WO2013077294A1 - Polyester resin - Google Patents

Polyester resin Download PDF

Info

Publication number
WO2013077294A1
WO2013077294A1 PCT/JP2012/079982 JP2012079982W WO2013077294A1 WO 2013077294 A1 WO2013077294 A1 WO 2013077294A1 JP 2012079982 W JP2012079982 W JP 2012079982W WO 2013077294 A1 WO2013077294 A1 WO 2013077294A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
polyester resin
temperature
maximum
pellet
Prior art date
Application number
PCT/JP2012/079982
Other languages
French (fr)
Japanese (ja)
Inventor
北野 善拡
甲斐 正次郎
寛明 武井
菊地 淳
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Publication of WO2013077294A1 publication Critical patent/WO2013077294A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment

Definitions

  • the present invention relates to a polyester resin suitable for bottle molding. More specifically, the present invention relates to a polyester resin that has excellent meltability and moldability, has a reduced acetaldehyde concentration, and can impart excellent heat resistance. .
  • Containers made of a polyester resin typified by polyethylene terephthalate are widely used as containers for beverages, oils, seasonings and the like because of their excellent properties such as transparency and mechanical strength.
  • a container made of a polyester resin, particularly a bottle made of a polyester resin mainly composed of ethylene terephthalate units (hereinafter referred to as “PET bottle”) is a polyester resin produced by melt polymerization or solid phase polymerization after melt polymerization. It is used.
  • the polyester resin produced by melt polymerization contains low molecular weight components such as acetaldehyde and oligomers such as cyclic trimers, and when a container is molded using a polyester resin containing these substances, During molding, oligomers in the polyester resin are deposited and adhere to the mold surface, causing problems such as a decrease in transparency due to rough skin, or frequent cleaning of the mold. In addition, when a large amount of acetaldehyde is present in the molded container, there is also a problem that the content is transferred to the content and the flavor of the content is impaired.
  • the difference in intrinsic viscosity between the inner and outer layers is 0.125 or less and the difference in density is Proposal is made of a chip (Patent Document 1) of 0.0019 or less and a polyester composition (Patent Document 2) in which the ratio of the intrinsic viscosity of the center part to the surface layer part of the solid-phase polymerized polyester chip is 0.70 to 0.95. Has been.
  • an object of the present invention is to provide a polyester resin with improved meltability and moldability and reduced acetaldehyde concentration.
  • Another object of the present invention is to provide a polyester resin capable of imparting excellent heat resistance to a molded article, in which distortion during stretching is reduced by excellent formability and crystal formation is suppressed. That is.
  • Still another object of the present invention is to provide a production method capable of producing a polyester resin having the above characteristics with high productivity and economy.
  • the present invention is a polyester resin mainly composed of ethylene terephthalate units, and in the pellet state, the intrinsic viscosity is 0.70 to 0.81 dL / g, and the molecular weight distribution (Mw / Mn) in the vicinity of the pellet surface is 3
  • An ethylene terephthalate-based polyester resin having a melting point distribution of 280 ° C. or lower is provided.
  • the content of diethylene glycol is less than 2.0 mol%.
  • an ethylene terephthalate-based polyester resin having an intrinsic viscosity of 0.82 dL / g or more, a maximum peak temperature in a maximum existence ratio of a melting point distribution of 245 ° C. or more, and a maximum melting point end temperature of 281 ° C. or more.
  • a method for producing an ethylene terephthalate-based polyester resin characterized by hydrolysis.
  • a molded article characterized in that the acetaldehyde concentration comprising the ethylene terephthalate polyester resin is less than 10 ppm.
  • the melting point of a polymer depends on the molecular weight.
  • the melting point depends on the thickness of the crystal (lamella) and the surface free energy of the lamella surface from the Gibbs-Thompson relational expression. The thinner the crystal (lamellar), the lower the melting point.
  • PET resin ethylene terephthalate polyester resin
  • the abundance ratio to the pellet density and the melting point peak temperature (A) and the relationship between the melting point peak temperature and the abundance ratio (B) are shown in FIG.
  • the intrinsic viscosity of the whole pellet is in the range of 0.70 to 0.81 dL / g
  • the molecular weight distribution on the pellet surface is large
  • the maximum melting point end temperature of the melting point distribution is 280 ° C. It has been found that the following PET resin has excellent meltability and moldability.
  • the molecular weight is increasing in the vicinity of the pellet surface by solid phase polymerization, but in the PET resin of the present invention, such a polymer chain is cleaved and has a wide molecular weight distribution.
  • the reason for the maximum melting point end temperature of the melting point distribution is that the maximum melting point end point indicates the temperature necessary for completely melting the PET resin, and is directly related to the meltability and moldability of the PET resin. .
  • the maximum melting point end temperature, and the maximum peak temperature at the maximum abundance ratio the measuring method will be described in detail in Examples described later.
  • the melting point end temperature (A) with respect to the existing ratio before and after hydrolysis and the melting point peak temperature (B) with respect to the existing ratio before hydrolysis are shown in FIG.
  • the vicinity of the pellet surface of the PET resin refers to a portion having a thickness of 0.5 mm from the pellet surface, although it depends on the size of the pellet.
  • the melting point of the PET resin is affected not only by the molecular weight distribution but also by the copolymerization component, in the present invention, the content of diethylene glycol (hereinafter sometimes referred to as “DEG”) is particularly less than 2.0 mol%. It is more preferable that this makes it possible to suppress crystal formation and to lower the melting point.
  • DEG diethylene glycol
  • the PET resin of the present invention maintains the excellent properties of solid-phase polymerization PET, that is, the properties that oligomers such as cyclic trimers and acetaldehyde (hereinafter sometimes referred to as “AA”) are reduced. Because it has better melting characteristics than conventional solid-phase polymerized PET, it can be melted at a lower temperature than conventional solid-phase polymerized PET, has excellent moldability, and reduces strain during stretching. Further, excellent heat resistance can be imparted to the molded body. Moreover, since the acetaldehyde content in the PET resin is reduced and there is no problem of generation of acetaldehyde due to high temperature molding, a molded article having excellent flavor properties can be provided.
  • the PET resin of the present invention has the above-mentioned problems that occur when conventional solid-phase polymerization PET is used, that is, whitening of the preform, the vent of the extruder is clogged, or acetaldehyde is generated at a high concentration. Will not cause the problem. Furthermore, according to the method for producing a PET resin of the present invention, the PET resin of the present invention having the above characteristics can be produced with good productivity and economy.
  • PET resin having a molecular weight distribution (Mw / Mn) of less than 3.2 or PET resin having a maximum melting point end temperature higher than 280 ° C. was injection molded at a standard extrusion temperature of 290 ° C. In some cases, the preform was not sufficiently melted, and the resulting preform was whitened (Comparative Examples 1 and 3). When injection molding was performed at an extrusion temperature of 300 ° C. (high temperature), acetaldehyde was generated and flavor was increased. It was inferior in property (Comparative Example 2).
  • the PET resin of the present invention even when injection molding is performed at an extrusion temperature of 280 ° C. (low temperature), the preform is not whitened and the thermal crystallization of the mouth of the preform can be performed efficiently. It is clear that the film has excellent heat resistance and flavor properties (Example 4). Further, it is apparent that even better heat resistance can be obtained when the DEG content is 2.0 mol% or less (Examples 1 to 4, 6).
  • the PET resin of the present invention is mainly composed of ethylene terephthalate units, has an intrinsic viscosity of 0.70 to 0.81 dL / g in a pellet state, and a molecular weight distribution (Mw / Mn) near the pellet surface of 3.2 or more. It is an important feature that the maximum melting point end temperature of the melting point distribution is 280 ° C. or lower.
  • the PET resin mainly composed of ethylene terephthalate units is one in which 50% or more of the ester repeating units are ethylene terephthalate units, and particularly preferably 80 mol% or more is occupied by ethylene terephthalate units.
  • the content of DEG is preferably less than 2.0 mol%, and in particular, homopolyethylene terephthalate is heat resistant. And is particularly suitable. However, this does not exclude copolyesters containing a very small amount of ester units other than ethylene terephthalate units.
  • dicarboxylic acids other than terephthalic acid examples include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, sebacic acid, and dodecanedioic acid.
  • diol component other than ethylene glycol include propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexylene glycol, and cyclohexanedimethanol. And ethylene oxide adducts of bisphenol A.
  • the PET resin of the present invention is not necessarily limited to this, but was obtained by subjecting the above-mentioned raw materials mainly composed of the dicarboxylic acid component and the diol component to melt polymerization and solid phase polymerization in the presence of a catalyst. It can be obtained by hydrolyzing solid-phase polymerization PET.
  • the solid-phase polymerization PET to be subjected to hydrolysis treatment has an intrinsic viscosity of 0.82 dL / g or more, a maximum peak temperature in the maximum abundance ratio of the melting point distribution is 245 ° C. or more, and a maximum melting point end temperature is 280 ° C. or more.
  • a PET resin is desirable.
  • PET resin is a method of directly reacting high-purity terephthalic acid (TPA) and ethylene glycol (EG) to synthesize polyethylene terephthalate (PET), which is usually divided into two steps.
  • TPA high-purity terephthalic acid
  • EG ethylene glycol
  • PET polyethylene terephthalate
  • It comprises a step of synthesizing bis- ⁇ -hydroxyethyl terephthalate (BHT) oligomer by reacting TPA and EG, and (B) a step of performing polycondensation by distilling off ethylene glycol from the BHT oligomer.
  • BHT bis- ⁇ -hydroxyethyl terephthalate
  • the synthesis of the BHT oligomer can be carried out under conditions known per se.
  • the amount of EG with respect to TPA is 1.0 to 1.5 mole times and heated to a temperature not lower than the boiling point of EG, for example, 240 to 280 ° C.
  • Esterification is performed while distilling water out of the system under a pressure of 1 to 5 kg / cm 2 .
  • a catalyst is usually not necessary, but a known esterification catalyst can also be used.
  • a known polycondensation catalyst is added to the BHT oligomer obtained in the first stage, and then the pressure is gradually reduced while maintaining the reaction system at 260 to 290 ° C.
  • the mixture is stirred under reduced pressure of 1 to 3 mmHg, and the reaction is allowed to proceed while distilling the produced EG out of the system.
  • the molecular weight is detected based on the viscosity of the reaction system. When the molecular weight reaches a predetermined value, it is discharged out of the system to form a chip after cooling.
  • the polycondensation catalyst conventionally known catalysts such as a germanium compound, a titanium compound, an antimony compound, and an aluminum compound can be used, but it is particularly preferable to use a titanium compound.
  • Polyesters obtained by melt polymerization generally have an intrinsic viscosity of 0.5 to 0.75 dl / g.
  • the polyester is pelletized to perform solid phase polymerization. Prior to solid phase polymerization, the pellets can be heated to the crystallization temperature of the polyester to cause precrystallization of the polyester. As the polyester crystallizes, the cyclic trimer contained inside protrudes to the outside, and the cyclic trimer content decreases.
  • the crystallization is suitably performed in the range of 160 to 200 ° C., and the treatment time is suitably 2 to 240 minutes.
  • the heat treatment for crystallization of the polyester pellets can be performed in a fluidized bed or a fixed bed using a heated inert gas such as heated nitrogen gas, or can be performed in a vacuum heating furnace. After precrystallization, the pellets are dried and preheated at a temperature of 180 to 220 ° C. for 30 to 240 minutes, and then subjected to solid phase polymerization.
  • the cyclic trimer content decreases as the intrinsic viscosity increases.
  • the cyclic trimer content decreases with increasing solid phase polymerization temperature, and the cyclic trimer content decreases with increasing polymerization time.
  • the solid-phase polymerization is desirably performed at a temperature of 200 to 230 ° C. for 8 to 20 hours.
  • the intrinsic viscosity of the PET resin obtained by solid phase polymerization is 0.82 dL / g or more, and particularly preferably in the range of 0.83 to 1.0 dl / g.
  • the cyclic trimer content is preferably 0.3 to 0.6 wt% and the acetaldehyde concentration is preferably 1 ppm or less.
  • the PET resin obtained by solid phase polymerization preferably has a terminal carboxyl group concentration in the range of 15 to 50 eq / ton, particularly 20 to 45 eq / ton.
  • the terminal carboxyl group concentration is lower than the above range, the intrinsic viscosity cannot be efficiently reduced by the subsequent hydrolysis treatment, whereas when the terminal carboxyl group concentration is higher than the above range, the terminal decomposition is caused. This is not preferable because by-products such as acetaldehyde may be generated.
  • the terminal carboxyl group concentration can be increased by bringing the EG / TPA ratio (molar ratio) close to 1 in the charge amount in the melt polymerization, and conversely the EG / TPA ratio. By making the value larger than 1, the terminal carboxyl group concentration can be reduced.
  • the PET resin obtained by solid phase polymerization is subjected to a hydrolysis treatment, so that the intrinsic viscosity is 0.70 to 0.81 dL / g and the molecular weight distribution near the pellet surface is 3 in the pellet state.
  • the hydrolysis treatment is performed by bringing the solid phase polymerization PET pellets into contact with water and hydrolyzing the surface of the solid phase polymerization PET pellets.
  • Specific treatment conditions are pellets, an intrinsic viscosity of 0.70 to 0.81 dL / g, a molecular weight distribution near the pellet surface of 3.2 or more, and a maximum melting point end temperature of the melting point distribution of 280 ° C. or less.
  • the solid phase polymerization PET pellets are immersed in hot water at 100 to 160 ° C., preferably 120 to 150 ° C. for 1 to 8 hours. It is desirable to do by.
  • solid phase polymerization PET pellets are immersed using a water source composed of one or more of tap water, industrial water, and pure water, and predetermined using a heat treatment apparatus such as an autoclave or a retort kettle. After the time treatment, it is returned to a state under atmospheric pressure and subjected to a normal drying process.
  • a heat treatment apparatus such as an autoclave or a retort kettle.
  • the PET resin of the present invention is prepared with 81 dL / g, a molecular weight distribution near the pellet surface of 3.2 or more, and a maximum melting point end temperature of the melting point distribution of 280 ° C. or less.
  • the PET resin of the present invention is not limited to this, but has a glass transition point (Tg) of 50 to 90 ° C., particularly 55 to 80 ° C., and a melting point (Tm) of 200 to 275 ° C., particularly 220. It is preferable to be at 270 ° C.
  • the PET resin of the present invention can be suitably used for bottle molding by direct blow molding, biaxial stretch blow molding or the like, or cup or tray molding by vacuum molding, pressure molding, stretch molding, plug assist molding, or the like. . Since the PET resin of the present invention can impart excellent heat resistance, it can be suitably used for the production of heat resistant containers. For example, in biaxial stretch blow molding, a preform is used to prevent thermal deformation of the container mouth.
  • thermoforming such as direct blow molding and vacuum forming, or by heat crystallization of the mouth of the film, or after heat forming after stretch forming
  • heat setting heat setting
  • the molded product obtained by using the PET resin of the present invention is not only a final molded product such as a bottle, a cup, or a tray, but also a sheet, a blank, a biaxially stretched blow bottle when the container is a cup, a tray, for example.
  • precursors such as preforms are included, and these have an acetaldehyde concentration reduced to less than 10 ppm, and are excellent in flavor properties.
  • the PET resin of the present invention When molding a molded body such as a preform or a bottle using the PET resin of the present invention, not only the PET resin of the present invention is used alone, but also solid-phase polymerization PET can be blended and used. In this case, the amount of the PET resin of the present invention is desirably 5% by weight or more.
  • the weight ratio of 1,1,1,3,3,3-hexafluoro-2-propanol (manufactured by Central Glass Co., Ltd.) and chloroform (for high performance liquid chromatograph: manufactured by Kishida Chemical Co., Ltd.) is 50 : A 50 mg mixed solvent completely dissolves a 3 mg sample cut from the surface of a pellet of polyethylene terephthalate resin, and then uses gel permeation chromatography (GPC; Integrated System For) equipped with light scattering and a differential refractometer as a detector. The molecular weight distribution (Mw / Mn) was measured using GPC / SEC: Asahi Techneion Co., Ltd., Triple Detector Module TriSEC Model 302: Viscotek).
  • the freeze-pulverized pellet was dissolved in a mixed solvent of deuterated trifluoroacetic acid / deuterated chloroform (1/1) (weight ratio), and 1H-NMR spectrum was measured with an NMR apparatus (EX270: JEOL Datum Co., Ltd.). Of the obtained spectrum, the content ratio of DEG was calculated from the ratio of the integrated values of the peaks derived from the DEG site (4.27 ppm) and the terephthalic acid site (8.22 ppm).
  • Preform molding A polyester resin dried at 150 ° C. for 4 hours was supplied to a hopper, and a 28 g 500 ml heat-resistant preform was prepared using an injection molding machine set to a predetermined molding temperature. At this time, the mold temperature was set to 20 ° C., and the molding cycle was set to 30 seconds. The temperature of the injection machine and the hot runner was set to the same temperature, and this temperature was used as the molding temperature. 290 ° C. is a standard molding temperature.
  • [Acetaldehyde content] 1.0 g of the crushed sample of the preform crushed by the freeze pulverizer was weighed into a glass bottle, and 5 ml of pure water was added and sealed. The suspension was heated in an oven adjusted to a temperature of 120 ° C. for 60 minutes and then cooled in ice water. 3.0 ml of the supernatant of the suspension was collected, and 0.6 ml of a 2,4-dinitrophenylhydrazine / phosphoric acid solution having a concentration of 0.1% was added thereto, and the mixture was allowed to stand for 30 minutes.
  • the supernatant after standing was filtered through a membrane filter having a pore diameter of 0.45 ⁇ m, and the filtrate was measured by high performance liquid chromatography.
  • a standard solution of acetaldehyde was measured, and the content in the preform was calculated from the obtained calibration curve.
  • the dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
  • the dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
  • the pellet was dried at 150 ° C. for 4 hours.
  • the dried pellets were preformed at a molding temperature of 290 ° C. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
  • Comparative Example 2 As in Comparative Example 1, the resin used in Example 1 was used without being subjected to hydrolysis treatment. The pellet was dried at 150 ° C. for 4 hours. The dried pellets were preformed at a molding temperature of 300 ° C. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
  • the dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
  • the dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
  • the dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
  • the PET resin of the present invention has excellent meltability as compared with conventional solid-phase polymerized PET while maintaining the excellent properties of solid-phase polymerized PET. It can be suitably used for packaging containers such as cups and trays.
  • the PET resin of the present invention is excellent in heat resistance and can be suitably used for molding a heat-resistant container because strain at the time of stretching can be reduced due to excellent shapeability.
  • the content of acetaldehyde is 10 ppm or less, and the flavor property is excellent, and it can be suitably used as an aseptic container as well as a heat resistant container.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention is a polyester resin which comprises ethylene terephthalate units as the main component and which exhibits, in a pelletized state, an intrinsic viscosity of 0.70 to 0.81dL/g, a molecular weight distribution of 3.2 or more in the neighborhood of a pellet surface, and a maximum melting point ending temperature of 280°C or lower in the melting point distribution. The polyester resin exhibits excellent meltability and moldability and a reduced acetaldehyde concentration, and has a characteristic of exhibiting a reduced strain in stretching by virtue of the excellent shapability and thus imparting excellent heat resistance to a molded product.

Description

ポリエステル樹脂Polyester resin
 本発明は、ボトル成形に適したポリエステル樹脂に関するものであり、より詳細には、溶融性及び成形性に優れ、アセトアルデヒド濃度が低減されていると共に、優れた耐熱性をも付与可能なポリエステル樹脂に関する。 The present invention relates to a polyester resin suitable for bottle molding. More specifically, the present invention relates to a polyester resin that has excellent meltability and moldability, has a reduced acetaldehyde concentration, and can impart excellent heat resistance. .
 ポリエチレンテレフタレートに代表されるポリエステル樹脂から成る容器は、透明性、機械的強度等の特性に優れていることから、飲料、油、調味料等の容器として広く用いられている。
 一般にポリエステル樹脂からなる容器、特にエチレンテレフタレート単位を主体とするポリエステル樹脂からなるボトル(以下、「PETボトル」という)は、溶融重合、或いは溶融重合後に更に固相重合を経て生産されたポリエステル樹脂が用いられている。
 溶融重合により製造されたポリエステル樹脂は、アセトアルデヒド等の低分子量成分や環状三量体等のオリゴマーが含有されており、これらの物質を含んだ状態のポリエステル樹脂を用いて容器の成形を行うと、成形時にポリエステル樹脂中のオリゴマーが析出して金型表面に付着して、肌荒れによる透明性低下の原因になったり、或いは頻繁な金型の清掃が必要になる等の問題があった。また成形された容器中にアセトアルデヒドが多量に存在すると、内容物に移行し内容物の風味を損なうという問題もあった。
Containers made of a polyester resin typified by polyethylene terephthalate are widely used as containers for beverages, oils, seasonings and the like because of their excellent properties such as transparency and mechanical strength.
Generally, a container made of a polyester resin, particularly a bottle made of a polyester resin mainly composed of ethylene terephthalate units (hereinafter referred to as “PET bottle”) is a polyester resin produced by melt polymerization or solid phase polymerization after melt polymerization. It is used.
The polyester resin produced by melt polymerization contains low molecular weight components such as acetaldehyde and oligomers such as cyclic trimers, and when a container is molded using a polyester resin containing these substances, During molding, oligomers in the polyester resin are deposited and adhere to the mold surface, causing problems such as a decrease in transparency due to rough skin, or frequent cleaning of the mold. In addition, when a large amount of acetaldehyde is present in the molded container, there is also a problem that the content is transferred to the content and the flavor of the content is impaired.
 このような問題を解決するため、ポリエステル樹脂中の環状三量体等のオリゴマーやアセトアルデヒドを低減させるべく、溶融重合により製造されたポリエステル樹脂を更に固相重合に付することが従来から行われている。
 しかしながら、固相重合工程においては、ポリエステル樹脂ペレットの表面及びその近傍において、伝熱や拡散の影響でペレット内側に比して、分子量の増加及び結晶成長が顕著に生じるため、特にホモポリエチレンテレフタレートの場合は、溶融が困難になる傾向がある。その結果、固相重合工程を経たポリエステル樹脂を用いて、射出成形でプリフォームを成形すると、プリフォームが白化したり、或いは難溶融であるがために高温成形が必要であり、オリゴマーの付着により押出機のベントが詰まったり、或いはアセトアルデヒドが高濃度で発生してしまうという問題を生じるおそれがある。
 また固相重合の際に、ペレット表面の固有粘度の上昇が著しい場合には、上述した問題に加えて、ブロー成形による賦形性が低下したり、或いは延伸時の歪が増大して、得られるPETボトルの耐熱性が低下するという問題を生じる場合もある。
In order to solve such problems, it has been conventionally performed to subject the polyester resin produced by melt polymerization to solid-phase polymerization in order to reduce oligomers such as cyclic trimers and acetaldehyde in the polyester resin. Yes.
However, in the solid-phase polymerization process, molecular weight increase and crystal growth remarkably occur compared to the inside of the pellet due to heat transfer and diffusion on the surface of the polyester resin pellet and its vicinity. In some cases, melting tends to be difficult. As a result, when a preform is molded by injection molding using a polyester resin that has undergone a solid-phase polymerization process, the preform is whitened or hardly melted, so high-temperature molding is required. There is a possibility that the vent of the extruder is clogged or that acetaldehyde is generated at a high concentration.
In addition, in the case of solid-state polymerization, if the increase in the intrinsic viscosity of the pellet surface is significant, in addition to the above-mentioned problems, the shapeability by blow molding may be reduced, or the strain during stretching may be increased. There may be a problem that the heat resistance of the PET bottle is lowered.
 このような固相重合を経たポリエステル樹脂ペレットの内外層での固有粘度や結晶化の相違に起因する問題を解決するために、内外層の固有粘度の差が0.125以下及び密度の差が0.0019以下であるチップ(特許文献1)や、固相重合ポリエステルチップの中心部と表層部の極限粘度の比が0.70~0.95であるポリエステル組成物(特許文献2)が提案されている。 In order to solve the problems caused by the difference in intrinsic viscosity and crystallization in the inner and outer layers of the polyester resin pellets that have undergone such solid phase polymerization, the difference in intrinsic viscosity between the inner and outer layers is 0.125 or less and the difference in density is Proposal is made of a chip (Patent Document 1) of 0.0019 or less and a polyester composition (Patent Document 2) in which the ratio of the intrinsic viscosity of the center part to the surface layer part of the solid-phase polymerized polyester chip is 0.70 to 0.95. Has been.
特開平5-70567号公報Japanese Patent Laid-Open No. 5-70567 特開平9-24964号公報Japanese Patent Laid-Open No. 9-24964
 しかしながら、上記特許文献1及び2に記載されたように、重合の諸条件を制御することによって表面の固有粘度や密度が増大することを制御するのは、処方を特殊化したり、或いは専用設備を導入する必要が生じたり、更には処理時間が長大化するおそれがあり、生産性や経済性の点で未だ充分満足するものではなかった。
 従って本発明の目的は、溶融性及び成形性が改善され、アセトアルデヒド濃度が低減されたポリエステル樹脂を提供することである。
 本発明の他の目的は、優れた賦形性により延伸時の歪が低減されていると共に、結晶形成が抑制されており、成形体に優れた耐熱性をも付与可能なポリエステル樹脂を提供することである。
 本発明の更に他の目的は、上記特性を有するポリエステル樹脂を生産性及び経済性よく製造可能な製造方法を提供することである。
However, as described in Patent Documents 1 and 2 above, controlling the conditions of polymerization to control the increase in the intrinsic viscosity and density of the surface can be done by specializing the formulation or using dedicated equipment. It may be necessary to introduce it, and the processing time may be prolonged, and it has not been fully satisfied in terms of productivity and economy.
Accordingly, an object of the present invention is to provide a polyester resin with improved meltability and moldability and reduced acetaldehyde concentration.
Another object of the present invention is to provide a polyester resin capable of imparting excellent heat resistance to a molded article, in which distortion during stretching is reduced by excellent formability and crystal formation is suppressed. That is.
Still another object of the present invention is to provide a production method capable of producing a polyester resin having the above characteristics with high productivity and economy.
 本発明によれば、エチレンテレフタレート単位を主体とするポリエステル樹脂であって、ペレットの状態で、固有粘度が0.70乃至0.81dL/g、ペレット表面近傍の分子量分布(Mw/Mn)が3.2以上であり、融点分布の最大融点終了温度が280℃以下であることを特徴とするエチレンテレフタレート系ポリエステル樹脂が提供される。
 本発明のエチレンテレフタレート系ポリエステル樹脂においては、ジエチレングリコールの含有量が2.0モル%未満であることが好適である。
 本発明によればまた、固有粘度が0.82dL/g以上であり、融点分布の最大存在比率における最大ピーク温度が245℃以上且つ最大融点終了温度が281℃以上であるエチレンテレフタレート系ポリエステル樹脂を、加水分解することを特徴とするエチレンテレフタレート系ポリエステル樹脂の製造方法が提供される。
 本発明によれば更に、上記エチレンテレフタレート系ポリエステル樹脂から成るアセトアルデヒド濃度が10ppm未満であることを特徴とする成形体が提供される。
According to the present invention, it is a polyester resin mainly composed of ethylene terephthalate units, and in the pellet state, the intrinsic viscosity is 0.70 to 0.81 dL / g, and the molecular weight distribution (Mw / Mn) in the vicinity of the pellet surface is 3 An ethylene terephthalate-based polyester resin having a melting point distribution of 280 ° C. or lower is provided.
In the ethylene terephthalate-based polyester resin of the present invention, it is preferable that the content of diethylene glycol is less than 2.0 mol%.
According to the present invention, there is also provided an ethylene terephthalate-based polyester resin having an intrinsic viscosity of 0.82 dL / g or more, a maximum peak temperature in a maximum existence ratio of a melting point distribution of 245 ° C. or more, and a maximum melting point end temperature of 281 ° C. or more. There is provided a method for producing an ethylene terephthalate-based polyester resin characterized by hydrolysis.
According to the present invention, there is further provided a molded article characterized in that the acetaldehyde concentration comprising the ethylene terephthalate polyester resin is less than 10 ppm.
 一般に高分子の融点は分子量に依存性がある。また融点は、Gibbs-Thompsonの関係式から、結晶(ラメラ)の厚さやラメラ面の表面自由エネルギーによって左右され、結晶(ラメラ)の厚さが薄いほど融点は低くなる。固層重合で得られるエチレンテレフタレート系ポリエステル樹脂(以下、単に「PET樹脂」ということがある)の融点は固層重合中のラメラ厚みの違いから生じる密度分布に対応する融点分布として現わされる。
 参考として、実施例1で用いた加水分解前のPET樹脂に関し、ペレット密度に対する存在比率および融点ピーク温度(A)及び融点ピーク温度と存在比率の関係(B)を図1に示した。
 本発明においては、このような観点から、ペレット全体の固有粘度が0.70乃至0.81dL/gの範囲にあり、ペレット表面の分子量分布が大きく、しかも融点分布の最大融点終了温度が280℃以下であるPET樹脂が、優れた溶融性及び成形性を有することを見出した。
 すなわち、前述したように固相重合によりペレット表面近傍において高分子量化が進んでいるが、本発明のPET樹脂においてはかかる高分子鎖が切断されて、広い分子量分布を有している。また融点分布の最大融点終了温度を問題とするのは、最大融点終了温度がPET樹脂を完全に溶融するのに必要な温度を示し、PET樹脂の溶融性及び成形性に直接関与するからである。融点分布及び最大融点終了温度、並びに最大存在比率における最大ピーク温度については後述する実施例にその測定方法を詳述する。一例として、実施例1で用いたPET樹脂に関して、加水分解前後の存在比率に対する融点終了温度(A)及び加水分解前の存在比率に対する融点ピーク温度(B)を図1に示した。
 尚、本発明において、PET樹脂のペレット表面近傍とは、ペレットの大きさにもよるが、ペレット表面から0.5mmまでの厚みを有する部分を言う。
In general, the melting point of a polymer depends on the molecular weight. The melting point depends on the thickness of the crystal (lamella) and the surface free energy of the lamella surface from the Gibbs-Thompson relational expression. The thinner the crystal (lamellar), the lower the melting point. The melting point of the ethylene terephthalate polyester resin (hereinafter sometimes simply referred to as “PET resin”) obtained by solid layer polymerization is expressed as a melting point distribution corresponding to the density distribution resulting from the difference in lamellar thickness during solid layer polymerization. .
For reference, regarding the PET resin before hydrolysis used in Example 1, the abundance ratio to the pellet density and the melting point peak temperature (A) and the relationship between the melting point peak temperature and the abundance ratio (B) are shown in FIG.
In the present invention, from such a viewpoint, the intrinsic viscosity of the whole pellet is in the range of 0.70 to 0.81 dL / g, the molecular weight distribution on the pellet surface is large, and the maximum melting point end temperature of the melting point distribution is 280 ° C. It has been found that the following PET resin has excellent meltability and moldability.
That is, as described above, the molecular weight is increasing in the vicinity of the pellet surface by solid phase polymerization, but in the PET resin of the present invention, such a polymer chain is cleaved and has a wide molecular weight distribution. The reason for the maximum melting point end temperature of the melting point distribution is that the maximum melting point end point indicates the temperature necessary for completely melting the PET resin, and is directly related to the meltability and moldability of the PET resin. . Regarding the melting point distribution, the maximum melting point end temperature, and the maximum peak temperature at the maximum abundance ratio, the measuring method will be described in detail in Examples described later. As an example, regarding the PET resin used in Example 1, the melting point end temperature (A) with respect to the existing ratio before and after hydrolysis and the melting point peak temperature (B) with respect to the existing ratio before hydrolysis are shown in FIG.
In the present invention, the vicinity of the pellet surface of the PET resin refers to a portion having a thickness of 0.5 mm from the pellet surface, although it depends on the size of the pellet.
 またPET樹脂の融点は、分子量分布のみならず共重合成分の影響も受けることから、本発明においては、特にジエチレングリコール(以下、「DEG」ということがある)の含有量を2.0モル%未満とすることがより好ましく、これにより結晶形成を抑制することが可能になり、融点を低くすることが可能になる。 In addition, since the melting point of the PET resin is affected not only by the molecular weight distribution but also by the copolymerization component, in the present invention, the content of diethylene glycol (hereinafter sometimes referred to as “DEG”) is particularly less than 2.0 mol%. It is more preferable that this makes it possible to suppress crystal formation and to lower the melting point.
 本発明のPET樹脂は、固相重合PETが有する優れた特性、すなわち、環状三量体等のオリゴマーやアセトアルデヒド(以下、「AA」ということがある)が低減されているという特性を維持しつつ、従来の固相重合PETよりも優れた溶融特性を有していることから、従来の固相重合PETよりも低温で溶融でき、成形性に優れると共に、延伸時の歪が低減されることにより、成形体に優れた耐熱性を付与することもできる。
 またPET樹脂中のアセトアルデヒド含有量が低減されていると共に、高温成形によるアセトアルデヒドの発生の問題もないので、フレーバー性に優れた成形体を提供することもできる。
 更に本発明のPET樹脂は、従来の固相重合PETを用いた場合に生じた前述した問題、すなわち、プリフォームの白化や、押出機のベントが詰まったり、或いはアセトアルデヒドが高濃度で発生してしまうという問題を生じることがない。
 更にまた本発明のPET樹脂の製造方法によれば、生産性及び経済性よく上記特徴を有する本発明のPET樹脂を製造することができる。
The PET resin of the present invention maintains the excellent properties of solid-phase polymerization PET, that is, the properties that oligomers such as cyclic trimers and acetaldehyde (hereinafter sometimes referred to as “AA”) are reduced. Because it has better melting characteristics than conventional solid-phase polymerized PET, it can be melted at a lower temperature than conventional solid-phase polymerized PET, has excellent moldability, and reduces strain during stretching. Further, excellent heat resistance can be imparted to the molded body.
Moreover, since the acetaldehyde content in the PET resin is reduced and there is no problem of generation of acetaldehyde due to high temperature molding, a molded article having excellent flavor properties can be provided.
Furthermore, the PET resin of the present invention has the above-mentioned problems that occur when conventional solid-phase polymerization PET is used, that is, whitening of the preform, the vent of the extruder is clogged, or acetaldehyde is generated at a high concentration. Will not cause the problem.
Furthermore, according to the method for producing a PET resin of the present invention, the PET resin of the present invention having the above characteristics can be produced with good productivity and economy.
 本発明のPET樹脂のこのような作用効果は、後述する実施例の結果からも明らかである。すなわち、分子量分布(Mw/Mn)が3.2未満であるPET樹脂や、融点分布の最大融点終了温度が280℃よりも高いPET樹脂においては、290℃の標準的な押出温度で射出成形した場合においても充分に溶融されず、得られたプリフォームは白化しており(比較例1、3)、また300℃の(高温)押出温度で射出成形した場合には、アセトアルデヒドが発生し、フレーバー性に劣っていた(比較例2)。
 これに対して本発明のPET樹脂では、280℃の(低温)押出温度で射出成形した場合にもプリフォームは白化することなく、プリフォームの口部の熱結晶化も効率よく行うことができ、優れた耐熱性、フレーバー性を有していることが明らかである(実施例4)。またDEG含有量が2.0モル%以下であることにより、更に優れた耐熱性が得られることが明らかである(実施例1~4,6)。
Such operational effects of the PET resin of the present invention are also apparent from the results of Examples described later. That is, PET resin having a molecular weight distribution (Mw / Mn) of less than 3.2 or PET resin having a maximum melting point end temperature higher than 280 ° C. was injection molded at a standard extrusion temperature of 290 ° C. In some cases, the preform was not sufficiently melted, and the resulting preform was whitened (Comparative Examples 1 and 3). When injection molding was performed at an extrusion temperature of 300 ° C. (high temperature), acetaldehyde was generated and flavor was increased. It was inferior in property (Comparative Example 2).
On the other hand, with the PET resin of the present invention, even when injection molding is performed at an extrusion temperature of 280 ° C. (low temperature), the preform is not whitened and the thermal crystallization of the mouth of the preform can be performed efficiently. It is clear that the film has excellent heat resistance and flavor properties (Example 4). Further, it is apparent that even better heat resistance can be obtained when the DEG content is 2.0 mol% or less (Examples 1 to 4, 6).
PET樹脂の密度分布と融点分布の関係を示す参考図である。It is a reference figure which shows the relationship between the density distribution of PET resin, and melting | fusing point distribution.
(PET樹脂)
 本発明のPET樹脂は、エチレンテレフタレート単位を主体とし、ペレットの状態で、固有粘度が0.70乃至0.81dL/g、ペレット表面近傍の分子量分布(Mw/Mn)が3.2以上であり、融点分布の最大融点終了温度が280℃以下であることが重要な特徴である。
 エチレンテレフタレート単位を主体とするPET樹脂とは、エステル反復単位の50%以上がエチレンテレフタレート単位であるものであり、特に80モル%以上をエチレンテレフタレート単位が占めるものであることが好ましい。
 本発明のPET樹脂においては、前述した通り、結晶形成を抑制するためにDEGの含有量が2.0モル%未満であることが好適であり、特にホモポリエチレンテレフタレートであることが耐熱性の点で特に好適である。
 しかしながら、エチレンテレフタレート単位以外の極少量のエステル単位を含む共重合ポリエステルを除外するものではない。テレフタル酸以外のジカルボン酸としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;コハク酸、アジピン酸、セバチン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;の1種又は2種以上の組合せが挙げられ、エチレングリコール以外のジオール成分としては、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等が挙げられる。
(PET resin)
The PET resin of the present invention is mainly composed of ethylene terephthalate units, has an intrinsic viscosity of 0.70 to 0.81 dL / g in a pellet state, and a molecular weight distribution (Mw / Mn) near the pellet surface of 3.2 or more. It is an important feature that the maximum melting point end temperature of the melting point distribution is 280 ° C. or lower.
The PET resin mainly composed of ethylene terephthalate units is one in which 50% or more of the ester repeating units are ethylene terephthalate units, and particularly preferably 80 mol% or more is occupied by ethylene terephthalate units.
In the PET resin of the present invention, as described above, in order to suppress crystal formation, the content of DEG is preferably less than 2.0 mol%, and in particular, homopolyethylene terephthalate is heat resistant. And is particularly suitable.
However, this does not exclude copolyesters containing a very small amount of ester units other than ethylene terephthalate units. Examples of dicarboxylic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, sebacic acid, and dodecanedioic acid. Examples of the diol component other than ethylene glycol include propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexylene glycol, and cyclohexanedimethanol. And ethylene oxide adducts of bisphenol A.
(製造方法)
 本発明のPET樹脂は、必ずしもこれに限定されるものではないが、上述したジカルボン酸成分及びジオール成分を主体とする原料を、触媒の存在下に溶融重合及び固相重合させることにより得られた固相重合PETを加水分解処理することにより得ることができる。
 加水分解処理の対象となる固相重合PETは、固有粘度が0.82dL/g以上であり、融点分布の最大存在比率における最大ピーク温度が245℃以上且つ最大融点終了温度が280℃以上であるPET樹脂であることが望ましい。
 すなわち固有粘度、融点分布の最大存在比率における最大ピーク温度、及び最大融点終了温度が上記範囲よりも低い場合には、固相重合により、アセトアルデヒド等の低分子量成分や環状三量体等のオリゴマーが充分に低減されておらず、その後の処理によってもこれらを低減することが困難であり、透明性等の点で充分満足するプリフォームを得ることが困難になる。また共重合成分を多量に含んでいるおそれもあり、優れた耐熱性を得られないおそれがある。
(Production method)
The PET resin of the present invention is not necessarily limited to this, but was obtained by subjecting the above-mentioned raw materials mainly composed of the dicarboxylic acid component and the diol component to melt polymerization and solid phase polymerization in the presence of a catalyst. It can be obtained by hydrolyzing solid-phase polymerization PET.
The solid-phase polymerization PET to be subjected to hydrolysis treatment has an intrinsic viscosity of 0.82 dL / g or more, a maximum peak temperature in the maximum abundance ratio of the melting point distribution is 245 ° C. or more, and a maximum melting point end temperature is 280 ° C. or more. A PET resin is desirable.
That is, when the intrinsic viscosity, the maximum peak temperature in the maximum abundance ratio of the melting point distribution, and the maximum melting point end temperature are lower than the above ranges, low molecular weight components such as acetaldehyde and oligomers such as cyclic trimers are obtained by solid phase polymerization. It is not sufficiently reduced, and it is difficult to reduce these even by subsequent processing, and it becomes difficult to obtain a preform that is sufficiently satisfactory in terms of transparency and the like. Moreover, there is a possibility that the copolymer component is contained in a large amount, and there is a possibility that excellent heat resistance cannot be obtained.
 一般にPET樹脂の合成は、高純度テレフタル酸(TPA)とエチレングリコール(EG)とを直接反応させてポリエチレンテレフタレート(PET)を合成する方法であり、通常二つの工程に分けられており、(A)TPAとEGとを反応させて、ビス-β-ヒドロキシエチルテレフタレート(BHT)オリゴマーを合成する工程、(B)BHTオリゴマーからエチレングリコールを留去して重縮合を行う工程から成っている。 In general, the synthesis of PET resin is a method of directly reacting high-purity terephthalic acid (TPA) and ethylene glycol (EG) to synthesize polyethylene terephthalate (PET), which is usually divided into two steps. ) It comprises a step of synthesizing bis-β-hydroxyethyl terephthalate (BHT) oligomer by reacting TPA and EG, and (B) a step of performing polycondensation by distilling off ethylene glycol from the BHT oligomer.
 BHTオリゴマーの合成はそれ自体公知の条件で行うことができ、例えばTPAに対するEGの量を1.0乃至1.5モル倍として、EGの沸点以上、例えば240乃至280℃の温度に加熱して、1乃至5kg/cmの加圧下に、水を系外に留去しながら、エステル化を行う。この場合、TPA自体が触媒となるので、通常触媒は必要ないが、それ自体公知のエステル化触媒を用いることもできる。 The synthesis of the BHT oligomer can be carried out under conditions known per se. For example, the amount of EG with respect to TPA is 1.0 to 1.5 mole times and heated to a temperature not lower than the boiling point of EG, for example, 240 to 280 ° C. Esterification is performed while distilling water out of the system under a pressure of 1 to 5 kg / cm 2 . In this case, since TPA itself becomes a catalyst, a catalyst is usually not necessary, but a known esterification catalyst can also be used.
 第二段階の重縮合工程では、第一段階で得られたBHTオリゴマーにそれ自体公知の重縮合触媒を加えた後、反応系を260~290℃に保ちながら徐々に圧力を低下させ、最終的に1~3mmHgの減圧下に撹拌し、生成するEGを系外に留去しながら、反応を進行させる。反応系の粘度によって分子量を検出し、所定の値に達したら、系外に吐出させ、冷却後チップとする。
 重縮合触媒としては、ゲルマニウム化合物、チタン化合物、アンチモン化合物、アルミニウム化合物等、従来公知の触媒を使用できるが、特にチタン化合物を用いることが好ましい。
In the second stage polycondensation step, a known polycondensation catalyst is added to the BHT oligomer obtained in the first stage, and then the pressure is gradually reduced while maintaining the reaction system at 260 to 290 ° C. The mixture is stirred under reduced pressure of 1 to 3 mmHg, and the reaction is allowed to proceed while distilling the produced EG out of the system. The molecular weight is detected based on the viscosity of the reaction system. When the molecular weight reaches a predetermined value, it is discharged out of the system to form a chip after cooling.
As the polycondensation catalyst, conventionally known catalysts such as a germanium compound, a titanium compound, an antimony compound, and an aluminum compound can be used, but it is particularly preferable to use a titanium compound.
 溶融重合で得られたポリエステルは、一般に0.5乃至0.75dl/gの固有粘度を有する。次いで、このポリエステルをペレタイズして固相重合を行うが、固相重合に先立って、このペレットをポリエステルの結晶化温度に加熱して、ポリエステルの予備結晶化を行わせることもできる。
 このポリエステルの結晶化に伴い内部に含有される環状三量体は外部にはみだし、環状三量体含有量は減少する。この結晶化は、一般に160乃至200℃の範囲が適当であり、また処理時間は2乃至240分間が適当である。ポリエステルペレットの結晶化のための熱処理は、例えば加熱窒素ガス等の加熱不活性ガスを用いて、流動床または固定床で行うことができ、また真空加熱炉内で行うこともできる。予備結晶化後ペレットを180乃至220℃の温度で30乃至240分間乾燥及び予熱した後、固相重合に付する。
Polyesters obtained by melt polymerization generally have an intrinsic viscosity of 0.5 to 0.75 dl / g. Next, the polyester is pelletized to perform solid phase polymerization. Prior to solid phase polymerization, the pellets can be heated to the crystallization temperature of the polyester to cause precrystallization of the polyester.
As the polyester crystallizes, the cyclic trimer contained inside protrudes to the outside, and the cyclic trimer content decreases. In general, the crystallization is suitably performed in the range of 160 to 200 ° C., and the treatment time is suitably 2 to 240 minutes. The heat treatment for crystallization of the polyester pellets can be performed in a fluidized bed or a fixed bed using a heated inert gas such as heated nitrogen gas, or can be performed in a vacuum heating furnace. After precrystallization, the pellets are dried and preheated at a temperature of 180 to 220 ° C. for 30 to 240 minutes, and then subjected to solid phase polymerization.
 固相重合に際しては、溶融重合の場合とは異なり、固有粘度の増大に伴って、環状三量体含有量の低下を生じる。また、一般に固相重合温度の上昇に伴って環状三量体含有量が低下し、重合時間の増大に伴って環状三量体含有量が低下する。固相重合は、一般に200乃至230℃の温度で8乃至20時間行うことが望ましい。
 上述したとおり、固相重合により得られたPET樹脂の固有粘度は0.82dL/g以上であり、特に0.83乃至1.0dl/gの範囲にあることが好ましい。また環状三量体の含有量が0.3乃至0.6wt%、アセトアルデヒド濃度が1ppm以下であることが好ましい。
 更に固相重合により得られたPET樹脂は、末端カルボキシル基濃度が15乃至50eq/ton、特に20乃至45eq/tonの範囲にあることが望ましい。上記範囲よりも末端カルボキシル基濃度が小さい場合には、次いで行う加水分解処理で効率よく固有粘度を低下させることができず、一方上記範囲よりも末端カルボキシル基濃度が大きい場合には、末端分解によりアセトアルデヒド等の副生物が生成してしまうおそれがあるので好ましくない。
 末端カルボキシル基濃度を上記範囲に調整するため、溶融重合における仕込量において、EG/TPA比(モル比)を1に近づけることで末端カルボキシル基濃度を大きくすることが出来、逆にEG/TPA比を1より大きくすることで末端カルボキシル基濃度を小さくすることができる。
In the case of solid-phase polymerization, unlike the case of melt polymerization, the cyclic trimer content decreases as the intrinsic viscosity increases. In general, the cyclic trimer content decreases with increasing solid phase polymerization temperature, and the cyclic trimer content decreases with increasing polymerization time. In general, the solid-phase polymerization is desirably performed at a temperature of 200 to 230 ° C. for 8 to 20 hours.
As described above, the intrinsic viscosity of the PET resin obtained by solid phase polymerization is 0.82 dL / g or more, and particularly preferably in the range of 0.83 to 1.0 dl / g. The cyclic trimer content is preferably 0.3 to 0.6 wt% and the acetaldehyde concentration is preferably 1 ppm or less.
Further, the PET resin obtained by solid phase polymerization preferably has a terminal carboxyl group concentration in the range of 15 to 50 eq / ton, particularly 20 to 45 eq / ton. When the terminal carboxyl group concentration is lower than the above range, the intrinsic viscosity cannot be efficiently reduced by the subsequent hydrolysis treatment, whereas when the terminal carboxyl group concentration is higher than the above range, the terminal decomposition is caused. This is not preferable because by-products such as acetaldehyde may be generated.
In order to adjust the terminal carboxyl group concentration within the above range, the terminal carboxyl group concentration can be increased by bringing the EG / TPA ratio (molar ratio) close to 1 in the charge amount in the melt polymerization, and conversely the EG / TPA ratio. By making the value larger than 1, the terminal carboxyl group concentration can be reduced.
 本発明においては、固相重合により得られたPET樹脂を加水分解処理に付することにより、ペレットの状態で、固有粘度が0.70乃至0.81dL/g、ペレット表面近傍の分子量分布が3.2以上であり、融点分布の最大融点終了温度が280℃以下であるPET樹脂に調製する。 In the present invention, the PET resin obtained by solid phase polymerization is subjected to a hydrolysis treatment, so that the intrinsic viscosity is 0.70 to 0.81 dL / g and the molecular weight distribution near the pellet surface is 3 in the pellet state. And a PET resin having a melting point distribution with a maximum melting point end temperature of 280 ° C. or lower.
 加水分解処理は、固相重合PETペレットを水と接触させ、固相重合PETペレット表面を加水分解させることに行う。具体的な処理条件は、ペレットの状態で、固有粘度が0.70乃至0.81dL/g、ペレット表面近傍の分子量分布が3.2以上であり、融点分布の最大融点終了温度が280℃以下であるPET樹脂に調製し得る限り、これに限定されるものではないが、100乃至160℃、好適には120乃至150℃の熱水中に固相重合PETペレットを1乃至8時間浸漬させることにより行うことが望ましい。具体的には、固相重合PETペレットを水道水、工業用水、純水のいずれか1種類以上からなる水源を利用して浸漬し、オートクレーブ、レトルト釜等の加圧加熱処理装置を用いて所定時間処理した後、大気圧下の状態に戻して、通常の乾燥工程に供する。 The hydrolysis treatment is performed by bringing the solid phase polymerization PET pellets into contact with water and hydrolyzing the surface of the solid phase polymerization PET pellets. Specific treatment conditions are pellets, an intrinsic viscosity of 0.70 to 0.81 dL / g, a molecular weight distribution near the pellet surface of 3.2 or more, and a maximum melting point end temperature of the melting point distribution of 280 ° C. or less. Although it is not limited to this as long as it can be prepared as a PET resin, the solid phase polymerization PET pellets are immersed in hot water at 100 to 160 ° C., preferably 120 to 150 ° C. for 1 to 8 hours. It is desirable to do by. Specifically, solid phase polymerization PET pellets are immersed using a water source composed of one or more of tap water, industrial water, and pure water, and predetermined using a heat treatment apparatus such as an autoclave or a retort kettle. After the time treatment, it is returned to a state under atmospheric pressure and subjected to a normal drying process.
 加水分解処理後、ペレットの脱水処理を行い、次いで80乃至180℃の温度下で0.1乃至24時間乾燥処理を行うことによって、上述したペレットの状態で、固有粘度が0.70乃至0.81dL/g、ペレット表面近傍の分子量分布が3.2以上であり、融点分布の最大融点終了温度が280℃以下である本発明のPET樹脂に調製される。
 尚、本発明のPET樹脂は、これに限定されるものではないが、ガラス転移点(Tg)が50乃至90℃、特に55乃至80℃で、融点(Tm)が200乃至275℃、特に220乃至270℃にあることが好適である。
After the hydrolysis treatment, the pellets are dehydrated and then dried at a temperature of 80 to 180 ° C. for 0.1 to 24 hours, so that the intrinsic viscosity is 0.70 to 0.00 in the above-described pellet state. The PET resin of the present invention is prepared with 81 dL / g, a molecular weight distribution near the pellet surface of 3.2 or more, and a maximum melting point end temperature of the melting point distribution of 280 ° C. or less.
The PET resin of the present invention is not limited to this, but has a glass transition point (Tg) of 50 to 90 ° C., particularly 55 to 80 ° C., and a melting point (Tm) of 200 to 275 ° C., particularly 220. It is preferable to be at 270 ° C.
(成形体)
 本発明のPET樹脂は、ダイレクトブロー成形、二軸延伸ブロー成形等によるボトル成形、或いは真空成形、圧空成形、張出成形、プラグアシスト成形等によるカップやトレイの成形に好適に使用することができる。
 本発明のPET樹脂は、優れた耐熱性を付与できるので耐熱性容器の製造に好適に用いることができ、例えば二軸延伸ブロー成形においては、容器口部の熱変形を防止するため、プリフォームの口部を熱結晶化させ、或いは延伸成形後に熱固定(ヒートセット)に付されたり、或いはダイレクトブロー成形や真空成形等の熱成形においても、熱による変形や容積の収縮変形を防止するため、容器の成形後に熱固定(ヒート・セット)することが行われているが、本発明によるPET樹脂を用いることにより効率よく成形することができる。
 本発明のPET樹脂を用いて得られた、成形体とは、ボトルやカップ、或いはトレイ等の最終成形品は勿論、例えば容器がカップ、トレイの場合はシートやブランク、二軸延伸ブローボトルの場合はプリフォーム等の前駆体も含むものであり、これらはアセトアルデヒド濃度が10ppm未満に低減されており、フレーバー性にも優れている。
(Molded body)
The PET resin of the present invention can be suitably used for bottle molding by direct blow molding, biaxial stretch blow molding or the like, or cup or tray molding by vacuum molding, pressure molding, stretch molding, plug assist molding, or the like. .
Since the PET resin of the present invention can impart excellent heat resistance, it can be suitably used for the production of heat resistant containers. For example, in biaxial stretch blow molding, a preform is used to prevent thermal deformation of the container mouth. In order to prevent thermal deformation and shrinkage deformation of the volume even in thermoforming such as direct blow molding and vacuum forming, or by heat crystallization of the mouth of the film, or after heat forming after stretch forming Although heat setting (heat setting) is performed after the container is molded, it can be efficiently molded by using the PET resin according to the present invention.
The molded product obtained by using the PET resin of the present invention is not only a final molded product such as a bottle, a cup, or a tray, but also a sheet, a blank, a biaxially stretched blow bottle when the container is a cup, a tray, for example. In some cases, precursors such as preforms are included, and these have an acetaldehyde concentration reduced to less than 10 ppm, and are excellent in flavor properties.
 本発明のPET樹脂を用いて、プリフォームやボトル等の成形体を成形する際には、本発明のPET樹脂を単独で用いるだけでなく、固相重合PETをブレンドして用いることもできる。この場合本発明のPET樹脂が5重量%以上の量であることが望ましい。 When molding a molded body such as a preform or a bottle using the PET resin of the present invention, not only the PET resin of the present invention is used alone, but also solid-phase polymerization PET can be blended and used. In this case, the amount of the PET resin of the present invention is desirably 5% by weight or more.
(測定方法)
[固有粘度(IV)]
 150℃にて4時間乾燥させたペレットを0.3000g秤量した。これに1,1,2,2-テトラクロロエタンとフェノールの混合溶媒(重量比1/1)を30ml加え、120℃で20分間攪拌して完全に溶解させた。溶解後の溶液を室温まで冷却し、濾液を25℃に温調された相対粘度計(Viscotek、Y501)を用いて固有粘度を求めた。
(Measuring method)
[Intrinsic viscosity (IV)]
0.3000 g of pellets dried at 150 ° C. for 4 hours was weighed. To this, 30 ml of a mixed solvent of 1,1,2,2-tetrachloroethane and phenol (weight ratio 1/1) was added and stirred at 120 ° C. for 20 minutes for complete dissolution. The solution after dissolution was cooled to room temperature, and the intrinsic viscosity was determined using a relative viscometer (Viscotek, Y501) whose temperature was adjusted to 25 ° C.
[分子量分布の測定]
 1,1,1,3,3,3,-ヘキサフルオロ-2-プロパノール(セントラル硝子(株)社製)とクロロホルム(高速液体クロマトグラフ用:キシダ化学(株)社製)の重量比が50:50の混合溶媒で、ポリエチレンテレフタレート樹脂のペレット表面から削り出した3mgのサンプルを完全に溶解させた後、検知器として光散乱と示差屈折計を備えたゲルパーミエーションクロマトグラフィ(GPC;Integrated System For GPC/SEC:旭テクネイオン(株)社製、Triple Detector Module TriSEC Model 302:Viscotek製)を用いて分子量分布(Mw/Mn)を測定した。
[Measurement of molecular weight distribution]
The weight ratio of 1,1,1,3,3,3-hexafluoro-2-propanol (manufactured by Central Glass Co., Ltd.) and chloroform (for high performance liquid chromatograph: manufactured by Kishida Chemical Co., Ltd.) is 50 : A 50 mg mixed solvent completely dissolves a 3 mg sample cut from the surface of a pellet of polyethylene terephthalate resin, and then uses gel permeation chromatography (GPC; Integrated System For) equipped with light scattering and a differential refractometer as a detector. The molecular weight distribution (Mw / Mn) was measured using GPC / SEC: Asahi Techneion Co., Ltd., Triple Detector Module TriSEC Model 302: Viscotek).
[ペレットの密度測定]
 1000mlのメスシリンダーにn-ヘプタンと四塩化炭素を用いて1.400g/mlの溶液を作成し、その中に50gのペレットを入れる。この溶液に四塩化炭素を添加して0.001g/ml密度が上昇するよう調整する。密度調整後に静置して浮上したペレットを回収する。四塩化炭素の添加による密度調整とペレットの回収を繰り返し、各密度のペレット分取した。分取したペレットを数えることでペレットの密度分布曲線を求め、密度分布曲線における密度が最大値のペレットを決定した。
[Measurement of pellet density]
Make a 1.400 g / ml solution using n-heptane and carbon tetrachloride in a 1000 ml graduated cylinder and place 50 g of pellets in it. Carbon tetrachloride is added to this solution to adjust the density to 0.001 g / ml. Collect pellets floating after standing after density adjustment. Density adjustment by adding carbon tetrachloride and collection of pellets were repeated, and pellets of each density were collected. The density distribution curve of the pellet was obtained by counting the collected pellets, and the pellet having the maximum density in the density distribution curve was determined.
[融点および溶融終了温度の測定]
 密度分布曲線における密度が最大値となるペレットの試料(8mg)について、示差走査熱量計(PERKIN ELMER社製DSC7)を用いてDSC測定を行った。サンプルはペレットカット面及びサイド部分のペレット表面から切削して使用した。
 試料温度は、
1.20℃で3分間保持
2.20℃から300℃に30℃/minで昇温
の順で走査し、2における溶融ピーク温度を融点とし、溶融曲線とベースラインの交点を溶融終了温度とした。溶融ピークが複数現れた場合は1つ目のピークを融点とした。
[Measurement of melting point and end of melting temperature]
About the sample (8 mg) of the pellet which the density in a density distribution curve becomes the maximum value, DSC measurement was performed using the differential scanning calorimeter (DSC7 by PERKIN ELMER). The sample was used by cutting from the pellet cut surface and the pellet surface of the side portion.
The sample temperature is
1. Hold at 20 ° C. for 3 minutes 2. Scan the temperature from 2.20 ° C. to 300 ° C. in the order of 30 ° C./min. did. When a plurality of melting peaks appeared, the first peak was taken as the melting point.
[DEG量]
 凍結粉砕したペレットを重トリフルオロ酢酸/重クロロホルム(1/1)(重量比)の混合溶媒に溶解させ、NMR装置(EX270:日本電子データム(株))にて1H-NMRスペクトルを測定した。得られたスペクトルのうち、DEG部位(4.27ppm)、テレフタル酸部位(8.22ppm)に由来するピークの積分値の比率から、DEGの含有率を算出した。
[DEG amount]
The freeze-pulverized pellet was dissolved in a mixed solvent of deuterated trifluoroacetic acid / deuterated chloroform (1/1) (weight ratio), and 1H-NMR spectrum was measured with an NMR apparatus (EX270: JEOL Datum Co., Ltd.). Of the obtained spectrum, the content ratio of DEG was calculated from the ratio of the integrated values of the peaks derived from the DEG site (4.27 ppm) and the terephthalic acid site (8.22 ppm).
(評価方法)
[プリフォーム成形]
 150℃4時間乾燥したポリエステル樹脂をホッパーへ供給し、所定の成形温度に設定された射出成形機を用いて28g500ml用耐熱型プリフォームを作成した。このとき金型温度は20℃に設定し、成形サイクルを30秒とした。射出機とホットランナーの温度は同温に設定しこの温度を成形温度とした。290℃が標準的な成形温度である。
(Evaluation methods)
[Preform molding]
A polyester resin dried at 150 ° C. for 4 hours was supplied to a hopper, and a 28 g 500 ml heat-resistant preform was prepared using an injection molding machine set to a predetermined molding temperature. At this time, the mold temperature was set to 20 ° C., and the molding cycle was set to 30 seconds. The temperature of the injection machine and the hot runner was set to the same temperature, and this temperature was used as the molding temperature. 290 ° C. is a standard molding temperature.
[プリフォームの白化の評価]
 上記で作成したプリフォームを光に透かして胴部およびゲート部周辺の白化の状態を観察した。プリフォームが全体的に白化した場合を「×」、部分的に白化した場合を「△」、白化が無い場合を「○」と評価した。
[Evaluation of whitening of preforms]
The preform created above was seen through the light, and the whitening state around the trunk and the gate was observed. The case where the preform was entirely whitened was evaluated as “×”, the case where it was partially whitened as “Δ”, and the case where there was no whitening as “◯”.
[アセトアルデヒドの含有量]
 冷凍粉砕装置にて粉砕したプリフォームの粉砕試料をガラス瓶に1.0g秤量し、5mlの純水を加えて密封した。この懸濁液を温度120℃に温調したオーブン内で60分間加熱した後、氷水中にて冷却した。懸濁液の上澄みを3.0ml採取し、これに濃度0.1%の2,4-ジニトロフェニルヒドラジン・リン酸溶液を0.6ml加え、30分間放置した。放置後の上澄みを細孔径0.45μmのメンブレンフィルターにて濾過し、濾液を高速液体クロマトグラフィーにて測定した。同時にアセトアルデヒドの標準溶液の測定も行い、得られた検量線からプリフォーム中の含有量を計算した。
[Acetaldehyde content]
1.0 g of the crushed sample of the preform crushed by the freeze pulverizer was weighed into a glass bottle, and 5 ml of pure water was added and sealed. The suspension was heated in an oven adjusted to a temperature of 120 ° C. for 60 minutes and then cooled in ice water. 3.0 ml of the supernatant of the suspension was collected, and 0.6 ml of a 2,4-dinitrophenylhydrazine / phosphoric acid solution having a concentration of 0.1% was added thereto, and the mixture was allowed to stand for 30 minutes. The supernatant after standing was filtered through a membrane filter having a pore diameter of 0.45 μm, and the filtrate was measured by high performance liquid chromatography. At the same time, a standard solution of acetaldehyde was measured, and the content in the preform was calculated from the obtained calibration curve.
[耐熱性]
 加熱結晶化装置を用いて口部を結晶化させたプリフォームを用いて、一段ブロー成形法による150℃、0.7秒のヒートセット条件にて二軸延伸ブロー成形を行い、満注容量520mlの耐熱PETボトルを10本作成した。作成したボトルは30℃80%の恒温恒湿箱に7日間保管した。このボトル10本にヘッドスペースが15mlになるように87℃のお湯を充填しキャップを閉めた。その後1分間横倒し4分間正立したのち77℃5分間のシャワーを通し20℃の水で冷却した。このボトルに6面あるパネル部の凹凸を観察し、凹凸が無い場合を「○」、2面以内の製品価値を損なわない凹凸が発生した場合を「△」、3面以上の凹凸が発生した場合の評価を「×」とした。
[Heat-resistant]
Using a preform crystallized at the mouth using a heat crystallization apparatus, biaxial stretch blow molding is performed at 150 ° C. for 0.7 seconds by a one-stage blow molding method, and a full capacity of 520 ml Ten heat-resistant PET bottles were prepared. The produced bottle was stored in a constant temperature and humidity box at 30 ° C. and 80% for 7 days. Ten bottles were filled with 87 ° C. hot water so that the head space was 15 ml, and the caps were closed. Thereafter, it was laid down for 1 minute, erected for 4 minutes, then passed through a shower at 77 ° C. for 5 minutes and cooled with 20 ° C. water. The bottles were observed for unevenness on the 6 sides of the bottle. “○” when there was no unevenness, “△” when there was unevenness that did not impair the product value within 2 surfaces, and 3 or more unevenness occurred. The evaluation of the case was “x”.
[加水分解処理]
 オートクレーブを用いて150℃にて各実施例および比較例に記載した時間で加水分解処理を行った。
 加水分解処理条件を下記の通りとした。
1.20℃の液温から加熱処理を開始した。
2.15分後液温が設定温度および所定圧力になるよう時間比例制御した。
3.設定時間処理後、15分間で液温20℃および内圧が大気圧になるよう制御した。
[Hydrolysis]
Using an autoclave, the hydrolysis treatment was performed at 150 ° C. for the time described in each example and comparative example.
The hydrolysis treatment conditions were as follows.
1. Heat treatment was started from a liquid temperature of 20 ° C.
2. After 15 minutes, time proportional control was performed so that the liquid temperature became the set temperature and the predetermined pressure.
3. After the set time treatment, the liquid temperature was controlled to 20 ° C. and the internal pressure to atmospheric pressure in 15 minutes.
(実施例1)
 IVが0.85dL/g、分子量分布Mw/Mn=3.1、最大ピーク温度255℃、最大融点終了温度292℃、DEGが1.2mol%であるポリエチレンテレフタレートをオートクレーブを用いて加水分解処理を120分間行い、IV=0.78dL/g、Mw/Mn=3.4、最大融点終了温度277℃のポリエチレンテレフタレートを得た。
 冷水でペレットを冷却した後十分に水を切り150℃4時間乾燥した。乾燥したペレットは290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
Example 1
Polyethylene terephthalate having IV of 0.85 dL / g, molecular weight distribution Mw / Mn = 3.1, maximum peak temperature of 255 ° C., maximum melting point end temperature of 292 ° C. and DEG of 1.2 mol% is hydrolyzed using an autoclave. This was carried out for 120 minutes to obtain polyethylene terephthalate having IV = 0.78 dL / g, Mw / Mn = 3.4, and a maximum melting point end temperature of 277 ° C.
After cooling the pellet with cold water, the pellet was sufficiently drained and dried at 150 ° C. for 4 hours. The dried pellets were preformed at a molding temperature of 290 ° C. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(実施例2)
 加水分解時間を60分にした以外は実施例1と同様に処理し、IV=0.81dL/g、Mw/Mn=3.2、最大融点終了温度280℃のポリエチレンテレフタレートを得た。
 実施例1と同様に乾燥したペレットを290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Example 2)
The treatment was conducted in the same manner as in Example 1 except that the hydrolysis time was 60 minutes to obtain polyethylene terephthalate having IV = 0.81 dL / g, Mw / Mn = 3.2, and a maximum melting point end temperature of 280 ° C.
The dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(実施例3)
 加水分解時間を210分にした以外は実施例1と同様に処理し、IV=0.71dL/g、Mw/Mn=3.8、最大融点終了温度272℃のポリエチレンテレフタレートを得た。
 実施例1と同様に乾燥したペレットを290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Example 3)
The same treatment as in Example 1 was carried out except that the hydrolysis time was 210 minutes, to obtain polyethylene terephthalate having IV = 0.71 dL / g, Mw / Mn = 3.8, and a maximum melting point end temperature of 272 ° C.
The dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(実施例4)
 実施例1にて加水分解処理を行い、得られたIV=0.78dL/g、Mw/Mn=3.4、最大融点終了温度277℃のポリエチレンテレフタレートのペレットを、280℃の成形温度にてプリフォーム成形した以外は実施例1と同様に成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Example 4)
Hydrolysis treatment was carried out in Example 1, and the obtained pellets of IV = 0.78 dL / g, Mw / Mn = 3.4, maximum melting point end temperature 277 ° C. were formed at a molding temperature of 280 ° C. Except for the preform molding, whitening of the preform molded in the same manner as in Example 1 was observed, and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(実施例5)
 IVが0.85dL/g、分子量分布Mw/Mn=3.1、最大ピーク温度256℃、最大融点終了温度285℃、DEGが2.1mol%であるポリエチレンテレフタレートをオートクレーブを用いて加水分解処理を120分間行い、IV=0.78dL/g、Mw/Mn=3.4、最大融点終了温度274℃のポリエチレンテレフタレートを得た。
 冷水でペレットを冷却した後十分に水を切り150℃4時間乾燥した。乾燥したペレットは290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Example 5)
Polyethylene terephthalate having an IV of 0.85 dL / g, a molecular weight distribution Mw / Mn = 3.1, a maximum peak temperature of 256 ° C., a maximum melting point end temperature of 285 ° C., and a DEG of 2.1 mol% is hydrolyzed using an autoclave. This was carried out for 120 minutes to obtain polyethylene terephthalate having IV = 0.78 dL / g, Mw / Mn = 3.4, and a maximum melting point end temperature of 274 ° C.
After cooling the pellet with cold water, the pellet was sufficiently drained and dried at 150 ° C. for 4 hours. The dried pellets were preformed at a molding temperature of 290 ° C. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(実施例6)
 IVが0.82dL/g、分子量分布Mw/Mn=2.9、最大ピーク温度245℃、最大融点終了温度280℃、DEGが1.8mol%であるポリエチレンテレフタレートをオートクレーブを用いて加水分解処理を60分間行い、IV=0.77dL/g、Mw/Mn=3.2、最大融点終了温度277℃のポリエチレンテレフタレートを得た。
 冷水でペレットを冷却した後十分に水を切り150℃4時間乾燥した。乾燥したペレットは290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Example 6)
Polyethylene terephthalate having IV of 0.82 dL / g, molecular weight distribution Mw / Mn = 2.9, maximum peak temperature 245 ° C., maximum melting point end temperature 280 ° C. and DEG 1.8 mol% is hydrolyzed using an autoclave. This was carried out for 60 minutes to obtain polyethylene terephthalate having IV = 0.77 dL / g, Mw / Mn = 3.2, and a maximum melting point end temperature of 277 ° C.
After cooling the pellet with cold water, the pellet was sufficiently drained and dried at 150 ° C. for 4 hours. The dried pellets were preformed at a molding temperature of 290 ° C. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(比較例1)
 実施例1で使用した、IVが0.85dL/g、分子量分布Mw/Mn=3.1、最大ピーク温度255℃、最大融点終了温度292℃、DEGが1.2mol%であるポリエチレンテレフタレートを、加水分解処理を行わずに使用した。
 ペレットを150℃4時間乾燥した。乾燥したペレットは290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Comparative Example 1)
Polyethylene terephthalate having an IV of 0.85 dL / g, a molecular weight distribution Mw / Mn = 3.1, a maximum peak temperature of 255 ° C., a maximum melting point end temperature of 292 ° C., and a DEG of 1.2 mol% used in Example 1, Used without hydrolysis.
The pellet was dried at 150 ° C. for 4 hours. The dried pellets were preformed at a molding temperature of 290 ° C. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(比較例2)
 比較例1と同様に、実施例1で使用した樹脂を加水分解処理を行わずに使用した。
 ペレットを150℃4時間乾燥した。乾燥したペレットは300℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Comparative Example 2)
As in Comparative Example 1, the resin used in Example 1 was used without being subjected to hydrolysis treatment.
The pellet was dried at 150 ° C. for 4 hours. The dried pellets were preformed at a molding temperature of 300 ° C. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(比較例3)
 加水分解時間を45分にした以外は実施例1と同様に処理し、IV=0.82dL/g、Mw/Mn=3.2、最大融点終了温度281℃のポリエチレンテレフタレートを得た。
 実施例1と同様に乾燥したペレットを290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Comparative Example 3)
The treatment was conducted in the same manner as in Example 1 except that the hydrolysis time was 45 minutes to obtain polyethylene terephthalate having IV = 0.82 dL / g, Mw / Mn = 3.2, and a maximum melting point end temperature of 281 ° C.
The dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(比較例4)
 加水分解時間を240分にした以外は実施例1と同様に処理し、IV=0.82dL/g、Mw/Mn=3.2、最大融点終了温度281℃のポリエチレンテレフタレートを得た。
 実施例1と同様に乾燥したペレットを290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Comparative Example 4)
The same treatment as in Example 1 was carried out except that the hydrolysis time was 240 minutes, to obtain polyethylene terephthalate having IV = 0.82 dL / g, Mw / Mn = 3.2, and a maximum melting point end temperature of 281 ° C.
The dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(比較例5)
 実施例5で使用した、IVが0.85dL/g、分子量分布Mw/Mn=3.1、最大ピーク温度256℃、最大融点終了温度285℃、DEGが2.1mol%であるポリエチレンテレフタレートを、加水分解処理を行わずに使用した。
 ペレットを150℃4時間乾燥した。乾燥したペレットは290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Comparative Example 5)
Polyethylene terephthalate having an IV of 0.85 dL / g, a molecular weight distribution Mw / Mn = 3.1, a maximum peak temperature of 256 ° C., a maximum melting point end temperature of 285 ° C., and a DEG of 2.1 mol% used in Example 5, Used without hydrolysis.
The pellet was dried at 150 ° C. for 4 hours. The dried pellets were preformed at a molding temperature of 290 ° C. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(比較例6)
 実施例6で使用した、IVが0.82dL/g、分子量分布Mw/Mn=2.9、最大ピーク温度245℃、最大融点終了温度280℃、DEGが1.8mol%であるポリエチレンテレフタレートを、加水分解処理を行わずに使用した。
 ペレットを150℃4時間乾燥した。乾燥したペレットは290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Comparative Example 6)
Polyethylene terephthalate having an IV of 0.82 dL / g, a molecular weight distribution Mw / Mn = 2.9, a maximum peak temperature of 245 ° C., a maximum melting point end temperature of 280 ° C., and a DEG of 1.8 mol% used in Example 6. Used without hydrolysis.
The pellet was dried at 150 ° C. for 4 hours. The dried pellets were preformed at a molding temperature of 290 ° C. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
(比較例7)
 加水分解時間を30分にした以外は実施例6と同様に処理し、IV=0.79dL/g、Mw/Mn=3.1、最大融点終了温度279℃のポリエチレンテレフタレートを得た。
 実施例1と同様に乾燥したペレットを290℃の成形温度にてプリフォーム成形した。成形したプリフォームの白化を観察し、AA濃度を測定した。また、ボトルを作成した後、耐熱性評価を行った。
(Comparative Example 7)
The treatment was conducted in the same manner as in Example 6 except that the hydrolysis time was 30 minutes to obtain polyethylene terephthalate having IV = 0.79 dL / g, Mw / Mn = 3.1, and a maximum melting point end temperature of 279 ° C.
The dried pellets were preformed at a molding temperature of 290 ° C. in the same manner as in Example 1. The whitening of the molded preform was observed and the AA concentration was measured. Moreover, after producing a bottle, heat resistance evaluation was performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明のPET樹脂は、固相重合PETが有する優れた特性を維持しつつ、従来の固相重合PETよりも優れた溶融特性を有していることから、成形性に優れ、プリフォームやボトル、カップ、トレイ等の包装容器に好適に用いることができる。
 また本発明のPET樹脂は耐熱性に優れていると共に、優れた賦形性により延伸時の歪が低減できることから、耐熱性容器の成形に好適に用いることができる。
 更にアセトアルデヒドの含有量が10ppm以下であり、フレーバー性にも優れており、耐熱性容器は勿論、アセプティック容器としても好適に用いることができる。
The PET resin of the present invention has excellent meltability as compared with conventional solid-phase polymerized PET while maintaining the excellent properties of solid-phase polymerized PET. It can be suitably used for packaging containers such as cups and trays.
In addition, the PET resin of the present invention is excellent in heat resistance and can be suitably used for molding a heat-resistant container because strain at the time of stretching can be reduced due to excellent shapeability.
Further, the content of acetaldehyde is 10 ppm or less, and the flavor property is excellent, and it can be suitably used as an aseptic container as well as a heat resistant container.

Claims (4)

  1.  エチレンテレフタレート単位を主体とするポリエステル樹脂であって、ペレットの状態で、固有粘度が0.70乃至0.81dL/g、ペレット表面近傍の分子量分布が3.2以上であり、融点分布の最大融点終了温度が280℃以下であることを特徴とするエチレンテレフタレート系ポリエステル樹脂。 Polyester resin mainly composed of ethylene terephthalate units, in the pellet state, the intrinsic viscosity is 0.70 to 0.81 dL / g, the molecular weight distribution near the pellet surface is 3.2 or more, and the maximum melting point of the melting point distribution An ethylene terephthalate polyester resin having an end temperature of 280 ° C. or lower.
  2.  ジエチレングリコールの含有量が2.0モル%未満である請求項1記載のエチレンテレフタレート系ポリエステル樹脂。 The ethylene terephthalate polyester resin according to claim 1, wherein the content of diethylene glycol is less than 2.0 mol%.
  3.  請求項1又は2記載のエチレンテレフタレート系ポリエステル樹脂から成るアセトアルデヒド濃度が10ppm未満であることを特徴とする成形体。 A molded article characterized in that the acetaldehyde concentration of the ethylene terephthalate-based polyester resin according to claim 1 or 2 is less than 10 ppm.
  4.  固有粘度が0.82dL/g以上であり、融点分布の最大存在比率における最大ピーク温度が245℃以上且つ最大融点終了温度が281℃以上であるエチレンテレフタレート系ポリエステル樹脂を、加水分解することを特徴とするエチレンテレフタレート系ポリエステル樹脂の製造方法。 An ethylene terephthalate-based polyester resin having an intrinsic viscosity of 0.82 dL / g or more, a maximum peak temperature in a maximum abundance ratio of a melting point distribution of 245 ° C. or more and a maximum melting point end temperature of 281 ° C. or more is hydrolyzed A process for producing an ethylene terephthalate-based polyester resin.
PCT/JP2012/079982 2011-11-21 2012-11-19 Polyester resin WO2013077294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011254274A JP2013107992A (en) 2011-11-21 2011-11-21 Polyester resin
JP2011-254274 2011-11-21

Publications (1)

Publication Number Publication Date
WO2013077294A1 true WO2013077294A1 (en) 2013-05-30

Family

ID=48469738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079982 WO2013077294A1 (en) 2011-11-21 2012-11-19 Polyester resin

Country Status (2)

Country Link
JP (1) JP2013107992A (en)
WO (1) WO2013077294A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374621A (en) * 1986-09-18 1988-04-05 Teijin Ltd Production of polyester film
JPH0811188A (en) * 1994-07-04 1996-01-16 Teijin Ltd Production of polyester film
JPH11165344A (en) * 1997-12-04 1999-06-22 Teijin Ltd Production of polyester film
JP2000080156A (en) * 1998-06-26 2000-03-21 Teijin Ltd Polyethylene terephthalate
JP2000080157A (en) * 1998-06-26 2000-03-21 Teijin Ltd Resin composition and preparation thereof
JP2000080256A (en) * 1998-06-26 2000-03-21 Teijin Ltd Bottle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470992B2 (en) * 2009-04-10 2014-04-16 東洋製罐株式会社 Polyester resin for blending

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374621A (en) * 1986-09-18 1988-04-05 Teijin Ltd Production of polyester film
JPH0811188A (en) * 1994-07-04 1996-01-16 Teijin Ltd Production of polyester film
JPH11165344A (en) * 1997-12-04 1999-06-22 Teijin Ltd Production of polyester film
JP2000080156A (en) * 1998-06-26 2000-03-21 Teijin Ltd Polyethylene terephthalate
JP2000080157A (en) * 1998-06-26 2000-03-21 Teijin Ltd Resin composition and preparation thereof
JP2000080256A (en) * 1998-06-26 2000-03-21 Teijin Ltd Bottle

Also Published As

Publication number Publication date
JP2013107992A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
KR100217955B1 (en) Copolyester, and hollow container and stretched film made thereof
TWI313275B (en) High iv melt phase polyester polymer catalyzed with antimony containing compounds
JP6056755B2 (en) Ethylene terephthalate polyester resin for container molding and method for producing the same
JP5598162B2 (en) Copolyester molded product
JP3685042B2 (en) Production method of polyester resin
JP3146652B2 (en) Copolyester and hollow container and stretched film comprising the same
JP5568846B2 (en) Method for producing polyester resin and molded body comprising this polyester resin
JPH05255491A (en) Copoylester and hollow vessel and drawn film therefrom
JPH09221540A (en) Polyethylene terephthalate, hollow container, and oriented film
JP3284630B2 (en) Polyethylene terephthalate, stretched hollow molded article and stretched film comprising the same
JP5470992B2 (en) Polyester resin for blending
JP2010150488A (en) Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin
WO2013077294A1 (en) Polyester resin
JP3459430B2 (en) Copolyester and hollow container and stretched film comprising the same
JP3331719B2 (en) Copolyester for direct blow bottle
JP2007119644A (en) Polyester resin for low-temperature molding and preform
JP3457011B2 (en) Copolyester and hollow container and stretched film comprising the same
JP3459429B2 (en) Copolyester and hollow container and stretched film comprising the same
JP3136767B2 (en) Copolyester and hollow container and stretched film comprising the same
JP2010150487A (en) Ethylene terephthalate-based polyester resin for molding container and method for manufacturing the same
JP3459431B2 (en) Copolyester and hollow container and stretched film made thereof
KR101159850B1 (en) Polyester resin copolymerized with neopentylglycol having low oligomer content and preparing method thereof
JP3136768B2 (en) Copolyester and hollow container and stretched film comprising the same
JPH05170882A (en) Copolyester, and hollow container and stretched film made therefrom
WO2010074230A1 (en) Ethylene terephthalate-based polyester resin for molding container and process for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852105

Country of ref document: EP

Kind code of ref document: A1