶融押出物を形成すると共に、樹脂の熱劣化やドローダウンを防止する上で好ましい。
また溶融樹脂の混練を押出機で行う際、ベントを引いて行うことが特に好ましく、これによりMHET、BHET、環状三量体等、或いは絡み合い点間重合度以下の高分子量成分の生成を抑制し、溶融押出物の粘着を効果的に抑制して、圧縮成形における搬送手段、金型のエアーベント口への樹脂の付着をより効果的に防止することができる。
また前述したように、用いるポリエステル樹脂の結晶化速度が速いため、プリフォームの口部の結晶化を短時間で効率よく行うことができる。
In the preform manufacturing method, the melt extrusion temperature of the molten polyester resin is in the range of Tm + 5 ° C. to Tm + 40 ° C., particularly Tm + 10 ° C. to Tm + 30 ° C., based on the melting point (Tm) of the polyester resin. It is preferable for forming an extrudate and preventing thermal deterioration and drawdown of the resin.
In addition, when kneading the molten resin with an extruder, it is particularly preferable to pull the vent to suppress the formation of MHET, BHET, cyclic trimer, etc., or high molecular weight components having a degree of polymerization below the entanglement point. The adhesion of the molten extrudate can be effectively suppressed, and the adhesion of the resin to the conveying means in the compression molding and the air vent port of the mold can be more effectively prevented.
As described above, since the crystallization speed of the polyester resin to be used is high, crystallization of the mouth portion of the preform can be efficiently performed in a short time.

本発明のプリフォームは、延伸ブロー成形されることにより、ボトル、広口カップ等の延伸成形容器に成形される。
延伸ブロー成形においては、本発明のポリエステル樹脂を用いて成形されたプリフォームを延伸温度に加熱し、このプリフォームを軸方向に延伸すると共に周方向に二軸延伸ブロー成形して二軸延伸容器を製造する。
尚、プリフォームの成形とその延伸ブロー成形とは、コールドパリソン方式の他、プリフォームを完全に冷却しないで延伸ブロー成形を行うホットパリソン方式にも適用できる。
延伸ブローに先立って、必要により、プリフォームを熱風、赤外線ヒーター、高周波誘導加熱等の手段で延伸適正温度まで予備加熱する。その温度範囲はポリエステルの場合85乃至120℃、特に95乃至110℃の範囲にあるのがよい。
The preform of the present invention is formed into a stretch-molded container such as a bottle or a wide-mouth cup by stretch blow molding.
In stretch blow molding, a preform molded using the polyester resin of the present invention is heated to a stretching temperature, the preform is stretched in the axial direction, and biaxially stretched blow molded in the circumferential direction to form a biaxially stretched container. Manufacturing.
The preform molding and the stretch blow molding can be applied to a hot parison system in which stretch blow molding is performed without completely cooling the preform, in addition to the cold parison system.
Prior to stretching blow, if necessary, the preform is preheated to an appropriate stretching temperature by means of hot air, an infrared heater, high frequency induction heating or the like. In the case of polyester, the temperature range is 85 to 120 ° C., particularly 95 to 110 ° C.

このプリフォームをそれ自体公知の延伸ブロー成形機中に供給し、金型内にセットして、延伸棒の押し込みにより軸方向に引っ張り延伸すると共に、流体の吹込みにより周方向へ延伸成形する。金型温度は、一般に室温乃至230℃の範囲にあることが好ましいが、後述するようにワンモールド法で熱固定を行う場合は、金型温度を120乃至180℃に設定することが好ましい。
最終のポリエステル容器における延伸倍率は、面積倍率で1.5乃至25倍が適当であり、この中でも軸方向延伸倍率を1.2乃至6倍とし,周方向延伸倍率を1.2乃至4.5倍とするのが好ましい。
The preform is supplied into a publicly known stretch blow molding machine, set in a mold, stretched in the axial direction by pushing a stretching rod, and stretched in the circumferential direction by blowing a fluid. In general, the mold temperature is preferably in the range of room temperature to 230 ° C. However, as described later, when heat setting is performed by the one mold method, the mold temperature is preferably set to 120 to 180 ° C.
The draw ratio in the final polyester container is suitably 1.5 to 25 times in terms of area magnification. Among these, the axial draw ratio is 1.2 to 6 times, and the circumferential draw ratio is 1.2 to 4.5. It is preferable to double.

本発明のポリエステル樹脂においては、MHET及びBHETの合計量が0.005重量%未満に低減されているため、熱固定の際に環状三量体や樹脂が金型表面に付着して肌荒れによる透明性低下の原因になること、或いは頻繁な金型の清掃が必要になることが有効に防止されており、生産性よく熱固定することができると共に、得られる容器の透明性にも優れている。
本発明においては、前述した通り用いるポリエステル樹脂の結晶化速度が速いため、短時間で効率よく熱固定することができる。熱固定は、それ自体公知の手段で行うことでき、ブロー成形金型中で行うワンモールド法で行うこともできるし、ブロー成形金型とは別個の熱固定用の金型中で行うツーモールド法で行うこともできる。熱固定の温度は120乃至230℃の範囲が適当である。
In the polyester resin of the present invention, since the total amount of MHET and BHET is reduced to less than 0.005% by weight, the cyclic trimer or the resin adheres to the mold surface during heat setting and is transparent due to rough skin. It is effectively prevented from causing deterioration of properties or requiring frequent mold cleaning, and can be heat-fixed with high productivity and excellent transparency of the resulting container. .
In the present invention, since the crystallization speed of the polyester resin used is high as described above, it can be heat-set efficiently in a short time. The heat setting can be performed by means known per se, can also be performed by a one-mold method performed in a blow molding die, or two molds performed in a heat fixing die separate from the blow molding die. It can also be done by law. The temperature for heat setting is suitably in the range of 120 to 230 ° C.

以下に本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。尚、実施例で使用される物性値の評価や測定方法は、以下の方法に従ったものである。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The physical property values used in the examples are evaluated and measured in accordance with the following methods.

1.溶融重合PET樹脂の重合
高純度テレフタル酸とイソフタル酸を合計13kg、エチレングリコール4.93kg、テトラエチルアンモニウムヒドロキシド20%水溶液6.88gをオートクレーブに仕込み、圧力1.7kg/cm、260℃の窒素雰囲気下にて6時間、反応により生成する水を系外に留去しながら撹拌下にて反応させた。次にテトラ−n−ブチルチタネート201gを反応系に加え、20分撹拌した後、85%リン酸1.26gを添加した。280℃まで昇温し、2torrまで減圧してから所定の時間反応させ、エチレングリコールを留去した。反応終了後、ストランド状に反応器から抜き出し、水冷してペレタイザーを用いてペレットにした。高純度テレフタル酸とイソフタル酸の仕込み量および反応時間を表3にまとめた。
1. Polymerization of melt-polymerized PET resin A total of 13 kg of high-purity terephthalic acid and isophthalic acid, 4.93 kg of ethylene glycol, and 6.88 g of a 20% aqueous solution of tetraethylammonium hydroxide were charged into an autoclave, nitrogen at a pressure of 1.7 kg / cm 2 and 260 ° C. The reaction was carried out with stirring while distilling off the water produced by the reaction out of the system for 6 hours under an atmosphere. Next, 201 g of tetra-n-butyl titanate was added to the reaction system, and after stirring for 20 minutes, 1.26 g of 85% phosphoric acid was added. The temperature was raised to 280 ° C. and the pressure was reduced to 2 torr, followed by reaction for a predetermined time, and ethylene glycol was distilled off. After completion of the reaction, the strand was extracted from the reactor, cooled with water, and pelletized using a pelletizer. The amounts of high-purity terephthalic acid and isophthalic acid charged and the reaction time are summarized in Table 3.

2.PET樹脂ペレットの熱処理
15kgの非晶状態の溶融重合PET樹脂ペレットを攪拌式真空乾燥機(45MV、(株)ダルトン社製)を用いて熱処理を行った。PET樹脂ペレットを結晶化処理(4mmHg、150℃の条件にて3時間処理)した後、気体の導入弁及びリーク弁を開放し窒素フロー下で所定の条件にてMHETとBHETの低減処理を行った。攪拌機の回転数は20rpmとし、窒素ガスはシリカゲルを通過させて乾燥させた後、MHETとBHETの低減処理と同温度まで加熱し、流量10L/minで攪拌式真空乾燥機に導入した。
2. Heat Treatment of PET Resin Pellets 15 kg of amorphous melt-polymerized PET resin pellets were heat treated using a stirring vacuum dryer (45 MV, manufactured by Dalton Co.). After crystallizing the PET resin pellets (3 hours under conditions of 4 mmHg and 150 ° C.), the gas introduction valve and the leak valve are opened, and the MHET and BHET are reduced under the specified conditions under a nitrogen flow. It was. The rotation speed of the stirrer was 20 rpm, and the nitrogen gas was passed through silica gel and dried, then heated to the same temperature as the MHET and BHET reduction treatment, and introduced into the stirring type vacuum dryer at a flow rate of 10 L / min.

3.プリフォーム成形
熱処理後の溶融重合PET樹脂ペレットを射出成形機に供給しプリフォーム成形を行った。また、固相重合のPET樹脂は上記熱処理の代わりに150℃、4時間乾燥した後に射出成形機に供給しプリフォーム成形を行った。射出成形機のバレル温度、ホットランナーの温度を290℃、金型温度を15℃に設定し、成形サイクルを25秒として、重量28gの500mlボトル用プリフォームを作製した。
3. Preform molding The melt-polymerized PET resin pellets after heat treatment were supplied to an injection molding machine to perform preform molding. The solid phase polymerization PET resin was dried at 150 ° C. for 4 hours instead of the above heat treatment, and then supplied to an injection molding machine to perform preform molding. The barrel temperature of the injection molding machine, the temperature of the hot runner was set to 290 ° C., the mold temperature was set to 15 ° C., the molding cycle was 25 seconds, and a preform for a 500 ml bottle weighing 28 g was produced.

4.口部結晶化
口部結晶化装置の赤外線ヒーターの出力を1200Wに設定し口部結晶化を行った。加熱時間は20秒から10秒間隔で160秒までとした。加熱終了後のプリフォームはバケツに入れた室温の水にて急速に冷却した。
4). Mouth crystallization The output of the infrared heater of the mouth crystallization apparatus was set to 1200 W for mouth crystallization. The heating time was from 20 seconds to 160 seconds at 10 second intervals. The preform after heating was rapidly cooled with room temperature water in a bucket.

5.各種測定
(1)固有粘度
150℃にて4時間乾燥させたPET樹脂ペレット及びプリフォームを0.3g秤量した。これに1,1,2,2−テトラクロロエタンとフェノールの重量比が50:50の混合溶媒を加えて1.00g/dlの濃度に調整し、120℃で20分間攪拌して完全に溶解させた。溶解後の溶液を室温まで冷却し、30℃に温調された相対粘度計(Y501、Viscotek社製)を用いて相対粘度を求め、固有粘度を算出した。
5). Various measurements (1) Intrinsic viscosity 0.3 g of PET resin pellets and preforms dried at 150 ° C. for 4 hours were weighed. A mixed solvent having a weight ratio of 1,1,2,2-tetrachloroethane and phenol of 50:50 was added thereto to adjust the concentration to 1.00 g / dl, and the mixture was completely dissolved by stirring at 120 ° C. for 20 minutes. It was. The solution after dissolution was cooled to room temperature, the relative viscosity was determined using a relative viscometer (Y501, manufactured by Viscotek) adjusted to 30 ° C., and the intrinsic viscosity was calculated.

(2)MHETとBHETの合計含有率
PET樹脂ペレット及びプリフォームを0.5g秤量し、これに1,1,1,3,3,3−ヘキサフルオロ−2−イソプロパノール/クロロホルムの重量比が50:50の混合溶媒を30ml加えて完全に溶解した。この溶液に20mlのクロロホルムを加えた後、300mlのテトラヒドロフランを徐々に加え、4時間放置してPETポリマーを析出させた。この懸濁液を濾紙で濾過し、濾液をエバポレーターにて乾固直前まで濃縮した。濃縮溶液に5mlのジメチルホルムアミド(DMF)を加え一晩放置した後、メスフラスコ内にてDMFを加えて10mlにメスアップし、再び一晩放置した。この溶液を細孔径0.45μmのメンブレンフィルターにて濾過し、濾液を高速液体クロマトグラフィーにて測定した。同時に環状三量体の標準溶液の測定も行い、得られた検量線をもとにペレット及びプリフォーム中のMHETとBHETの合計含有率を環状三量体換算にて算出した。
(2) Total content of MHET and BHET 0.5 g of PET resin pellets and preform were weighed, and the weight ratio of 1,1,1,3,3,3-hexafluoro-2-isopropanol / chloroform was 50 : 30 ml of 50 mixed solvent was added and completely dissolved. After adding 20 ml of chloroform to this solution, 300 ml of tetrahydrofuran was gradually added and left for 4 hours to precipitate a PET polymer. This suspension was filtered with a filter paper, and the filtrate was concentrated with an evaporator until just before drying. 5 ml of dimethylformamide (DMF) was added to the concentrated solution and allowed to stand overnight, then DMF was added to make up to 10 ml in a measuring flask, and again left overnight. This solution was filtered through a membrane filter having a pore diameter of 0.45 μm, and the filtrate was measured by high performance liquid chromatography. At the same time, a standard solution of cyclic trimer was also measured, and based on the obtained calibration curve, the total content of MHET and BHET in the pellet and preform was calculated in terms of cyclic trimer.

(3)アセトアルデヒド濃度
凍結粉砕装置にて粉砕したPET樹脂ペレット及びプリフォームの粉砕試料をガラス瓶に1.0g秤量し、5.0mlの純水を加えて密封した。この懸濁液を温度120℃に温調したオーブン内で60分間加熱した後、氷水中にて10分間冷却した。懸濁液の上澄みを3.0ml採取し、これに濃度0.1%の2,4−ジニトロフェニルヒドラジン・リン酸溶液を0.6ml加え、30分間放置した。放置後の上澄みを細孔径0.45μmのメンブレンフィルターにて濾過し、濾液を高速液体クロマトグラフィーにて測定した。同時にアセトアルデヒドの標準溶液(Acetaldehyde−DNPH、シグマアルドリッチジャパン(株)社製)を用いて検量線の測定も行い、得られた検量線をもとにペレット及びプリフォーム中のアセトアルデヒド濃度を計算した。
(3) Acetaldehyde concentration 1.0 g of PET resin pellets and preform crushed samples crushed by a freeze pulverizer were weighed into a glass bottle, and 5.0 ml of pure water was added and sealed. The suspension was heated in an oven adjusted to a temperature of 120 ° C. for 60 minutes and then cooled in ice water for 10 minutes. 3.0 ml of the supernatant of the suspension was collected, and 0.6 ml of a 0.1% strength 2,4-dinitrophenylhydrazine / phosphoric acid solution was added to the suspension, which was allowed to stand for 30 minutes. The supernatant after standing was filtered through a membrane filter having a pore diameter of 0.45 μm, and the filtrate was measured by high performance liquid chromatography. At the same time, a calibration curve was also measured using a standard solution of acetaldehyde (Acetaldehyde-DNPH, Sigma-Aldrich Japan Co., Ltd.), and the acetaldehyde concentration in the pellet and preform was calculated based on the obtained calibration curve.

(4)プリフォームの口部の結晶化度
口部結晶化したプリフォームのネックリング部位から4mm角に切り出した後、密度測定し、次式の密度法により結晶化度を求めた。
結晶化度χc={[ρc×(ρ-ρa)]/[ρ×(ρc-ρa)]}
ρ :測定密度(g/cm)
ρa :非晶密度(1.335g/cm
ρc :結晶密度(1.455g/cm
密度測定は、硝酸カルシウム溶液系密度勾配管((株)池田理化社製)により、20℃の条件下で行った。
(4) Crystallinity of the mouth of the preform After cutting into a 4 mm square from the neck ring part of the preform crystallized by the mouth, the density was measured, and the crystallinity was determined by the density method of the following formula.
Crystallinity χc = {[ρc × (ρ−ρa)] / [ρ × (ρc−ρa)]}
ρ: measured density (g / cm 3 )
ρa: amorphous density (1.335 g / cm 3 )
ρc: Crystal density (1.455 g / cm 3 )
Density measurement was performed under the condition of 20 ° C. using a calcium nitrate solution-based density gradient tube (manufactured by Ikeda Rika Co., Ltd.).

(5)示差走査熱量測定(DSC)
PET樹脂ペレット及びプリフォームの210℃における結晶化ピーク時間と結晶化エネルギーについて、示差走査熱量測定装置(Diamond DSC、PerkinElmer社製)を用いて測定を行った。PET樹脂ペレット及びプリフォームを8mg秤量し、試料とした。
測定条件は以下の通りである。
・PET樹脂ペレット
(1)20℃で3分間保持
(2)20℃から290℃まで300℃/minで昇温
(3)290℃で3分間保持
(4)290℃から210℃まで300℃/minで降温
(5)210℃で30分間保持
(5) Differential scanning calorimetry (DSC)
The crystallization peak time and crystallization energy at 210 ° C. of the PET resin pellet and preform were measured using a differential scanning calorimeter (Diamond DSC, manufactured by PerkinElmer). 8 mg of PET resin pellets and preforms were weighed and used as samples.
The measurement conditions are as follows.
PET resin pellet (1) Hold at 20 ° C. for 3 minutes (2) Increase from 300 ° C./min from 20 ° C. to 290 ° C. (3) Hold at 290 ° C. for 3 minutes (4) 300 ° C./from 290 ° C. to 210 ° C. Decrease in temperature (5) Hold at 210 ° C for 30 minutes

・プリフォーム
(1)20℃で3分間保持
(2)20℃から210℃まで300℃/minで昇温
(3)210℃で3分間保持
PET樹脂ペレットは(5)、プリフォームは(3)の走査における等温結晶化曲線から結晶化ピーク時間を決定し、ピーク面積から結晶化エネルギーを求めた。
Preform (1) Hold at 20 ° C. for 3 minutes (2) Temperature rise from 20 ° C. to 210 ° C. at 300 ° C./min (3) Hold at 210 ° C. for 3 minutes PET resin pellet is (5), preform is (3 The crystallization peak time was determined from the isothermal crystallization curve in the scan of), and the crystallization energy was determined from the peak area.

(6)共重合成分の含有率の測定
150℃4時間乾燥させたPET樹脂ペレット及びプリフォームを重トリフルオロ酢酸/重クロロホルムの重量比が50:50の混合溶媒に溶解させ、NMR装置(EX270:日本電子データム(株))にて1H−NMRスペクトルを測定し、ジエチレングリコール(DEG)部位、イソフタル酸(IPA)部位及びテレフタル酸部位に由来するプロトンピークの積分値の比率から、DEG及びIPAの含有率を算出した。熱処理及びプリフォーム成形によってその含有率は変化せず、PET樹脂ペレットをブレンドして用いた場合は加重平均によってその含有率を求めた。
(6) Measurement of copolymer component content PET resin pellets and preforms dried at 150 ° C. for 4 hours were dissolved in a mixed solvent having a weight ratio of deuterated trifluoroacetic acid / deuterated chloroform of 50:50, and an NMR apparatus (EX270 : JEOL Datum Co., Ltd.) 1H-NMR spectrum was measured, and from the ratio of integral values of proton peaks derived from the diethylene glycol (DEG) site, isophthalic acid (IPA) site and terephthalic acid site, the values of DEG and IPA The content rate was calculated. The content did not change by heat treatment and preform molding, and when blended with PET resin pellets, the content was determined by weighted average.

(7)10000以下の分子量成分含有率の測定
1,1,1,3,3,3−ヘキサフルオロ−2−イソプロパノールとクロロホルムの重量比が50:50の混合溶媒5mlで、5mgのPET樹脂片を完全に溶解させた後、検出器として光散乱、示差屈折計、差圧粘度検出器を備えたゲルパーミエーションクロマトグラフィー(GPC;Integrated System For GPC/SEC:旭テクネイオン(株)社製、Triple Detector Module TriSEC Model 302:Viscotek社製)を用いて分子量分布の積分曲線を求め10000以下の分子量成分の含有率を算出した。
(7) Measurement of molecular weight component content of 10000 or less 5 mg of a PET resin piece in 5 ml of a mixed solvent having a weight ratio of 1,1,1,3,3,3-hexafluoro-2-isopropanol and chloroform of 50:50 After complete dissolution, gel permeation chromatography (GPC; Integrated System For GPC / SEC: Asahi Techneion Co., Ltd.), equipped with a light scattering detector, differential refractometer, and differential pressure viscosity detector as a detector. An integral curve of molecular weight distribution was obtained using Detector Module TriSEC Model 302 (manufactured by Viscotek), and the content of molecular weight components of 10,000 or less was calculated.

(8)耐熱ブロー金型表面汚れの評価
上述した方法によって口部を結晶化させたプリフォームを用いて、一段ブロー成形法による二軸延伸ブロー成形を行い、次いで150℃、2秒の条件にてヒートセットし、耐熱PETボトルを作製した。ボトル成形を5000回繰り返した後、耐熱ブロー金型表面を観察し、引き続き使用が可能である場合を「○」、表面がひどく汚れており使用に耐えられない場合を「×」として評価した。
(8) Evaluation of heat-resistant blow mold surface contamination Using the preform crystallized at the mouth by the above-mentioned method, biaxial stretch blow molding by a single-stage blow molding method is performed, and then at 150 ° C. for 2 seconds. And heat-set to produce a heat-resistant PET bottle. After the bottle molding was repeated 5000 times, the surface of the heat-resistant blow mold was observed, and the case where it could be used continuously was evaluated as “◯”, and the case where the surface was extremely dirty and could not be used was evaluated as “x”.

(実施例1)
固有粘度が0.68dL/g、MHETとBHETの合計含有率が0.0101重量%、アセトアルデヒド濃度が44.3ppm、DEGの共重合成分含有率が1.3重量%である非結晶状態の溶融重合PET樹脂ペレットを用い、ペレットを結晶化処理した後に170℃、4時間の条件でMHETとBHETの低減処理を行った。熱処理後、ペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
Example 1
An amorphous melt having an intrinsic viscosity of 0.68 dL / g, a total content of MHET and BHET of 0.0101 wt%, an acetaldehyde concentration of 44.3 ppm, and a copolymerization content of DEG of 1.3 wt% Polymerized PET resin pellets were used to crystallize the pellets, and then MHET and BHET were reduced at 170 ° C. for 4 hours. After the heat treatment, the intrinsic viscosity of the pellet, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, the acetaldehyde concentration, and the molecular weight component content of 10,000 or less were measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(実施例2)
ペレットを結晶化処理した後に180℃の条件でMHETとBHETの低減処理を行った以外は実施例1と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Example 2)
The pellet intrinsic viscosity, isothermal crystallization peak time at 210 ° C. and isothermal crystallization energy, MHET and the like, except that MHET and BHET were reduced at 180 ° C. after the pellet was crystallized. The total content of BHET, the acetaldehyde concentration, and the molecular weight component content of 10,000 or less were measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(実施例3)
ペレットを結晶化処理した後に200℃の条件でMHETとBHETの低減処理をおこなった以外は実施例1と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Example 3)
Inherent viscosity of pellets, isothermal crystallization peak time at 210 ° C. and isothermal crystallization energy, MHET and MHET and BHET were reduced at 200 ° C. after crystallizing the pellets, as in Example 1. The total content of BHET, the acetaldehyde concentration, and the molecular weight component content of 10,000 or less were measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(実施例4)
固有粘度が0.79dL/g、MHETとBHETの合計含有率が0.0053重量%、アセトアルデヒド濃度が28.0ppm、DEGの共重合成分含有率が1.0重量%である非結晶状態の溶融重合PET樹脂ペレットを用いた以外は実施例1と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
Example 4
An amorphous melt having an intrinsic viscosity of 0.79 dL / g, a total content of MHET and BHET of 0.0053 wt%, an acetaldehyde concentration of 28.0 ppm, and a copolymerization content of DEG of 1.0 wt% Except for using polymerized PET resin pellets, the intrinsic viscosity of the pellets, isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., total content of MHET and BHET, acetaldehyde concentration, and molecular weight of 10,000 or less, as in Example 1. The component content was measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(実施例5)
ペレットを結晶化処理した後に200℃、1時間の条件でMHETとBHETの低減処理を行った以外は実施例4と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Example 5)
Inherent viscosity of pellet, isothermal crystallization peak time at 210 ° C. and isothermal crystallization energy as in Example 4 except that MHET and BHET were reduced at 200 ° C. for 1 hour after the pellet was crystallized. The total content of MHET and BHET, the acetaldehyde concentration, and the molecular weight component content of 10,000 or less were measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(比較例1)
ペレットを結晶化処理した後に160℃の条件でMHETとBHETの低減処理を行った以外は実施例1と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Comparative Example 1)
Inherent viscosity of pellet, isothermal crystallization peak time at 210 ° C., isothermal crystallization energy, MHET and MHET and BHET were reduced at 160 ° C. after the pellet was crystallized. The total content of BHET, the acetaldehyde concentration, and the molecular weight component content of 10,000 or less were measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(比較例2)
ペレットを結晶化処理した後にMHETとBHETの低減処理を行わなかった以外は実施例1と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率およびアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Comparative Example 2)
Inherent viscosity of pellet, isothermal crystallization peak time at 210 ° C. and isothermal crystallization energy, total content of MHET and BHET, as in Example 1, except that MHET and BHET were not reduced after crystallization of the pellet Rate, acetaldehyde concentration, and molecular weight component content of 10,000 or less. A preform was prepared from the heat-treated PET resin pellets, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(比較例3)
固有粘度が0.74dL/g、MHETとBHETの合計含有率が0.0059重量%、アセトアルデヒド濃度が25.0ppm、DEGとIPAの共重合成分含有率が1.7重量%である非結晶状態の溶融重合PET樹脂ペレットを用いた以外は実施例2と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Comparative Example 3)
An amorphous state having an intrinsic viscosity of 0.74 dL / g, a total content of MHET and BHET of 0.0059 wt%, an acetaldehyde concentration of 25.0 ppm, and a content of copolymerized components of DEG and IPA of 1.7 wt% Except for using the melt-polymerized PET resin pellets, the intrinsic viscosity of the pellets, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, the acetaldehyde concentration, and 10,000 or less, as in Example 2. The molecular weight component content of was measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(比較例4)
固有粘度が0.64dL/g、MHETとBHETの合計含有率が0.0088重量%、アセトアルデヒド濃度が35.0ppm、DEGとIPAの共重合成分含有率が2.5重量%である非結晶状態の溶融重合PET樹脂ペレットを用いた以外は実施例2と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分量を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率およびアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Comparative Example 4)
An amorphous state having an intrinsic viscosity of 0.64 dL / g, a total content of MHET and BHET of 0.0088 wt%, an acetaldehyde concentration of 35.0 ppm, and a content of copolymerized components of DEG and IPA of 2.5 wt% Except for using the melt-polymerized PET resin pellets, the intrinsic viscosity of the pellets, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, the acetaldehyde concentration, and 10,000 or less, as in Example 2. The molecular weight component amount of was measured. A preform was prepared from the heat-treated PET resin pellets, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(比較例5)
固有粘度が0.76dL/g、MHETとBHETの合計含有率が0.0054重量%、アセトアルデヒド濃度が26.5ppm、DEGとIPAの共重合成分含有率が2.4重量%である非結晶状態の溶融重合PET樹脂ペレットを用いた以外は実施例2と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Comparative Example 5)
An amorphous state having an intrinsic viscosity of 0.76 dL / g, a total content of MHET and BHET of 0.0054% by weight, an acetaldehyde concentration of 26.5 ppm, and a content of copolymerized components of DEG and IPA of 2.4% by weight Except for using the melt-polymerized PET resin pellets, the intrinsic viscosity of the pellets, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, the acetaldehyde concentration, and 10,000 or less, as in Example 2. The molecular weight component content of was measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(比較例6)
固有粘度が0.86dL/g、MHETとBHETの合計含有率が0.0052重量%、アセトアルデヒド濃度が45.0ppm、DEGとIPAの共重合成分含有率が3.0重量%である非結晶状態の溶融重合PET樹脂ペレットを用いた以外は実施例2と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Comparative Example 6)
An amorphous state having an intrinsic viscosity of 0.86 dL / g, a total content of MHET and BHET of 0.0052 wt%, an acetaldehyde concentration of 45.0 ppm, and a copolymer component content of DEG and IPA of 3.0 wt% Except for using the melt-polymerized PET resin pellets, the intrinsic viscosity of the pellets, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, the acetaldehyde concentration, and 10,000 or less, as in Example 2. The molecular weight component content of was measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(比較例7)
固有粘度が0.73dL/g、MHETとBHETの合計含有率が0.0043重量%、アセトアルデヒド濃度が0.5ppm、DEGの共重合成分含有率が1.2重量%である固相重合されたPET樹脂ペレットRT543CTHP(日本ユニペット(株)製)を用い、150℃4時間の乾燥工程後にプリフォームを成形した以外は実施例1と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Comparative Example 7)
Solid-phase polymerization was performed with an intrinsic viscosity of 0.73 dL / g, a total content of MHET and BHET of 0.0043 wt%, an acetaldehyde concentration of 0.5 ppm, and a copolymerization component content of DEG of 1.2 wt%. Using PET resin pellet RT543CTHP (manufactured by Nippon Unipet Co., Ltd.), the pellet intrinsic viscosity and isothermal crystallization peak time at 210 ° C. are the same as in Example 1 except that the preform is molded after the drying step at 150 ° C. for 4 hours. And isothermal crystallization energy, total content of MHET and BHET, acetaldehyde concentration, and molecular weight component content of 10,000 or less. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(比較例8)
固有粘度が0.83dL/g、MHETとBHETの合計含有量が0.0021重量%、アセトアルデヒド濃度が0.7ppm、DEGとIPAの共重合成分含有率が2.8重量%である固相重合されたPET樹脂ペレットBK6180B(日本ユニペット(株)社製)を用い、150℃4時間の乾燥工程後にプリフォームを成形した以外は実施例1と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Comparative Example 8)
Solid phase polymerization with an intrinsic viscosity of 0.83 dL / g, a total content of MHET and BHET of 0.0021 wt%, an acetaldehyde concentration of 0.7 ppm, and a copolymer component content of DEG and IPA of 2.8 wt% PET pellet BK6180B (manufactured by Nihon Unipet Co., Ltd.) was used, and the pellet intrinsic viscosity and isothermal crystal at 210 ° C. were the same as in Example 1 except that a preform was formed after the drying step at 150 ° C. for 4 hours. The crystallization peak time and isothermal crystallization energy, the total content of MHET and BHET, the acetaldehyde concentration, and the molecular weight component content of 10,000 or less were measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(比較例9)
固有粘度が0.70dL/g、MHETとBHETの合計含有率が0.0041重量%、アセトアルデヒド濃度が0.7ppm、DEGとIPAの共重合成分含有率が1.7重量%である固相重合されたPET樹脂ペレットRT523C(日本ユニペット(株)社製)を用い、150℃4時間の乾燥工程後にプリフォームを成形した以外は実施例1と同様にペレットの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率、アセトアルデヒド濃度、及び10000以下の分子量成分含有率を測定した。熱処理したPET樹脂ペレットからプリフォームを作製し、プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Comparative Example 9)
Solid phase polymerization with an intrinsic viscosity of 0.70 dL / g, a total content of MHET and BHET of 0.0041 wt%, an acetaldehyde concentration of 0.7 ppm, and a content of copolymerized components of DEG and IPA of 1.7 wt% PET resin pellet RT523C (manufactured by Nippon Unipet Co., Ltd.) was used, and the pellet intrinsic viscosity and isothermal crystal at 210 ° C. were the same as in Example 1 except that a preform was formed after the drying step at 150 ° C. for 4 hours. The crystallization peak time and isothermal crystallization energy, the total content of MHET and BHET, the acetaldehyde concentration, and the molecular weight component content of 10,000 or less were measured. A preform was prepared from the heat-treated PET resin pellet, and the inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(実施例6)
MHETとBHETの低減処理を行った実施例2の溶融重合PET樹脂ペレットと比較例8の固相重合PET樹脂ペレットを30:70の比率でドライブレンドし150℃4時間の乾燥工程後にプリフォームを成形した。プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Example 6)
The melt-polymerized PET resin pellets of Example 2 subjected to the reduction treatment of MHET and BHET and the solid-phase polymerized PET resin pellets of Comparative Example 8 were dry blended at a ratio of 30:70, and the preform was subjected to a drying process at 150 ° C. for 4 hours. Molded. The inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

(実施例7)
MHETとBHETの低減処理を行った実施例2の溶融重合PET樹脂ペレットとMHETとBHETの低減処理を行った比較例6の溶融重合PET樹脂ペレットを20:80の比率でドライブレンドし150℃4時間の乾燥工程後にプリフォームを成形した。プリフォームの固有粘度、210℃における等温結晶化ピーク時間と等温結晶化エネルギー、MHETとBHETの合計含有率及びアセトアルデヒド濃度を測定した。また、作製したプリフォームを用いて口部結晶化を行い、結晶化度χcが0.30を超える時間を求め、耐熱ブロー金型表面汚れの評価をした。
(Example 7)
The melt-polymerized PET resin pellets of Example 2 subjected to the reduction treatment of MHET and BHET and the melt-polymerization PET resin pellets of Comparative Example 6 subjected to the reduction treatment of MHET and BHET were dry-blended in a ratio of 20:80 at 150 ° C. The preform was molded after a time drying step. The inherent viscosity of the preform, the isothermal crystallization peak time and isothermal crystallization energy at 210 ° C., the total content of MHET and BHET, and the acetaldehyde concentration were measured. Moreover, mouth crystallization was performed using the produced preform, and the time when the crystallinity χc exceeded 0.30 was determined, and the heat-resistant blow mold surface contamination was evaluated.

上述した実施例及び比較例の結果を表1及び表2に示す。   Tables 1 and 2 show the results of the above-described examples and comparative examples.

Figure 2010150488
Figure 2010150488

Figure 2010150488
Figure 2010150488

上述した溶融重合PET樹脂のテレフタル酸とイソフタル酸の仕込み量と反応時間を表3に示す。   Table 3 shows the amount of terephthalic acid and isophthalic acid charged in the above-described melt-polymerized PET resin and the reaction time.

Figure 2010150488
Figure 2010150488

本発明のポリエステル樹脂から成るプリフォーム(実施例1)と固相重合を経て得られたポリエステル樹脂から成るプリフォーム(比較例7)の口部の結晶化時間と到達結晶化度(χc)の関係を示すグラフである。The crystallization time and ultimate crystallinity (χc) of the mouth of the preform (Example 1) made of the polyester resin of the present invention and the preform (Comparative Example 7) made of the polyester resin obtained through solid phase polymerization are compared. It is a graph which shows a relationship.

Claims (6)

固有粘度が0.65乃至0.80dL/gの範囲にあると共に、モノヒドロキシエチルテレフタレートとビスヒドロキシエチルテレフタレートとの合計含有量が0.005重量%未満であり、アセトアルデヒド濃度が2乃至10ppmであり、且つ210℃の等温結晶化における結晶化のピーク時間が360秒以下及び結晶化エネルギー(ΔH)が30J/g以上であることを特徴とする耐熱容器成形用エチレンテレフタレート系ポリエステル樹脂。   The intrinsic viscosity is in the range of 0.65 to 0.80 dL / g, the total content of monohydroxyethyl terephthalate and bishydroxyethyl terephthalate is less than 0.005% by weight, and the acetaldehyde concentration is 2 to 10 ppm. An ethylene terephthalate-based polyester resin for heat-resistant container molding, characterized in that the peak time of crystallization in isothermal crystallization at 210 ° C. is 360 seconds or less and the crystallization energy (ΔH) is 30 J / g or more. 固有粘度が0.65乃至0.80dL/gの範囲にあると共に、モノヒドロキシエチルテレフタレートとビスヒドロキシエチルテレフタレートとの合計含有量が0.005重量%未満であり、アセトアルデヒド濃度が2乃至10ppmであり、且つ10000以下の分子量成分が8%以上であることを特徴とする耐熱容器成形用エチレンテレフタレート系ポリエステル樹脂。   The intrinsic viscosity is in the range of 0.65 to 0.80 dL / g, the total content of monohydroxyethyl terephthalate and bishydroxyethyl terephthalate is less than 0.005% by weight, and the acetaldehyde concentration is 2 to 10 ppm. And an ethylene terephthalate-based polyester resin for forming a heat-resistant container, wherein a molecular weight component of 10,000 or less is 8% or more. 共重合成分として含有されるジエチレングリコール及びイソフタル酸の合計量が1.5重量%以下である請求項1又は2記載の耐熱容器成形用エチレンテレフタレート系ポリエステル樹脂。   The ethylene terephthalate-based polyester resin for heat-resistant container molding according to claim 1 or 2, wherein the total amount of diethylene glycol and isophthalic acid contained as copolymerization components is 1.5% by weight or less. 請求項1乃至3の何れかに記載のエチレンテレフタレート系ポリエステル樹脂から成り、固有粘度が0.65乃至0.80dL/gの範囲にあると共に、モノヒドロキシエチルテレフタレートとビスヒドロキシエチルテレフタレートとの合計含有量が0.010重量%未満であり、アセトアルデヒド濃度が15ppm以下であり、且つ210℃の等温結晶化における結晶化のピーク時間が60秒以下及び結晶化エネルギー(ΔH)が20J/g以上であることを特徴とするプリフォーム。   The ethylene terephthalate-based polyester resin according to any one of claims 1 to 3, having an intrinsic viscosity in the range of 0.65 to 0.80 dL / g, and a total content of monohydroxyethyl terephthalate and bishydroxyethyl terephthalate The amount is less than 0.010% by weight, the acetaldehyde concentration is 15 ppm or less, the peak time of crystallization in isothermal crystallization at 210 ° C. is 60 seconds or less, and the crystallization energy (ΔH) is 20 J / g or more. Preform characterized by that. 共重合成分として含有されるジエチレングリコール及びイソフタル酸の合計量が2.7重量%以下である請求項4記載のプリフォーム。   The preform according to claim 4, wherein the total amount of diethylene glycol and isophthalic acid contained as copolymerization components is 2.7% by weight or less. 溶融重合により得られたエチレンテレフタレート系ポリエステル樹脂を170乃至200℃の温度で1時間以上5時間未満加熱処理を行うことを特徴とする請求項1乃至3の何れかに記載のエチレンテレフタレート系ポリエステル樹脂の製造方法。   The ethylene terephthalate polyester resin according to any one of claims 1 to 3, wherein the ethylene terephthalate polyester resin obtained by melt polymerization is subjected to heat treatment at a temperature of 170 to 200 ° C for 1 hour or more and less than 5 hours. Manufacturing method.
JP2008333174A 2008-12-26 2008-12-26 Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin Pending JP2010150488A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008333174A JP2010150488A (en) 2008-12-26 2008-12-26 Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin
PCT/JP2009/071592 WO2010074230A1 (en) 2008-12-26 2009-12-25 Ethylene terephthalate-based polyester resin for molding container and process for producing same
CN201310471268.9A CN103554450B (en) 2008-12-26 2009-12-25 Container forming ethylene glycol terephthalate type vibrin and production method thereof
CN200980157617.1A CN102333810B (en) 2008-12-26 2009-12-25 Ethylene terephthalate-based polyester resin for molding container and process for producing same
US13/142,047 US20110263812A1 (en) 2008-12-26 2009-12-25 Ethylene terephthalate type polyester resin for forming containers and process for producing the same
EP09835026.7A EP2371874A4 (en) 2008-12-26 2009-12-25 Ethylene terephthalate-based polyester resin for molding container and process for producing same
US13/770,244 US20130158228A1 (en) 2008-12-26 2013-02-19 Ethylene terephthalate type polyester resin for forming containers and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333174A JP2010150488A (en) 2008-12-26 2008-12-26 Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin

Publications (1)

Publication Number Publication Date
JP2010150488A true JP2010150488A (en) 2010-07-08

Family

ID=42569921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333174A Pending JP2010150488A (en) 2008-12-26 2008-12-26 Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin

Country Status (1)

Country Link
JP (1) JP2010150488A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005823A1 (en) 2011-07-07 2013-01-10 東洋製罐株式会社 Ethylene terephthalate polyester resin for forming container, and method for producing same
RU2593453C2 (en) * 2011-02-18 2016-08-10 Эм энд Джи ЮЭсЭй Корпорейшн Polar soluble compositions absorbing oxygen
KR20200012303A (en) * 2018-07-26 2020-02-05 에스케이케미칼 주식회사 Preparation method of polyester resin molded article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059605A1 (en) * 2004-11-30 2006-06-08 Asahi Kasei Chemicals Corporation Polyester resin, molded object thereof, and processes for producing these
JP2007119644A (en) * 2005-10-28 2007-05-17 Toyo Seikan Kaisha Ltd Polyester resin for low-temperature molding and preform
JP2008266360A (en) * 2007-04-16 2008-11-06 Toyobo Co Ltd Polyester polymerization catalyst, polyester manufactured by using the same, and method for manufacturing polyester
JP2010150487A (en) * 2008-12-26 2010-07-08 Toyo Seikan Kaisha Ltd Ethylene terephthalate-based polyester resin for molding container and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059605A1 (en) * 2004-11-30 2006-06-08 Asahi Kasei Chemicals Corporation Polyester resin, molded object thereof, and processes for producing these
JP2007119644A (en) * 2005-10-28 2007-05-17 Toyo Seikan Kaisha Ltd Polyester resin for low-temperature molding and preform
JP2008266360A (en) * 2007-04-16 2008-11-06 Toyobo Co Ltd Polyester polymerization catalyst, polyester manufactured by using the same, and method for manufacturing polyester
JP2010150487A (en) * 2008-12-26 2010-07-08 Toyo Seikan Kaisha Ltd Ethylene terephthalate-based polyester resin for molding container and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2593453C2 (en) * 2011-02-18 2016-08-10 Эм энд Джи ЮЭсЭй Корпорейшн Polar soluble compositions absorbing oxygen
WO2013005823A1 (en) 2011-07-07 2013-01-10 東洋製罐株式会社 Ethylene terephthalate polyester resin for forming container, and method for producing same
JPWO2013005823A1 (en) * 2011-07-07 2015-02-23 東洋製罐株式会社 Ethylene terephthalate polyester resin for container molding and method for producing the same
KR101553134B1 (en) * 2011-07-07 2015-09-14 도요세이칸 그룹 홀딩스 가부시키가이샤 Ethylene terephthalate type polyester resin for forming containers, and method of producing the same
KR20200012303A (en) * 2018-07-26 2020-02-05 에스케이케미칼 주식회사 Preparation method of polyester resin molded article
KR102528324B1 (en) * 2018-07-26 2023-05-02 에스케이케미칼 주식회사 Preparation method of polyester resin molded article

Similar Documents

Publication Publication Date Title
JP6056755B2 (en) Ethylene terephthalate polyester resin for container molding and method for producing the same
EP0684269A2 (en) Process for the preparation of re-usable bottles starting from modified PET
JPS5845225A (en) Modified polyethylene terephthalate molding material
JPH05255491A (en) Copoylester and hollow vessel and drawn film therefrom
JP2010150488A (en) Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin
TW202110994A (en) Polyester resin blend
JP5568846B2 (en) Method for producing polyester resin and molded body comprising this polyester resin
JPH05148349A (en) Copolyester and molding made therefrom
JP2010150487A (en) Ethylene terephthalate-based polyester resin for molding container and method for manufacturing the same
JP2863570B2 (en) Copolymerized polyethylene terephthalate and its use
WO2010074230A1 (en) Ethylene terephthalate-based polyester resin for molding container and process for producing same
JP3459430B2 (en) Copolyester and hollow container and stretched film comprising the same
JP5470992B2 (en) Polyester resin for blending
JP3737302B2 (en) New polyester pellets and method for producing polyester pellets
JP3457011B2 (en) Copolyester and hollow container and stretched film comprising the same
JP2011127099A (en) Titanium-containing pet copolyester, and thick-walled preform and refillable large volume container both made from the same
JP3459431B2 (en) Copolyester and hollow container and stretched film made thereof
KR101159850B1 (en) Polyester resin copolymerized with neopentylglycol having low oligomer content and preparing method thereof
JP3459429B2 (en) Copolyester and hollow container and stretched film comprising the same
KR101159840B1 (en) Polyester resin copolymerized with 1,4-cyclohexanedimethanol having low oligomer content and preparing method thereof
JPH05170882A (en) Copolyester, and hollow container and stretched film made therefrom
WO2013077294A1 (en) Polyester resin
JP2007269033A (en) Polyester container
JP2006192890A (en) Manufacturing method of polyester preform and polyester stretched body, and polyester shaped body obtained by manufacturing method of them
JP2004292647A (en) Method for producing copolyester resin and copolyester resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130523

A131 Notification of reasons for refusal

Effective date: 20131119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20140116

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20140708

Free format text: JAPANESE INTERMEDIATE CODE: A02