JP4904199B2 - Optical parallel computing element - Google Patents

Optical parallel computing element Download PDF

Info

Publication number
JP4904199B2
JP4904199B2 JP2007134771A JP2007134771A JP4904199B2 JP 4904199 B2 JP4904199 B2 JP 4904199B2 JP 2007134771 A JP2007134771 A JP 2007134771A JP 2007134771 A JP2007134771 A JP 2007134771A JP 4904199 B2 JP4904199 B2 JP 4904199B2
Authority
JP
Japan
Prior art keywords
light
optical
optical cell
shape
specific wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007134771A
Other languages
Japanese (ja)
Other versions
JP2008287676A (en
Inventor
勝文 大橋
一司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007134771A priority Critical patent/JP4904199B2/en
Publication of JP2008287676A publication Critical patent/JP2008287676A/en
Application granted granted Critical
Publication of JP4904199B2 publication Critical patent/JP4904199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光並列演算時に互いの光情報を組み入れることで、より高性能な並列演算をより高速に行うための光並列演算素子に関する。   The present invention relates to an optical parallel computing element for performing higher-performance parallel computation at higher speed by incorporating optical information of each other during optical parallel computation.

近年の情報処理装置の高速化・高性能化の要求に伴い、演算処理の並列化が要求されている。このため、デジタル演算処理回路が複数組み込まれた並列演算素子が提供されているが、アナログ情報に関しては個々の信号を毎回デジタル信号に変換した後に並列デジタル演算を行わなければならない。そのために、演算処理の高速化には複数のアナログ信号をアナログのまま一度に並列に演算できる演算素子が必要となってくる。   With the recent demand for higher speed and higher performance of information processing apparatuses, parallel processing is required. For this reason, a parallel arithmetic element in which a plurality of digital arithmetic processing circuits are incorporated is provided. However, for analog information, parallel digital arithmetic must be performed after each signal is converted into a digital signal. For this reason, an arithmetic element capable of calculating a plurality of analog signals in parallel at the same time in analog form is required for speeding up the arithmetic processing.

従来のアナログ演算素子において、単一の回路のものはオペアンプのような従来の半導体素子を用い、複数の回路では、まずアナログ信号をデジタル信号に変換して、その後、複数のデジタル信号を演算処理していた。そのため、複数のアナログ信号のアナログ演算を並列に行うには、入力回路数と同数のアナログ−デジタル変換回路が必要となってしまう。しかも、回路数が多くなればなるほど複数のアナログ−デジタル変換回路同士の同期を取ることが難しくなるといった問題も生じてしまう。   A conventional analog arithmetic element uses a conventional semiconductor element such as an operational amplifier for a single circuit. In a plurality of circuits, an analog signal is first converted into a digital signal, and then a plurality of digital signals are processed. Was. Therefore, in order to perform analog operations of a plurality of analog signals in parallel, the same number of analog-digital conversion circuits as the number of input circuits are required. In addition, as the number of circuits increases, there arises a problem that it becomes difficult to synchronize a plurality of analog-digital conversion circuits.

一方、光を用いて演算を行う素子が提案されている。図5に従来の光演算素子の構成を模式的に断面図で示す。この光演算素子は、二次元配列した複数の光学セル51を備え、それぞれの光学セル51は、隔壁52と底部53よりなる区画に、光の情報を受けたときに応答する光応答性物質54を収容している。各光学セル51には演算光照射装置55により所定波長の光56が照射し、光56が照射された光学セル51内の光応答性物質54は光応答性を示し、その状態を検出することにより、演算が行われるようになっている。   On the other hand, an element that performs calculation using light has been proposed. FIG. 5 schematically shows a cross-sectional view of a configuration of a conventional optical arithmetic element. The optical computing element includes a plurality of optical cells 51 arranged in a two-dimensional array, and each optical cell 51 is a light-responsive substance 54 that responds to light information in a partition made up of a partition wall 52 and a bottom portion 53. Is housed. Each optical cell 51 is irradiated with light 56 having a predetermined wavelength by the arithmetic light irradiation device 55, and the photoresponsive substance 54 in the optical cell 51 irradiated with the light 56 exhibits photoresponsiveness and detects its state. Thus, the calculation is performed.

