JP2009042848A - Optical parallel arithmetic unit - Google Patents

Optical parallel arithmetic unit Download PDF

Info

Publication number
JP2009042848A
JP2009042848A JP2007204749A JP2007204749A JP2009042848A JP 2009042848 A JP2009042848 A JP 2009042848A JP 2007204749 A JP2007204749 A JP 2007204749A JP 2007204749 A JP2007204749 A JP 2007204749A JP 2009042848 A JP2009042848 A JP 2009042848A
Authority
JP
Japan
Prior art keywords
light
optical
optical cell
cell
parallel arithmetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007204749A
Other languages
Japanese (ja)
Other versions
JP4904220B2 (en
Inventor
Ichiji Miki
一司 三木
Katsufumi Ohashi
勝文 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
National Institute for Materials Science
Original Assignee
Kagoshima University NUC
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC, National Institute for Materials Science filed Critical Kagoshima University NUC
Priority to JP2007204749A priority Critical patent/JP4904220B2/en
Publication of JP2009042848A publication Critical patent/JP2009042848A/en
Application granted granted Critical
Publication of JP4904220B2 publication Critical patent/JP4904220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical parallel arithmetic unit for executing a much higher speed analog parallel arithmetic operation by shortening a time to be spent on input/output time as much as possible. <P>SOLUTION: This optical parallel arithmetic unit is configured to store photoresponsive substance 14, and a partition 12 is provided with a photonic crystal 12a formed with a light waveguide path and a resonator inside through which only specific wavelength is selectively transmitted, and a plurality of adjacent optical cells installed in a mirror 15 for reflecting incident excitation rays of light, and for guiding the excitation rays of light to the adjacent optical cells 11 are formed on a bottom part 13. Furthermore, this parallel arithmetic unit is provided with a light source 16 for emitting the rays of light to the optical cells; a filter 17 and a light detector 18, and photoresponsive substance 14 in the plurality of selected optical cells 11 adjacent to the specific optical cell 11 is made to emit the rays of light based on the excitation rays of light from the light source 16, and the photoresponsive substance 14 of the specific optical cell 11 is irradiated with the excitation rays of light, and the photoresponsive substance 14 is made to emit the rays of light. Transmission and processing based on a series of rays of light using this and an electric signal is repeated so that a high speed parallel arithmetic operation can be achieved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数のアナログ演算の並列化によりアナログ演算の高速化を行うための光並列演算装置に関する。   The present invention relates to an optical parallel computing device for speeding up analog computation by parallelizing a plurality of analog computations.

近年の情報処理装置の高速化の要求に伴い、演算処理の並列化が要求されている。このため、デジタル演算処理回路が複数組み込まれた並列演算装置が提供されているが、アナログ情報に関しては個々の信号を毎回デジタル信号に変換した後に並列デジタル演算を行わなければならない。そのために、演算処理の高速化には複数のアナログ信号をアナログのまま一度に演算できる演算装置が必要になってくる。   With recent demands for speeding up information processing apparatuses, parallel processing is required. For this reason, a parallel arithmetic device in which a plurality of digital arithmetic processing circuits are incorporated is provided. However, for analog information, parallel digital arithmetic must be performed after each signal is converted into a digital signal. For this reason, in order to speed up the arithmetic processing, an arithmetic device capable of calculating a plurality of analog signals at the same time as an analog signal is required.

従来のアナログ演算素子において、単一の回路のものはオペアンプのような従来の半導体素子を用い、複数の回路では、まずアナログ信号をデジタル信号に変換して、その後、複数のデジタル信号を演算処理していた。そのため、複数のアナログ信号のアナログ演算を並列に行うには、入力回路数と同数のアナログ−デジタル変換回路が必要となってしまう。しかも、回路数が多くなればなるほど複数のアナログ−デジタル変換回路同士の同期を取ることが難しくなるといった問題も生じてしまう。   A conventional analog arithmetic element uses a conventional semiconductor element such as an operational amplifier for a single circuit. In a plurality of circuits, an analog signal is first converted into a digital signal, and then a plurality of digital signals are processed. Was. Therefore, in order to perform analog operations of a plurality of analog signals in parallel, the same number of analog-digital conversion circuits as the number of input circuits are required. In addition, as the number of circuits increases, there arises a problem that it becomes difficult to synchronize a plurality of analog-digital conversion circuits.

一方、光を用いて演算を行う素子が提案されている。図10に従来の光演算装置の要部構成を模式的に断面図で示す。この光演算素子は、二次元配列した複数の光学セル51を備え、それぞれの光学セル51は隔壁52と底部53よりなる区画に光の情報を受けたときに応答する光応答性物質54を収容している。各光学セル51には演算光照射装置55により所定波長の光56が照射し、光56が照射された光学セル51内の光応答性物質54は光応答性を示し、その状態を検出することにより、演算が行われるようになっている。   On the other hand, an element that performs calculation using light has been proposed. FIG. 10 is a cross-sectional view schematically showing a main part configuration of a conventional optical arithmetic unit. This optical computing element includes a plurality of two-dimensionally arranged optical cells 51, and each optical cell 51 contains a light-responsive substance 54 that responds when receiving light information in a partition composed of a partition 52 and a bottom 53. is doing. Each optical cell 51 is irradiated with light 56 having a predetermined wavelength by the arithmetic light irradiation device 55, and the photoresponsive substance 54 in the optical cell 51 irradiated with the light 56 exhibits photoresponsiveness and detects its state. Thus, the calculation is performed.

しかしながら、このような従来の光演算素子は、演算の並列化を行う場合、それぞれ独立した光学セル51によって行われており、並列演算中は隣接した光学セル51同士の間での情報の遣り取りは行われていない。もし、隣り合った光学セル51同士の演算が必要な場合には、並列演算を一旦止めて、光学セル51同士の演算を行い、その後、並列演算を再開するといった作業を行っていた。   However, such conventional optical arithmetic elements are performed by independent optical cells 51 when performing parallel processing, and information is exchanged between adjacent optical cells 51 during parallel arithmetic. Not done. If computation between adjacent optical cells 51 is necessary, the parallel computation is temporarily stopped, computation between the optical cells 51 is performed, and then the parallel computation is resumed.

従って、光学セル51間の情報の遣り取りが多くなればなるほど、複数の光学セル51による並列演算の演算速度が低下してしまうといった問題を生じていた。並列演算には、並列演算を行う前処理にデータの並び替え等の処理が必要なため、場合によっては単独の光学セル51による演算の方が早くなるといった問題も生じてしまう。   Accordingly, there has been a problem that as the amount of information exchanged between the optical cells 51 increases, the calculation speed of the parallel calculation by the plurality of optical cells 51 decreases. In parallel computation, since processing such as data rearrangement is necessary for pre-processing for performing parallel computation, there is a problem that computation by a single optical cell 51 is faster in some cases.

また、本発明者らは、最近、複数のアナログ情報を二次元に展開することで、画像情報として一度に演算を行う並列アナログ演算装置(図11)を提案した(特願2006−257877)。この並列アナログ演算装置は、入力、出力、演算を画像処理の形で処理しており、多量のアナログ情報の演算が並列にかつ迅速に実行できるようになる。   In addition, the present inventors recently proposed a parallel analog computing device (FIG. 11) that performs computation at once as image information by expanding a plurality of analog information in two dimensions (Japanese Patent Application No. 2006-257877). This parallel analog computing device processes input, output, and computation in the form of image processing, so that a large amount of analog information can be computed in parallel and quickly.

しかし、この技術においては、入力時には複数回路のアナログデータを画像情報に展開し、出力時には画像情報からアナログデータへ変換しているため、入出力時のデータ処理に時間がかかり、この点にさらに改善の余地があり、さらなる並列演算の高速化が期待されている。
松重和美、田中一義、“分子ナノテクノロジー”、化学同人、p.152-153 (2002) G. T. Kovacs, N. I. Maluf and K. E. Peterson, “Bulk Micromachining of Silicon”, Proceedings of the IEEE, vol.86, No.8, 1536 (1998) F. Bos, Appl. Optics, Vol.20, No.20, 3553 (1981) フォトニック結晶におけるレーザー発振I,II、大高一雄、植田毅、迫田和彰、第54回日本物理学会要旨集 山口陽子、数理科学、408、サイエンス社、p.23 (1997) John D. Joannopoulos, Robert D. Meade, Joshua N. Winn, 訳者:藤井 壽崇、井上 光輝、“フォトニック結晶”、コロナ社、 p.68-69 吉野 勝美、武田 寛之、“フォトニック結晶の基礎と応用”コロナ社、p.64 Yoshihiko Akahane et al. “High-Q photonic nanocavity in a two-dimensional photo crystal”, Nature, 425, 944-947 (2003)
However, in this technique, analog data of a plurality of circuits is developed into image information at the time of input and converted from image information to analog data at the time of output, so it takes time to process data at the time of input and output. There is room for improvement, and further acceleration of parallel computation is expected.
Matsushige Kazumi, Tanaka Kazuyoshi, “Molecular Nanotechnology”, Chemistry Dojin, p.152-153 (2002) GT Kovacs, NI Maluf and KE Peterson, “Bulk Micromachining of Silicon”, Proceedings of the IEEE, vol.86, No.8, 1536 (1998) F. Bos, Appl. Optics, Vol.20, No.20, 3553 (1981) Laser oscillations in photonic crystals I and II, Kazuo Otaka, Akira Ueda, Kazuaki Sakoda, 54th Annual Meeting of the Physical Society of Japan Yoko Yamaguchi, Mathematical Sciences, 408, Science, p.23 (1997) John D. Joannopoulos, Robert D. Meade, Joshua N. Winn, Translators: Takanori Fujii, Mitsuteru Inoue, “Photonic Crystal”, Corona, p.68-69 Katsumi Yoshino, Hiroyuki Takeda, “Basics and Applications of Photonic Crystals”, Corona, p.64 Yoshihiko Akahane et al. “High-Q photonic nanocavity in a two-dimensional photo crystal”, Nature, 425, 944-947 (2003)

本発明は、このような従来技術の問題点を解決するためになされたもので、入出力時にかかる時間をできるだけ短縮し、より高速なアナログ並列演算を行うことができる光並列演算装置を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and provides an optical parallel arithmetic device capable of performing analog parallel arithmetic at a higher speed by reducing the time required for input / output as much as possible. This is the issue.

本発明は、上記課題を解決するため、第1には、上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁の上寄り部分は特定波長の光のみを選択的に透過させるフォトニック結晶からなるとともに内部に光導波路と光共振器が形成され、底部には上方から入射した光を反射して隔壁の下寄り部分を介して隣接した光学セルに導くためのミラーが設けられて光学セルが構成され、この光学セルが複数互いに隣接して設けられる光学セル構造体と、選択された光学セルに光を照射する光源と、光源からの光は透過し光学セルの光応答性物質からの光は反射するフィルターと、フィルターで反射した、光学セルの光応答性物質からの光を検知する光検知器を備え、光源からの励起光により、特定の光学セルに隣接する複数の選択された光学セル内の光応答性物質を発光させ、発光した光から隔壁のフォトニック結晶内部の光共振器により選択した特定波長の光と、ミラーにより反射した励起光を特定の光学セルの光応答性物質に照射し、その光応答性物質を発光させ、その発光した光をフィルターで反射させて、光検知器で検知して動作信号を光源に送り、検知した光が発せられた光学セルの光応答性物質に光源より光を照射し、この一連の光及び電気信号による伝達及び処理を繰り返すことで、高速の並列演算を行うことを特徴とする光並列演算装置を提供する。   In order to solve the above-mentioned problems, the present invention firstly has a light incident part at the top, and responds when receiving light information in a space partitioned by a partition wall and a bottom part. The upper part of the partition contains a photonic crystal that selectively transmits only light of a specific wavelength, an optical waveguide and an optical resonator are formed inside, and the bottom part reflects light incident from above An optical cell is configured by providing a mirror for guiding to an adjacent optical cell through a lower portion of the partition wall, and an optical cell structure in which a plurality of the optical cells are provided adjacent to each other, and a selected optical A light source that irradiates light to the cell, a filter that transmits light from the light source and reflects light from the photoresponsive substance of the optical cell, and detects light from the photoresponsive substance of the optical cell that is reflected by the filter Equipped with light detector, light source The excitation light causes the photoresponsive substance in a plurality of selected optical cells adjacent to the specific optical cell to emit light, and the light having a specific wavelength selected by the optical resonator inside the photonic crystal of the partition wall is emitted from the emitted light. Light and the excitation light reflected by the mirror are irradiated to the photoresponsive substance of a specific optical cell, the photoresponsive substance is emitted, the emitted light is reflected by a filter, and detected by a photodetector. Sending an operation signal to the light source, irradiating the photoresponsive substance of the optical cell where the detected light is emitted from the light source, and repeating this series of light and electrical signals and processing, high-speed parallel computation An optical parallel computing device is provided.

第2には、上記第1の発明において、光応答性物質がレーザー色素であることを特徴とする光並列演算装置を提供する。   Secondly, in the first invention, there is provided an optical parallel arithmetic device characterized in that the photoresponsive substance is a laser dye.

第3には、上記第1又は第2の発明において、各光学セルの形状が平面視正方形状であり、底部の形状が四角錐状であることを特徴とする光並列演算装置を提供する。   Thirdly, in the first or second invention, there is provided an optical parallel arithmetic device characterized in that each optical cell has a square shape in plan view and a bottom portion has a quadrangular pyramid shape.

第4には、上記第1又は第2の発明において、各光学セルの形状が平面視正三角形状であり、底部の形状が三角錐状であることを特徴とする光並列演算装置を提供する。   Fourth, in the first or second invention, there is provided an optical parallel arithmetic device characterized in that the shape of each optical cell is a regular triangular shape in plan view and the shape of the bottom is a triangular pyramid shape. .

第5には、上記第1又は第2の発明において、各光学セルの形状が平面視正六角形状であり、底部の形状が六角錐状であることを特徴とする光並列演算装置を提供する。   Fifth, in the first or second invention, there is provided an optical parallel arithmetic device characterized in that the shape of each optical cell is a regular hexagonal shape in plan view and the shape of the bottom is a hexagonal pyramid shape. .

本発明によれば、隣接する複数の光学セル内の光応答性物質からの光により対象となる光学セル内の光応答性物質の発光、光検知器と光源の作動を、光と電気信号を組み合わせて用いることで、入出力時にかかる時間を大幅に低減し、装置内のみで演算を行うことが可能となり、より高連に並列演算を行うための光並列演算装置を実現でき、係るアナログ光並列演算装置の性能向上に寄与するところが大きい。   According to the present invention, light from a photoresponsive substance in a plurality of adjacent optical cells emits light of the photoresponsive substance in the target optical cell, the operation of the photodetector and the light source, and the light and the electric signal. When used in combination, the time required for input / output is greatly reduced, it is possible to perform computations only within the device, and an optical parallel computing device for performing parallel computations in higher order can be realized. This greatly contributes to improving the performance of parallel computing devices.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は、本発明の光並列演算装置の構成を模式的に示す断面図、図2は、前記光並列演算装置の原理説明図である。ここでは3つの光学セルを設けたものが示されているが、これは単なる例示のためであり、実際には所要数の光学セルを二次元的に配列させたものとすることができる。   FIG. 1 is a cross-sectional view schematically showing a configuration of an optical parallel arithmetic device according to the present invention, and FIG. 2 is an explanatory diagram of the principle of the optical parallel arithmetic device. Here, a configuration in which three optical cells are provided is shown, but this is merely an example, and in practice, a required number of optical cells can be two-dimensionally arranged.

光学セル11は、マイクロマシーン技術等により加工された隔壁12と底部13で区画化された空間を有し、その空間に光の情報を受けたときに応答する光応答性物質14が収容されている。隔壁12は上寄りの部分が特定波長の光を選択的に透過させる光導波路12a1と光共振器12a2を内部に備えたフォトニック結晶12aで作られおり、下寄りの部分はミラー15で反射された励起光を透過させる光透過部12bとなっている。また、底部13は断面が三角形状となっており、その2辺に相当する部分に図示のようにミラー15が形成されている。このミラー15は隣接する光学セル11と光源16からの励起光を反射させ、隔壁12の光透過部12bを介して隣接する光学セル11に励起光を導くために設けられている。光学セル11の上側は開口するように記載されているが、装置化にあたっては光応答性物質14を密閉した構造とする。この密閉化は、光透過性材料でふたをする方法で行ってもよく、カプセル化してもよい。透明部材で封止するようにしてもよい。光学セル11内の光応答性物質14は上側から光の照射が行えるようになっている。なお、ここで上側とは、図面に示してある方向を指し、実際の使用にあたっては任意の方向を向いていてよい。   The optical cell 11 has a space partitioned by a partition wall 12 and a bottom portion 13 processed by a micromachine technique or the like, and a photoresponsive substance 14 that responds when receiving light information is accommodated in the space. Yes. The partition wall 12 is made of a photonic crystal 12a having an optical waveguide 12a1 and an optical resonator 12a2 in which the upper portion selectively transmits light of a specific wavelength, and the lower portion is reflected by a mirror 15. The light transmitting portion 12b transmits the excitation light. Further, the bottom 13 has a triangular cross section, and a mirror 15 is formed at a portion corresponding to the two sides as shown in the figure. The mirror 15 is provided to reflect the excitation light from the adjacent optical cell 11 and the light source 16 and guide the excitation light to the adjacent optical cell 11 through the light transmission part 12 b of the partition wall 12. Although the upper side of the optical cell 11 is described as opening, it is assumed that the photoresponsive substance 14 is sealed in the apparatus. This sealing may be performed by a method of covering with a light transmissive material, or may be encapsulated. You may make it seal with a transparent member. The photoresponsive substance 14 in the optical cell 11 can be irradiated with light from above. Here, the upper side refers to the direction shown in the drawings, and may be in any direction in actual use.

光学セル11の材料としては、石英、シリコン、窒化シリコン、透明アルミナ、ガラス等の材料で光透過性を有するものを用いることができる。隔壁12の上寄りの部分は光導波路12a1と光共振器12a2を内部に備えたフォトニック結晶12aで構成されるが、例えば光学セル11の基礎材料である石英、シリコン等の材料を用いてフォトニック結晶12aにしたものを用いてもよいし、二酸化シリコン等の材料を用いてもよい。光応答性物質14には光源16からの励起光による光の情報を受けたときに基底状態から励起状態に励起した後発光しながら基底状態に失活する材料を用いることができる。このような材料としては、例えばBenzoic Acid, 2-[6-(ethyl amino)-3-(ethylimino)-2,7-dimethyl-3H-xanthen-9-yl]-ethyl ester, monohydrochloride (以下、Rhodamine6Gと略す。)、3-(2'-Benzothiazolyl)-7-diethylaminocoumarin(以下、Coumarin6と略す。)のようなレーザー色素が好ましく使用できる。これらの色素はメタノール、エタノール、ジメチルスルホキシド等の溶媒に溶解させて使用する。この光応答性物質14は光の照射により分子の電子状態が変化して、光応答性を示すものである。また、ミラー15の材料としては、例えば金、アルミニウムなどの金属膜や、誘電膜等を用いることができる。以上が光学セル構造体の説明である。   As the material of the optical cell 11, a material having optical transparency such as quartz, silicon, silicon nitride, transparent alumina, and glass can be used. The upper part of the partition wall 12 is composed of a photonic crystal 12a having an optical waveguide 12a1 and an optical resonator 12a2 therein. For example, a material such as quartz or silicon, which is a basic material of the optical cell 11, can be used for photo The nicked crystal 12a may be used, or a material such as silicon dioxide may be used. The photoresponsive substance 14 can be made of a material that is excited from the ground state to the excited state and receives light information from the light source 16 and then deactivates to the ground state while emitting light. Examples of such materials include Benzoic Acid, 2- [6- (ethyl amino) -3- (ethylimino) -2,7-dimethyl-3H-xanthen-9-yl] -ethyl ester, monohydrochloride (hereinafter Rhodamine 6G). And laser dyes such as 3- (2′-Benzothiazolyl) -7-diethylaminocoumarin (hereinafter abbreviated as Coumarin6) can be preferably used. These dyes are used after being dissolved in a solvent such as methanol, ethanol, dimethyl sulfoxide or the like. This photoresponsive substance 14 exhibits photoresponsiveness by changing the electronic state of the molecule upon irradiation with light. Further, as the material of the mirror 15, for example, a metal film such as gold or aluminum, a dielectric film, or the like can be used. The above is the description of the optical cell structure.

ここで、隔壁12を構成するフォトニック結晶内に設けられる光導波路12a1と光共振器12a2について述べる。フォトニック結晶の例として、例えば誘電率が13と大きいGaAsに周期的に穴を開けた構造において、この構造の穴の中では誘電率が1(空気)となり、図5(John D. Joannopoulos, Robert D. Meade, Joshua N. Winn, 訳者:藤井 壽崇、井上 光輝、“フォトニック結晶”、コロナ社、 p.68-69)に示すように誘電率の異なる物質を周期的に並べた構造を挙げることができる。このような構造をフォトニック結晶といい、構造内では、光が透過できない光のバンドギャップと呼ばれる領域が発生する。しかも、この光のバンドギャップの値、すなわち透過できない光の波長はフォトニック結晶の穴の間隔に対応している。この構造のままであると、ただの光の反射壁にしかならないが、周期構造内の一部の構造を変えることで、光導波路(図6:吉野 勝美、武田 寛之、“フォトニック結晶の基礎と応用”コロナ社、p.64)や光共振器(図7:Yoshihiko Akahane et al. “High-Q photonic nanocavity in a two-dimensional photo crystal”, Nature, 425, 944-947 (2003))を形成することができる。光導波路は、図6に示すように光の通り道に対応した部分の穴を開けずにおくと、その部分が光の導波路になる。また、図7のように両端にフォトニック結晶の構造の一部を残しておくと、その周期性のない部分で光の共振が起こる。光の共振波長(共振周波数)は図7のグラフのように周期性のない部分の大きさ及び構造に反映している。   Here, the optical waveguide 12a1 and the optical resonator 12a2 provided in the photonic crystal constituting the partition 12 will be described. As an example of a photonic crystal, for example, in a structure in which holes are periodically formed in GaAs having a large dielectric constant of 13, the dielectric constant becomes 1 (air) in the holes of this structure, and FIG. 5 (John D. Joannopoulos, Robert D. Meade, Joshua N. Winn, Translated by: Takashi Fujii, Mitsuteru Inoue, “Photonic Crystal”, Corona, p.68-69) Can be mentioned. Such a structure is called a photonic crystal, and a region called a band gap of light that cannot transmit light is generated in the structure. Moreover, the value of the band gap of light, that is, the wavelength of light that cannot be transmitted, corresponds to the interval between holes in the photonic crystal. If this structure is maintained, it becomes only a reflection wall for light, but by changing a part of the structure in the periodic structure, an optical waveguide (Fig. 6: Katsumi Yoshino, Hiroyuki Takeda, “Basics of Photonic Crystals” And applications “Corona, p.64” and optical resonators (Figure 7: Yoshihiko Akahane et al. “High-Q photonic nanocavity in a two-dimensional photo crystal”, Nature, 425, 944-947 (2003)). Can be formed. As shown in FIG. 6, if the optical waveguide is left without a hole corresponding to the path of light, that portion becomes a light waveguide. Further, if a part of the structure of the photonic crystal is left at both ends as shown in FIG. 7, light resonance occurs in a portion having no periodicity. The resonance wavelength (resonance frequency) of light is reflected in the size and structure of the non-periodic portion as shown in the graph of FIG.

フォトニック結晶を図8に模式的に示す。   A photonic crystal is schematically shown in FIG.

図9は本発明の実施例に係る光並列演算素子の隔壁を構成するフォトニック結晶を模式的に示す平面図と光学セルの構成を模式的に示す断面図である。   FIG. 9 is a plan view schematically showing a photonic crystal constituting a partition wall of an optical parallel arithmetic element according to an embodiment of the present invention, and a cross-sectional view schematically showing a configuration of an optical cell.

本発明では、選択された光学セル11の光応答性物質14に光照射するための光源16を設ける。この光源16としては、例えばGaNの半導体レーザーアレイ等を用いることができる。また、光源16と光学セル構造体との間、及び、光源16と光検知器18との間には、光源16からの励起光は透過させるが、光学セル11の光応答性物質14からの光は反射させるフィルター17を設ける。このフィルター17としては、公知のバンドパスフィルターを用いることができる。光検知器18で検知した結果に基づいて光源16に動作信号が伝送される。   In the present invention, a light source 16 for irradiating light to the photoresponsive substance 14 of the selected optical cell 11 is provided. For example, a GaN semiconductor laser array can be used as the light source 16. Further, the excitation light from the light source 16 is transmitted between the light source 16 and the optical cell structure and between the light source 16 and the photodetector 18, but from the photoresponsive substance 14 of the optical cell 11. A filter 17 that reflects light is provided. As this filter 17, a known bandpass filter can be used. An operation signal is transmitted to the light source 16 based on the result detected by the light detector 18.

演算動作について図1及び図2を参照しながら述べると、まず図2に示すように、ある波長の励起光を光源16から光学セルA、C(11)に入れた光応答性物質14に同時照射する。この時、光学セルA、C(11)に入射した光の一部はミラー15を反射し、隔壁12の光透過部12bを介して隣接する特定光学セルB(11)に照射される。同時に、これらの励起光は、光学セルA、C(11)内の光応答性物質14を一旦励起させる。これにより、光学セルA、C(11)内の光応答性物質14は発光しながら失活する。発光したこれらの光から特定波長の光を隔壁12の光導波路12a1と光共振器12a2を内部に備えたフォトニック結晶12aにより選択して特定光学セルB(11)に照射する。この特定波長の光と前記励起光を同時に受けた光学セルB(11)内の光応答性物質14は、特定波長の光による誘導放出でレーザー発振を起こし、その光はフィルター17で反射され、光検知器18により検知される。この光を検知した光検知器18は動作信号を光源16に送り、光源16は光学セルB(11)内の光応答性物質14に対し励起光を照射する。なお、1つの光学セル11のみからの特定波長からの光と励起光では、誘導放出を起こすだけの光量とならないように設定し、この場合、レーザー発振は行わせない。これらの一連の動作を繰り返すことにより高速に光並列演算を行うことができる。この光並列演算は、光の強度に応じた演算結果となるため、アナログ演算を実現できる。   The calculation operation will be described with reference to FIGS. 1 and 2. First, as shown in FIG. 2, excitation light having a certain wavelength is simultaneously applied to the photoresponsive substance 14 put in the optical cells A and C (11) from the light source 16. Irradiate. At this time, a part of the light incident on the optical cells A and C (11) is reflected by the mirror 15 and applied to the adjacent specific optical cell B (11) via the light transmission part 12b of the partition wall 12. At the same time, these excitation lights once excite the photoresponsive substance 14 in the optical cells A and C (11). Thereby, the photoresponsive substance 14 in the optical cells A and C (11) is deactivated while emitting light. From these emitted lights, light of a specific wavelength is selected by the photonic crystal 12a provided with the optical waveguide 12a1 and the optical resonator 12a2 of the partition wall 12 and irradiated to the specific optical cell B (11). The photoresponsive substance 14 in the optical cell B (11) that simultaneously receives the light of the specific wavelength and the excitation light causes laser oscillation by stimulated emission by the light of the specific wavelength, and the light is reflected by the filter 17. It is detected by the light detector 18. The light detector 18 that has detected this light sends an operation signal to the light source 16, and the light source 16 irradiates the photoresponsive substance 14 in the optical cell B (11) with excitation light. It should be noted that the light from the specific wavelength and the excitation light from only one optical cell 11 are set so as not to have a light quantity that causes stimulated emission. In this case, laser oscillation is not performed. By repeating these series of operations, optical parallel computation can be performed at high speed. Since this optical parallel calculation results in a calculation according to the light intensity, an analog calculation can be realized.

従って、これらの動作は、外部の計算機を必要としないため、高速なアナログ並列演算が可能になる。   Therefore, since these operations do not require an external computer, high-speed analog parallel computation becomes possible.

次に、本発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

図3は本発明の実施例に係る光並列演算装置の構成を模式的に示す図、図4は前記光並列演算装置の原理説明図である。図3の光並列演算装置は9つの光学セル21を有しているが、これは単なる例示のためであり、実際には所要数の光学セルを二次元配列させたものとすることができる。   FIG. 3 is a diagram schematically showing the configuration of an optical parallel arithmetic device according to an embodiment of the present invention, and FIG. 4 is a diagram for explaining the principle of the optical parallel arithmetic device. The optical parallel computing device of FIG. 3 has nine optical cells 21, but this is merely an example, and in practice, a required number of optical cells can be two-dimensionally arranged.

光学セル21はベースがシリコンよりなり、半導体微細加工により加工した隔壁22と底部23で区画化された空間を有し、その空間に光の情報を受けたときに応答するRhodamine6G(24)のメタノール溶液を収容させた。隔壁22は二酸化シリコンで構成し、上寄りの部分が波長556nmの光を選択的に透過させるために278nmの間隔で穴を開け、光導波路22a1の部分は穴を開けずにおき、そして光導波路22a1の両側に穴を開け光共振器22a2を設けることで、光導波路22a1と光共振器22a2を内部に備えたフォトニック結晶22aとした。下寄りの部分は金薄膜を蒸着させたミラー25で反射された励起光を透過させる光透過部22bとした。また、底部23は断面が三角形状とし、その2辺に相当する部分に図示のように前記金薄膜よりなるミラー25を形成した。このミラー25は隣接する光学セル21と光源26からの励起光を反射させ、隔壁22の光透過部22bを介して隣接する光学セル21に励起光を導くようにした。光源26としては、波長308nmの励起光を出射するGaNの半導体レーザーアレイを用い、フィルター27としては、光源26からの光は透過し、波長500nm以下の光を反射するバンドバスフィルターを用いた。光検知器28としては、フォトダイオードアレイを用い、特定の光学セル21のRhodamine6G(24)からの光を受けて、光源26に動作信号を送るようにした。   The optical cell 21 has a base made of silicon, has a space partitioned by a partition wall 22 and a bottom 23 processed by semiconductor microfabrication, and methanol of Rhodamine 6G (24) that responds when receiving light information in the space. The solution was contained. The partition wall 22 is made of silicon dioxide, and the upper portion has holes formed at intervals of 278 nm so as to selectively transmit light having a wavelength of 556 nm, the portion of the optical waveguide 22a1 is left without being formed, and the optical waveguide A photonic crystal 22a having an optical waveguide 22a1 and an optical resonator 22a2 therein was obtained by opening holes on both sides of 22a1 and providing an optical resonator 22a2. The lower portion is a light transmitting portion 22b that transmits the excitation light reflected by the mirror 25 on which the gold thin film is deposited. The bottom 23 has a triangular cross section, and a mirror 25 made of the gold thin film is formed on the portion corresponding to the two sides as shown in the figure. The mirror 25 reflects the excitation light from the adjacent optical cell 21 and the light source 26, and guides the excitation light to the adjacent optical cell 21 through the light transmission part 22 b of the partition wall 22. A GaN semiconductor laser array that emits excitation light having a wavelength of 308 nm was used as the light source 26, and a band-pass filter that transmits light from the light source 26 and reflected light having a wavelength of 500 nm or less was used as the filter 27. As the photodetector 28, a photodiode array was used, receiving light from Rhodamine 6G (24) of a specific optical cell 21 and sending an operation signal to the light source 26.

図3と、図4の原理説明図を用いて、この光並列演算装置の動作について説明する。図4に示すように、半導体レーザーアレイ26から波長308nmの励起光を光学セルA、C(21)に同時に照射した。このとき、光学セルA、C(21)に照射した励起光の一部はミラー25により光透過部22bを介して隣接する光学セルB(21)に導かれた。同時に、これらの残りの励起光は光学セルA、C(21)内のRhodamine6G(24)を一旦励起させた。これにより、Rhodamine6G(24)は発光しながら失活した。発光したこれらの光から556nmの光を隔壁22の光導波路22a1と光共振器22a2を内部に備えたフォトニック結晶22aにより選択して光学セルB(21)に導いた。この556nmの光と波長308nmの励起光を同時に受けた光学セルB(21)内のRhodamine6G(24)は、波長556nmの光による誘導放出でレーザー発振を起こし、その放出光はバンドバスフィルター27で反射され、フォトダイオードアレイ28により検知された。この光を受けたフォトダイオードアレイ28は半導体レーザーアレイ26に動作信号を送り、半導体レーザーアレイ26は光を発した光学セルB(21)に励起光を照射した。これらの一連の動作を繰り返すことでアナログ並列演算を行った。なお、1つの光学セル21のみからの特定波長からの光と励起光では、誘導放出を起こすだけの光量とならないように設定し、レーザー発振は行わせないようにした。これらの一連の動作を繰り返すことにより高速に光並列演算を行うことができた。従って、これらの動作は、外部の計算機を必要としないため、高速なアナログ並列演算が可能になる。   The operation of this optical parallel computing device will be described using FIG. 3 and the principle explanatory diagram of FIG. As shown in FIG. 4, the optical cells A and C (21) were simultaneously irradiated with excitation light having a wavelength of 308 nm from the semiconductor laser array. At this time, a part of the excitation light irradiated to the optical cells A and C (21) was guided to the adjacent optical cell B (21) by the mirror 25 via the light transmission part 22b. At the same time, these remaining excitation lights once excited the Rhodamine 6G (24) in the optical cells A and C (21). As a result, Rhodamine 6G (24) was inactivated while emitting light. From these emitted lights, light of 556 nm was selected by the photonic crystal 22a having the optical waveguide 22a1 and the optical resonator 22a2 inside the partition wall 22 and led to the optical cell B (21). The Rhodamine 6G (24) in the optical cell B (21) that simultaneously receives the 556 nm light and the excitation light with a wavelength of 308 nm causes laser oscillation by stimulated emission by the light with a wavelength of 556 nm. Reflected and detected by the photodiode array 28. Upon receiving this light, the photodiode array 28 sends an operation signal to the semiconductor laser array 26, and the semiconductor laser array 26 irradiates the optical cell B (21) that emitted the light with excitation light. Analog parallel computation was performed by repeating these series of operations. The light from a specific wavelength and the excitation light from only one optical cell 21 is set so as not to generate a light amount that causes stimulated emission, and laser oscillation is not performed. By repeating these series of operations, the optical parallel operation could be performed at high speed. Therefore, since these operations do not require an external computer, high-speed analog parallel computation becomes possible.

以上、本発明を実施形態及び実施例に基づいて説明してきたが、本発明は上記実施形態及び実施例に限定されるものではなく、種々の変形、変更が可能である。   As mentioned above, although this invention has been demonstrated based on embodiment and an Example, this invention is not limited to the said embodiment and Example, A various deformation | transformation and change are possible.

例えば、上記では、各光学セルの形状が平面視正方形状であり、底部の形状が四角錐状である場合を例に述べたが、各光学セルは、その形状が平面視正三角形状であり、底部の形状が三角錐状であるものとして、これらを細密に配置してもよく、また、その形状を平面視正六角形状とし、底部の形状が六角錐状として、これらを蜂の巣状に配置してもよい。これらは、各光学セルの形成にマイクロマシーン技術を使用した場合、リソグラフィーのマスクのパターンを変えるだけで作製することができる。   For example, in the above description, the case where each optical cell has a square shape in plan view and the bottom portion has a quadrangular pyramid shape has been described as an example. However, each optical cell has a regular triangular shape in plan view. These may be arranged finely, assuming that the shape of the bottom is a triangular pyramid, and the shape is a regular hexagon in plan view, the shape of the bottom is a hexagonal pyramid, and these are arranged in a honeycomb shape May be. These can be produced by simply changing the pattern of the lithography mask when micromachine technology is used to form each optical cell.

また、本発明では、各光学セルの底部の形状は上部が平らとなっていてもよい。   In the present invention, the bottom of each optical cell may be flat at the top.

本発明は、隣接する光学セルへの情報の加算が可能であることから、拡散現象の計算や、画像処理等のための演算等への利用が期待される。   Since the present invention can add information to adjacent optical cells, the present invention is expected to be used for calculation of diffusion phenomenon, calculation for image processing, and the like.

本発明の光並列演算装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the optical parallel arithmetic unit of this invention. 本発明の光並列演算装置の原理説明図である。It is principle explanatory drawing of the optical parallel arithmetic unit of this invention. 本発明の実施例に係る光並列演算素子の構成を模式的に示す図である。It is a figure which shows typically the structure of the optical parallel arithmetic element which concerns on the Example of this invention. 本発明の実施例に係る光並列演算素子の原理説明図である。It is principle explanatory drawing of the optical parallel arithmetic element based on the Example of this invention. フォトニック結晶の説明図である。It is explanatory drawing of a photonic crystal. フォトニック結晶に形成された光導波路の説明図である。It is explanatory drawing of the optical waveguide formed in the photonic crystal. フォトニック結晶に形成された光共振器の説明図である。It is explanatory drawing of the optical resonator formed in the photonic crystal. フォトニック結晶の模式図である。It is a schematic diagram of a photonic crystal. 本発明の実施例に係る光並列演算素子の隔壁を構成するフォトニック結晶を模式的に示す平面図と光学セルの構成を模式的に示す断面図である。FIG. 2 is a plan view schematically showing a photonic crystal constituting a partition wall of an optical parallel arithmetic element according to an embodiment of the present invention, and a cross-sectional view schematically showing a configuration of an optical cell. 従来の光演算素子の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of the conventional optical arithmetic element typically. 本発明者らが先に提案した並列アナログ演算装置を概略的に示す図である。It is a figure which shows roughly the parallel analog arithmetic unit which the present inventors previously proposed.

符号の説明Explanation of symbols

11、21 光学セル
12、22 隔壁
12a、22a フォトニック結晶
12a1、22a1 光導波路
12a2、22a2 光共振器
12b、22b 光透過部
13、23 底部
14、24 光応答性物質(Rohdamine6G)
15、25 ミラー
16、26 光源
17、27 フィルター
28、29 光検知器
11, 21 Optical cell 12, 22 Bulkhead 12a, 22a Photonic crystal 12a1, 22a1 Optical waveguide 12a2, 22a2 Optical resonator 12b, 22b Light transmitting part 13, 23 Bottom part 14, 24 Photoresponsive substance (Rohdamine6G)
15, 25 Mirror 16, 26 Light source 17, 27 Filter 28, 29 Photo detector

Claims (5)

上部に光の入射部を有するとともに、隔壁と底部で区画化された空間に、光の情報を受けたときに応答する光応答性物質を収容し、隔壁の上寄り部分は特定波長の光のみを選択的に透過させるフォトニック結晶からなるとともに内部に光導波路と光共振器が形成され、底部には上方から入射した光を反射して隔壁の下寄り部分を介して隣接した光学セルに導くためのミラーが設けられて光学セルが構成され、この光学セルが複数互いに隣接して設けられる光学セル構造体と、
選択された光学セルに光を照射する光源と、
光源からの光は透過し光学セルの光応答性物質からの光は反射するフィルターと、
フィルターで反射した、光学セルの光応答性物質からの光を検知する光検知器を備え、
光源からの励起光により、特定の光学セルに隣接する複数の選択された光学セル内の光応答性物質を発光させ、
発光した光から隔壁の光導波路と光共振器を備えたフォトニック結晶により選択した特定波長の光と、ミラーにより反射した励起光を特定の光学セルの光応答性物質に照射し、その光応答性物質を発光させ、
その発光した光をフィルターで反射させて、光検知器で検知して動作信号を光源に送り、
検知した光が発せられた光学セルの光応答性物質に光源より光を照射し、
この一連の光及び電気信号による伝達及び処理を繰り返すことで、高速の並列演算を行うことを特徴とする光並列演算装置。
It has a light incident part at the top and contains a light-responsive substance that responds to light information in a space partitioned by the partition and the bottom. The upper part of the partition only has light of a specific wavelength. A photonic crystal that selectively transmits light and an optical waveguide and an optical resonator are formed inside, and light incident from above is reflected at the bottom and guided to an adjacent optical cell through a lower portion of the partition wall And an optical cell structure in which a plurality of optical cells are provided adjacent to each other.
A light source for illuminating the selected optical cell;
A filter that transmits light from the light source and reflects light from the photoresponsive material of the optical cell;
It has a light detector that detects light from the photoresponsive substance of the optical cell reflected by the filter,
Excitation light from a light source causes photoresponsive substances in a plurality of selected optical cells adjacent to a specific optical cell to emit light,
The photoresponsive material of a specific optical cell is irradiated with light of a specific wavelength selected from the emitted light by a photonic crystal equipped with a partition optical waveguide and an optical resonator, and excitation light reflected by a mirror, and the optical response Luminescent substance,
The emitted light is reflected by a filter, detected by a light detector, and an operation signal is sent to the light source.
Light is irradiated from the light source to the photoresponsive substance of the optical cell where the detected light is emitted,
An optical parallel computing device that performs high-speed parallel computation by repeating transmission and processing using a series of light and electrical signals.
光応答性物質がレーザー色素であることを特徴とする請求項1に記載の光並列演算装置。   The optical parallel arithmetic device according to claim 1, wherein the photoresponsive substance is a laser dye. 各光学セルの形状が平面視正方形状であり、底部の形状が四角錐状であることを特徴とする請求項1又は2に記載の光並列演算装置。   3. The optical parallel arithmetic device according to claim 1, wherein each optical cell has a square shape in plan view, and a bottom portion has a quadrangular pyramid shape. 各光学セルの形状が平面視正三角形状であり、底部の形状が三角錐状であることを特徴とする請求項1又は2に記載の光並列演算装置。   3. The optical parallel arithmetic device according to claim 1, wherein each optical cell has a regular triangular shape in plan view, and a bottom shape has a triangular pyramid shape. 各光学セルの形状が平面視正六角形状であり、底部の形状が六角錐状であることを特徴とする請求項1又は2に記載の光並列演算装置。   The optical parallel arithmetic device according to claim 1, wherein each optical cell has a regular hexagonal shape in plan view, and a bottom shape has a hexagonal pyramid shape.
JP2007204749A 2007-08-06 2007-08-06 Optical parallel processing unit Expired - Fee Related JP4904220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204749A JP4904220B2 (en) 2007-08-06 2007-08-06 Optical parallel processing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204749A JP4904220B2 (en) 2007-08-06 2007-08-06 Optical parallel processing unit

Publications (2)

Publication Number Publication Date
JP2009042848A true JP2009042848A (en) 2009-02-26
JP4904220B2 JP4904220B2 (en) 2012-03-28

Family

ID=40443556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204749A Expired - Fee Related JP4904220B2 (en) 2007-08-06 2007-08-06 Optical parallel processing unit

Country Status (1)

Country Link
JP (1) JP4904220B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050152429A1 (en) * 2003-10-15 2005-07-14 Axel Scherer Laser-based optical switches and logic
JP2005258406A (en) * 2003-12-26 2005-09-22 Canon Inc Optical element and manufacturing method thereof
US20070115524A1 (en) * 2005-11-21 2007-05-24 Joshi Aditya N Optical logic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050152429A1 (en) * 2003-10-15 2005-07-14 Axel Scherer Laser-based optical switches and logic
JP2005258406A (en) * 2003-12-26 2005-09-22 Canon Inc Optical element and manufacturing method thereof
US20070115524A1 (en) * 2005-11-21 2007-05-24 Joshi Aditya N Optical logic device

Also Published As

Publication number Publication date
JP4904220B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
EP3319017B1 (en) Multi-channel laser system including an acousto-optic modulator (aom) and related methods
JP2006259064A (en) Method and device for intensifying electric field with surface plasmon
JP2007171186A (en) Sample detection system
JP4769658B2 (en) Resonator
JP5689955B2 (en) Light source device, analysis device, and light generation method
EP3793043A1 (en) Method and apparatus for providing an incoherent light field and applications thereof, e. g. in an optical atom trap
JP2009054795A (en) Semiconductor laser
Hsieh et al. Integrated metasurfaces on silicon photonics for emission shaping and holographic projection
JP2004310049A (en) Resonator and resonance device using photonic crystal
JP4904220B2 (en) Optical parallel processing unit
Gourley Nanolasers
JP4728989B2 (en) Raman scattering light enhancement device
EP2787378A1 (en) Methods and fabrication tools for fabricating optical devices
US7630124B2 (en) Wavelength conversion device and wavelength conversion method
JP4964055B2 (en) Optical parallel computing element
JP5936387B2 (en) Surface plasmon device
EP4077209B1 (en) Single-photon optical device
JP4904200B2 (en) Optical parallel computing element
JP4904199B2 (en) Optical parallel computing element
JPS62296102A (en) Waveguide grating coupler
JP6485237B2 (en) Combined laser light source
US9754794B2 (en) Plasmonic nano-lithography based on attenuated total reflection
JP3970781B2 (en) Quantum information processing method and quantum information processing apparatus
Jia et al. GaN distributed Bragg reflector cavity for sensing applications
JPWO2006103850A1 (en) Waveguide element and laser generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees