JP5316575B2 - Shielding film, manufacturing method thereof, and use - Google Patents

Shielding film, manufacturing method thereof, and use Download PDF

Info

Publication number
JP5316575B2
JP5316575B2 JP2011085081A JP2011085081A JP5316575B2 JP 5316575 B2 JP5316575 B2 JP 5316575B2 JP 2011085081 A JP2011085081 A JP 2011085081A JP 2011085081 A JP2011085081 A JP 2011085081A JP 5316575 B2 JP5316575 B2 JP 5316575B2
Authority
JP
Japan
Prior art keywords
light
shielding film
face
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011085081A
Other languages
Japanese (ja)
Other versions
JP2012194514A (en
Inventor
正男 若林
正史 井藁
勝史 小野
昌平 水沼
昌次 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011085081A priority Critical patent/JP5316575B2/en
Publication of JP2012194514A publication Critical patent/JP2012194514A/en
Application granted granted Critical
Publication of JP5316575B2 publication Critical patent/JP5316575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shutters For Cameras (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lens Barrels (AREA)
  • Diaphragms For Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a light shielding film useful as a light-shielding member for various optical apparatus, such as a camera, a video camera, a copying machine and a developing machine, and excellent in a light shielding property without reflection from a punched edge surface; a manufacturing method thereof; and applications thereof. <P>SOLUTION: A light shielding film with a thickness of 25 &mu;m or less contains a resin component (A), a black pigment (B), and an amorphous silica (C) with a mean particle diameter of 3-10 &mu;m. The content of the black pigment (B) is 3-20 parts by weight to 100 parts by weight of the resin component, and the content of the amorphous silica (C) is 15-40 parts by weight. Irregularities are formed on a surface thereof, and irregularities with surface roughness (arithmetic mean height Ra) of 1 &mu;m or more are formed on an edge surface thereof punching the periphery. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は遮光フィルムとその製造方法、及び用途に関し、更に詳しくは、カメラ、ビデオカメラ、複写機、現象機等の各種光学機器の遮光部材として有用であり、打ち抜き端面の反射がなく遮光性に優れた遮光フィルムとその製造方法、及び用途に関する。   The present invention relates to a light-shielding film, a method for producing the same, and uses, and more specifically, is useful as a light-shielding member for various optical devices such as cameras, video cameras, copying machines, phenomenon machines, etc. The present invention relates to an excellent light-shielding film, a production method thereof, and an application.

近年、カメラは小型化され、デジタル技術の発達によりデジタルカメラが普及し、このデジタルカメラは薄型化、コンパクト化が進み、携帯電話にカメラ機能を付加したものまで出てきている。また、ビデオカメラも小型化、軽量化が進みデジタルカメラ同様、小型化に加え、高性能化が進んでいる。   In recent years, cameras have been reduced in size, and digital cameras have become widespread due to the development of digital technology. The digital cameras have become thinner and more compact, and some mobile phones have camera functions added. In addition, video cameras are becoming smaller and lighter, and in the same way as digital cameras, in addition to miniaturization, higher performance is being promoted.

撮影機能を有した携帯電話、すなわちカメラ付き携帯電話は、デジタルカメラ同様、近年、高画素で高画質の撮影が行えるよう、小型の機械式シャッターがレンズユニットに搭載され始めている。また、固定絞りも携帯電話のレンズユニット内に挿入されている。上記の携帯電話に組み込まれる機械式シャッターは、一般のデジタルカメラよりも、省電力による作動が要求される。そのためシャッター羽根の軽量化が特に強く要求される。更に、最近カメラ付き携帯電話のカメラモジュールの組み立ては、製造コストを低減する目的で、レンズ、固定絞り、シャッター、CMOSやCCDなどの撮像素子などの各部材がリフロー工程で行われることが要望されている。   In recent years, mobile phones with photographing functions, that is, camera-equipped mobile phones, have been equipped with small mechanical shutters in the lens units so that high-quality images can be taken with high pixels, as with digital cameras. A fixed aperture is also inserted into the lens unit of the mobile phone. The mechanical shutter incorporated in the mobile phone is required to operate with less power than a general digital camera. For this reason, the weight reduction of the shutter blade is particularly strongly required. Furthermore, recently, the assembly of camera modules for camera-equipped mobile phones is required to perform various components such as lenses, fixed diaphragms, shutters, and image sensors such as CMOS and CCD in the reflow process in order to reduce manufacturing costs. ing.

また、固定絞りの内周端面やシャッター羽根の端面は、光の光路上に位置するため、レンズユニット内の不要な光がその端面で反射すると、撮像素子に入射してフレアやゴーストといった撮像不良が起こる。この撮像不良を防止するために、内周端面部の反射防止処理が施された固定絞りやシャッター羽根が求められている。そのため、これに用いられるシャッター羽根や固定絞りには、表面と打ち抜き端面の低反射性・黒色性が要求されている。   In addition, the inner peripheral end face of the fixed aperture and the end face of the shutter blade are located on the optical path of the light, so if unnecessary light in the lens unit is reflected by the end face, it enters the image sensor and causes imaging defects such as flare and ghost. Happens. In order to prevent this imaging failure, there is a need for a fixed aperture and shutter blades that have been subjected to an antireflection treatment on the inner peripheral end surface. For this reason, the shutter blades and fixed diaphragm used for this purpose are required to have low reflectivity and blackness on the surface and the punched end face.

さらに、デジタルカメラ、カメラ付き携帯電話の小型化、薄肉化が進むとともに、搭載される構成部品、特にカメラモジュールの小型化、薄肉化が求められている。カメラモジュール内のレンズユニットの構成部品である固定絞り、シャッター羽根には、特に、厚みが25μm以下という要望が非常に強くなっている。   Furthermore, digital cameras and camera-equipped mobile phones are becoming smaller and thinner, and components to be mounted, particularly camera modules, are required to be smaller and thinner. In particular, there is a strong demand for a fixed diaphragm and shutter blades, which are components of a lens unit in a camera module, to have a thickness of 25 μm or less.

これらの要求特性に応じて、金属薄板上に黒色潤滑塗装した遮光板が用いられている。しかし、この遮光板を製造するには、金属薄板を所定の形状に加工後、加工端面を黒染め処理する工程が必ず必要となり、製造コスト高となる。また、小型化、軽量化の要求にも応えられない。
そこで、合成樹脂フィルムを用いた遮光フィルムが提案されている。例えば、特許文献1には、バインダー樹脂、平均粒径1μm以下の黒色顔料、平均粒子径0.5〜5μmの球状のシリコーン粒子及び平均粒子径1〜10μmのシリカ粒子を含有した遮光層を有する遮光フィルムが提案されている。しかし、この特許文献にはフィルム表面のブロッキング現象について検討されているが、端面反射については言及されていない。また、基材フィルム使用しているため、フィルムの端面反射の問題がある。
また、特許文献2では、有機樹脂と黒色材料からなる遮光フィルムが提案されている。しかし、この特許文献も、端面反射について言及していない。さらに、フィルム表面に凸凹を形成するのに、黒色微粒子以外の微粒子を入れることは好ましくないと記載されているので、表面反射が十分には改善されない。
In accordance with these required characteristics, a light shielding plate coated with black lubricant on a thin metal plate is used. However, in order to manufacture the light shielding plate, a process of blackening the processed end face after processing the thin metal plate into a predetermined shape is necessarily required, resulting in an increase in manufacturing cost. In addition, it cannot meet the demands for miniaturization and weight reduction.
Therefore, a light shielding film using a synthetic resin film has been proposed. For example, Patent Document 1 has a light shielding layer containing a binder resin, a black pigment having an average particle diameter of 1 μm or less, spherical silicone particles having an average particle diameter of 0.5 to 5 μm, and silica particles having an average particle diameter of 1 to 10 μm. A light shielding film has been proposed. However, this patent document discusses the blocking phenomenon on the film surface, but does not mention end face reflection. Moreover, since the base film is used, there is a problem of end face reflection of the film.
Patent Document 2 proposes a light shielding film made of an organic resin and a black material. However, this patent document also does not mention end surface reflection. Furthermore, since it is described that it is not preferable to add fine particles other than black fine particles to form unevenness on the film surface, the surface reflection is not sufficiently improved.

また、本出願人は、155℃以上の耐熱性を有し黒色顔料が配合された樹脂フィルム基材を用い、その片面もしくは両面に、遮光膜として結晶性の金属炭化物膜(MeC)が形成されている耐熱遮光フィルムを提案した(特許文献4参照)。これにより、十分な表面反射性、耐熱性を必要とする用途への使用が可能となった。しかし、端面反射はまだ十分とは言えなかった。
さらに、上記の樹脂フィルム基材は静電気により帯電しやすいため、ゴミや埃などが付着しやすく、それを用いて製造した遮光フィルムでも問題となる場合があった。
In addition, the present applicant uses a resin film base material having a heat resistance of 155 ° C. or higher and blended with a black pigment, and a crystalline metal carbide film (MeC) is formed as a light shielding film on one side or both sides thereof. Proposed a heat-resistant light-shielding film (see Patent Document 4). As a result, it can be used for applications that require sufficient surface reflectivity and heat resistance. However, the end face reflection was still not sufficient.
Furthermore, since the above resin film base material is easily charged by static electricity, dust, dust, and the like are likely to adhere to it, and a light-shielding film manufactured using the resin film base material may cause a problem.

このような樹脂フィルムを基材とするものに対して、金属板を用いて、その表面処理や形状の工夫で撮像品質に影響するフレアやゴーストの発生を低減できる絞りや羽根材が提案されている。
例えば、特許文献3では、ステンレスや燐青銅などの金属板を用いてエッチングによって開口部を形成し、その開口部端面を含む表面での反射を抑えるために光吸収塗料を塗布するか、または艶消し処理を施した絞り板が提案されている。本特許文献では端面の反射低減のために表面処理という後工程を必要としているため、絞り板の製造工程が複雑かつ多くなり、製造コストの増大になる。
以上のように、現状では容易に打ち抜き端面の反射を抑制し、かつ、薄膜化が可能な遮光フィルムは得られておらず、その出現が切望されていた。
For such a resin film-based substrate, a diaphragm and blade material that can reduce the occurrence of flares and ghosts that affect the imaging quality by using surface treatment and shape improvements using a metal plate have been proposed. Yes.
For example, in Patent Document 3, an opening is formed by etching using a metal plate such as stainless steel or phosphor bronze, and a light-absorbing paint is applied to suppress reflection on the surface including the end face of the opening, or gloss is applied. Diaphragm diaphragms that have been erased have been proposed. In this patent document, a post-process called surface treatment is required to reduce reflection at the end face, so that the manufacturing process of the diaphragm plate is complicated and increased, resulting in an increase in manufacturing cost.
As described above, at present, a light-shielding film that can easily suppress the reflection of the punched end face and can be thinned has not been obtained, and its appearance has been eagerly desired.

特開2008−241767号公報JP 2008-241767 A 特表2010−534342号公報Special table 2010-534342 gazette 特開2006−72151号公報JP 2006-72151 A 特開2010−96842号公報JP 2010-96842 A

本発明では、上記の問題点に鑑み、表面及び端面が低反射性で且つ遮光性に優れた遮光フィルムとその製造方法、及び用途を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a light-shielding film having a low reflection surface and an excellent light-shielding property, a method for producing the same, and an application.

本発明者らは、上記の問題を解決するため鋭意研究を行ったところ、樹脂フィルム基材に黒色顔料と不定形シリカを含有する遮光フィルムにおいて、不定形シリカとして平均粒径が3〜10μmを用い、樹脂フィルム基材の原料樹脂に特定量配合することで、打ち抜き時に端面に均一に凹凸が形成され、それにより端面反射を抑制できることを見出し、本発明を完成するに至った。   The inventors of the present invention conducted intensive research to solve the above problems, and in a light-shielding film containing a black pigment and amorphous silica in a resin film substrate, the average particle diameter was 3 to 10 μm as amorphous silica. By using a specific amount in the raw material resin of the resin film base material, it was found that unevenness was uniformly formed on the end face during punching, thereby suppressing end face reflection, and the present invention was completed.

すなわち、本発明の第1の発明によれば、樹脂成分(A)に、黒色顔料(B)及び平均粒子径3〜10μmの不定形シリカ(C)を含有させた厚み25μm以下の遮光フィルムであって、黒色顔料(B)の含有量が、樹脂成分100重量部に対し、3〜20重量部で、不定形シリカ(C)の含有量が15〜40重量部であり、表面に凹凸が形成され、かつ遮光フィルムが打ち抜き露出端面を有し、当該端面が表面粗さ(算術平均高さRa)1μm以上の凹凸を有することを特徴とする遮光フィルムが提供される。 That is, according to the first invention of the present invention, the resin component (A) contains a black pigment (B) and amorphous silica (C) having an average particle diameter of 3 to 10 μm, and has a thickness of 25 μm or less. The content of the black pigment (B) is 3 to 20 parts by weight with respect to 100 parts by weight of the resin component, the content of the amorphous silica (C) is 15 to 40 parts by weight, and the surface is uneven. There is provided a light shielding film which is formed and has a punched exposed end face, and the end face has irregularities having a surface roughness (arithmetic average height Ra) of 1 μm or more.

また、本発明の第2の発明によれば、第1の発明において、前記遮光フィルムの表面粗さ(算術平均高さRa)が0.2〜0.7μmであることを特徴とする遮光フィルムが提供される。
また、本発明の第3の発明によれば、第1または第2の発明において、波長380〜780nmにおける平均正反射率が0.4%以下、平均光学濃度が4以上であることを特徴とする遮光フィルムが提供される。
また、本発明の第4の発明によれば、第1の発明において、樹脂成分(A)が、ポリアミドイミド、ポリイミド、ポリフェニレンサルファイド、アラミド、ポリエーテルエーテルケトン、ポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルエーテルケトン又はポリエーテルサルフォンから選ばれた1種類以上の樹脂であることを特徴とする遮光フィルムが提供される。
また、本発明の第5の発明によれば、第1の発明において、黒色顔料(B)がカーボンブラックであり、その含有量が樹脂成分100重量部に対し、3〜20重量部であることを特徴とする遮光フィルムが提供される。
また、本発明の第6の発明によれば、第1の発明において、黒色顔料(B)が導電性カーボンブラックであり、その含有量が樹脂成分100重量部に対し、5〜20重量部であることを特徴とする遮光フィルムが提供される。
また、本発明の第7の発明によれば、第6の発明において、遮光フィルムの表面抵抗が1×1010Ω/□以下であることを特徴とする遮光フィルムが提供される。
According to a second invention of the present invention, in the first invention, the light shielding film has a surface roughness (arithmetic average height Ra) of 0.2 to 0.7 μm. Is provided.
According to a third aspect of the present invention, in the first or second aspect, the average regular reflectance at a wavelength of 380 to 780 nm is 0.4% or less, and the average optical density is 4 or more. A light shielding film is provided.
According to the fourth invention of the present invention, in the first invention, the resin component (A) is polyamideimide, polyimide, polyphenylene sulfide, aramid, polyetheretherketone, polyester, polystyrene, polycarbonate, polyetherether. There is provided a light-shielding film characterized by being one or more kinds of resins selected from ketones or polyether sulfones.
According to the fifth aspect of the present invention, in the first aspect, the black pigment (B) is carbon black, and the content thereof is 3 to 20 parts by weight with respect to 100 parts by weight of the resin component. Is provided.
According to the sixth invention of the present invention, in the first invention, the black pigment (B) is conductive carbon black, and the content thereof is 5 to 20 parts by weight with respect to 100 parts by weight of the resin component. A light-shielding film is provided.
According to a seventh aspect of the present invention, there is provided the light shielding film according to the sixth aspect, wherein the surface resistance of the light shielding film is 1 × 10 10 Ω / □ or less.

一方、本発明の第8の発明によれば、第1〜7のいずれかの発明において、樹脂成分(A)100重量部に対し、黒色顔料(B)を20重量部以下、平均粒子径が3〜10μmの不定形シリカ(C)を15〜40重量部添加・混合し、次に、得られたスラリーを支持体に加熱乾燥後の厚さが25μm以下となるように塗工した後、加熱乾燥させ、引き続き、必要により両表面をサンドマット加工処理して凹凸を形成することを特徴とする遮光フィルムの製造方法が提供される。 On the other hand, according to the eighth invention of the present invention, in any one of the first to seventh inventions, the black pigment (B) is 20 parts by weight or less and the average particle size is 100 parts by weight of the resin component (A). After adding and mixing 15 to 40 parts by weight of 3 to 10 μm of amorphous silica (C), and then coating the resulting slurry on a support so that the thickness after heating and drying is 25 μm or less, There is provided a method for producing a light-shielding film, which is dried by heating, and subsequently, if necessary, sand mat processing is performed on both surfaces to form irregularities.

また、本発明の第9の発明によれば、第1〜第7の発明のいずれかの遮光フィルムを打ち抜き加工して得られる絞りであって、得られた絞りの端面が低反射性であることを特徴とする絞りが提供される。
さらに、本発明の第10の発明によれば、第1〜第7のいずれかの遮光フィルムを打ち抜き加工して得られる羽根材であって、得られた羽根材の端面が低反射性であることを特徴とする羽根材が提供される。
According to the ninth aspect of the present invention, there is provided a diaphragm obtained by punching the light-shielding film according to any one of the first to seventh aspects, and the end face of the obtained diaphragm has low reflectivity. A diaphragm characterized by this is provided.
Furthermore, according to the tenth aspect of the present invention, there is provided a blade material obtained by punching one of the first to seventh light shielding films, and the end surface of the obtained blade material has low reflectivity. A blade member characterized by this is provided.

本発明の遮光フィルムは、表面及び打ち抜き端面の反射性が低く、遮光性に優れているため、カメラ、ビデオカメラ、複写機、現象機等の各種光学機器の遮光部材として有用である。本発明では、黒色顔料と特定の不定形シリカを含有しているので、打ち抜き時に端面が均一に凸凹になることで端面反射が低くなり、光学機器の高性能化を促進することができる。また、特定量の黒色顔料や不定形シリカを添加し、不定形シリカが特定の粒子径であるため、フィルム全体の厚みが25μm以下と光学機器の薄型化・小型化の要求を満たすことが可能となる。さらに、黒色顔料として導電性カーボンブラックを用いることで、遮光フィルムの打ち抜き工程でプレス加工に用いる金型にフィルム表面に付着していた埃や打ち抜き時に発生したカスが付着しにくく、打ち抜き後の製品にバリが発生しなくなり、安定した光学部材を提供することができる。本発明の遮光フィルムは、従来の金属薄板上に黒色潤滑塗装した遮光板のような、所定の形状に加工後、加工端面を黒染め処理する工程が不要であり、製造工程が少ないため、より低コストで遮光部材を製造することができる。   The light shielding film of the present invention is useful as a light shielding member for various optical devices such as a camera, a video camera, a copying machine, and a phenomenon machine because the surface and the punched end surface have low reflectivity and excellent light shielding properties. In the present invention, since the black pigment and the specific amorphous silica are contained, the end surface is uniformly uneven at the time of punching, so that the end surface reflection is lowered and the performance enhancement of the optical device can be promoted. In addition, since a specific amount of black pigment or amorphous silica is added and the amorphous silica has a specific particle size, the total thickness of the film is 25 μm or less, making it possible to meet the demands for thinner and smaller optical equipment. It becomes. Furthermore, by using conductive carbon black as the black pigment, the dust used on the film surface and debris generated during punching are less likely to adhere to the mold used for press processing in the light-shielding film punching process. Thus, no burrs are generated, and a stable optical member can be provided. The light-shielding film of the present invention does not require a step of blackening the processed end face after processing into a predetermined shape, such as a light-shielding plate coated with black lubrication on a conventional metal thin plate, and because there are fewer manufacturing steps, The light shielding member can be manufactured at low cost.

以下、本発明の遮光フィルムとその製造方法、及び用途について説明する。   Hereinafter, the light-shielding film of the present invention, its production method, and applications will be described.

1.遮光フィルム
本発明の遮光フィルムは、樹脂成分(A)に、黒色顔料(B)及び平均粒子径3〜10μmの不定形シリカ(C)を含有させた厚み25μm以下の遮光フィルムであって、黒色顔料(B)の含有量が、樹脂成分100重量部に対し、3〜20重量部で、不定形シリカ(C)の含有量が15〜40重量部であり、表面に凹凸が形成され、かつ遮光フィルムが打ち抜き露出端面を有し、当該端面が表面粗さ(算術平均高さRa)1μm以上の凹凸を有することを特徴とする。
1. Light-shielding film The light-shielding film of the present invention is a light-shielding film having a thickness of 25 μm or less in which a resin component (A) contains a black pigment (B) and amorphous silica (C) having an average particle diameter of 3 to 10 μm. The content of the pigment (B) is 3 to 20 parts by weight with respect to 100 parts by weight of the resin component, the content of the amorphous silica (C) is 15 to 40 parts by weight, and irregularities are formed on the surface, and The light-shielding film has a punched exposed end face, and the end face has irregularities having a surface roughness (arithmetic average height Ra) of 1 μm or more.

本発明の遮光フィルムは、樹脂フィルム基材(A)が、黒色顔料(B)及び平均粒子径3〜10μmの不定形シリカ(C)を含有している。遮光フィルムの厚さは25μm以下でなければならない。25μmより厚くなると、遮光フィルムの薄型化、小型化の要求特性を満たすことができない。また、遮光フィルムの表面粗さ(算術平均高さRa)は0.2〜0.7μmであることが好ましい。ここで算術平均高さとは、算術平均粗さとも言われ、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計して平均した値である。   In the light-shielding film of the present invention, the resin film substrate (A) contains a black pigment (B) and amorphous silica (C) having an average particle diameter of 3 to 10 μm. The thickness of the light shielding film must be 25 μm or less. If it is thicker than 25 μm, the required characteristics for reducing the thickness and size of the light shielding film cannot be satisfied. Moreover, it is preferable that the surface roughness (arithmetic average height Ra) of a light shielding film is 0.2-0.7 micrometer. Here, the arithmetic average height is also called arithmetic average roughness, and the reference length is extracted from the roughness curve in the direction of the average line, and the absolute value of the deviation from the average line of the extracted portion to the measurement curve is summed. The average value.

表面粗さが、0.2μm未満であるとフィルム表面の平均正反射率が0.4%より高くなるため好ましくない。また、表面粗さが0.7μmを超えるとフィルム表面の正反射率を低く出来るが、サンドマット加工処理時にフィルムに折れシワなどが発生する場合があり、安定的に遮光フィルムを作製することができず、好ましくない。本発明の遮光フィルムは、遮光フィルムを打ち抜いたときに端面に凹凸が形成され、その端面の表面粗さ(算術平均高さRa)が1μm以上でなければならない。1μm未満では、端面の凹凸が小さいため端面の反射を十分に抑えることが出来ない。   If the surface roughness is less than 0.2 μm, the average regular reflectance of the film surface becomes higher than 0.4%, which is not preferable. Further, when the surface roughness exceeds 0.7 μm, the regular reflectance of the film surface can be lowered, but the film may be wrinkled during sand mat processing, and a light-shielding film can be stably produced. It is not possible and not preferable. The light-shielding film of the present invention has irregularities formed on the end face when the light-shielding film is punched, and the surface roughness (arithmetic average height Ra) of the end face must be 1 μm or more. If the thickness is less than 1 μm, the unevenness of the end face is small, so that the reflection on the end face cannot be sufficiently suppressed.

本発明の遮光フィルムは、樹脂成分(A)が、黒色顔料(B)及び平均粒子径3〜10μmの不定形シリカ(C)を特定量含有しており、所定の厚さ、表面凹凸を有し、かつ周囲を打ち抜いたとき端面に表面粗さ(算術平均高さRa)が1μm以上の凹凸が形成されるために、光学的用途に要求される波長380〜780nmにおける平均正反射率が0.4%以下、平均光学濃度が4以上であるという特性を有している。   In the light-shielding film of the present invention, the resin component (A) contains a specific amount of black pigment (B) and amorphous silica (C) having an average particle diameter of 3 to 10 μm, and has a predetermined thickness and surface unevenness. In addition, since the surface roughness (arithmetic average height Ra) of 1 μm or more is formed on the end face when the periphery is punched, the average regular reflectance at a wavelength of 380 to 780 nm required for optical applications is 0. .4% or less, and the average optical density is 4 or more.

<樹脂成分(A)>
本発明の遮光フィルムにおいて、樹脂成分の種類は、特に限定されないが、安価に入手できるものや取り扱いが容易なものが好ましい。その中で、ポリアミドイミド、ポリイミド、ポリフェニレンサルファイド、アラミド、ポリエーテルエーテルケトン、ポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルエーテルケトン又はポリエーテルサルフォンから選ばれた1種類以上の樹脂であることが好ましい。ポリエステルとしては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートなどが挙げられるが、特にポリエチレンテレフタレートやポリエチレンナフタレートは入手しやすく、好ましい。
樹脂成分は、取り扱いを容易にするため溶媒を添加し適度な粘度とした後、そこに黒色顔料、不定形シリカ粒子を添加し、黒色樹脂溶液して遮光フィルムの製造に用いられる。
<Resin component (A)>
In the light-shielding film of the present invention, the type of the resin component is not particularly limited, but those that can be obtained at low cost and those that are easy to handle are preferable. Among them, one or more resins selected from polyamideimide, polyimide, polyphenylene sulfide, aramid, polyetheretherketone, polyester, polystyrene, polycarbonate, polyetheretherketone or polyethersulfone are preferable. Examples of the polyester include polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. Particularly, polyethylene terephthalate and polyethylene naphthalate are easily available and preferable.
In order to facilitate handling, the resin component is added with a solvent to obtain an appropriate viscosity, and then a black pigment and amorphous silica particles are added to the resin component to prepare a black resin solution for use in the production of a light-shielding film.

<黒色顔料(B)>
本発明の遮光フィルムにおいて、黒色顔料は、種類によって制限されるわけではないが、例えば、カーボンブラック、アニリンブラック、チタンブラック、無機顔料ヘマタイト、又はペリレンブラックから選ばれた1種または2種以上の黒色顔料を用いることができる。
<Black pigment (B)>
In the light-shielding film of the present invention, the black pigment is not limited by type, but for example, one or more selected from carbon black, aniline black, titanium black, inorganic pigment hematite, or perylene black. Black pigments can be used.

黒色顔料の含有量は、遮光フィルムに含まれる樹脂成分100重量部に対して3〜20重量部でなければならない。3重量部未満であると完全遮光性が得られず、表面と端面の反射が高くなり、十分な光学特性を得ることができない。ここで、得られた遮光フィルムの波長380〜780nmにおける平均光学濃度は4以上であることが好ましい。また、黒色顔料の含有量が20重量部を超えるとフィルムの粘性が高くなり、シリカ粒子の凝集による表面欠陥が発生しやすくなるため、遮光フィルムを作製することができない。なお、黒色顔料の含有量は3〜10重量部であることが好ましい。これは、黒色顔料の含有量が多くなると、耐熱性が若干劣る場合があるためである。   The content of the black pigment must be 3 to 20 parts by weight with respect to 100 parts by weight of the resin component contained in the light shielding film. If it is less than 3 parts by weight, complete light-shielding properties cannot be obtained, the reflection of the surface and end face becomes high, and sufficient optical properties cannot be obtained. Here, it is preferable that the average optical density in wavelength 380-780 nm of the obtained light shielding film is 4 or more. On the other hand, when the content of the black pigment exceeds 20 parts by weight, the viscosity of the film becomes high, and surface defects due to aggregation of silica particles are likely to occur, so that a light shielding film cannot be produced. In addition, it is preferable that content of a black pigment is 3-10 weight part. This is because the heat resistance may be slightly inferior when the content of the black pigment is increased.

本発明において、黒色顔料としては、カーボンブラックが好ましく、特に導電性カーボンブラックが好ましい。導電性カーボンブラックを用いると、得られる遮光フィルムが導電性を持つことで、遮光フィルムが静電気により帯電することが抑制され、ゴミや埃などが付着しなくなるという効果がある。ここで用いられる導電性カーボンブラックは、一般に市販されているものを用いることができ、例えば東海カーボン製(トーカブラック#5500)などを挙げることができる。   In the present invention, the black pigment is preferably carbon black, and particularly preferably conductive carbon black. When conductive carbon black is used, the resulting light-shielding film has conductivity, so that the light-shielding film is suppressed from being charged by static electricity, and there is an effect that dust or dust does not adhere. As the conductive carbon black used here, commercially available carbon black can be used, and examples thereof include Tokai Carbon (Toka Black # 5500).

本発明の遮光フィルムは、その表面抵抗によって制限されるわけではないが、1×1010Ω/□以下が好ましく、特に1×10Ω/□以下であることがより好ましい。遮光フィルムの表面抵抗値は、配合する黒色顔料の種類によって変化するが、導電性カーボンブラックを用いると、表面抵抗を1×1010Ω/□以下にしやすい。表面抵抗が1×1010Ω/□以下であれば、帯電防止の効果が十分に得られ、遮光フィルムの打ち抜き工程でプレス加工に用いる金型にフィルム表面に付着していた埃や打ち抜き時に発生したカスが付着しにくくなり、打ち抜き後の製品にバリが発生せず、安定した光学部材を提供することができるようになる。
また、導電性カーボンブラックの含有量は、樹脂成分100重量部に対し、5〜20重量部であることが好ましく、さらに5〜10重量部であることがより好ましい。導電性カーボンブラックの含有量が少なくて5重量部未満では、十分な帯電防止効果が得られないことがある。ちなみに、導電性カーボンブラックの含有量が3重量部であると、表面抵抗は8×1011Ω/□程度となり、帯電防止効果を得にくくなる。一方、導電性カーボンブラックの含有量が増えるほど帯電防止効果が大きくなるが、10重量部を超えると耐熱性が若干劣る場合があり、20重量部を超えるとフィルムの粘性が高くなり、シリカ粒子の凝集による表面欠陥が発生しやすくなって、遮光フィルムの作製が困難になる。
The light-shielding film of the present invention is not limited by the surface resistance, but is preferably 1 × 10 10 Ω / □ or less, and more preferably 1 × 10 9 Ω / □ or less. The surface resistance value of the light-shielding film varies depending on the type of black pigment to be blended, but when conductive carbon black is used, the surface resistance is easily set to 1 × 10 10 Ω / □ or less. If the surface resistance is 1 × 10 10 Ω / □ or less, a sufficient antistatic effect can be obtained, and it is generated when the dust or stamping on the film surface is stuck to the mold used for press processing in the light-shielding film punching process. As a result, it becomes difficult for the residue to adhere to the product, and burrs are not generated in the punched product, and a stable optical member can be provided.
Moreover, it is preferable that it is 5-20 weight part with respect to 100 weight part of resin components, and, as for content of electroconductive carbon black, it is more preferable that it is 5-10 weight part. When the content of the conductive carbon black is small and less than 5 parts by weight, a sufficient antistatic effect may not be obtained. Incidentally, when the content of the conductive carbon black is 3 parts by weight, the surface resistance is about 8 × 10 11 Ω / □, and it is difficult to obtain the antistatic effect. On the other hand, as the conductive carbon black content increases, the antistatic effect increases. However, if it exceeds 10 parts by weight, the heat resistance may be slightly inferior, and if it exceeds 20 parts by weight, the viscosity of the film increases, and silica particles Surface defects due to agglomeration tend to occur, making it difficult to produce a light-shielding film.

<不定形シリカ(C)>
本発明の遮光フィルムにおいて、樹脂成分に配合されるシリカは、平均粒子径3〜10μmの不定形シリカである。ここで言う不定形とは、粒子形状が球状ではなく角のある不定形であることを意味する。シリカ粒子の形状が球状であると、凝集してフィルムの片方に偏ってしまうため、端面にシリカ粒子のない部分が出来てしまい、打ち抜き端面が平坦となるせん断面が多く形成され、その結果、端面の反射が十分に低反射にならず、さらに、球状シリカでは、含有量が増大すると球状シリカ粒子がより凝集しやすくなるため、さらに平滑な端面ができやすくなる。
<Amorphous silica (C)>
In the light-shielding film of the present invention, the silica blended in the resin component is amorphous silica having an average particle diameter of 3 to 10 μm. The term “indefinite shape” as used herein means that the particle shape is not spherical but has a cornered irregular shape. If the shape of the silica particles is spherical, it will be agglomerated and biased to one side of the film. The reflection of the end face is not sufficiently low. Further, in the case of spherical silica, since the spherical silica particles are more likely to aggregate when the content is increased, a smoother end face can be easily formed.

また、不定形シリカの平均粒子径は3〜10μmでなければならない。不定形シリカの平均粒子径が3μm未満であると、フィルム表面の表面粗さが小さくなり、フィルム表面の反射が高くなる。さらにフィルム端面の表面粗さ(算術平均高さRa)も1μm未満となり、端面の反射も低反射とならない。逆に平均粒子径が10μmを超えるとフィルム厚み25μmに対してシリカ粒子が大きいため、フィルムにピンホールなどの外観欠陥が形成され、遮光性を確保できず、遮光部材を提供することができない。なお、ここで言う平均粒子径は、レーザー回折・散乱法により測定されたものを言う。
このような不定形シリカは、沈降法やゲル法などによって製造される。球状のシリカであっても、上記よりも大きな粒子径のものであれば、所定の大きさになるまで粉砕し、篩い分けして上記平均粒径のものを得てもよい。市販品として、例えば富士シリシア製(サイロホービック)などが挙げられ、好ましく使用できる。
Further, the average particle diameter of the amorphous silica must be 3 to 10 μm. When the average particle diameter of the amorphous silica is less than 3 μm, the surface roughness of the film surface becomes small and the reflection on the film surface becomes high. Furthermore, the surface roughness (arithmetic average height Ra) of the film end face is also less than 1 μm, and the reflection of the end face is not low reflection. Conversely, if the average particle diameter exceeds 10 μm, the silica particles are larger than the film thickness of 25 μm, so that appearance defects such as pinholes are formed on the film, and the light shielding property cannot be ensured, and the light shielding member cannot be provided. In addition, the average particle diameter said here says what was measured by the laser diffraction and the scattering method.
Such amorphous silica is produced by a precipitation method, a gel method, or the like. Even spherical silica having a particle size larger than the above may be pulverized to a predetermined size and sieved to obtain the above average particle size. As a commercial item, the product made from Fuji Silysia (Silo Hovic) etc. are mentioned, for example, It can use preferably.

不定形シリカの含有量は、樹脂成分100重量部に対して15〜40重量部でなければならない。シリカの含有量が15重量部未満であるとフィルム表面の凹凸が小さくなるため、遮光フィルムの平均正反射率が高くなる。また、端面の表面粗さも1μm未満となり、端面の凹凸が小さくなるため、端面の反射が高くなってしまう。また、シリカの含有量が40重量部を超えると遮光フィルムの樹脂成分に対してシリカ量が増大するため、フィルムにピンホールなどが形成され、遮光部材を提供することができない。   The content of the amorphous silica must be 15 to 40 parts by weight with respect to 100 parts by weight of the resin component. When the silica content is less than 15 parts by weight, the irregularities on the film surface are reduced, and the average regular reflectance of the light shielding film is increased. Further, the surface roughness of the end surface is less than 1 μm, and the unevenness of the end surface is reduced, so that the reflection of the end surface is increased. On the other hand, if the silica content exceeds 40 parts by weight, the amount of silica increases with respect to the resin component of the light shielding film, so that pinholes and the like are formed in the film, and a light shielding member cannot be provided.

2.遮光フィルムの製造方法
本発明の遮光フィルムは、その製造方法によって限定されないが、例えば、以下の手順により製造される。
2. Manufacturing method of light-shielding film The light-shielding film of the present invention is not limited by the manufacturing method, but is manufactured, for example, by the following procedure.

まず、樹脂成分に溶媒を添加して樹脂溶液とし、そこに黒色顔料、不定形シリカ粒子を添加し、ローラーミルを用いて混合することで、黒色樹脂溶液を作製する。すなわち、樹脂成分(A)100重量部に対し、黒色顔料(B)を3〜20重量部、平均粒子径が3〜10μmの不定形シリカ(C)を15〜40重量部添加・混合する。
用いる溶媒は、樹脂を溶解できればよく、例えば各種アルコール、テトラヒドロフラン、ジグライムなどのエーテル系溶剤、N−メチル−2−ピロリドン、N,N’−ジメチルアセトアミドなどのアミド系溶剤、シクロヘキサン、メチルエチルケトンなどのケトン系溶剤、γ−ブチロラクトンやテトラメチルウレアなどの有機溶媒を使用できる。有機溶媒は2種類以上を混合して使用しても良い。
本発明では、樹脂成分に溶媒を添加した樹脂溶液に黒色顔料、不定形シリカ粒子が均一に分散するので、従来のように樹脂基材の表面に黒色顔料、不定形シリカ粒子などを含有する塗工液を塗布する場合と異なり、フィルムに黒色顔料、不定形シリカ粒子が偏在せず、フィルムの厚みも薄くできる。そのため、フィルム表面だけでなく打ち抜き端面の反射も低減するだけでなく、小型化・薄型化への用途が広がるという顕著な効果が期待できる。
First, a solvent is added to the resin component to form a resin solution, black pigment and amorphous silica particles are added thereto, and mixed using a roller mill to prepare a black resin solution. That is, 3 to 20 parts by weight of black pigment (B) and 15 to 40 parts by weight of amorphous silica (C) having an average particle diameter of 3 to 10 μm are added to and mixed with 100 parts by weight of resin component (A).
The solvent used is only required to dissolve the resin. For example, various alcohols, ether solvents such as tetrahydrofuran and diglyme, amide solvents such as N-methyl-2-pyrrolidone and N, N′-dimethylacetamide, and ketones such as cyclohexane and methyl ethyl ketone. An organic solvent such as a system solvent or γ-butyrolactone or tetramethylurea can be used. Two or more organic solvents may be mixed and used.
In the present invention, since black pigments and amorphous silica particles are uniformly dispersed in a resin solution in which a solvent is added to the resin component, a coating containing black pigments, amorphous silica particles, etc. on the surface of the resin substrate as in the past. Unlike the case of applying the working liquid, the black pigment and the amorphous silica particles are not unevenly distributed on the film, and the thickness of the film can be reduced. Therefore, not only the reflection of the punched end face but also the film surface can be reduced, and a remarkable effect can be expected that the use for downsizing and thinning is expanded.

次に、加熱乾燥後のフィルム厚みが25μmとなるように、作製した黒色樹脂溶液を支持体に塗工する。塗工方法は、例えばブレードコート、バーコート、ロールコート、グラビアコートなどを用いることが出来る。支持体に塗工した黒色樹脂溶液は、大気中、室温で固化させ、支持体から剥離する。支持体としては、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)フィルムなどが使用される。   Next, the produced black resin solution is applied to the support so that the film thickness after heat drying is 25 μm. As the coating method, for example, blade coating, bar coating, roll coating, gravure coating or the like can be used. The black resin solution applied to the support is solidified at room temperature in the air and peeled off from the support. As the support, polyethylene terephthalate (PET), polycarbonate (PC) film or the like is used.

その後、剥離した黒色樹脂フィルムは、100〜200℃で0.5〜2時間加熱し、さらに200〜300℃で加熱乾燥する。例えば、樹脂成分がポリアミドイミドの場合、剥離した黒色樹脂フィルムを150℃で1時間加熱し、さらに250℃で加熱乾燥することにより遮光フィルムが製造される。   Thereafter, the peeled black resin film is heated at 100 to 200 ° C. for 0.5 to 2 hours, and further heated and dried at 200 to 300 ° C. For example, when the resin component is polyamideimide, the peeled black resin film is heated at 150 ° C. for 1 hour, and further heated and dried at 250 ° C. to produce a light shielding film.

本発明では、上記のようにスラリーを支持体に厚さが25μm以下となるように塗工した後、加熱乾燥させ、引き続き、必要により両表面をサンドマット加工処理して凹凸を形成することができる。遮光フィルムは、樹脂成分が基材となって不定形シリカ粒子を含むことで、表面の一方に凹凸が形成された状態になるが、さらに表面加工工程を行うことで、両表面に凹凸が形成される。その方法には、エッチング加工、コロナ放電処理などの方法があるが、中でもサンドブラスト加工の採用が好ましい。
ここで、サンドブラスト加工とは、ショット材に珪砂などの無機微粒子を使用し、マット処理後のフィルムは、洗浄してショット材を除去した後、乾燥する加工方法である。凹凸の大きさは、サンドブラスト加工中のフィルム搬送速度、搬送回数とショット材の種類、大きさ、射出圧力に依存するため、所望の凹凸となるように条件を設定する。遮光フィルムの表面粗さ(算術平均高さRa)は0.2〜0.7μmであることが好ましい。
In the present invention, as described above, the slurry is coated on the support so as to have a thickness of 25 μm or less, then dried by heating, and then, if necessary, both surfaces are subjected to sand mat processing to form irregularities. it can. The light-shielding film is in a state where irregularities are formed on one side of the surface because the resin component is a base material and contains amorphous silica particles, but the surface processing step further forms irregularities on both surfaces. Is done. As the method, there are methods such as etching and corona discharge treatment. Among them, sandblasting is preferable.
Here, the sand blasting is a processing method in which inorganic fine particles such as silica sand are used for the shot material, and the film after the mat treatment is dried after washing to remove the shot material. The size of the unevenness depends on the film conveyance speed, the number of times of conveyance and the type, size, and injection pressure of the shot material during the sandblasting process, and therefore the conditions are set so that the desired unevenness is obtained. The surface roughness (arithmetic average height Ra) of the light-shielding film is preferably 0.2 to 0.7 μm.

3.遮光フィルムの用途
本発明の遮光フィルムは、前記のとおり、波長380〜780nmにおける平均正反射率が0.4%以下、平均光学濃度が4以上という特性を有している。そのためデジタルカメラ、カメラ付き携帯電話、デジタルビデオカメラの固定絞り、機械式シャッター羽根として利用できる。
3. Use of light-shielding film As mentioned above, the light-shielding film of the present invention has the characteristics that the average regular reflectance at a wavelength of 380 to 780 nm is 0.4% or less and the average optical density is 4 or more. Therefore, it can be used as a digital camera, a mobile phone with a camera, a fixed aperture of a digital video camera, and a mechanical shutter blade.

本発明の遮光フィルムは、そのまま特定の形状に打ち抜き加工を行って、デジタルカメラ、カメラ付き携帯電話、デジタルビデオカメラの固定絞り、機械式シャッター羽根に加工される。打ち抜き加工した後の加工端面は、レンズユニット内の光の光路上に位置するが、打ち抜き加工した後の加工端面には凹凸があるため、端面に光が入射した時に、端面での反射が抑えられ、CCD、CMOSなどの撮像素子へ入射する光を遮光することができ、ゴーストやフレアなどによる撮像不良の発生を防止することができる。また、フィルム厚みが25μm以下に抑えられているので、カメラ付き携帯電話へ利用すると、大幅な薄型化・小型化を実現できる。   The light shielding film of the present invention is punched into a specific shape as it is and processed into a digital camera, a camera-equipped mobile phone, a fixed aperture of a digital video camera, and a mechanical shutter blade. The processed end face after punching is located on the optical path of the light in the lens unit, but the processed end face after punching has irregularities, so that when the light enters the end face, reflection at the end face is suppressed. In addition, it is possible to block light incident on an image sensor such as a CCD or CMOS, and to prevent imaging failure due to ghost or flare. Further, since the film thickness is suppressed to 25 μm or less, when used for a camera-equipped mobile phone, a significant reduction in thickness and size can be realized.

次に、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。なお、得られた遮光フィルムの評価は以下の方法で行った。   Next, the present invention will be specifically described with reference to examples. The present invention is not limited to these examples. In addition, evaluation of the obtained light shielding film was performed with the following method.

(遮光フィルムの正反射率と平行光透過率)
得られた遮光フィルムの、波長380〜780nmにおける正反射率と平行光透過率は、分光光度計(日本分光社製V−570)にて測定した。測定した平行光透過率(T)から、以下の式に従って、光学濃度(ODと記す)を算出した。
OD=log(100/T)
遮光フィルムの光の正反射率とは、反射光が反射の法則に従い、入射光の入射角に等しい角度で表面から反射していく光の反射率を言う。入射角は5°で測定した。また、平行光透過率とは、遮光フィルムを透過してくる光線の平行な成分を意味しており、次式で表される。
T(%)=(I/I)×100
ここで、Tはパーセントで表わした平行光透過率、Iは試料に入射した平行照射光強度、Iは試料を透過した光のうち前記照射光に対して平行な成分の透過光強度である。
得られた波長380〜780nmにおける正反射率と光学濃度の算術平均を計算することで、波長380〜780nmにおける平均正反射率、平均光学濃度とした。
端面反射は、作製したフィルムをプレス加工で打ち抜き、得られた打ち抜き端面を金属顕微鏡(Nikon社製:ME600)で観察した。端面の表面粗さ(算術平均高さRa)は、オプティカルプロファイラー(Zygo社製:NewView6200)でフィルムの厚さ方向の幅全体を測定した。
(フィルムの外観)
作製した遮光フィルムは、シワやピンホールなどの表面欠陥があるかないか、外観を目視で確認した。
(フィルムの導電性)
作製した遮光フィルムの表面抵抗は、抵抗率計(三菱化学製:MCP−HT260)を用いて測定した。フィルムの表面抵抗は、1×1010Ω/□以下であれば良好と評価される。
(Specular reflectance and parallel light transmittance of shading film)
The specular reflectance and parallel light transmittance at a wavelength of 380 to 780 nm of the obtained light shielding film were measured with a spectrophotometer (V-570 manufactured by JASCO Corporation). From the measured parallel light transmittance (T), an optical density (denoted as OD) was calculated according to the following formula.
OD = log (100 / T)
The regular reflectance of light from the light shielding film refers to the reflectance of light reflected from the surface at an angle equal to the incident angle of incident light according to the law of reflection. The incident angle was measured at 5 °. Further, the parallel light transmittance means a parallel component of the light beam transmitted through the light shielding film, and is represented by the following formula.
T (%) = (I / I 0 ) × 100
Here, T is the parallel light transmittance expressed as a percentage, I 0 is the intensity of the parallel irradiated light incident on the sample, and I is the transmitted light intensity of the component parallel to the irradiated light among the light transmitted through the sample. .
By calculating the arithmetic average of the regular reflectance and the optical density at the obtained wavelength of 380 to 780 nm, the average regular reflectance and the average optical density at the wavelength of 380 to 780 nm were obtained.
For the end face reflection, the produced film was punched out by press working, and the obtained punched end face was observed with a metal microscope (manufactured by Nikon: ME600). As for the surface roughness (arithmetic average height Ra) of the end face, the entire width in the thickness direction of the film was measured with an optical profiler (manufactured by Zygo: NewView 6200).
(Appearance of film)
The produced light-shielding film was visually checked for appearance of surface defects such as wrinkles and pinholes.
(Conductivity of film)
The surface resistance of the produced light shielding film was measured using the resistivity meter (Mitsubishi Chemical make: MCP-HT260). The surface resistance of the film is evaluated as good if it is 1 × 10 10 Ω / □ or less.

(実施例1)
まず、ポリアミドイミドをN−メチル−2−ピロリドンにより溶解した樹脂溶液、平均粒径1μmのカーボンブラック、平均粒径5μmの不定形シリカを用意し、次に、このポリアミドイミド樹脂溶液の固形物100重量部に対して、カーボンブラックを5重量部、不定形シリカ30重量部となるように添加、ローラーミルを用いて混合し、黒色ポリアミドイミド樹脂溶液を作製した。
その後、ブレードコーターを用いて、加熱乾燥後のフィルム厚みが25μmとなるように、作製した黒色ポリアミドイミド樹脂溶液を支持体のポリエチレンテレフタレート(PET)フィルム上に塗工し、大気中、室温で固めた。引き続き、固めた黒色ポリアミドイミド樹脂を支持体から剥がした後、150℃で1時間加熱後、さらに250℃で加熱乾燥し、黒色ポリアミドイミドフィルムを作製した。
次に、黒色ポリアミドイミドフィルム両表面について、ショット材として7号硅砂を用い、まず黒色ポリアミドイミドフィルム片面について、5m/分の速度でフィルムを搬送しながら、20kg/mの硅砂をショットした後、水で3分間水洗し、80℃で2分間乾燥した。次に、片面を処理した黒色ポリアミドイミドフィルムを裏返し、同様のマット処理加工を施し、表面凹凸を加工して、算術平均高さRaが0.4μmの表面凹凸を形成し、遮光フィルムを得た。
作製した遮光フィルムの外観は、シワやピンホールなどの表面欠陥はなく、良好であった。表面に凹凸形成後の遮光フィルムは、波長380〜780nmにおける平均正反射率が0.2%、平均光学濃度が4以上となり、低反射で完全遮光性を有しており、外観も表面欠陥はなく良好であった。また表面抵抗は、9.9×1012Ω/□以上(測定限界)であった。その結果を表1に示す。
作製した遮光フィルムをプレス加工で打ち抜き、得られた打ち抜き端面について金属顕微鏡で反射の程度を観察したところ、端面の反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の算術平均高さRaを測定すると1.1μmであった。
Example 1
First, a resin solution prepared by dissolving polyamideimide with N-methyl-2-pyrrolidone, carbon black having an average particle diameter of 1 μm, and amorphous silica having an average particle diameter of 5 μm are prepared, and then a solid 100 of the polyamideimide resin solution is prepared. 5 parts by weight of carbon black and 30 parts by weight of amorphous silica were added to parts by weight and mixed using a roller mill to prepare a black polyamideimide resin solution.
Then, using a blade coater, the prepared black polyamideimide resin solution was coated on a polyethylene terephthalate (PET) film as a support so that the film thickness after heating and drying was 25 μm, and was hardened in the atmosphere at room temperature. It was. Subsequently, after the hardened black polyamideimide resin was peeled off from the support, it was heated at 150 ° C. for 1 hour and further dried by heating at 250 ° C. to produce a black polyamideimide film.
Next, on both surfaces of the black polyamideimide film, No. 7 cinnabar sand was used as a shot material, and first, 20 kg / m 2 of cinnabar sand was shot while conveying the film at a speed of 5 m / min on one side of the black polyamideimide film. , Washed with water for 3 minutes, and dried at 80 ° C. for 2 minutes. Next, the black polyamideimide film treated on one side was turned upside down, the same matting treatment was performed, the surface unevenness was processed to form the surface unevenness with an arithmetic average height Ra of 0.4 μm, and a light shielding film was obtained. .
The appearance of the produced light-shielding film was good with no surface defects such as wrinkles and pinholes. The light-shielding film after forming irregularities on the surface has an average regular reflectance at a wavelength of 380 to 780 nm of 0.2%, an average optical density of 4 or more, low reflection, and complete light-shielding properties. It was good. The surface resistance was 9.9 × 10 12 Ω / □ or more (measurement limit). The results are shown in Table 1.
When the produced light-shielding film was punched out by press working and the degree of reflection of the obtained punched end face was observed with a metal microscope, the reflection and gloss at the end face were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the arithmetic average height Ra of the end face was measured with an optical profiler, it was 1.1 μm.

(実施例2)
実施例1における黒色顔料としてカーボンブラックの代わりに、平均粒径0.1μmのチタンブラックを用いた以外は、不定形シリカや黒色顔料の平均粒子径、含有量は実施例1と同様にして、遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、低反射で完全遮光性を有しており、外観も表面欠陥はなく、良好であった。また表面抵抗は、9.9×1012Ω/□以上(測定限界)であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.1μmであった。
(Example 2)
Instead of carbon black as the black pigment in Example 1, the average particle size and content of amorphous silica and black pigment were the same as in Example 1 except that titanium black having an average particle size of 0.1 μm was used. A light shielding film was prepared.
The produced light-shielding film has an average regular reflectance of 0.2% and an average optical density of 4 or more at a wavelength of 380 to 780 nm, has low reflection and complete light-shielding properties, and has a good appearance with no surface defects. It was. The surface resistance was 9.9 × 10 12 Ω / □ or more (measurement limit). The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.1 μm.

(実施例3)
実施例1において、ポリアミドイミド樹脂溶液の固形物100重量部に対して、カーボンブラックを3重量部添加した以外は、シリカの含有量、平均粒子径とカーボンブラックの種類、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.4%、平均光学濃度は4以上となり、完全遮光性を有していた。また、外観も表面欠陥はなく、良好であった。また表面抵抗は、9.9×1012Ω/□以上(測定限界)であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.1μmであった。
(Example 3)
In Example 1, the content of silica, the average particle size and the type of carbon black, and the average particle size are the same as in Example 1 except that 3 parts by weight of carbon black is added to 100 parts by weight of the solid material of the polyamideimide resin solution. A light-shielding film was produced in the same manner as in 1.
The produced light shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.4%, an average optical density of 4 or more, and had complete light shielding properties. The appearance was also good with no surface defects. The surface resistance was 9.9 × 10 12 Ω / □ or more (measurement limit). The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.1 μm.

(実施例4)
実施例1において、ポリアミドイミド樹脂溶液の固形物100重量部に対して、カーボンブラックを20重量部添加した以外は、シリカの含有量、平均粒子径とカーボンブラックの種類、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、完全遮光性を有していた。また、外観も表面欠陥はなく、良好であった。また表面抵抗は、9.9×1012Ω/□以上(測定限界)であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.1μmであった。
Example 4
In Example 1, the content of silica, the average particle size and the type of carbon black, and the average particle size are the same as in Example 1 except that 20 parts by weight of carbon black is added to 100 parts by weight of the solid material of the polyamideimide resin solution. A light-shielding film was produced in the same manner as in 1.
The produced light shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.2% and an average optical density of 4 or more, and had complete light shielding properties. The appearance was also good with no surface defects. The surface resistance was 9.9 × 10 12 Ω / □ or more (measurement limit). The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.1 μm.

(実施例5)
実施例1において、ポリアミドイミド樹脂溶液の固形物100重量部に対して、不定形シリカの含有量を15重量部とした以外は、シリカの種類と平均粒子径、カーボンブラックの種類、含有量、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.3%、平均光学濃度は4以上となり、完全遮光性を有していた。また、外観も表面欠陥はなく、良好であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.0μmであった。
(Example 5)
In Example 1, the type and average particle diameter of silica, the type and content of carbon black, except that the content of amorphous silica was 15 parts by weight with respect to 100 parts by weight of the solid material of the polyamideimide resin solution, A light-shielding film was prepared in the same manner as in Example 1 for the average particle size.
The produced light shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.3%, an average optical density of 4 or more, and had a complete light shielding property. The appearance was also good with no surface defects. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.0 μm.

(実施例6)
実施例1において、ポリアミドイミド樹脂溶液の固形物100重量部に対して、不定形シリカの含有量を40重量部とした以外は、シリカの種類と平均粒子径、カーボンブラックの種類、含有量、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、完全遮光性を有していた。また、外観も表面欠陥はなく、良好であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると1.3μmであった。
(Example 6)
In Example 1, the type and average particle diameter of silica, the type and content of carbon black, except that the content of amorphous silica was 40 parts by weight with respect to 100 parts by weight of the solid material of the polyamideimide resin solution, A light-shielding film was prepared in the same manner as in Example 1 for the average particle size.
The produced light shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.2% and an average optical density of 4 or more, and had complete light shielding properties. The appearance was also good with no surface defects. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. The surface roughness of the end face measured with an optical profiler was 1.3 μm.

(実施例7)
実施例1において、不定形シリカの平均粒子径を3μmに変えた以外は、シリカの種類とカーボンブラックの種類、含有量、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.4%、平均光学濃度は4以上となり、完全遮光性を有していた。また、外観も表面欠陥はなく、良好であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.0μmであった。
(Example 7)
A light-shielding film was produced in the same manner as in Example 1 except that the average particle size of the irregular-shaped silica in Example 1 was changed to 3 μm, and the type of silica, the type and content of carbon black, and the average particle size.
The produced light shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.4%, an average optical density of 4 or more, and had complete light shielding properties. The appearance was also good with no surface defects. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.0 μm.

(実施例8)
実施例1において、不定形シリカの平均粒子径を10μmに変えた以外は、シリカの種類とカーボンブラックの種類、含有量、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、完全遮光性を有していた。また、外観も表面欠陥はなく、良好であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.3μmであった。
(Example 8)
A light-shielding film was produced in the same manner as in Example 1 except that the average particle size of the irregular-shaped silica in Example 1 was changed to 10 μm, and the type of silica, the type and content of carbon black, and the average particle size.
The produced light shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.2% and an average optical density of 4 or more, and had complete light shielding properties. The appearance was also good with no surface defects. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.3 μm.

(実施例9)
サンドマット加工で遮光フィルムの算術平均高さRaを0.2μmとした以外は、実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.3%、平均光学濃度は4以上となり、完全遮光性を有していた。また、外観も表面欠陥はなく、良好であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.1μmであった。
Example 9
A light shielding film was produced in the same manner as in Example 1 except that the arithmetic average height Ra of the light shielding film was 0.2 μm by sand mat processing.
The produced light shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.3%, an average optical density of 4 or more, and had a complete light shielding property. The appearance was also good with no surface defects. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.1 μm.

(実施例10)
サンドマット加工で遮光フィルムの算術平均高さRaを0.7μmとした以外は、実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、完全遮光性を有していた。また、外観も表面欠陥はなく、良好であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.1μmであった。
(Example 10)
A light-shielding film was produced in the same manner as in Example 1 except that the arithmetic average height Ra of the light-shielding film was 0.7 μm by sand mat processing.
The produced light shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.2% and an average optical density of 4 or more, and had complete light shielding properties. The appearance was also good with no surface defects. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.1 μm.

(比較例1)
シリカの種類を不定形シリカの代わりに、球状シリカを用いた以外は、シリカの含有量、平均粒子径とカーボンブラックの種類、含有量、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの表面には欠陥はなく、良好であったが、波長380〜780nmにおける平均正反射率は1.5%となり高反射であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面の反射や光沢は強かった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面は部分的に平滑であることが観察された。オプティカルプロファイラーで端面の表面粗さを測定すると算術平均高さRaは、0.6μmであった。
したがって、フィルム表面の正反射率や打ち抜き端面の反射が高く、遮光性が不十分な比較例1の遮光フィルムは、カメラ、ビデオカメラなどの光学機器用の遮光部材には使用できない。
(Comparative Example 1)
The silica content, average particle size and type of carbon black, content, and average particle size were the same as in Example 1 except that spherical silica was used instead of amorphous silica. Produced.
The surface of the produced light shielding film had no defects and was good, but the average regular reflectance at a wavelength of 380 to 780 nm was 1.5% and was highly reflective. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face was highly reflective and glossy. As a result of examining the end surface with a scanning electron microscope (SEM), it was observed that the end surface was partially smooth. When the surface roughness of the end face was measured with an optical profiler, the arithmetic average height Ra was 0.6 μm.
Therefore, the light shielding film of Comparative Example 1 having high regular reflectance on the film surface and reflection at the punched end surface and insufficient light shielding properties cannot be used as a light shielding member for optical devices such as cameras and video cameras.

(比較例2)
不定形シリカの平均粒子径を2μmに変えた以外は、シリカの種類とカーボンブラックの種類、含有量、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの表面には欠陥はなく、良好であったが、波長380〜780nmにおける平均正反射率は0.6%となり、高反射であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面の反射や光沢は強かった。その端面をSEM(走査型電子顕微鏡)で調べた結果、実施例に比べ端面の凹凸は小さいことが観察された。オプティカルプロファイラーで端面の表面粗さを測定すると算術平均高さRaは、0.6μmであった。
したがって、フィルム表面の正反射率や打ち抜き端面の反射が高く、遮光性が不十分な比較例2の遮光フィルムは、カメラ、ビデオカメラなどの光学機器用の遮光部材には使用できない。
(Comparative Example 2)
A light-shielding film was produced in the same manner as in Example 1 except that the average particle size of the amorphous silica was changed to 2 μm, and the type of silica, the type and content of carbon black, and the average particle size.
The surface of the produced light-shielding film had no defects and was good, but the average regular reflectance at a wavelength of 380 to 780 nm was 0.6% and was highly reflective. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face was highly reflective and glossy. As a result of examining the end surface with a scanning electron microscope (SEM), it was observed that the unevenness of the end surface was smaller than that of the example. When the surface roughness of the end face was measured with an optical profiler, the arithmetic average height Ra was 0.6 μm.
Therefore, the light shielding film of Comparative Example 2 having high regular reflectance on the film surface and reflection at the punched end face and insufficient light shielding properties cannot be used as a light shielding member for optical devices such as cameras and video cameras.

(比較例3)
不定形シリカの平均粒子径を15μmに変えた以外は、シリカの種類とカーボンブラックの種類、含有量、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均光学濃度は4以上となり、完全遮光性を有し、また平均正反射率は0.2%と低反射であった。しかし、作製した遮光フィルムの表面にはピンホールやシワが発生し、遮光フィルムとして提供できないことがわかった。結果を表1に示す。
(Comparative Example 3)
A light-shielding film was produced in the same manner as in Example 1 except that the average particle size of the amorphous silica was changed to 15 μm, and the type of silica, the type and content of carbon black, and the average particle size.
The produced light shielding film had an average optical density of 4 or more at a wavelength of 380 to 780 nm, a complete light shielding property, and an average regular reflectance of 0.2% and low reflection. However, it was found that pinholes and wrinkles were generated on the surface of the produced light shielding film and could not be provided as a light shielding film. The results are shown in Table 1.

(比較例4)
不定形シリカの含有量を10重量部とした以外は、シリカの種類と平均粒子径、カーボンブラックの種類、含有量、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの表面には欠陥はなく、良好であったが、波長380〜780nmにおける平均正反射率は1.5%となり、高反射であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面の反射や光沢は強かった。その端面をSEM(走査型電子顕微鏡)で調べた結果、実施例に比べ端面の凹凸は小さいことが観察された。オプティカルプロファイラーで端面の表面粗さを測定すると算術平均高さRaは、0.7μmであった。
したがって、フィルム表面の正反射率や打ち抜き端面の反射が高く、遮光性が不十分な比較例4の遮光フィルムは、カメラ、ビデオカメラなどの光学機器用の遮光部材には使用できない。
(Comparative Example 4)
A light-shielding film was produced in the same manner as in Example 1 except that the content of the amorphous silica was 10 parts by weight, and the type of silica and the average particle size, the type of carbon black, the content, and the average particle size.
The surface of the produced light-shielding film had no defects and was good, but the average regular reflectance at a wavelength of 380 to 780 nm was 1.5% and was highly reflective. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face was highly reflective and glossy. As a result of examining the end surface with a scanning electron microscope (SEM), it was observed that the unevenness of the end surface was smaller than that of the example. When the surface roughness of the end face was measured with an optical profiler, the arithmetic average height Ra was 0.7 μm.
Therefore, the light shielding film of Comparative Example 4 having high regular reflectance on the film surface and reflection at the punched end face and insufficient light shielding properties cannot be used as a light shielding member for optical devices such as cameras and video cameras.

(比較例5)
不定形シリカの含有量を45重量部に変えた以外はシリカの種類と平均粒子径、カーボンブラックの種類、含有量、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均光学濃度は4以上となり、完全遮光性を有した。また、平均正反射率は0.2%となり、低反射であった。しかし、作製した遮光フィルムの表面にはピンホールやシワが発生し、遮光フィルムとして提供できないことがわかった。結果を表1に示す。
(Comparative Example 5)
A light-shielding film was prepared in the same manner as in Example 1 except that the amorphous silica content was changed to 45 parts by weight, and the silica type and average particle size, carbon black type, content, and average particle size.
The produced light shielding film had an average optical density of 4 or more at a wavelength of 380 to 780 nm, and had complete light shielding properties. Further, the average regular reflectance was 0.2%, which was low reflection. However, it was found that pinholes and wrinkles were generated on the surface of the produced light shielding film and could not be provided as a light shielding film. The results are shown in Table 1.

(比較例6)
黒色顔料のカーボンブラックの含有量を2重量部に変えた以外は、シリカの種類、平均粒子径、含有量とカーボンブラックの種類、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの表面には欠陥はなく、良好であったが、波長380〜780nmにおける平均光学濃度は3となり、完全遮光性は得られなかった。また、平均正反射率は0.6%となり、実施例1に比べ高反射であった。また表面抵抗は、9.9×1012Ω/□以上(測定限界)であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面の反射や光沢は強かった。その端面をSEM(走査型電子顕微鏡)で調べた結果、実施例に比べ端面の凹凸は小さいことが観察された。オプティカルプロファイラーで端面の表面粗さを測定すると算術平均高さRaは、0.9μmであった。
したがって、フィルム表面の正反射率や打ち抜き端面の反射が高く、遮光性が不十分な比較例6の遮光フィルムは、カメラ、ビデオカメラなどの光学機器用の遮光部材には使用できない。
(Comparative Example 6)
A light-shielding film was prepared in the same manner as in Example 1 except that the content of carbon black in the black pigment was changed to 2 parts by weight, and the type of silica, average particle size, content and type of carbon black, and average particle size. .
The surface of the produced light-shielding film had no defects and was good, but the average optical density at a wavelength of 380 to 780 nm was 3, and complete light-shielding properties were not obtained. The average regular reflectance was 0.6%, which was higher than that of Example 1. The surface resistance was 9.9 × 10 12 Ω / □ or more (measurement limit). The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face was highly reflective and glossy. As a result of examining the end surface with a scanning electron microscope (SEM), it was observed that the unevenness of the end surface was smaller than that of the example. When the surface roughness of the end face was measured with an optical profiler, the arithmetic average height Ra was 0.9 μm.
Therefore, the light shielding film of Comparative Example 6 having high regular reflectance on the film surface and reflection at the punched end face and insufficient light shielding properties cannot be used as a light shielding member for optical devices such as cameras and video cameras.

(比較例7)
黒色顔料のカーボンブラックの含有量を25重量部に変えた以外は、シリカの種類、平均粒子径、含有量とカーボンブラックの種類、平均粒子径は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%と低反射であった。また、平均光学濃度は4以上となり、完全遮光性を有していた。しかし、作製した遮光フィルムの表面にはシワが発生し、遮光フィルムとして提供できないことがわかった。また表面抵抗は、9.9×1012Ω/□以上(測定限界)であった。結果を表1に示す。
(Comparative Example 7)
A light-shielding film was prepared in the same manner as in Example 1 except that the content of carbon black in the black pigment was changed to 25 parts by weight, and the type of silica, average particle size, content and type of carbon black, and average particle size. .
The average regular reflectance at a wavelength of 380 to 780 nm of the produced light shielding film was as low as 0.2%. Further, the average optical density was 4 or more, and it had complete light shielding properties. However, it was found that wrinkles were generated on the surface of the produced light shielding film, and it could not be provided as a light shielding film. The surface resistance was 9.9 × 10 12 Ω / □ or more (measurement limit). The results are shown in Table 1.

(比較例8)
フィルムの厚みを30μmに変えた以外は、シリカの種類、平均粒子径、含有量とカーボンブラックの種類、平均粒子径は実施例1と同様にして遮光フィルムを作製した。作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、低反射で完全遮光性を有していた。その結果を表1に示す。
作製した遮光フィルムをプレス加工で打ち抜き、得られた打ち抜き端面について金属顕微鏡で反射の程度を観察したところ、端面の反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面高さRaを測定すると算術平均粗さは、1.1μmであった。
しかし、比較例8の遮光フィルムは、フィルムの厚みが実施例1に比べると厚いため、特に市場から薄型化・小型化の要望が強いカメラ付き携帯電話への利用はできない。
(Comparative Example 8)
A light-shielding film was produced in the same manner as in Example 1 except that the thickness of the film was changed to 30 μm, and the type of silica, average particle size, content and type of carbon black, and average particle size. The produced light shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.2% and an average optical density of 4 or more, and had low reflection and complete light shielding properties. The results are shown in Table 1.
When the produced light-shielding film was punched out by press working and the degree of reflection of the obtained punched end face was observed with a metal microscope, the reflection and gloss at the end face were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface height Ra of the end face was measured with an optical profiler, the arithmetic average roughness was 1.1 μm.
However, since the thickness of the light-shielding film of Comparative Example 8 is larger than that of Example 1, it cannot be used for a camera-equipped mobile phone, which is particularly demanded for reduction in thickness and size from the market.

(実施例11)
樹脂として、ポリイミドを用いた以外は、不定形シリカやカーボンブラックの種類、平均粒子径、含有量は実施例1と同様にして遮光フィルムを作製した。
作製した遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、完全遮光性を有しており、外観も表面欠陥もなく、良好であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面の反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には微細な凹凸が均一に観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.1μmであった。
(Example 11)
A light-shielding film was prepared in the same manner as in Example 1 except that polyimide was used as the resin, and the kind, average particle diameter, and content of amorphous silica and carbon black were the same.
The produced light-shielding film had an average regular reflectance at a wavelength of 380 to 780 nm of 0.2%, an average optical density of 4 or more, had a complete light-shielding property, and had good appearance and no surface defects. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the reflection and gloss on the end face were weak and good. As a result of examining the end face with an SEM (scanning electron microscope), fine irregularities were uniformly observed on the end face, and reflection and gloss of the end face were reduced by the formation of the fine irregularities. When the surface roughness of the end face was measured with an optical profiler, it was 1.1 μm.

(実施例12)
実施例1において、樹脂フィルムの原料をポリアミドイミド樹脂からポリエチレンナフタレート樹脂に変えた以外は、原料を溶解する溶媒、黒色顔料の種類、平均粒子径と含有量、不定形シリカの平均粒子径と含有量、フィルムの厚み、さらにサンドマット加工は実施例1と同様にして遮光フィルムを作製した。また、フィルム作製において、支持体から剥離した後の乾燥温度は、150℃で実施した。
作製した実施例12の遮光フィルムの波長380〜780nmにおける平均正反射率と平均光学濃度はいずれも実施例1と同様となり、低反射で完全遮光性を有していた。また表面には欠陥はなく、良好であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.3μmであった。
(Example 12)
In Example 1, except that the raw material of the resin film was changed from polyamideimide resin to polyethylene naphthalate resin, the solvent for dissolving the raw material, the type of black pigment, the average particle size and content, the average particle size of amorphous silica and A light-shielding film was produced in the same manner as in Example 1 in terms of content, film thickness, and sand matting. Moreover, in film production, the drying temperature after peeling from a support body was implemented at 150 degreeC.
The produced light shielding film of Example 12 had the same average regular reflectance and average optical density at wavelengths of 380 to 780 nm as those of Example 1, and had low reflection and complete light shielding properties. The surface was good with no defects. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.3 μm.

(実施例13)
実施例1において、樹脂フィルムの原料をポリアミドイミド樹脂からポリエーテルサルフォン樹脂に変えた以外は、原料を溶解する溶媒、黒色顔料の種類、平均粒子径と含有量、不定形シリカの平均粒子径と含有量、フィルムの厚み、さらにサンドマット加工は実施例1と同様にして遮光フィルムを作製した。また、フィルム作製において、支持体から剥離した後の乾燥温度は、150℃で実施した。
作製した実施例13の遮光フィルムの波長380〜780nmにおける平均正反射率と平均光学濃度はいずれも実施例1と同様となり、低反射で完全遮光性を有していた。また表面には欠陥はなく、良好であった。その結果を表1に示す。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.2μmであった。
(Example 13)
In Example 1, except that the raw material of the resin film was changed from the polyamideimide resin to the polyether sulfone resin, the solvent for dissolving the raw material, the type of the black pigment, the average particle size and content, the average particle size of the amorphous silica A light-shielding film was produced in the same manner as in Example 1, except for the content, film thickness, and sand matting. Moreover, in film production, the drying temperature after peeling from a support body was implemented at 150 degreeC.
The produced light shielding film of Example 13 had the same average regular reflectance and average optical density at a wavelength of 380 to 780 nm as those of Example 1, and had low reflection and complete light shielding properties. The surface was good with no defects. The results are shown in Table 1. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.2 μm.

(実施例14)
実施例1における黒色顔料としてカーボンブラックの代わりに、平均粒径1μmの導電性カーボンブラックを用いた以外は、不定形シリカの平均粒子径、含有量は実施例1と同様にして、導電性遮光フィルムを作製した。
作製した導電性遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、低反射で完全遮光性を有しており、外観も表面欠陥はなく、良好であった。その結果を表1に示す。また、表面抵抗は2.5×10Ω/□であった。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.1μmであった。
(Example 14)
The average particle diameter and content of the amorphous silica were the same as in Example 1 except that conductive carbon black having an average particle diameter of 1 μm was used instead of carbon black as the black pigment in Example 1. A film was prepared.
The produced electroconductive light-shielding film has an average regular reflectance at a wavelength of 380 to 780 nm of 0.2%, an average optical density of 4 or more, low reflection, complete light-shielding properties, and good appearance with no surface defects. Met. The results are shown in Table 1. The surface resistance was 2.5 × 10 9 Ω / □. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.1 μm.

(実施例15)
実施例14における導電性カーボンブラックの含有量を10重量部とした以外は、不定形シリカの平均粒子径、含有量は実施例14と同様にして、導電性遮光フィルムを作製した。
作製した導電性遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、低反射で完全遮光性を有しており、外観も表面欠陥はなく、良好であった。その結果を表1に示す。また、表面抵抗は2×10Ω/□であった。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.1μmであった。
(Example 15)
A conductive light-shielding film was produced in the same manner as in Example 14 except that the content of the conductive carbon black in Example 14 was 10 parts by weight, and the average particle diameter and content of the amorphous silica were the same.
The produced electroconductive light-shielding film has an average regular reflectance at a wavelength of 380 to 780 nm of 0.2%, an average optical density of 4 or more, low reflection, complete light-shielding properties, and good appearance with no surface defects. Met. The results are shown in Table 1. The surface resistance was 2 × 10 5 Ω / □. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.1 μm.

(実施例16)
実施例14における導電性カーボンブラックの含有量を20重量部とした以外は、不定形シリカの平均粒子径、含有量は実施例14と同様にして、導電性遮光フィルムを作製した。
作製した導電性遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、低反射で完全遮光性を有しており、外観も表面欠陥はなく、良好であった。その結果を表1に示す。また、表面抵抗は5×10Ω/□であった。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.1μmであった。
導電性カーボンブラックの含有量が20重量部と多かったため、実施例15と比べて耐熱性が若干小さくなったが、実用上問題にならない程度であった。
(Example 16)
A conductive light-shielding film was produced in the same manner as in Example 14 except that the average particle diameter and content of amorphous silica were changed to 20 parts by weight in Example 14.
The produced electroconductive light-shielding film has an average regular reflectance at a wavelength of 380 to 780 nm of 0.2%, an average optical density of 4 or more, low reflection, complete light-shielding properties, and good appearance with no surface defects. Met. The results are shown in Table 1. The surface resistance was 5 × 10 4 Ω / □. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.1 μm.
Since the content of conductive carbon black was as high as 20 parts by weight, the heat resistance was slightly reduced as compared with Example 15, but it was not a problem in practical use.

(実施例17)
実施例14における不定形シリカの含有量を15重量部とした以外は導電性カーボンブラックの平均粒子径や含有量、不定形シリカの平均粒子径は実施例14と同様にして、導電性遮光フィルムを作製した。
作製した導電性遮光フィルムの波長380〜780nmにおける平均正反射率は0.3%、平均光学濃度は4以上となり、低反射で完全遮光性を有しており、外観も表面欠陥はなく、良好であった。その結果を表1に示す。また、表面抵抗は2.5×10Ω/□であった。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.0μmであった。
(Example 17)
The conductive light shielding film is the same as in Example 14 except that the average particle diameter and content of conductive carbon black and the average particle diameter of amorphous silica are the same as in Example 14, except that the content of amorphous silica in Example 14 is 15 parts by weight. Was made.
The produced electroconductive light-shielding film has an average regular reflectance at a wavelength of 380 to 780 nm of 0.3%, an average optical density of 4 or more, low reflection and complete light-shielding properties, and good appearance with no surface defects. Met. The results are shown in Table 1. The surface resistance was 2.5 × 10 9 Ω / □. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.0 μm.

(実施例18)
実施例14における不定形シリカの含有量を40重量部とした以外は導電性カーボンブラックの平均粒子径や含有量、不定形シリカの平均粒子径は実施例14と同様にして、導電性遮光フィルムを作製した。
作製した導電性遮光フィルムの波長380〜780nmにおける平均正反射率は0.2%、平均光学濃度は4以上となり、低反射で完全遮光性を有しており、外観も表面欠陥はなく、良好であった。その結果を表1に示す。また、表面抵抗は2.5×10Ω/□であった。作製した遮光フィルムを打ち抜き加工し、その端面について金属顕微鏡で反射の程度を観察したところ、端面反射や光沢は弱く、良好であった。その端面をSEM(走査型電子顕微鏡)で調べた結果、端面には均一に微細な凹凸が観察され、この微細な凹凸の形成によって、端面の反射や光沢が低減された。オプティカルプロファイラーで端面の表面粗さを測定すると、1.3μmであった。
(Example 18)
The conductive light-shielding film was the same as in Example 14 except that the average particle size and content of conductive carbon black and the average particle size of amorphous silica were the same except that the content of amorphous silica in Example 14 was 40 parts by weight. Was made.
The produced electroconductive light-shielding film has an average regular reflectance at a wavelength of 380 to 780 nm of 0.2%, an average optical density of 4 or more, low reflection, complete light-shielding properties, and good appearance with no surface defects. Met. The results are shown in Table 1. The surface resistance was 2.5 × 10 9 Ω / □. When the produced light-shielding film was punched and the degree of reflection was observed with a metal microscope on the end face, the end face reflection and gloss were weak and good. As a result of examining the end face with a scanning electron microscope (SEM), fine unevenness was observed uniformly on the end face, and the reflection and gloss of the end face were reduced by the formation of the fine unevenness. When the surface roughness of the end face was measured with an optical profiler, it was 1.3 μm.

Figure 0005316575
Figure 0005316575

「評価」
上記の結果を示す表1から、実施例1〜10は、本発明の樹脂成分(A)のポリアミドイミドに、黒色顔料(B)及び平均粒子径3〜10μmの不定形シリカ(C)を特定量含有させた、表面に凹凸を有する遮光フィルムであって、特定の厚みで、遮光フィルムを打ち抜いたときに端面に表面粗さ(算術平均高さRa)が1μm以上の凹凸が形成されているので、表面及び端面が低反射で且つ遮光性に優れている。また、実施例11〜13は、樹脂成分が実施例1〜10とは異なるが、いずれも耐熱性を有するために、同様に表面及び端面が低反射で且つ遮光性に優れた遮光フィルムが得られている。さらに実施例14〜18は、黒色顔料として導電性カーボンブラックを用いることで、上述した遮光フィルムの特性を維持しつつ、さらに表面抵抗が1×1010Ω/□以下となり、導電性を有することから、ゴミや埃等の付着を抑制できる導電性の遮光フィルムが得られている。
"Evaluation"
From Table 1 showing the above results, Examples 1 to 10 specify black pigment (B) and amorphous silica (C) having an average particle diameter of 3 to 10 μm in the polyamideimide of the resin component (A) of the present invention. An amount of the light-shielding film having irregularities on the surface, with irregularities having a specific thickness and surface roughness (arithmetic average height Ra) of 1 μm or more when the light-shielding film is punched out Therefore, the surface and end face are low in reflection and excellent in light shielding properties. In addition, although the resin components of Examples 11 to 13 are different from those of Examples 1 to 10, since both have heat resistance, similarly, a light-shielding film having a low reflection surface and an excellent light-shielding property is obtained. It has been. Further, in Examples 14 to 18, by using conductive carbon black as the black pigment, the surface resistance becomes 1 × 10 10 Ω / □ or less while maintaining the above-described characteristics of the light-shielding film, and has conductivity. Therefore, a conductive light-shielding film that can suppress the adhesion of dust and dirt has been obtained.

これに対して、比較例1〜8は、得られた遮光フィルムが本発明の要件を満たさないために、表面及び端面の反射性、遮光性が低下するか、外観が不良となったり加工性が低下した。すなわち、比較例1では、球状のシリカを用いたために、フィルム表面の正反射率や打ち抜き端面の反射が高く、遮光性が不十分であった。また、比較例2,3では、シリカの平均粒径が、比較例4,5では、シリカの含有量が、また比較例6,7では、黒色顔料の含有量が本発明の要件を満たさないために、フィルム表面の正反射率や打ち抜き端面の反射が高く、遮光性が不十分であるか、表面にはピンホールやシワが発生した。さらに比較例8では、フィルムの厚さが本発明の要件よりも薄かったために、薄型化・小型化したカメラ付き携帯電話への利用はできない。   On the other hand, in Comparative Examples 1 to 8, since the obtained light-shielding film does not satisfy the requirements of the present invention, the reflectivity and light-shielding properties of the surface and the end face are reduced, or the appearance is poor or the workability is reduced. Decreased. That is, in Comparative Example 1, since spherical silica was used, the regular reflectance of the film surface and the reflection of the punched end surface were high, and the light shielding property was insufficient. Further, in Comparative Examples 2 and 3, the average particle diameter of the silica is comparative. In Comparative Examples 4 and 5, the silica content is not satisfied. In Comparative Examples 6 and 7, the black pigment content does not satisfy the requirements of the present invention. Therefore, the regular reflectance of the film surface and the reflection of the punched end surface are high, and the light shielding property is insufficient, or pinholes and wrinkles are generated on the surface. Furthermore, in Comparative Example 8, since the film thickness was thinner than the requirement of the present invention, it cannot be used for a camera-equipped mobile phone with a reduced thickness.

本発明の遮光フィルムは、デジタルカメラ、デジタルビデオカメラのレンズシャッターなどのシャッター羽根または絞り羽根や、カメラ付き携帯電話や車載モニターのレンズユニット内の固定絞りや、プロジェクターの光量調整用絞り装置(オートアイリスとも言う)の絞り羽根などの光学機器部品や耐熱遮光テープとして用いられる。   The light-shielding film of the present invention includes shutter blades or diaphragm blades such as lens shutters of digital cameras and digital video cameras, fixed diaphragms in lens units of mobile phones with cameras and in-vehicle monitors, and aperture devices for adjusting the light quantity of projectors (auto iris). It is also used as an optical equipment part such as a diaphragm blade or a heat-resistant light-shielding tape.

Claims (11)

樹脂成分(A)に、黒色顔料(B)及び平均粒子径3〜10μmの不定形シリカ(C)を含有させた厚み25μm以下の遮光フィルムであって、
黒色顔料(B)の含有量が、樹脂成分100重量部に対し、3〜20重量部で、不定形シリカ(C)の含有量が15〜40重量部であり、表面に凹凸が形成され、かつ遮光フィルムが打ち抜き露出端面を有し、当該端面が表面粗さ(算術平均高さRa)1μm以上の凹凸を有することを特徴とする遮光フィルム。
A light-shielding film having a thickness of 25 μm or less, wherein the resin component (A) contains black pigment (B) and amorphous silica (C) having an average particle size of 3 to 10 μm,
The content of the black pigment (B) is 3 to 20 parts by weight with respect to 100 parts by weight of the resin component, the content of the amorphous silica (C) is 15 to 40 parts by weight, and irregularities are formed on the surface. The light-shielding film has a punched exposed end face, and the end face has irregularities having a surface roughness (arithmetic average height Ra) of 1 μm or more.
前記遮光フィルムの表面粗さ(算術平均高さRa)が0.2〜0.7μmであることを特徴とする請求項1に記載の遮光フィルム。   The surface roughness (arithmetic average height Ra) of the said light shielding film is 0.2-0.7 micrometer, The light shielding film of Claim 1 characterized by the above-mentioned. 波長380〜780nmにおける平均正反射率が0.4%以下、平均光学濃度が4以上であることを特徴とする請求項1又は2に記載の遮光フィルム。   3. The light-shielding film according to claim 1, wherein an average regular reflectance at a wavelength of 380 to 780 nm is 0.4% or less and an average optical density is 4 or more. 樹脂成分(A)が、ポリアミドイミド、ポリイミド、ポリフェニレンサルファイド、アラミド、ポリエーテルエーテルケトン、ポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルエーテルケトン又はポリエーテルサルフォンから選ばれた1種類以上の樹脂であることを特徴とする請求項1に記載の遮光フィルム。   The resin component (A) is at least one resin selected from polyamideimide, polyimide, polyphenylene sulfide, aramid, polyetheretherketone, polyester, polystyrene, polycarbonate, polyetheretherketone, or polyethersulfone. The light-shielding film according to claim 1, wherein 前記黒色顔料(B)がカーボンブラックであり、その含有量が樹脂成分100重量部に対し、3〜20重量部であることを特徴とする請求項1に記載の遮光フィルム。   The light-shielding film according to claim 1, wherein the black pigment (B) is carbon black and the content thereof is 3 to 20 parts by weight with respect to 100 parts by weight of the resin component. 前記黒色顔料(B)が導電性カーボンブラックであり、その含有量が樹脂成分100重量部に対し、5〜20重量部であることを特徴とする請求項5に記載の遮光フィルム。   The said black pigment (B) is electroconductive carbon black, The content is 5-20 weight part with respect to 100 weight part of resin components, The light shielding film of Claim 5 characterized by the above-mentioned. 前記遮光フィルムの表面抵抗が1×1010Ω/□以下であることを特徴とする請求項6に記載の遮光フィルム。 The light shielding film according to claim 6, wherein a surface resistance of the light shielding film is 1 × 10 10 Ω / □ or less. 樹脂成分(A)100重量部に対し、黒色顔料(B)を20重量部以下、平均粒子径が3〜10μmの不定形シリカ(C)を15〜40重量部添加・混合し、次に、得られたスラリーを支持体に加熱乾燥後の厚さが25μm以下となるように塗工した後、加熱乾燥させ、引き続き、必要により両表面をサンドマット加工処理して凹凸を形成することを特徴とする請求項1〜7のいずれかに記載の遮光フィルムの製造方法。 Add and mix 20 parts by weight or less of black pigment (B) and 15 to 40 parts by weight of amorphous silica (C) having an average particle diameter of 3 to 10 μm with respect to 100 parts by weight of resin component (A). The obtained slurry is coated on a support so that the thickness after heating and drying is 25 μm or less, and then dried by heating, and then, if necessary, both surfaces are subjected to sand mat processing to form irregularities. The manufacturing method of the light shielding film in any one of Claims 1-7. 黒色顔料(B)として、導電性カーボンブラックを樹脂成分(A)100重量部に対し、5〜20重量部添加・混合することを特徴とする請求項8に記載の遮光フィルムの製造方法。   9. The method for producing a light-shielding film according to claim 8, wherein 5 to 20 parts by weight of conductive carbon black is added and mixed as a black pigment (B) with respect to 100 parts by weight of the resin component (A). 請求項1〜7のいずれかに記載の遮光フィルムを打ち抜き加工して得られる絞りであって、得られた絞りの端面が低反射性であることを特徴とする絞り。   A diaphragm obtained by punching the light-shielding film according to any one of claims 1 to 7, wherein an end face of the obtained diaphragm is low reflective. 請求項1〜7のいずれかに記載の遮光フィルムを打ち抜き加工して得られる羽根材であって、得られた羽根材の端面が低反射性であることを特徴とする羽根材。   A blade material obtained by punching the light-shielding film according to any one of claims 1 to 7, wherein an end surface of the obtained blade material has low reflectivity.
JP2011085081A 2011-03-01 2011-04-07 Shielding film, manufacturing method thereof, and use Active JP5316575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085081A JP5316575B2 (en) 2011-03-01 2011-04-07 Shielding film, manufacturing method thereof, and use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011043557 2011-03-01
JP2011043557 2011-03-01
JP2011085081A JP5316575B2 (en) 2011-03-01 2011-04-07 Shielding film, manufacturing method thereof, and use

Publications (2)

Publication Number Publication Date
JP2012194514A JP2012194514A (en) 2012-10-11
JP5316575B2 true JP5316575B2 (en) 2013-10-16

Family

ID=47086439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085081A Active JP5316575B2 (en) 2011-03-01 2011-04-07 Shielding film, manufacturing method thereof, and use

Country Status (1)

Country Link
JP (1) JP5316575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184848A (en) * 2018-04-11 2019-10-24 株式会社きもと Light-shielding film for optical instrument and laminated light-shielding film for optical instrument, and light-shielding ring for optical instrument, diaphragm member for optical instrument, shutter member for optical instrument, lens unit and camera module using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005310A1 (en) * 2013-07-10 2015-01-15 富士フイルム株式会社 Light-blocking composition, light-blocking film and method for producing same
JP6642969B2 (en) * 2015-02-16 2020-02-12 キヤノン株式会社 Optical unit, image forming apparatus, and method of manufacturing optical unit
JP6541244B2 (en) 2016-09-16 2019-07-10 ソマール株式会社 Light shielding member for optical device
JP7081186B2 (en) * 2017-02-17 2022-06-07 東レ株式会社 Polyester film
JP7151067B2 (en) * 2017-09-21 2022-10-12 三菱ケミカル株式会社 Colored polyester film for test support, test support and light-shielding member
JP2023016200A (en) * 2021-07-21 2023-02-02 ソマール株式会社 Lens hood
JP2023016199A (en) * 2021-07-21 2023-02-02 ソマール株式会社 optical element
JP2023090032A (en) * 2021-12-17 2023-06-29 ソマール株式会社 Lens unit and camera module
CN116218360A (en) * 2023-02-14 2023-06-06 深圳市长松科技有限公司 Shading sheet coating and preparation method thereof, and shading sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697322B2 (en) * 1987-11-05 1994-11-30 ソマール株式会社 Roughened light-shielding film having conductivity
JP3929546B2 (en) * 1996-09-20 2007-06-13 ソマール株式会社 Anti-reflection camera and anti-reflection film used therefor
JP5097381B2 (en) * 2006-11-02 2012-12-12 ソマール株式会社 Shielding film and method for producing the same
JP4918380B2 (en) * 2007-03-13 2012-04-18 ソマール株式会社 Shielding film and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184848A (en) * 2018-04-11 2019-10-24 株式会社きもと Light-shielding film for optical instrument and laminated light-shielding film for optical instrument, and light-shielding ring for optical instrument, diaphragm member for optical instrument, shutter member for optical instrument, lens unit and camera module using the same
EP3779524A4 (en) * 2018-04-11 2022-04-13 Kimoto Co., Ltd. Light-shielding film for optical equipment and light-shielding laminated film for optical equipment, light-shielding ring for optical equipment using same, diaphragm member for optical equipment, shutter member for optical equipment, lens unit, and camera module
JP7128569B2 (en) 2018-04-11 2022-08-31 株式会社きもと Light-shielding film for optical equipment, laminated light-shielding film for optical equipment, and light-shielding ring for optical equipment, diaphragm member for optical equipment, shutter member for optical equipment, lens unit, and camera module using the same
JP2022166194A (en) * 2018-04-11 2022-11-01 株式会社きもと Light-shielding film for optical instrument and laminated light-shielding film for optical instrument, and light-shielding ring for optical instrument, diaphragm member for optical instrument, shutter member for optical instrument, lens unit and camera module using the same

Also Published As

Publication number Publication date
JP2012194514A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5316575B2 (en) Shielding film, manufacturing method thereof, and use
TWI599481B (en) Heat-resistant, light-shielding black film, production thereof, and aperture, light intensity adjusting module, and heat-resistant light shading tape
JP2013190500A (en) Black light-shielding film and diaphragm and blade material using the same
CN107614261B (en) Light-blocking member, black resin composition, and black resin molded article
JP5455387B2 (en) Film and optical lens formed on outer peripheral surface of lens
TW201602642A (en) Light-blocking material for optical devices, and production method therefor
TWI736685B (en) Laminated light-blocking film, and light-blocking ring for optical instrument, lens unit and camera module using the same
JP2012247518A (en) Black heat-resistant light-shielding film, diaphragm using the same, shutter blade, diaphragm blade for light quantity adjustment module, and light-shielding tape
JP2008114463A (en) Light shielding film and its manufacturing method
WO2011052307A1 (en) Light-blocking member for use in optical equipment
JP5498127B2 (en) Light shielding member for optical equipment
KR102085243B1 (en) Lightshielding film with excellent shading properties and method of manufacturing the same
TW202348443A (en) Light-shielding film for optical apparatus and laminated light-shielding film for optical apparatus, and light-shielding ring for optical apparatus, aperture member for optical apparatus, shutter member for optical apparatus, lens unit, and camera module using the same
TWI675872B (en) Resin composition for forming shielding layer and production method thereof,shielding layer, and shielding member and production method thereof
JP2014052598A (en) Heat-resistant light-shielding sheet or film
JP2013105123A (en) Black high heat radiation light-shielding film and manufacturing method of the same, and diaphragm, blade material, light quantity adjustment module, and light-shielding tape using the film
TWI763800B (en) Laminated light-blocking film, and light-blocking ring, lens unit, and camera module for optical apparatus using thereof
JP6814170B2 (en) Laminated light-shielding film for optical equipment, and light-shielding ring for optical equipment, lens unit, and camera module using this film.
JP2011123255A (en) Light-blocking member for use in optical equipment
WO2020179560A1 (en) Lens spacer, and laminated light-shielding material, light-shielding ring, lens unit, and camera module using lens spacer
JP5195792B2 (en) Heat-resistant light-shielding film and method for producing the same
JP2023068330A (en) Light-blocking film
TWI444691B (en) Electromagnetic shielding coating and lens module using same
US10442950B2 (en) Film formed on a sliding surface of a component
WO2013073502A1 (en) Nd filter unit, imaging system and method for manufacturing nd filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5316575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350