しかしながら、このような従来の光演算素子は、演算の並列化を行う場合、それぞれ独立した光学セル51によって行われており、並列演算中は隣接した光学セル51同士の間での情報の遣り取りは行われていない。もし、隣り合った光学セル51同士の演算が必要な場合には、並列演算を一旦止めて、光学セル51同士の演算を行い、その後、並列演算を再開するといった作業を行っていた。   However, such conventional optical arithmetic elements are performed by independent optical cells 51 when performing parallel processing, and information is exchanged between adjacent optical cells 51 during parallel arithmetic. Not done. If computation between adjacent optical cells 51 is necessary, the parallel computation is temporarily stopped, computation between the optical cells 51 is performed, and then the parallel computation is resumed.

従って、光学セル51間の情報の遣り取りが多くなればなるほど、複数の光学セル51による並列演算の演算速度が低下してしまうといった問題を生じていた。並列演算には、並列演算を行う前処理にデータの並び替え等の処理が必要なため、場合によっては単独の光学セル51による演算の方が早くなるといった問題も生じてしまう。
F. Bos, Appl. Optics, vol.20, No.20, 3553 (1981) G. T. Kovacs, N. I. Maluf and K. E. Peterson, “Bulk Micromachining of Silicon”, Proceedings of the IEEE, vol. 86, No.8, 1536 (1998)
Accordingly, there has been a problem that as the amount of information exchanged between the optical cells 51 increases, the calculation speed of the parallel calculation by the plurality of optical cells 51 decreases. In parallel computation, since processing such as data rearrangement is necessary for pre-processing for performing parallel computation, there is a problem that computation by a single optical cell 51 is faster in some cases.
F. Bos, Appl. Optics, vol.20, No.20, 3553 (1981) GT Kovacs, NI Maluf and KE Peterson, “Bulk Micromachining of Silicon”, Proceedings of the IEEE, vol. 86, No. 8, 1536 (1998)

本発明は、このような従来技術の問題点を解決するためのなされたもので、より高性能な並列演算をより高速に行うことができる光並列演算素子を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and an object of the present invention is to provide an optical parallel arithmetic element capable of performing higher-performance parallel arithmetic at higher speed.

本発明は、上記課題を解決するため、第1には、互いに隣接して設けられる複数の光学セルを有し、各光学セルは、上部に光の入射部を有するとともに、光透過性隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、底部には上方から入射した光を反射して光透過性隔壁を介して隣接した光学セルに導くためのミラーが設けられ、前記光応答性物質は、第1の特定波長の光のみを照射したときには基底状態から励起状態に励起した後第2の特定波長の光を発光しながら基底状態に失活し、第1の特定波長の光と第2の特定波長の光を同時に照射したときには誘導放出により第2の特定波長の強い光を発光するものであり、各光学セルへの光照射を制御し、隣接する光学セルとの光の遣り取りを行うことにより、両光学セル間のアナログ演算を行うことを特徴とする光並列演算素子を提供する。   In order to solve the above-mentioned problems, the present invention first has a plurality of optical cells provided adjacent to each other, and each optical cell has a light incident part on the top, and a light-transmitting partition wall. A light-responsive substance that responds when receiving light information is accommodated in a space partitioned at the bottom, and an optical cell adjacent to the bottom by reflecting light incident from above through a light-transmitting barrier And the photoresponsive substance emits light of the second specific wavelength after being excited from the ground state to the excited state when irradiated only with light of the first specific wavelength. When the light having the first specific wavelength and the light having the second specific wavelength are simultaneously irradiated, light having a strong second specific wavelength is emitted by stimulated emission. Control and exchange light with the adjacent optical cell More, to provide light parallel operation elements and performing analog operation between the two optical cell.

第2には、上記第1の発明において、光応答性物質がレーザー色素であることを特徴とする光並列演算素子を提供する。   Secondly, in the first invention, there is provided an optical parallel computing element characterized in that the photoresponsive substance is a laser dye.

第3には、上記第1又は第2の発明において、各光学セルの形状が平面視正方形状であり、底部の形状が四角錐状であることを特徴とする光並列演算素子を提供する。   Thirdly, in the first or second invention, there is provided an optical parallel arithmetic element characterized in that each optical cell has a square shape in plan view and a bottom portion has a quadrangular pyramid shape.

第4には、上記第1又は第2の発明において、各光学セルの形状が平面視正三角形状であり、底部の形状が三角錐状であることを特徴とする光並列演算素子を提供する。   Fourth, in the first or second invention, there is provided an optical parallel arithmetic element characterized in that the shape of each optical cell is a regular triangular shape in plan view and the shape of the bottom is a triangular pyramid shape. .

第5には、上記第1又は第2の発明において、各光学セルの形状が平面視正六角形状であり、底部の形状が六角錐状であることを特徴とする光並列演算素子を提供する。   Fifth, in the first or second invention, there is provided an optical parallel arithmetic element characterized in that the shape of each optical cell is a regular hexagonal shape in plan view and the shape of the bottom is a hexagonal pyramid shape. .

本発明によれば、光学セル内にミラーと光透過性の隔壁を備えたことで、隣接光学セルからの情報を足し合わせることが可能になったため、より高性能な並列演算をより高速に行う演算素子を実現でき、係るアナログ演算装置の性能向上に寄与するところが大きい。   According to the present invention, since the mirror and the light-transmitting partition are provided in the optical cell, it becomes possible to add information from adjacent optical cells, so that higher-performance parallel computation is performed at higher speed. An arithmetic element can be realized, which greatly contributes to the performance improvement of the analog arithmetic device.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は、本発明の光並列演算素子における光学セルの構成を模式的に示す断面図、図2は、本発明の光並列演算素子の原理説明図である。   FIG. 1 is a cross-sectional view schematically showing the configuration of an optical cell in the optical parallel arithmetic element of the present invention, and FIG. 2 is a diagram for explaining the principle of the optical parallel arithmetic element of the present invention.

光学セル11は、隔壁12と底部13で区画化された空間を有し、その空間に光の情報を受けたときに応答する光応答性物質14が収容されている。隔壁12には光透過性の光学窓15が設けられている。なお、隔壁12自体を光透過性材料で形成してもよい。また、底部13は図示のように断面が三角形状となっており、その2辺に相当する部分に図示のようにミラー16が形成されている。このミラー16は隣接する光学セル11に自身の光の情報を伝えるために設けられる。光学セル11の上側は開口するように記載されているが、装置化にあたっては光応答性物質14を密閉した構造とする。この密閉化は、光透過性材料でふたをする方法で行ってもよく、カプセル化してもよい。光学セル11内の光応答性物質14は上側から光の照射が行えるようになっている。なお、ここで上側とは、図面に示してある方向を指し、実際の使用にあたっては任意の方向を向いていてよい。光学セル11の材料としては、例えば石英、シリコン、アルミナ等を用いることができる。また、光学窓15の材料としては、例えば石英、ガラス、窒化シリコン、酸化シリコン等を用いることができる。光学窓15は、例えば、酸化シリコンの窓とする場合、シリコン材にマイクロマシーン技術で平面視四角形状の複数の穴を掘り、隣接した穴の間の壁の厚みを数ミクロンとし、酸化炉でシリコンを酸化する手法で形成することができる。また、光透過性材料で作られた壁を接着する手法を用いてもよい。ミラー16の材料としては、例えば金、アルミニウム等を用いることができる。各光学セル11の形成は、例えばマイクロマシーン技術を用いて行うことができる。   The optical cell 11 has a space partitioned by a partition wall 12 and a bottom portion 13, and a photoresponsive substance 14 that responds when receiving light information is accommodated in the space. The partition wall 12 is provided with a light transmissive optical window 15. Note that the partition wall 12 itself may be formed of a light transmissive material. Further, the bottom 13 has a triangular cross section as shown in the figure, and a mirror 16 is formed as shown in the part corresponding to the two sides. This mirror 16 is provided to transmit information of its own light to the adjacent optical cell 11. Although the upper side of the optical cell 11 is described as opening, it is assumed that the photoresponsive substance 14 is sealed in the apparatus. This sealing may be performed by a method of covering with a light transmissive material, or may be encapsulated. The photoresponsive substance 14 in the optical cell 11 can be irradiated with light from above. Here, the upper side refers to the direction shown in the drawings, and may be in any direction in actual use. As a material of the optical cell 11, for example, quartz, silicon, alumina or the like can be used. Further, as the material of the optical window 15, for example, quartz, glass, silicon nitride, silicon oxide, or the like can be used. For example, when the optical window 15 is a silicon oxide window, a plurality of holes having a quadrangular shape in plan view are dug in a silicon material by a micromachine technique, and a wall thickness between adjacent holes is set to several microns. It can be formed by a technique of oxidizing silicon. Moreover, you may use the method of adhere | attaching the wall made from the light transmissive material. As a material of the mirror 16, for example, gold, aluminum or the like can be used. Each optical cell 11 can be formed using, for example, a micromachine technique.

光応答性物質14としては、第1の特定波長Wの光のみを照射したときには基底状態から励起状態に励起した後第2の特定波長の光Wを発光しながら基底状態に失活し、第1の特定波長Wの光と第2の特定波長Wの光を同時に照射したときには誘導放出により第2の特定波長Wの強い光を発光するものを用いる。このような光応答性物質14としては、上記のような性質のものであれば各種の材料を用いることができるが、特にBenzoic Acid, 2-[6-(ethylamino)-3-(ethylimino)-2,7-dimethyl-3H-xanthen-9-yl]-ethyl ester, monohydrochloride (以下、Rhodamine6Gと略す。)、o-(6-Amino-3-imino-3H-xanthen-9-yl)-benzoic acid (通称Rhodamine 110)等のレーザー色素が好ましく使用できる。これらの色素はエタノール、メタノール等のアルコール等やジメチルスルホキシド等の溶媒に溶解させて使用する。この光応答性物質14は光の照射により分子の電子状態が変化して、光応答性を示すもので、ここでは強度の異なる光の発光を利用する。 The photoresponsive material 14, and deactivated to the ground state while emitting light W B of the second specific wavelength after excitation from the ground state to the excited state when irradiated with only light of the first specific wavelength W A , use those emitting light with high second specific wavelength W B by stimulated emission upon irradiation with light of a first specific wavelength W a light of a second specific wavelength W B at the same time. Various materials can be used as the photoresponsive substance 14 as long as they have the properties described above, and in particular, Benzoic Acid, 2- [6- (ethylamino) -3- (ethylimino)- 2,7-dimethyl-3H-xanthen-9-yl] -ethyl ester, monohydrochloride (hereinafter abbreviated as Rhodamine6G), o- (6-Amino-3-imino-3H-xanthen-9-yl) -benzoic acid A laser dye such as (commonly known as Rhodamine 110) can be preferably used. These dyes are used after being dissolved in an alcohol such as ethanol or methanol, or a solvent such as dimethyl sulfoxide. The photoresponsive substance 14 exhibits photoresponsiveness by changing the electronic state of molecules upon irradiation with light. Here, light emission having different intensities is used.

演算動作について述べると、まず図2(a)の上図に示すように、光学セルA(11)の光応答性物質14に波長Wの光のみを照射する。ここで、波長Wの強度は、光応答性物質14により波長Wの光を発光するものの誘導放出を起こさない大きさに設定する。このとき、光学セルA(11)の変化は非常に小さく、一定時間後には図2(a)の下図のような状態となる。 Describing the operation operation, first, as shown in the upper diagram of FIG. 2 (a), irradiated only with light having a wavelength W A to light-responsive substance 14 of the optical cell A (11). Here, the intensity of the wavelength W A is set to a size that does not cause a stimulated emission of which emits light of wavelength W B by photoresponsive material 14. At this time, the change of the optical cell A (11) is very small, and after a certain period of time, the state becomes as shown in the lower diagram of FIG.

一方、波長Wの光を光学セルA(11)の光応答性物質14に照射した状態で、光学セルA(11)に隣接する光学セルB(11)の光応答性物質14に波長Wの光を照射すると、この光は光学セルB(11)のミラー16に反射して光学セルA(11)内の光応答性物質14に照射される。すると、波長Wと波長Wの光が同時に照射されたことにより、光学セルA(11)内の光応答性物質14の状態は大きく変化する。すなわち、光学セルA(11)内の光応答性物質14は波長Wの光が隣接した光学セルB(11)から光学窓15を通して照射されるため、光学セルA(11)内で励起した光応答性物質14に対して誘導放出が起こり、波長Wの強い光が発光されることになる。この現象の結果生じた強い光を隣接する光学セルB(11)と光学セルA(11)との演算結果とする。従って、隣接する光学セルに情報が同時に入力された場合に起る光応答性物質14の変化を利用することで、複数の入力情報による演算が可能になる。また、光の強度に応じた演算結果となるため、アナログ演算を実現できる。 On the other hand, the wavelength W of the light A in a state of irradiating the photoresponsive material 14 of the optical cell A (11), a wavelength W in photoresponsive material 14 of the optical cell B (11) adjacent to the optical cell A (11) When the light of B is irradiated, this light is reflected by the mirror 16 of the optical cell B (11) and irradiated to the photoresponsive substance 14 in the optical cell A (11). Then, by the light of the wavelength W A and the wavelength W B are illuminated simultaneously, the state of the light-responsive material 14 in the optical cell A (11) varies greatly. That is, light-responsive substance 14 in the optical cell A (11) Since the light of the wavelength W B is irradiated through the optical window 15 from an adjacent optical cell B (11), excited at the optical cell A (11) stimulated emission occurs against photoresponsive material 14, so that strong light wavelength W B emitted. The intense light generated as a result of this phenomenon is the calculation result of the adjacent optical cell B (11) and optical cell A (11). Therefore, by using the change of the photoresponsive substance 14 that occurs when information is simultaneously input to adjacent optical cells, it is possible to perform calculations using a plurality of input information. In addition, since the calculation result is in accordance with the light intensity, analog calculation can be realized.

以上、本発明の光並列演算素子の原理を2つの光学セルを用いた場合を例に説明してきたが、もちろん、本発明では、多数の光学セルを二次元配列した素子構成とすることができる。   As described above, the principle of the optical parallel arithmetic element of the present invention has been described by taking the case of using two optical cells as an example. Of course, in the present invention, an element configuration in which a large number of optical cells are two-dimensionally arranged can be used. .

次に、本発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

図3は本発明の実施例に係る光並列演算素子の構成を模式的に示す断面図である。図3の光並列演算素子は4つの光学セル31を有しているが、これは例示のためであり、実際には所要数の光学セルを二次元配列させたものとすることができる。   FIG. 3 is a cross-sectional view schematically showing the configuration of the optical parallel arithmetic element according to the embodiment of the present invention. The optical parallel arithmetic element of FIG. 3 has four optical cells 31, but this is for illustrative purposes, and in practice, a required number of optical cells can be two-dimensionally arranged.

光学セル31は石英を半導体微細加工して図3のように隔壁32と底部33で区画化された空間を形成した。隔壁32は隣接する光学セル31の間を光が通過するように光学窓35となるようにした。断面が三角形の底部33には金を蒸着してミラー36を設けた。このミラー36は、上方から入ってきた光を、隔壁32の光学窓34を通して隣接する光学セル31に向かって反射するように形成した。光学セル31内には光応答性物質34として、Rhodamine6Gのメタノール溶液を入れた。   The optical cell 31 was formed by subjecting quartz to semiconductor fine processing to form a space partitioned by a partition wall 32 and a bottom 33 as shown in FIG. The partition wall 32 becomes an optical window 35 so that light passes between the adjacent optical cells 31. A mirror 36 was provided by depositing gold on the bottom 33 having a triangular cross section. The mirror 36 was formed so as to reflect the light that entered from above through the optical window 34 of the partition wall 32 toward the adjacent optical cell 31. In the optical cell 31, a methanol solution of Rhodamine 6G was placed as a photoresponsive substance 34.

次に、図4の実施例の原理説明図を用いて、この光並列演算素子の動作について説明する。図4(a)に示すように、光学セルA(31)の光応答物質(Rhodamine6G)14に波長308nmの光のみを照射すると、励起状態に励起し、その後、556nmの光を発光しながら失活した。図4(b)に示すように、光学セルA(31)に対して波長308nmの光を照射すると同時に、隣接する光学セル31から波長556nmの光を入射させると、この隣接光学セル31に照射された波長556nmの光が隣接光学セル31内のミラー36によって光学セルA(31)に向かって反射される。この時、光学セルA(31)内で励起したRhodamine6Gに対して誘導放出が起こり、Rhodamine6Gが波長556nmの強い光を発光した。この一連の現象の結果に生じた強い光を隣接する光学セル31と光学セルA(31)との演算結果とする。この演算結果は光学セル31から出力された強い光を受光することにより得ることができる。   Next, the operation of this optical parallel arithmetic element will be described with reference to the principle explanatory diagram of the embodiment of FIG. As shown in FIG. 4 (a), when the photoresponsive substance (Rhodamine 6G) 14 of the optical cell A (31) is irradiated with only light having a wavelength of 308 nm, it is excited to an excited state, and then lost while emitting 556 nm light. Lived. As shown in FIG. 4B, when the optical cell A (31) is irradiated with light having a wavelength of 308 nm and at the same time incident with light having a wavelength of 556 nm from the adjacent optical cell 31, the adjacent optical cell 31 is irradiated. The light having a wavelength of 556 nm is reflected toward the optical cell A (31) by the mirror 36 in the adjacent optical cell 31. At this time, stimulated emission occurred with respect to Rhodamine 6G excited in the optical cell A (31), and Rhodamine 6G emitted strong light having a wavelength of 556 nm. The intense light generated as a result of this series of phenomena is used as the calculation result of the adjacent optical cell 31 and optical cell A (31). This calculation result can be obtained by receiving strong light output from the optical cell 31.

以上、本発明を実施形態及び実施例に基づいて説明してきたが、本発明は上記実施形態及び実施例に限定されるものではなく、種々の変形、変更が可能である。   As mentioned above, although this invention has been demonstrated based on embodiment and an Example, this invention is not limited to the said embodiment and Example, A various deformation | transformation and change are possible.

例えば、上記では、各光学セルの形状が平面視正方形状であり、底部の形状が四角錐状である場合を例に述べたが、各光学セルは、その形状が平面視正三角形状であり、底部の形状が三角錐状であるものとして、これらを細密に配置してもよく、また、その形状を平面視正六角形状とし、底部の形状が六角錐状として、これらを蜂の巣状に配置してもよい。これらは、各光学セルの形成にマイクロマシーン技術を使用した場合、リソグラフィーのマスクのパターンを変えるだけで作製することができる。   For example, in the above description, the case where each optical cell has a square shape in plan view and the bottom portion has a quadrangular pyramid shape has been described as an example. However, each optical cell has a regular triangular shape in plan view. These may be arranged finely, assuming that the shape of the bottom is a triangular pyramid, and the shape is a regular hexagon in plan view, the shape of the bottom is a hexagonal pyramid, and these are arranged in a honeycomb shape May be. These can be produced by simply changing the pattern of the lithography mask when micromachine technology is used to form each optical cell.

また、本発明では、各光学セルの底部の形状は上部が平らとなっていてもよい。   In the present invention, the bottom of each optical cell may be flat at the top.

本発明は、隣接する光学セルへの情報の加算が可能であることから、拡散現象の計算や、画像処理等のための演算等への利用が期待される。   Since the present invention can add information to adjacent optical cells, the present invention is expected to be used for calculation of diffusion phenomenon, calculation for image processing, and the like.

本発明の光並列演算素子における光学セルの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the optical cell in the optical parallel arithmetic element of this invention. 本発明の光並列演算素子の原理説明図である。It is principle explanatory drawing of the optical parallel arithmetic element of this invention. 本発明の実施例に係る光並列演算素子の構成を模式的に示す図である。It is a figure which shows typically the structure of the optical parallel arithmetic element which concerns on the Example of this invention. 本発明の実施例に係る光並列演算素子の原理説明図である。It is principle explanatory drawing of the optical parallel arithmetic element based on the Example of this invention. 従来の光演算素子の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of the conventional optical arithmetic element typically.

符号の説明Explanation of symbols

11、31 光学セル
12、32 隔壁
13、33 底部
14、34 光応答性物質
15、35 光学窓
16、36 ミラー
11, 31 Optical cell 12, 32 Partition 13, 33 Bottom 14, 34 Photoresponsive material 15, 35 Optical window 16, 36 Mirror

Claims (5)

互いに隣接して設けられる複数の光学セルを有し、
各光学セルは、上部に光の入射部を有するとともに、光透過性隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、底部には上方から入射した光を反射して光透過性隔壁を介して隣接した光学セルに導くためのミラーが設けられ、
前記光応答性物質は、第1の特定波長の光のみを照射したときには基底状態から励起状態に励起した後第2の特定波長の光を発光しながら基底状態に失活し、第1の特定波長の光と第2の特定波長の光を同時に照射したときには誘導放出により第2の特定波長の強い光を発光するものであり、
各光学セルへの光照射を制御し、隣接する光学セルとの光の遣り取りを行うことにより、両光学セル間のアナログ演算を行うことを特徴とする光並列演算素子。
A plurality of optical cells provided adjacent to each other;
Each optical cell has a light incident part at the top, and a light-responsive substance that responds when receiving light information in a space partitioned by a light-transmitting partition and a bottom part. A mirror is provided for reflecting light incident from above and guiding it to an adjacent optical cell through a light-transmitting barrier,
The photoresponsive substance is excited from the ground state to the excited state when irradiated with only light of the first specific wavelength, and then deactivated to the ground state while emitting light of the second specific wavelength, and the first specific wavelength When the light of the wavelength and the light of the second specific wavelength are irradiated at the same time, strong light of the second specific wavelength is emitted by stimulated emission,
An optical parallel computing element that performs analog computation between both optical cells by controlling light irradiation to each optical cell and exchanging light with an adjacent optical cell.
光応答性物質がレーザー色素であることを特徴とする請求項1に記載の光並列演算素子。   The optical parallel computing element according to claim 1, wherein the photoresponsive substance is a laser dye. 各光学セルの形状が平面視正方形状であり、底部の形状が四角錐状であることを特徴とする請求項1又は2に記載の光並列演算素子。   3. The optical parallel arithmetic element according to claim 1, wherein each optical cell has a square shape in plan view, and a bottom portion has a quadrangular pyramid shape. 各光学セルの形状が平面視正三角形状であり、底部の形状が三角錐状であることを特徴とする請求項1又は2に記載の光並列演算素子。   3. The optical parallel arithmetic element according to claim 1, wherein each optical cell has a regular triangular shape in plan view, and a bottom shape has a triangular pyramid shape. 各光学セルの形状が平面視正六角形状であり、底部の形状が六角錐状であることを特徴とする請求項1又は2に記載の光並列演算素子。   3. The optical parallel arithmetic element according to claim 1, wherein the shape of each optical cell is a regular hexagonal shape in plan view, and the shape of the bottom portion is a hexagonal pyramid shape.
JP2007134771A 2007-05-21 2007-05-21 Optical parallel computing element Expired - Fee Related JP4904199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134771A JP4904199B2 (en) 2007-05-21 2007-05-21 Optical parallel computing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134771A JP4904199B2 (en) 2007-05-21 2007-05-21 Optical parallel computing element

Publications (2)

Publication Number Publication Date
JP2008287676A JP2008287676A (en) 2008-11-27
JP4904199B2 true JP4904199B2 (en) 2012-03-28

Family

ID=40147315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134771A Expired - Fee Related JP4904199B2 (en) 2007-05-21 2007-05-21 Optical parallel computing element

Country Status (1)

Country Link
JP (1) JP4904199B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512322B2 (en) * 2010-02-16 2014-06-04 独立行政法人物質・材料研究機構 Optical parallel computing element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7443902B2 (en) * 2003-10-15 2008-10-28 California Institute Of Technology Laser-based optical switches and logic
JP2005258406A (en) * 2003-12-26 2005-09-22 Canon Inc Optical element and manufacturing method thereof
US7417788B2 (en) * 2005-11-21 2008-08-26 Aditya Narendra Joshi Optical logic device

Also Published As

Publication number Publication date
JP2008287676A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
US20220171282A1 (en) Diffractive optical element fabrication
US20180081081A1 (en) Optical component, sensor and method for measuring an expansion and/or a temperature
US20210208506A1 (en) Method for Manufacturing Light Guide Elements
JP4904199B2 (en) Optical parallel computing element
JP4904200B2 (en) Optical parallel computing element
Poulton et al. Small-form-factor optical phased array module for technology adoption in custom applications
JP4964055B2 (en) Optical parallel computing element
EP2787378B1 (en) Methods and fabrication tools for fabricating optical devices
JP5318380B2 (en) Optical parallel computing element
JP4728989B2 (en) Raman scattering light enhancement device
TWI597910B (en) Optical device, pressure sensing device and pressure sensing apparatus
CN106451063B (en) The production method of distributed feedback polymer laser based on beat frequency structure
JP4904220B2 (en) Optical parallel processing unit
Chaudhuri et al. Heterogeneously integrated optical detection platform for on-chip sensing applications
CN111081860A (en) Wide-spectrum high-efficiency superconducting nanowire single photon detector
KR101154346B1 (en) All optical logic device based on multimode interference by photonic crystal structure
JP4173792B2 (en) Method for forming a three-dimensional photonic crystal
JP4121409B2 (en) Optical output device
Dem’yanenko et al. Enhancement of image conversion efficiency in mosaic microbolometer detector arrays
Thrush et al. High-throughput integration of optoelectronics devices for biochip fluorescent detection
US20210299658A1 (en) Device and method for direct printing of microfluidic chip based on large-format array femtosecond laser
Ito et al. Driving Micro-Objects Using Optical Force due to Photoemission
JP2001053371A (en) Method and apparatus for generating vacuum ultraviolet light and apparatus for utilizing the same
JP5512322B2 (en) Optical parallel computing element
Wienhold et al. Free-space read-out of WGM lasers using circular micromirrors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees