JP5318380B2 - Optical parallel computing element - Google Patents

Optical parallel computing element Download PDF

Info

Publication number
JP5318380B2
JP5318380B2 JP2007204747A JP2007204747A JP5318380B2 JP 5318380 B2 JP5318380 B2 JP 5318380B2 JP 2007204747 A JP2007204747 A JP 2007204747A JP 2007204747 A JP2007204747 A JP 2007204747A JP 5318380 B2 JP5318380 B2 JP 5318380B2
Authority
JP
Japan
Prior art keywords
light
wavelength
silver
optical
optical cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007204747A
Other languages
Japanese (ja)
Other versions
JP2009042312A (en
Inventor
一司 三木
勝文 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007204747A priority Critical patent/JP5318380B2/en
Publication of JP2009042312A publication Critical patent/JP2009042312A/en
Application granted granted Critical
Publication of JP5318380B2 publication Critical patent/JP5318380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光並列演算時に互いの光情報を組み入れることで、より高性能な並列演算をより高速に行うための光並列演算素子に関する。   The present invention relates to an optical parallel computing element for performing higher-performance parallel computation at higher speed by incorporating optical information of each other during optical parallel computation.

近年の情報処理装置の高速化・高性能化の要求に伴い、演算処理の並列化が要求されている。このため、デジタル演算処理回路が複数組み込まれた並列演算素子が提供されているが、アナログ情報に関しては個々の信号を毎回デジタル信号に変換した後に並列デジタル演算を行わなければならない。そのために、演算処理の高速化には複数のアナログ信号をアナログのまま一度に並列に演算できる演算素子が必要となってくる。   With the recent demand for higher speed and higher performance of information processing apparatuses, parallel processing is required. For this reason, a parallel arithmetic element in which a plurality of digital arithmetic processing circuits are incorporated is provided. However, for analog information, parallel digital arithmetic must be performed after each signal is converted into a digital signal. For this reason, an arithmetic element capable of calculating a plurality of analog signals in parallel at the same time in analog form is required for speeding up the arithmetic processing.

従来のアナログ演算素子において、単一の回路のものはオペアンプのような従来の半導体素子を用い、複数の回路では、まずアナログ信号をデジタル信号に変換して、その後、複数のデジタル信号を演算処理していた。そのため、複数のアナログ信号のアナログ演算を並列に行うには、入力回路数と同数のアナログ−デジタル変換回路が必要となってしまう。しかも、回路数が多くなればなるほど複数のアナログ−デジタル変換回路同士の同期を取ることが難しくなるといった問題も生じてしまう。   A conventional analog arithmetic element uses a conventional semiconductor element such as an operational amplifier for a single circuit. In a plurality of circuits, an analog signal is first converted into a digital signal, and then a plurality of digital signals are processed. Was. Therefore, in order to perform analog operations of a plurality of analog signals in parallel, the same number of analog-digital conversion circuits as the number of input circuits are required. In addition, as the number of circuits increases, there arises a problem that it becomes difficult to synchronize a plurality of analog-digital conversion circuits.

一方、光を用いて演算を行う素子が提案されている。図13に従来の光演算素子の構成を模式的に断面図で示す。この光演算素子は、二次元配列した複数の光学セル51を備え、それぞれの光学セル51は隔壁52と底部53よりなる区画に光の情報を受けたときに応答する光応答性物質54を収容している。各光学セル51には演算光照射装置55により所定波長の光56が照射し、光56が照射された光学セル51内の光応答性物質54は光応答性を示し、その状態を検出することにより、演算が行われるようになっている。   On the other hand, an element that performs calculation using light has been proposed. FIG. 13 is a cross-sectional view schematically showing the configuration of a conventional optical arithmetic element. This optical computing element includes a plurality of two-dimensionally arranged optical cells 51, and each optical cell 51 contains a light-responsive substance 54 that responds when receiving light information in a partition composed of a partition 52 and a bottom 53. doing. Each optical cell 51 is irradiated with light 56 having a predetermined wavelength by the arithmetic light irradiation device 55, and the photoresponsive substance 54 in the optical cell 51 irradiated with the light 56 exhibits photoresponsiveness and detects its state. Thus, the calculation is performed.

しかしながら、このような従来の光演算素子は、演算の並列化を行う場合、それぞれ独立した光学セル51によって行われており、並列演算中は隣接した光学セル51どうしの間での情報の遣り取りは行われていない。もし、隣り合った光学セル51どうしの演算が必要な場合には、並列演算を一旦止めて、光学セル51どうしの演算を行い、その後、並列演算を再開するといった作業を行っていた。   However, such conventional optical arithmetic elements are performed by independent optical cells 51 when performing parallel processing, and information is exchanged between adjacent optical cells 51 during parallel arithmetic. Not done. If computation between adjacent optical cells 51 is necessary, parallel computation is temporarily stopped, computation between optical cells 51 is performed, and then parallel computation is resumed.

従って、光学セル51間の情報の遣り取りが多くなればなるほど、複数の光学セル51による並列演算の演算速度が低下してしまうといった問題を生じていた。並列演算には、並列演算を行う前処理にデータの並び替え等の処理が必要なため、場合によっては単独の光学セル51による演算の方が早くなるといった問題も生じてしまう。
C. Genet and T. W. Ebbesen, “Light in tiny holes”, Nature, 445, 39 (2007)
Accordingly, there has been a problem that as the amount of information exchanged between the optical cells 51 increases, the calculation speed of the parallel calculation by the plurality of optical cells 51 decreases. In parallel computation, since processing such as data rearrangement is necessary for pre-processing for performing parallel computation, there is a problem that computation by a single optical cell 51 is faster in some cases.
C. Genet and TW Ebbesen, “Light in tiny holes”, Nature, 445, 39 (2007)

本発明は、このような従来技術の問題点を解決するためになされたもので、より高性能な並列演算をより高速に行うことができる光並列演算素子を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and it is an object of the present invention to provide an optical parallel arithmetic element capable of performing higher-performance parallel arithmetic at higher speed.

本発明は、上記課題を解決するため、第1には、互いに隣接して設けられる複数の光学セルを有し、各光学セルは、上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔を隔てて備え付けられた複数の銀製の支柱が設けられるかもしくは光の透過側と接する部分に透過させたい規定波長Wfの光の波長に対応した間隔を隔てて銀がコーティングされてコーティングされた部分どうしの間にそれぞれスリットが形成されており、隔壁に備えつけられた銀製の支柱の光照射面もしくは隔壁に銀がコーティングされた光照射面に電磁波の分布が発生し、銀製の支柱間の透明材料部分もしくは銀のコーティング部分どうしの間のスリットは、発生した分布を有する電磁波のうちから透過させたい規定波長Wfの光のみを選択的に透過させ、光応答性物質は所定波長Wiの光が照射されたとき所定の波長領域にわたって分布する光を発光し、この発光した光は隔壁を介して規定波長Wfの光として隣接する光学セルに入射し、この隣接する光学セルに所定波長Wiの光が照射されている状態のときに、規定波長Wfの光が入射すると波長Wfの明るい光が発生し、この波長Wfの明るい光に基づいて光学セル間のアナログ演算を行うことを特徴とする光並列演算素子を提供する。 In order to solve the above problems, the present invention first has a plurality of optical cells provided adjacent to each other, and each optical cell has a light incident portion at the top and is partitioned by a partition wall and a bottom portion. the reduction space, and houses the photoresponsive material that responds when receiving information of the light, the septum of the interval corresponding to the wavelength of light in the specified wavelength Wf desired to be transmitted and consists of light-transmitting transparent material each other across a plurality of silver strut equipped with is silver coated coated at intervals corresponding to the wavelength of light in the specified wavelength Wf desired to be transmitted to a portion in contact with the permeate side of one or the light provided moiety transparent material between are slits respectively, the distribution of the electromagnetic wave is generated in the light irradiation surface of silver is coated on the silver of the light irradiation surface or bulkhead of struts equipped in the partition wall, silver strut between Slit between the minute or each other coated portion of the silver, only light of prescribed wavelength Wf desired to be transmitted from among the electromagnetic waves having the generated distributed selectively transmit photoresponsive material irradiation light of a predetermined wavelength Wi Light emitted over a predetermined wavelength region is emitted, and the emitted light is incident on an adjacent optical cell as light having a predetermined wavelength Wf through a partition, and light having a predetermined wavelength Wi is incident on the adjacent optical cell. When the light having the specified wavelength Wf is incident in the irradiated state, bright light having the wavelength Wf is generated, and analog computation between the optical cells is performed based on the bright light having the wavelength Wf. An arithmetic element is provided.

第2には、互いに隣接して設けられる複数の光学セルを有し、各光学セルは、上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔を隔てて備え付けられた複数の銀製の支柱が設けられるかもしくは光の透過側と接する部分に透過させたい規定波長Wfの光の波長に対応した間隔を隔てて銀がコーティングされてコーティングされた部分どうしの間にそれぞれスリットが形成されており、隔壁に備えつけられた銀製の支柱の光照射面もしくは隔壁に銀がコーティングされた光照射面に電磁波の分布が発生し、銀製の支柱間の透明材料部分もしくは銀のコーティング部分どうしの間のスリットは、発生した分布を有する電磁波のうちから透過させたい規定波長Wfの光のみを選択的に透過させ、底部には上方から入射した光を反射して光学窓を介して隣接した光学セルに導くためのミラーが設けられ、光応答性物質は所定波長Wiの光が照射されたとき所定の波長領域にわたって分布する光を発光し、この発光した光は隔壁を介して規定波長Wfの光として隣接する光学セルに入射し、この隣接する光学セルに所定波長Wiの光が照射されている状態のときに、規定波長Wfの光が入射すると波長Wfの明るい光が発生し、この波長Wfの明るい光に基づいて光学セル間のアナログ演算を行うことを特徴とする光並列演算素子を提供する。 Secondly, each optical cell has a plurality of optical cells provided adjacent to each other, and each optical cell has a light incident portion at the top and receives light information in a space partitioned by a partition wall and a bottom portion. accommodating the photoresponsive material that responds when the partition wall has a plurality of silver struts equipped at intervals corresponding to the wavelength of light in the specified wavelength Wf desired to be transmitted and consists of light-transmitting transparent material Slits are formed between the coated parts with a silver coating at an interval corresponding to the wavelength of the light of the specified wavelength Wf that is provided or transmitted to the part that is in contact with the light transmission side, Distribution of electromagnetic waves is generated on the light irradiation surface of the silver support provided on the partition wall or on the light irradiation surface of the partition wall coated with silver, and the transparent material part or silver coating part between the silver support parts Adjacent teeth slit between, only light of prescribed wavelength Wf desired to be transmitted from among the electromagnetic waves having the generated distributed selectively transmit, to the bottom through the optical window to reflect light incident from above A mirror is provided to guide the optical cell, and the photoresponsive substance emits light distributed over a predetermined wavelength region when irradiated with light having a predetermined wavelength Wi, and the emitted light is transmitted through a partition wall to a specified wavelength. When light having a predetermined wavelength Wi is incident on an adjacent optical cell as Wf light, and light having a predetermined wavelength Wi is incident on the adjacent optical cell, bright light having a wavelength Wf is generated. Provided is an optical parallel computing element that performs analog computation between optical cells based on bright light of this wavelength Wf.

第3には、互いに隣接して設けられる複数の光学セルを有し、各光学セルは、上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔を隔てて備え付けられた銀製の支柱が設けられるかもしくは光の透過側と接する部分に透過させたい規定波長Wfの光の波長に対応した間隔を隔てて銀がコーティングされてコーティングされた部分どうしの間にそれぞれスリットが形成されており、隔壁に備えつけられた銀製の支柱の光照射面もしくは隔壁に銀がコーティングされた光照射面に電磁波の分布が発生し、銀製の支柱間の透明材料部分もしくは銀のコーティング部分どうしの間のスリットは、発生した分布を有する電磁波のうちから透過させたい規定波長Wfの光のみを選択的に透過させ、光応答性物質は所定波長Wiの光が照射されたとき所定の波長領域にわたって分布する光を発光し、この発光した光は隔壁を介して規定波長Wfの光として隣接する光学セルに入射し、特定のセルに隣接する2以上の光学セルから規定波長Wfの光が入射すると波長Wfの明るい光が発生し、この波長Wfの明るい光に基づいて光学セル間のアナログ演算を行うことを特徴とする光並列演算素子を提供する。 Third, each optical cell has a plurality of optical cells provided adjacent to each other. Each optical cell has a light incident portion on the top and receives light information in a space partitioned by a partition wall and a bottom portion. photoresponsive materials containing a septum is silver strut equipped at intervals corresponding to the wavelength of light in the specified wavelength Wf is desired to and transmitted consists light transmittance of the transparent material is provided which responds when the Alternatively, silver is coated at an interval corresponding to the wavelength of light of the specified wavelength Wf that is desired to be transmitted to the portion in contact with the light transmission side, and a slit is formed between the coated portions, and the partition wall The distribution of electromagnetic waves is generated on the light irradiation surface of the silver struts provided or the light irradiation surface where the partition walls are coated with silver, and between the transparent material portions or the silver coating portions between the silver struts. Slits, only light of prescribed wavelength Wf desired to be transmitted from among the electromagnetic waves having the generated distributed selectively transmit photoresponsive material distribution over a predetermined wavelength range when the light of the predetermined wavelength Wi is irradiated for The emitted light is incident on the adjacent optical cell as light having the specified wavelength Wf through the partition wall, and the wavelength when the light having the specified wavelength Wf is input from two or more optical cells adjacent to the specific cell. Provided is an optical parallel arithmetic element characterized in that bright light of Wf is generated and analog computation between optical cells is performed based on the bright light of wavelength Wf.

第4には、互いに隣接して設けられる複数の光学セルを有し、各光学セルは、上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔で備え付けられた銀製の支柱が設けられるかもしくは光の透過側と接する部分に銀がコーティングされており、隔壁に備えつけられた銀製の支柱の光照射面もしくは隔壁に銀がコーティングされた光照射面に電磁波の分布が発生し、銀製の支柱間の透明材料部分もしくは銀のコーティング部分どうしの間のスリットは、発生した分布を有する電磁波のうちから透過させたい規定波長Wfの光のみを選択的に透過させ、底部には上方から入射した光を反射して隔壁を介して隣接する光学セルに導くためのミラーが形成され、光応答性物質は所定波長Wiの光が照射されたとき所定の波長領域にわたって分布する光を発光し、この発光した光は隔壁を介して規定波長Wfの光として隣接する光学セルに入射し、特定のセルに隣接する2以上の光学セルから規定波長Wfの光が入射すると波長Wfの明るい光が発生し、この波長Wfの明るい光に基づいて光学セル間のアナログ演算を行うことを特徴とする光並列演算素子を提供する。 Fourth, each optical cell has a plurality of optical cells provided adjacent to each other, and each optical cell has a light incident portion at the top, and receives light information in a space partitioned by a partition wall and a bottom portion. A light-responsive substance that responds to the light, and the partition wall is made of a light-transmitting transparent material and is provided with silver columns provided at intervals corresponding to the wavelength of light of the specified wavelength Wf to be transmitted, or Silver is coated on the part that is in contact with the light transmission side, and the distribution of electromagnetic waves occurs on the light irradiation surface of the silver post provided on the partition wall or on the light irradiation surface coated with silver on the partition wall. slit between the coated portion to each other of the transparent material portion or silver is only light of prescribed wavelength Wf desired to be transmitted from among the electromagnetic waves having the generated distributed selectively transmit, the bottom entrance from above A mirror is formed to reflect the reflected light and guide it to an adjacent optical cell through a partition wall, and the photoresponsive substance emits light distributed over a predetermined wavelength region when irradiated with light of a predetermined wavelength Wi, The emitted light is incident on an adjacent optical cell as light having a specified wavelength Wf through a partition wall. When light having a specified wavelength Wf is incident from two or more optical cells adjacent to a specific cell, bright light having a wavelength Wf is generated. An optical parallel computing element is provided that performs analog computation between optical cells based on the bright light having the wavelength Wf.

第5には、上記第1ないし第4のいずれかの発明において、光応答性物質がレーザー色素であることを特徴とする光並列演算素子を提供する。   Fifth, in any one of the first to fourth inventions, there is provided an optical parallel computing element characterized in that the photoresponsive substance is a laser dye.

本発明によれば、光学セル間に光透過性の透明材料よりなり且つ透過させたい特定波長の光の波長と同じ間隔で備え付けられた銀製の支柱もしくは光の透過側と接する部分に銀がコーティングされたもので作られた隔壁を備え、複数の光学セル内の光応答性分子に対する光の遣り取りを利用して演算を行うことで、複数のセルの情報を足し合わせることが可能になり、より高性能な並列演算を高速で行う演算素子を実現でき、係るアナログ演算装置の性能向上に寄与するところが大きい。   According to the present invention, silver is coated on a silver strut or a portion in contact with a light transmitting side, which is made of a light-transmitting transparent material between optical cells and is provided at the same interval as the wavelength of light of a specific wavelength to be transmitted. It is possible to add the information of multiple cells by performing calculations using the exchange of light with respect to photoresponsive molecules in multiple optical cells. An arithmetic element that performs high-performance parallel arithmetic at high speed can be realized, and it greatly contributes to the performance improvement of the analog arithmetic device.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は、本発明の第1実施形態に係る光並列演算素子の構成を模式的に示す平面図、図2は、第1実施形態に係る光並列演算素子の光学セルの構成を示す断面図、図3は、第1実施形態に係る光並列演算素子の原理説明図である。   FIG. 1 is a plan view schematically showing a configuration of an optical parallel arithmetic element according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an optical cell configuration of the optical parallel arithmetic element according to the first embodiment. FIG. 3 is a diagram illustrating the principle of the optical parallel arithmetic element according to the first embodiment.

光学セル11は、隔壁12と底部13で区画化された空間を有し、その空間に光の情報を受けたときに応答する光応答性物質14が収容されている。隔壁12は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔で備え付けられた銀製の支柱が設けられているかもしくは光の透過側と接する部分に銀がコーティングされている(図1には銀がコーティングされた構造体15が示されている)。ここで規定波長Wfの光の波長に対応した間隔とは、規定波長Wfより10%程度の範囲で短い(Wf−0.1×Wf)隙間を示す。光学セル11の上側は開口するように記載されているが、装置化にあたっては光応答性物質14を密閉した構造とする。この密閉化は、光透過性材料でふたをする方法で行ってもよく、カプセル化してもよい。光学セル11内の光応答性物質14は上側から光の照射が行えるようになっている。なお、ここで上側とは、図2では紙面の上方向を指し、実際の使用にあたっては任意の方向を向いていてよい。本実施形態では、後述する第2実施形態のように底部13にミラーを設けた構成となっていないが、ミラーを設けるかどうかは、光応答性物質14として使用する分子の種類や演算方法、あるいは得ようとする光信号の大きさ等により決めることができる。   The optical cell 11 has a space partitioned by a partition wall 12 and a bottom portion 13, and a photoresponsive substance 14 that responds when receiving light information is accommodated in the space. The partition wall 12 is made of a light-transmitting transparent material and is provided with silver columns provided at intervals corresponding to the wavelength of light having a specified wavelength Wf to be transmitted, or silver is coated on a portion in contact with the light transmission side (The structure 15 coated with silver is shown in FIG. 1). Here, the interval corresponding to the wavelength of the light having the specified wavelength Wf indicates a gap (Wf−0.1 × Wf) that is shorter in the range of about 10% than the specified wavelength Wf. Although the upper side of the optical cell 11 is described as opening, it is assumed that the photoresponsive substance 14 is sealed in the apparatus. This sealing may be performed by a method of covering with a light transmissive material, or may be encapsulated. The photoresponsive substance 14 in the optical cell 11 can be irradiated with light from above. Here, the upper side refers to the upward direction in FIG. 2 and may be in an arbitrary direction in actual use. In the present embodiment, a mirror is not provided on the bottom 13 as in the second embodiment to be described later, but whether to provide a mirror depends on the type of molecule used as the photoresponsive substance 14 and the calculation method, Alternatively, it can be determined by the size of the optical signal to be obtained.

光学セル11の材料としては、光透過性の透明材料、例えば石英、ガラス、窒化シリコン、酸化シリコン、サファイア、透明アルミナ等が用いられる。光学セル11の寸法としては、例えば、縦100μm、横100μm、深さ200μm程度のものが使用されるが、これに限定されない。そして、隔壁12はこの光透過性の透明材料に対し、上記のように、透過させたい規定波長Wfの光の波長に対応した間隔で備え付けられた銀製の支柱が設けられるかもしくは光の透過側と接する部分に銀がコーティングされている。ここで銀製の支柱は、銀製の支柱を備える部分に選択的に銀メッキを施すことにより備え付けられる。光応答性物質14は、所定波長の光Wiが照射されたときには所定の波長領域にわたって分布する光を発光し、この発光した光は隔壁12を介して規定波長Wfの光として隣接する光学セル11に入射し、この隣接する光学セル11に所定波長Wiの光が照射されている状態のときに、規定波長Wfの光が入射すると波長Wfの明るい光(発光強度大)が発生する材料を用いる。光応答性物質14としては、例えば、Benzoic Acid, 2-[6-(ethylamino)-3-(ethylimino)-2,7-dimethyl-3H-xanthen-9-yl]-ethyl ester, mono-hydro-chloride (以下、Rhodamine 6Gと略す。)、o-(6-Amino-3-imino-3H-xanthen-9-yl)-benzoic acid (通称、Rhodamine 110))等のレーザー色素を、メタノール、エタノール、等のアルコール類やジメチルスルホキシド等の溶媒に溶解させたもの等を用いることができる。   As the material of the optical cell 11, a light transmissive transparent material such as quartz, glass, silicon nitride, silicon oxide, sapphire, transparent alumina, or the like is used. As the dimensions of the optical cell 11, for example, those having a length of about 100 μm, a width of 100 μm, and a depth of about 200 μm are used, but are not limited thereto. The partition wall 12 is provided with silver support columns provided at intervals corresponding to the wavelength of the light having the specified wavelength Wf to be transmitted as described above, or on the light transmission side. Silver is coated on the part that touches. Here, the silver support is provided by selectively silver-plating a portion including the silver support. The light-responsive substance 14 emits light distributed over a predetermined wavelength region when irradiated with light Wi having a predetermined wavelength, and the emitted light passes through the partition wall 12 and is adjacent to the optical cell 11 as light having a predetermined wavelength Wf. In the state where the light having the predetermined wavelength Wi is irradiated on the adjacent optical cell 11, a material that generates bright light (high emission intensity) when the light having the specified wavelength Wf is incident is used. . Examples of the photoresponsive substance 14 include Benzoic Acid, 2- [6- (ethylamino) -3- (ethylimino) -2,7-dimethyl-3H-xanthen-9-yl] -ethyl ester, mono-hydro- laser dyes such as chloride (hereinafter abbreviated as Rhodamine 6G), o- (6-Amino-3-imino-3H-xanthen-9-yl) -benzoic acid (commonly known as Rhodamine 110)), methanol, ethanol, And those dissolved in a solvent such as dimethyl sulfoxide.

ここで、銀がコーティングされた構造体15と銀製の支柱について述べる。図7は、銀がコーティングされた構造体15を説明するための平面図、図8は、同構造体15を模式的に示す斜視図である。図7に示すように、同構造体15は一定の厚みs3を有し、配列方向にピッチs2で複数のものが離間配置され、幅s1のスリットが形成され、このスリットが透過光の導波路としての役割を担うようになっている。このスリット、すなわち光を透過する部分の間隔s1は透過させる光の波長Wfより短い間隔に設定される。ちなみに、寸法例としては透過する光の波長が623nmの場合、s1=150nm、s2≒600nm、s3=300〜500nmである。   Here, the structure 15 coated with silver and the silver support will be described. FIG. 7 is a plan view for explaining the structure 15 coated with silver, and FIG. 8 is a perspective view schematically showing the structure 15. As shown in FIG. 7, the structure 15 has a constant thickness s3, and a plurality of them are spaced apart at a pitch s2 in the arrangement direction to form a slit having a width s1, which is a waveguide for transmitted light. As a role. The interval s1 between the slits, that is, the portion that transmits light is set to be shorter than the wavelength Wf of the transmitted light. Incidentally, as an example of dimensions, when the wavelength of transmitted light is 623 nm, s1 = 150 nm, s2≈600 nm, and s3 = 300 to 500 nm.

銀のコーティングの方法の一例を図9に示す。たとえば図9(a)に示すように銀をコーティングする部分と光学セルが加工された石英に、図9(b)に示すように銀をコーティングする部分以外をレジストで覆い、図9(c)に示すようにスパッタ工程により銀を蒸着させ、図9(d)に示すように銀をコーティングする部分以外の銀をリフトオフにより除く。   An example of the silver coating method is shown in FIG. For example, as shown in FIG. 9 (a), the portion coated with silver and the quartz in which the optical cell is processed are covered with a resist except for the portion coated with silver as shown in FIG. 9 (b). As shown in FIG. 9, silver is deposited by a sputtering process, and silver other than the portion coated with silver is removed by lift-off as shown in FIG.

また、銀製の支柱の作製プロセスの一例を図10に示す。たとえば図10(a)に示すように土台のシリコンと壁面の石英に金メッキを施し、図10(b)に示すようにこれらの材料を貼り合わせる。次に、図10(c)に示すように光学セルの部分をレジストで覆い、図10(d)に示すようにDeepRIEによる異方性エッチングを行い、次に図10(e)に示すように銀製の支柱を作製するところ以外の部分をレジストで覆い、図10(f)に示すように銀メッキの工程により、銀製の支柱を作製する。   FIG. 10 shows an example of a process for producing a silver support. For example, as shown in FIG. 10A, gold is plated on the base silicon and the quartz on the wall surface, and these materials are bonded together as shown in FIG. Next, as shown in FIG. 10 (c), the optical cell portion is covered with a resist, and anisotropic etching by DeepRIE is performed as shown in FIG. 10 (d). Next, as shown in FIG. 10 (e). The portions other than the place where the silver support is made are covered with a resist, and the silver support is made by a silver plating process as shown in FIG.

上記銀がコーティングされた構造体15あるいは銀製の支柱は、次のようにして規定波長Wfの光を透過させる。通常、回折限界のために光は波長よりも狭い穴を透過することができない。しかし、透過させる波長と同じ周期の間隔で穴を開けた構造で、しかも照射する部分の材質が銀の場合には、図11のように表面に電磁波の分布が発生し、その隙間を導波管のように電磁波が伝搬し、その後、照射面とは反対の面に電磁波が発生し、ある特定の波長の光が発生する。この一連のメカニズムにより、穴の開いた間隔と同じ波長の光が透過する(非特許文献1)。この効果は、スリットに対してもある偏光に対して効果があるため、発光面(図11の下側)から、選択された光が出射される。   The structure 15 coated with silver or the silver column transmits light of the specified wavelength Wf as follows. Normally, light cannot pass through a hole narrower than the wavelength due to the diffraction limit. However, in the case where holes are formed at intervals of the same period as the wavelength to be transmitted and the material of the irradiated portion is silver, the distribution of electromagnetic waves is generated on the surface as shown in FIG. The electromagnetic wave propagates like a tube, and thereafter, the electromagnetic wave is generated on the surface opposite to the irradiation surface, and light having a specific wavelength is generated. By this series of mechanisms, light having the same wavelength as the interval between the holes is transmitted (Non-Patent Document 1). Since this effect has an effect on the polarized light which is also applied to the slit, the selected light is emitted from the light emitting surface (lower side in FIG. 11).

演算動作について述べると、まず図3(i)に示すように、一次元配列の光学セルを考える。波長Wiの光を光学セルA(11)に入れた光応答性物質14に照射する。同時に、波長Wiの光を光学セルB(11)に入れた光応答性物質14に照射する。この時、光応答性物質14からは波長が広く分布した光が発光される。光学セルA(11)で発光した光の一部は図示しない左隣の光学セルと右隣の光学セルB(11)に向かい、光学セルB(11)で発光した光の一部は左隣の光学セルA(11)と右隣の光学セルC(11)に向かうが、銀がコーティングされた構造体15が設けられた隔壁12により規定波長Wfのみの光がそれぞれ光学セルA(11)と光学セルB(11)に透過し、光学セルA(11)と光学セルB(11)に入れられた光応答性物質14にそれぞれ照射される。このとき、光学セルA(11)と光学セルB(11)内の光応答性物質12に照射される光は所定量以上の光量となり、光応答性物質14は励起され、強く発光する(図3(ii)、(iii))。また、光学セルA(11)の左隣の光学セルのみや光学セルC(11)のみへの光照射では光量が足りず、光学セルA(11)や光学セルB(11)のような発光は起こらないようになっている。そして発光の有無とその強度が隣接する光学セル11どうしの演算結果となる。従って、特定光学セルに隣接する複数の光学セルから光の情報が同時に入力された場合に起こる光応答性物質14の変化を利用することで、複数の入力情報による演算が可能になる。   The calculation operation will be described. First, as shown in FIG. 3I, a one-dimensional array of optical cells is considered. The light-responsive substance 14 placed in the optical cell A (11) is irradiated with light having a wavelength Wi. At the same time, the light-responsive substance 14 placed in the optical cell B (11) is irradiated with light having the wavelength Wi. At this time, light having a wide wavelength distribution is emitted from the photoresponsive substance 14. A part of the light emitted from the optical cell A (11) is directed to the left adjacent optical cell and the right adjacent optical cell B (11), and a part of the light emitted from the optical cell B (11) is adjacent to the left. The optical cell A (11) and the optical cell C (11) on the right are directed to the optical cell A (11) by the partition wall 12 provided with the structure 15 coated with silver. And is transmitted to the optical cell B (11) and irradiated to the photoresponsive substance 14 placed in the optical cell A (11) and the optical cell B (11), respectively. At this time, the light irradiated to the photoresponsive substance 12 in the optical cell A (11) and the optical cell B (11) becomes a light amount of a predetermined amount or more, and the photoresponsive substance 14 is excited and emits light strongly (FIG. 3 (ii), (iii)). In addition, light irradiation to only the optical cell adjacent to the left of the optical cell A (11) or only the optical cell C (11) is insufficient in light quantity, and light emission like the optical cell A (11) or the optical cell B (11). Does not happen. The presence / absence of light emission and its intensity are the calculation results of the adjacent optical cells 11. Therefore, by using the change of the photoresponsive substance 14 that occurs when light information is simultaneously input from a plurality of optical cells adjacent to the specific optical cell, it is possible to perform calculation using a plurality of input information.

以上、本発明の光並列演算素子の原理を一次元配列の光学セルを用いた場合を例に説明してきたが、もちろん、本発明では、多数の光学セルを二次元配列した素子構成とすることができる。   As described above, the principle of the optical parallel computing element of the present invention has been described by taking the case of using a one-dimensional array of optical cells as an example. Of course, in the present invention, an element configuration in which a number of optical cells are two-dimensionally arrayed is used. Can do.

次に、本発明の第2の実施形態について述べる。図4は、第2実施形態に係る光並列演算素子の構成を模式的に示す平面図、図5は、第2実施形態に係る光並列演算素子の光学セルの構成を示す断面図、図6は、第2実施形態に係る光並列演算素子の原理説明図である。図4〜図6において図1〜図3と同様な要素には同じ符号を付してある。   Next, a second embodiment of the present invention will be described. 4 is a plan view schematically showing the configuration of the optical parallel arithmetic element according to the second embodiment. FIG. 5 is a cross-sectional view showing the configuration of the optical cell of the optical parallel arithmetic element according to the second embodiment. These are the principle explanatory views of the optical parallel arithmetic element according to the second embodiment. 4 to 6, the same elements as those in FIGS. 1 to 3 are denoted by the same reference numerals.

前述の第1の実施形態と同様に、光学セル11は、隔壁12と底部13で区画化された空間を有し、その空間に光の情報を受けたときに応答する光応答性物質14が収容されている。隔壁12は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔で備え付けられた銀製の支柱が設けられているかもしくは光の透過側と接する部分に銀がコーティングされている(図4には銀がコーティングされた構造体15が示されている)。また、底部13Aは図5に示すように断面が三角形状となっており、その2辺に相当する部分に図示のようにミラー16が形成されている。このミラー16は隣接する光学セル11と光の情報の遣り取りをより良好にするために設けられている。第2の実施形態では、第1の実施形態とこの底部13Aの形状とミラー16が設けられている構成が異なっており、その他の構成は同様である。   Similar to the first embodiment described above, the optical cell 11 has a space partitioned by the partition wall 12 and the bottom 13, and a photoresponsive substance 14 that responds when receiving light information in the space. Contained. The partition wall 12 is made of a light-transmitting transparent material and is provided with silver columns provided at intervals corresponding to the wavelength of light having a specified wavelength Wf to be transmitted, or silver is coated on a portion in contact with the light transmission side (The structure 15 coated with silver is shown in FIG. 4). Further, the bottom portion 13A has a triangular cross section as shown in FIG. 5, and a mirror 16 is formed at a portion corresponding to the two sides as shown in the figure. This mirror 16 is provided in order to improve the exchange of light information with the adjacent optical cell 11. The second embodiment is different from the first embodiment in the shape of the bottom portion 13A and the configuration in which the mirror 16 is provided, and the other configurations are the same.

演算動作について述べると、まず図6(i)に示すように、一次元配列の光学セルを考える。波長Wiの光を光学セルA(11)に入れた光応答性物質14に照射する。同時に、波長Wiの光を光学セルC(11)に入れた光応答性物質14に照射する。この時、光応答性物質14からは波長が広く分布した光が発光される。光学セルA(11)で発光した光の一部はミラー16で反射され、図示しない左隣の光学セルと右隣の光学セルB(11)に向かい、光学セルC(11)で発光した光の一部はミラー16で反射され、左隣の光学セルB(11)と右隣の光学セルD(11)に向かうが、銀がコーティングされた構造体15が設けられた隔壁12により規定波長Wfのみの光が透過し、光学セルB(11)に入れられた光応答性物質14に照射される。このとき、光学セルB(11)内の光応答性物質12に照射される光は所定量以上の光量となり、光応答性物質14は励起され、強く発光する(図6(ii)、(iii))。また、光学セルA(11)のみや光学セルC(11)のみへの光照射では光量が足りず、発光は起こらないようになっている。そして前記現象の結果生じた強い光が隣接する光学セルB(11)と光学セルA(11)、C(11)との演算結果となる。従って、特定光学セルに隣接する複数の光学セルから光の情報が同時に入力された場合に起る光応答性物質14の変化を利用することで、複数の入力情報による演算が可能になる。   The calculation operation will be described. First, consider a one-dimensional array of optical cells as shown in FIG. The light-responsive substance 14 placed in the optical cell A (11) is irradiated with light having a wavelength Wi. At the same time, the light-responsive substance 14 placed in the optical cell C (11) is irradiated with light having the wavelength Wi. At this time, light having a wide wavelength distribution is emitted from the photoresponsive substance 14. A part of the light emitted from the optical cell A (11) is reflected by the mirror 16, and goes to the optical cell B (11) on the left and the right adjacent optical cell (not shown), and the light emitted from the optical cell C (11). Is reflected by the mirror 16 and goes to the optical cell B (11) on the left and the optical cell D (11) on the right, but has a specified wavelength by the partition wall 12 provided with the structure 15 coated with silver. Light of only Wf is transmitted and irradiated to the photoresponsive substance 14 placed in the optical cell B (11). At this time, the light irradiated to the photoresponsive substance 12 in the optical cell B (11) becomes a light amount of a predetermined amount or more, and the photoresponsive substance 14 is excited and emits light strongly (FIGS. 6 (ii) and (iii). )). Further, light irradiation to only the optical cell A (11) or only the optical cell C (11) is not enough to emit light. The strong light generated as a result of the above phenomenon is the calculation result of the adjacent optical cell B (11) and the optical cells A (11) and C (11). Therefore, by using the change in the photoresponsive substance 14 that occurs when light information is simultaneously input from a plurality of optical cells adjacent to the specific optical cell, calculation using a plurality of input information becomes possible.

以上、本発明の光並列演算素子の原理を一次元配列の光学セルを用いた場合を例に説明してきたが、もちろん、本発明では、多数の光学セルを二次元配列した素子構成とすることができる。   As described above, the principle of the optical parallel computing element of the present invention has been described by taking the case of using a one-dimensional array of optical cells as an example. Of course, in the present invention, an element configuration in which a number of optical cells are two-dimensionally arrayed is used. Can do.

また、第1の実施形態では隣どうしの光学セルに着目し、第2の実施形態では特定光学セルとその両隣の光学セルに着目したが、両者の関係を入れ替えても同様に光並列アナログ演算を行うことができる。   Further, in the first embodiment, attention is paid to the adjacent optical cells, and in the second embodiment, attention is paid to the specific optical cell and the adjacent optical cells. It can be performed.

また、上記の第2の実施形態では、各光学セルの形状が平面視正方形状であり、底部の形状が四角錐状である場合を例に述べたが、各光学セルは、その形状が平面視正三角形状であり、底部の形状が三角錐状であるものとして、これらを細密に配置してもよく、また、その形状を平面視正六角形状とし、底部の形状が六角錐状として、これらを蜂の巣状に配置してもよい。これらは、各光学セルの形成にマイクロマシーン技術を使用した場合、リソグラフィーのマスクのパターンを変えるだけで作製することができる。また、各光学セルの底部の形状は上部が平らとなっていてもよい。   In the second embodiment, the case where each optical cell has a square shape in plan view and the bottom portion has a quadrangular pyramid shape has been described as an example. However, each optical cell has a planar shape. As the shape of the regular triangle, the shape of the bottom is a triangular pyramid, these may be finely arranged, the shape is a regular hexagonal shape in plan view, the shape of the bottom is a hexagonal pyramid, These may be arranged in a honeycomb shape. These can be produced by simply changing the pattern of the lithography mask when micromachine technology is used to form each optical cell. Further, the shape of the bottom of each optical cell may be flat at the top.

次に、本発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

図12は本発明の実施例に係る光並列演算素子の原理説明図である。図12の光並列演算素子は4つの光学セルを有しているが、これは例示のためであり、実際には所要数の光学セルを二次元配列させたものとすることができる。   FIG. 12 is a diagram illustrating the principle of the optical parallel arithmetic element according to the embodiment of the present invention. The optical parallel computing element of FIG. 12 has four optical cells, but this is for illustrative purposes, and in practice, a required number of optical cells can be two-dimensionally arranged.

光学セルは石英をマイクロマシーン技術により微細加工して図12(i)のように隔壁と底部で区画化された空間を形成した。また、隔壁には623nmの光のみが増強されるよう図10に示す手法により623nmの間隔で銀の支柱を設けた。断面が三角形の底部には金を蒸着してミラーを設けた。このミラーは、上方から入ってきた光を、隔壁を通して隣接する光学セルに向かって反射するように形成した。光学セル内には光応答性物質として、Rhodamine101の0.75gを1000mlの溶媒(メタノール)に溶解した混合液を入れた。   In the optical cell, quartz was finely processed by a micromachine technique to form a space partitioned by a partition wall and a bottom as shown in FIG. Further, silver pillars were provided on the partition walls at intervals of 623 nm by the method shown in FIG. 10 so that only light of 623 nm was enhanced. Gold was deposited on the bottom of the triangular cross section to provide a mirror. This mirror was formed so that light entering from above was reflected through the partition wall toward the adjacent optical cell. In the optical cell, a mixed solution in which 0.75 g of Rhodamine 101 was dissolved in 1000 ml of a solvent (methanol) was placed as a photoresponsive substance.

この光並列演算素子の動作について説明すると、図12(i)に示すように、光学セルAに入れた光応答性物質Rhodamine101に波長Wi=308nmの光を照射する同時に、光学セルCに入れた同じ光応答性物質に波長308nmの光を照射した。この時、光学セルAとCのRhodamine101が波長308nmの光により励起し発光した。この光はミラーで反射し、隔壁で波長623nmの光のみが増強され、光学セルBに照射された。光学セルBのRhodamine101は、光学セルAとCからの増強された波長623nmの光を同時に受け、誘導放出により波長623nmの光を強く発光した。光学セルAのみやCのみを光照射した時には、光学セルBにおいてRhodamine101を発光させるだけの光量が足りず、光学セルDのようにRhodamine101による波長623nmの強い発光は起きなかった。この一連の現象の結果として光学セルBで生じた強い光が隣接する演算結果となる。   The operation of this optical parallel computing element will be described. As shown in FIG. 12 (i), the photoresponsive substance Rhodamine 101 placed in the optical cell A is irradiated with light having a wavelength Wi = 308 nm and simultaneously placed in the optical cell C. The same photoresponsive substance was irradiated with light having a wavelength of 308 nm. At this time, Rhodamine 101 in optical cells A and C was excited by light having a wavelength of 308 nm and emitted light. This light was reflected by the mirror, and only the light having a wavelength of 623 nm was enhanced by the partition wall and irradiated to the optical cell B. The Rhodamine 101 of the optical cell B simultaneously received the enhanced light of wavelength 623 nm from the optical cells A and C, and strongly emitted light of wavelength 623 nm by stimulated emission. When only the optical cells A and C were irradiated with light, the optical cell B did not have enough light to cause the Rhodamine 101 to emit light, and unlike the optical cell D, strong emission at a wavelength of 623 nm did not occur. As a result of this series of phenomena, strong light generated in the optical cell B becomes an adjacent calculation result.

また、波長Wiが488nmの光、532nmの光についてもRhodamine101の2.5gを1000mlの溶媒(メタノール)に溶解した混合液、Rhodamine101の0.5gを1000mlの溶媒(メタノール)に溶解した混合液を用いて上記と同様な演算を行ったところ、同様な結果が得られた。   In addition, for light having a wavelength Wi of 488 nm, a mixed solution in which 2.5 g of Rhodamine 101 was dissolved in 1000 ml of solvent (methanol) and a mixed solution in which 0.5 g of Rhodamine 101 was dissolved in 1000 ml of solvent (methanol) were also used. When the same calculation as described above was performed, similar results were obtained.

本発明の第1実施形態に係る光並列演算素子の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the optical parallel arithmetic element which concerns on 1st Embodiment of this invention. 第1実施形態に係る光並列演算素子の光学セルの構成を示す断面図である。It is sectional drawing which shows the structure of the optical cell of the optical parallel arithmetic element which concerns on 1st Embodiment. 第1実施形態に係る光並列演算素子の原理説明図である。It is principle explanatory drawing of the optical parallel arithmetic element which concerns on 1st Embodiment. 本発明の第2実施形態に係る光並列演算素子の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the optical parallel arithmetic element which concerns on 2nd Embodiment of this invention. 第2実施形態に係る光並列演算素子の光学セルの構成を示す断面図である。It is sectional drawing which shows the structure of the optical cell of the optical parallel arithmetic element which concerns on 2nd Embodiment. 第2実施形態に係る光並列演算素子の原理説明図である。It is principle explanatory drawing of the optical parallel arithmetic element which concerns on 2nd Embodiment. 銀がコーティングされた構造体を説明するための平面図である。It is a top view for demonstrating the structure coated with silver. 前記構造体を模式的に示す斜視図である。It is a perspective view which shows the said structure typically. 銀のコーティングの方法の一例を示す工程図である。It is process drawing which shows an example of the method of silver coating. 銀製の支柱の作製プロセスの一例を示す工程図である。It is process drawing which shows an example of the production process of silver support | pillars. 銀製の支柱あるいは銀のコーティングを設けた構造における規定波長の光の透過のメカニズムの説明図である。It is explanatory drawing of the transmission mechanism of the light of the defined wavelength in the structure which provided the support | pillar made from silver, or the silver coating. 本発明の実施例に係る光並列演算素子の原理説明図である。It is principle explanatory drawing of the optical parallel arithmetic element based on the Example of this invention. 従来の光演算素子の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of the conventional optical arithmetic element typically.

符号の説明Explanation of symbols

11 光学セル
12 隔壁
13、13A 底部
14 光応答性物質
15 銀がコーティングされた構造体
16 ミラー
DESCRIPTION OF SYMBOLS 11 Optical cell 12 Partition 13, 13A Bottom part 14 Photoresponsive substance 15 Structure coated with silver 16 Mirror

Claims (5)

互いに隣接して設けられる複数の光学セルを有し、
各光学セルは、上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔を隔てて備え付けられた複数の銀製の支柱が設けられるかもしくは光の透過側と接する部分に透過させたい規定波長Wfの光の波長に対応した間隔を隔てて銀がコーティングされてコーティングされた部分どうしの間にそれぞれスリットが形成されており、
隔壁に備えつけられた銀製の支柱の光照射面もしくは隔壁に銀がコーティングされた光照射面に電磁波の分布が発生し、銀製の支柱間の透明材料部分もしくは銀のコーティング部分どうしの間のスリットは、発生した分布を有する電磁波のうちから透過させたい規定波長Wfの光のみを選択的に透過させ、
光応答性物質は所定波長Wiの光が照射されたとき所定の波長領域にわたって分布する光を発光し、この発光した光は隔壁を介して規定波長Wfの光として隣接する光学セルに入射し、この隣接する光学セルに所定波長Wiの光が照射されている状態のときに、規定波長Wfの光が入射すると波長Wfの明るい光が発生し、この波長Wfの明るい光に基づいて光学セル間のアナログ演算を行うことを特徴とする光並列演算素子。
A plurality of optical cells provided adjacent to each other;
Each optical cell has a light incident part at the top, and a light-responsive substance that responds to light information when it receives light information in a space partitioned by a partition and a bottom. The partition is light transmissive. want to transmit to a plurality of silver portions strut in contact with the permeate side of the provided is whether or light equipped at intervals corresponding to the wavelength of the light desired to be and becomes a transparent material transmitting provisions wavelength Wf defined wavelength Wf Silver is coated at intervals corresponding to the wavelength of light, and slits are formed between the coated parts ,
The distribution of electromagnetic waves is generated on the light irradiation surface of the silver support provided on the partition wall or on the light irradiation surface coated with silver on the partition wall. , Selectively transmitting only light having a specified wavelength Wf to be transmitted from among the generated electromagnetic waves having a distribution,
The photoresponsive substance emits light distributed over a predetermined wavelength region when irradiated with light having a predetermined wavelength Wi, and the emitted light is incident on an adjacent optical cell as light having a predetermined wavelength Wf through a partition. In a state where light having a predetermined wavelength Wi is irradiated to the adjacent optical cell, when light having a predetermined wavelength Wf is incident, bright light having a wavelength Wf is generated. An optical parallel computing element that performs analog computation of
互いに隣接して設けられる複数の光学セルを有し、
各光学セルは、上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔を隔てて備え付けられた複数の銀製の支柱が設けられるかもしくは光の透過側と接する部分に透過させたい規定波長Wfの光の波長に対応した間隔を隔てて銀がコーティングされてコーティングされた部分どうしの間にそれぞれスリットが形成されており、
隔壁に備えつけられた銀製の支柱の光照射面もしくは隔壁に銀がコーティングされた光照射面に電磁波の分布が発生し、銀製の支柱間の透明材料部分もしくは銀のコーティング部分どうしの間のスリットは、発生した分布を有する電磁波のうちから透過させたい規定波長Wfの光のみを選択的に透過させ、
底部には上方から入射した光を反射して光学窓を介して隣接した光学セルに導くためのミラーが設けられ、光応答性物質は所定波長Wiの光が照射されたとき所定の波長領域にわたって分布する光を発光し、この発光した光は隔壁を介して規定波長Wfの光として隣接する光学セルに入射し、この隣接する光学セルに所定波長Wiの光が照射されている状態のときに、規定波長Wfの光が入射すると波長Wfの明るい光が発生し、この波長Wfの明るい光に基づいて光学セル間のアナログ演算を行うことを特徴とする光並列演算素子。
A plurality of optical cells provided adjacent to each other;
Each optical cell has a light incident part at the top, and a light-responsive substance that responds to light information when it receives light information in a space partitioned by a partition and a bottom. The partition is light transmissive. want to transmit to a plurality of silver portions strut in contact with the permeate side of the provided is whether or light equipped at intervals corresponding to the wavelength of the light desired to be and becomes a transparent material transmitting provisions wavelength Wf defined wavelength Wf Silver is coated at intervals corresponding to the wavelength of light, and slits are formed between the coated parts ,
The distribution of electromagnetic waves is generated on the light irradiation surface of the silver support provided on the partition wall or on the light irradiation surface coated with silver on the partition wall. , Selectively transmitting only light having a specified wavelength Wf to be transmitted from among the generated electromagnetic waves having a distribution,
The bottom is provided with a mirror that reflects light incident from above and guides it to an adjacent optical cell through an optical window, and the photoresponsive substance covers a predetermined wavelength region when irradiated with light of a predetermined wavelength Wi. The distributed light is emitted, and the emitted light is incident on the adjacent optical cell as the light having the specified wavelength Wf through the partition wall, and the adjacent optical cell is irradiated with the light having the predetermined wavelength Wi. An optical parallel computing element characterized in that when light having a specified wavelength Wf is incident, bright light having a wavelength Wf is generated, and analog computation between optical cells is performed based on the bright light having this wavelength Wf.
互いに隣接して設けられる複数の光学セルを有し、
各光学セルは、上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔を隔てて備え付けられた銀製の支柱が設けられるかもしくは光の透過側と接する部分に透過させたい規定波長Wfの光の波長に対応した間隔を隔てて銀がコーティングされてコーティングされた部分どうしの間にそれぞれスリットが形成されており、
隔壁に備えつけられた銀製の支柱の光照射面もしくは隔壁に銀がコーティングされた光照射面に電磁波の分布が発生し、銀製の支柱間の透明材料部分もしくは銀のコーティング部分どうしの間のスリットは、発生した分布を有する電磁波のうちから透過させたい規定波長Wfの光のみを選択的に透過させ、
光応答性物質は所定波長Wiの光が照射されたとき所定の波長領域にわたって分布する光を発光し、この発光した光は隔壁を介して規定波長Wfの光として隣接する光学セルに入射し、特定のセルに隣接する2以上の光学セルから規定波長Wfの光が入射すると波長Wfの明るい光が発生し、この波長Wfの明るい光に基づいて光学セル間のアナログ演算を行うことを特徴とする光並列演算素子。
A plurality of optical cells provided adjacent to each other;
Each optical cell has a light incident part at the top, and a light-responsive substance that responds to light information when it receives light information in a space partitioned by a partition and a bottom. The partition is light transmissive. want to transmit to the wavelength to the permeate side in contact with portions of either or light silver strut equipped at intervals corresponding is provided a light desired to be and becomes a transparent material transmitting prescribed wavelength Wf defined wavelength Wf of light Silver is coated at intervals corresponding to the wavelength, and slits are formed between the coated parts ,
The distribution of electromagnetic waves occurs on the light irradiation surface of the silver support provided on the partition wall or on the light irradiation surface coated with silver on the partition wall, and the slit between the transparent material part or the silver coating part between the silver support parts is , Selectively transmitting only light having a specified wavelength Wf to be transmitted from among the generated electromagnetic waves having a distribution,
The photoresponsive substance emits light distributed over a predetermined wavelength region when irradiated with light having a predetermined wavelength Wi, and the emitted light is incident on an adjacent optical cell as light having a predetermined wavelength Wf through a partition. When light having a specified wavelength Wf is incident from two or more optical cells adjacent to a specific cell, bright light having a wavelength Wf is generated, and analog calculation between the optical cells is performed based on the bright light having the wavelength Wf. Optical parallel computing element.
互いに隣接して設けられる複数の光学セルを有し、
各光学セルは、上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁は光透過性の透明材料よりなり且つ透過させたい規定波長Wfの光の波長に対応した間隔で備え付けられた銀製の支柱が設けられるかもしくは光の透過側と接する部分に銀がコーティングされており、
隔壁に備えつけられた銀製の支柱の光照射面もしくは隔壁に銀がコーティングされた光照射面に電磁波の分布が発生し、銀製の支柱間の透明材料部分もしくは銀のコーティング部分どうしの間のスリットは、発生した分布を有する電磁波のうちから透過させたい規定波長Wfの光のみを選択的に透過させ、
底部には上方から入射した光を反射して隔壁を介して隣接する光学セルに導くためのミラーが形成され、光応答性物質は所定波長Wiの光が照射されたとき所定の波長領域にわたって分布する光を発光し、この発光した光は隔壁を介して規定波長Wfの光として隣接する光学セルに入射し、特定のセルに隣接する2以上の光学セルから規定波長Wfの光が入射すると波長Wfの明るい光が発生し、この波長Wfの明るい光に基づいて光学セル間のアナログ演算を行うことを特徴とする光並列演算素子。
A plurality of optical cells provided adjacent to each other;
Each optical cell has a light incident part at the top, and a light-responsive substance that responds to light information when it receives light information in a space partitioned by a partition and a bottom. The partition is light transmissive. A silver support is provided which is made of a transparent material and provided at intervals corresponding to the wavelength of light of the specified wavelength Wf to be transmitted, or silver is coated on a portion in contact with the light transmission side,
The distribution of electromagnetic waves occurs on the light irradiation surface of the silver support provided on the partition wall or on the light irradiation surface coated with silver on the partition wall, and the slit between the transparent material part or the silver coating part between the silver support parts is , Selectively transmitting only light having a specified wavelength Wf to be transmitted from among the generated electromagnetic waves having a distribution,
A mirror is formed on the bottom to reflect light incident from above and guide it to an adjacent optical cell through a partition wall, and the photoresponsive substance is distributed over a predetermined wavelength region when irradiated with light of a predetermined wavelength Wi. The emitted light is incident on the adjacent optical cell as light having the specified wavelength Wf through the partition wall, and the wavelength when the light having the specified wavelength Wf is input from two or more optical cells adjacent to the specific cell. An optical parallel computing element characterized in that bright light of Wf is generated and analog computation between optical cells is performed based on the bright light of wavelength Wf.
光応答性物質がレーザー色素であることを特徴とする請求項1ないし4のいずれか一項に記載の光並列演算素子。   The optical parallel computing element according to any one of claims 1 to 4, wherein the photoresponsive substance is a laser dye.
JP2007204747A 2007-08-06 2007-08-06 Optical parallel computing element Expired - Fee Related JP5318380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204747A JP5318380B2 (en) 2007-08-06 2007-08-06 Optical parallel computing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204747A JP5318380B2 (en) 2007-08-06 2007-08-06 Optical parallel computing element

Publications (2)

Publication Number Publication Date
JP2009042312A JP2009042312A (en) 2009-02-26
JP5318380B2 true JP5318380B2 (en) 2013-10-16

Family

ID=40443139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204747A Expired - Fee Related JP5318380B2 (en) 2007-08-06 2007-08-06 Optical parallel computing element

Country Status (1)

Country Link
JP (1) JP5318380B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512322B2 (en) * 2010-02-16 2014-06-04 独立行政法人物質・材料研究機構 Optical parallel computing element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653814B2 (en) * 1988-02-16 1997-09-17 浜松ホトニクス株式会社 All-optical image signal processing device

Also Published As

Publication number Publication date
JP2009042312A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
Balram et al. The nanolithography toolbox
JP2020515880A (en) Optical coupler and waveguide system
US6901194B2 (en) Optical devices and methods of fabrication thereof
JPS60204076A (en) Optical matrix vector multiplier and optical multiplication
TW202115382A (en) Optical nanostructure rejecter for an integrated device and related methods
KR102229521B1 (en) Manufacturing method of light guide element
JPS63136005A (en) Mutual optical connector for elements on chip
US20050017178A1 (en) Micro-spectroscopic measuring device and micro-chemical system
US9910195B2 (en) Optical wavelength dispersion device and method of manufacturing the same
JP5318380B2 (en) Optical parallel computing element
US20230273501A1 (en) Optical device and optical detection system
US20210271148A1 (en) High-Efficiency End-Fire 3D Optical Phased Array Based On Multi-Layer Platform
JP4964055B2 (en) Optical parallel computing element
JP2001091701A (en) Photonic crystal with modulated grating
JP4904199B2 (en) Optical parallel computing element
JP4904200B2 (en) Optical parallel computing element
JPS6190185A (en) Holographic exposure method
US9754794B2 (en) Plasmonic nano-lithography based on attenuated total reflection
KR970048861A (en) All-optical optical element
Chaudhuri et al. Heterogeneously integrated optical detection platform for on-chip sensing applications
KR20160056218A (en) Surface Plasmonic Sensor Using Surface Plasmonic Sensor Chip
JPWO2019107133A1 (en) Optical waveguide and optical density measuring device
JP2009042848A (en) Optical parallel arithmetic unit
RU2438153C1 (en) Apparatus for exposure when forming nanosize structures and method of forming nanosize structures
JPH04213716A (en) Optical connecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Ref document number: 5318380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees