WO2013073502A1 - Nd filter unit, imaging system and method for manufacturing nd filter - Google Patents

Nd filter unit, imaging system and method for manufacturing nd filter Download PDF

Info

Publication number
WO2013073502A1
WO2013073502A1 PCT/JP2012/079298 JP2012079298W WO2013073502A1 WO 2013073502 A1 WO2013073502 A1 WO 2013073502A1 JP 2012079298 W JP2012079298 W JP 2012079298W WO 2013073502 A1 WO2013073502 A1 WO 2013073502A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter unit
filter
optical layer
silver halide
filters
Prior art date
Application number
PCT/JP2012/079298
Other languages
French (fr)
Japanese (ja)
Inventor
有宏 斎田
潤二 宮田
榎本 淳
俊 峯尾
吉彦 田中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013073502A1 publication Critical patent/WO2013073502A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/023Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light comprising movable attenuating elements, e.g. neutral density filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/205Neutral density filters

Definitions

  • the present invention relates to an ND (Neutral Density) filter, an ND filter unit, and an ND filter manufacturing method.
  • ND Neutral Density
  • the ND filter is used in a photographing system such as a camera, and is effective when photographing under a strong light and reducing the light amount without affecting the color.
  • a gradation type ND filter in which an optical film whose optical density continuously changes in the circumferential direction of a disk-shaped base material is proposed (see Patent Documents 1 to 4).
  • Patent Document 1 describes an ND filter unit having a configuration in which two ND filters each having a gradation pattern formed of a metal film on a glass substrate are stacked.
  • Patent Document 2 describes that an emulsion layer of a silver halide photographic light-sensitive film comprising a film base and an emulsion layer is exposed and developed to form an ND filter whose light transmittance changes continuously.
  • Patent Document 3 discloses an ND filter in which a color material is applied on a transparent base material (for example, a glass base material), then the color material is exposed to active energy rays, developed, and light transmittance continuously changes. Is described.
  • Patent Document 4 describes that a density pattern is printed on a glass substrate by an ink jet printer to form an ND filter whose light transmittance changes continuously.
  • the ND filter described in Patent Document 3 exposes a color material formed on a glass substrate with active energy rays, the exposure apparatus becomes expensive and the manufacturing cost increases. Further, in order to reduce light scattering, it is necessary to make particles constituting the color material fine, but it is technically difficult to make particles constituting the color material fine.
  • the ND filter described in Patent Document 4 forms a pigment pattern on a glass substrate, and it is necessary to make the pigment particles fine in order to reduce light scattering. However, it is technically difficult to make the pigment particles fine.
  • the present invention has been made in view of the above circumstances, and is a low-cost ND filter unit capable of easily reducing reflection and scattering of light, an imaging system including the ND filter unit, and an ND used for the ND filter unit. It aims at providing the manufacturing method of a filter.
  • the ND filter unit of the present invention includes two ND filters having an optical layer whose light transmittance continuously changes in one direction or one circumferential direction, and the two ND filters are light beams of the optical layer.
  • the transmission gradations are arranged so as to be opposite to each other, and at least one of the two ND filters has the optical layer formed on a transparent substrate, and the optical layer has an average particle diameter. It is composed of developed silver obtained by exposing and developing a silver halide photographic emulsion containing silver halide grains of 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the imaging system of the present invention includes an imaging lens, an imaging element that captures an optical image that has passed through the imaging lens, and the ND filter unit that is disposed in front of the imaging element.
  • the method for producing an ND filter of the present invention comprises a step of coating a silver halide photographic emulsion containing silver halide grains having an average particle size of 0.01 ⁇ m or more and 0.2 ⁇ m or less on a transparent substrate, and the coated halide
  • the silver photographic emulsion may be unidirectional or And a step of forming an optical layer whose light transmittance changes continuously in the circumferential direction.
  • a low-cost ND filter unit capable of reducing light reflection and scattering, an imaging system including the ND filter unit, and a method for manufacturing an ND filter used in the ND filter unit.
  • FIG. 2 The figure which shows schematic structure of the imaging
  • Schematic sectional view of the ND filter 21 shown in FIG. 2 is a schematic plan view when the ND filter 21 shown in FIG. 2 is viewed from the optical layer 211 side.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging system 100 for explaining an embodiment of the present invention.
  • the imaging system 100 includes a camera body 2 and a lens device 1 that can be attached to and detached from the camera body 2.
  • the camera body 2 and the lens device 1 may be integrated.
  • the lens apparatus 1 includes a photographing lens 10 such as a zoom lens or a focus lens.
  • the camera body 2 includes an ND filter unit 20 and a photographing unit 30.
  • the photographing unit 30 includes a color separation prism 31 that separates the light collected by the photographing lens 10 into three colors of red, green, and blue, an image sensor 31R provided on a red light emission surface of the color separation prism 31, and a color separation.
  • An image sensor 31G provided on the green light exit surface of the prism 31 and an image sensor 31B provided on the blue light exit surface of the color separation prism 31 are provided.
  • An optical image passing through the taking lens 10 is picked up by these image pickup devices 31R, 31G, and 31B.
  • the so-called three-plate configuration including the color separation prism 31 in the camera body 2 is an example, and the so-called single-plate configuration including one image sensor in the camera body 2 is the gist of the present application. Holds.
  • the ND filter unit 20 includes disk-shaped ND filters 21 and 22 arranged side by side on the optical axis K of the photographing lens 10, and a rotation mechanism 23 that rotates each of the ND filters 21 and 22 in the circumferential direction thereof. Prepare.
  • FIG. 2 is a schematic cross-sectional view of the ND filter 21 shown in FIG.
  • the ND filter 21 includes a glass plate 210 which is a transparent substrate, an optical layer 211 formed on the glass plate 210, an adhesive layer 212 formed on the optical layer 211, and an antireflection coating formed on the adhesive layer 212.
  • AR a film 213 with a function.
  • the film with an AR function is a film having a reflective interference film, for example.
  • the transparent substrate is not a flexible substrate such as a base of a silver halide photographic photosensitive film, but a transparent hard plate with little light scattering such as a glass plate and a resin plate. Say.
  • the optical layer 211 is a layer composed of developed silver obtained by coating a silver halide photographic emulsion on a glass plate 210, exposing the silver halide photographic emulsion, and developing it.
  • a transparent glass plate may be provided instead of the AR function-added film 213.
  • the glass plate 210 and the glass plate provided in place of the AR function-equipped film 213 may have an AR function added to the interface with the air.
  • the adhesive layer 212 and the AR function-equipped film 213 or a transparent glass plate are not essential and may be omitted.
  • the ND filter 21 is arranged so that the normal direction of the surface of the glass plate 210 is parallel to the optical axis K.
  • the configuration of the ND filter 22 is the same as that of the ND filter 21, and the ND filter 22 is also arranged so that the normal direction of the surface of the glass plate 210 is parallel to the optical axis K.
  • the ND filters 21 and 22 may be arranged such that either the glass plate 210 or the AR function-equipped film 213 faces the lens device 1.
  • FIG. 3 is a schematic plan view when the ND filter 21 shown in FIG. 2 is viewed from the optical layer 211 side.
  • illustration of the adhesive layer 212 and the AR function-equipped film 213 is omitted.
  • the light transmittance continuously changes toward the one circumferential direction of the ND filter 21 (where the color is dark in the figure).
  • the optical layer 211 is formed so that the transmittance continuously changes from about 99% to about 1% in the range where the circumferential angle ⁇ of the glass plate 210 is 285 °, and the remaining 75 °.
  • the range is a glass plate 210 having a transmittance of about 100%.
  • the ND filter 21 and the ND filter 22 have a shaft P connected to the rotation mechanism 23 and can rotate around the shaft P.
  • the ND filter 21 and the ND filter 22 are arranged so that the gradation of the light transmittance of the optical layer 211 is opposite to each other.
  • Reverse phase means that the direction of change in light transmittance is the reverse direction.
  • the ND filters 21 and 22 have the center angle (37.5 °) in the angle range (75 °) of the region where the transmittance is about 100% aligned in the optical axis K direction (in the optical axis K direction).
  • the posture (superimposed) is set as the home position.
  • the ND filter 21 is rotated from the larger light transmittance to the smaller light transmission area with respect to the light passage area centered on the optical axis K, and the ND filter 22 is similarly moved to the passage area.
  • the ND filters 21 and 22 are rotated in the opposite directions at the same speed so that the light transmittance is rotated from the larger one toward the smaller one.
  • the gradient of concentration change proportional to the angle in the circumferential direction so that the concentration is always uniform over the entire passage area.
  • the ND filters 21 and 22 may be rotated independently of each other instead of being rotated in the reverse direction at the same speed.
  • the rotation direction is not limited to the reverse direction, and it may be rotated in the same direction.
  • a difference may be added to each rotation speed.
  • only one of the ND filters 21 and 22 may be rotated.
  • the positional relationship and rotation operation between the ND filter 21 and the ND filter 22 those described in Japanese Patent Application Laid-Open No. 2007-243928 can be employed.
  • an optical layer 211 whose light transmittance continuously changes in the circumferential direction is formed on the glass plate 210. Further, the optical layer 211 is made of silver halide. It is characterized by being formed by developed silver obtained by exposing and developing a photographic emulsion.
  • the glass plate 210 scatters less light than plastic bases such as PET (polyethylene terephthalate) and TAC (triacetyl cellulose) used in silver halide photographic photosensitive films. Therefore, light scattering by the glass plate 210 hardly occurs.
  • the ND filters 21 and 22 have the optical layer 211 formed on the glass plate 210, thereby reducing light scattering as compared with the conventional ND filter using a silver halide photographic photosensitive film. can do.
  • the optical layer 211 is formed of developed silver obtained by exposing and developing a silver halide photographic emulsion. Since the silver halide photographic emulsion can easily reduce the diameter of silver halide grains, the diameter (particle diameter) of developed silver grains can also be easily reduced. Therefore, as compared with the prior art in which the optical layer is formed with a dye or the like, it becomes easier to suppress light scattering, and an increase in manufacturing cost can be prevented.
  • the average grain size of the silver halide grains contained in the silver halide photographic emulsion which is the raw material of developed silver constituting the optical layer 211 is large, the size of the developed silver obtained by exposing and developing the emulsion layer is large. Become. For this reason, it is preferable that the average grain size of the silver halide grains is small. As a result of various studies, it has been found that when the average grain size of silver halide grains in a silver halide photographic emulsion is 0.2 ⁇ m or less, scattering by developed silver can be reduced. For this reason, the average grain size of the silver halide grains is preferably 0.2 ⁇ m or less. The average grain size of the silver halide grains can be obtained by observing with an electron microscope.
  • the average grain size of the silver halide grains is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • any of silver chloride, silver chlorobromide, silver bromide, silver iodobromide and the like can be used.
  • ND filters 21 and 22 are manufactured as follows.
  • a silver halide photographic emulsion is coated on a glass plate 210 to a certain thickness to form an emulsion layer.
  • a hard mask is placed on the glass plate 210 on which the emulsion layer is formed, and the emulsion layer is exposed through this mask using a white light source such as a halogen lamp.
  • a mask formed by depositing a metal on a transparent glass plate in the same pattern as the optical density gradation of the optical layer 211 as shown in FIG. 3 can be used.
  • the light incident on the area passes as it is and enters the emulsion layer
  • the light incident on the area passes through the area.
  • the light passes through the region with a transmission amount corresponding to the thickness of the metal film and enters the emulsion layer.
  • the emulsion layer is formed such that a portion that is strongly irradiated with exposure light and a portion that is weakly irradiated are continuously formed in the circumferential direction.
  • the portion irradiated with the exposure light forms developed silver according to the irradiation amount, and a gradation pattern of optical density corresponding to the mask is formed.
  • the optical layer 211 is formed by sequentially performing fixing, washing with water, and drying.
  • the thickness that can be smoothed by filling the optical layer 211 with the fine irregularities formed on the surface of the optical layer 211 that is, the thickness greater than the depth from the apex portion of the irregularities to the bottom of the valley
  • a colorless transparent resin layer (adhesive layer 212) having a thickness is formed.
  • a transparent antireflection film 213 (or transparent glass plate) is placed on the adhesive layer 212, the optical layer 211 and the antireflection film 213 (or transparent glass plate) are adhered, and the ND filter 21 is attached. Finalize.
  • the adhesive layer 212 and the film 213 with an antireflection function, it is possible to prevent foreign matter from adhering to the surface of the optical layer 211 and to protect the optical layer 211 and maintain the quality of the ND filter. be able to. Note that, when a film is pasted on the optical layer 211, it is desirable to use a film with little image degradation because the film may cause degradation of resolution and image quality.
  • the ND filters 21 and 22 can form the optical layer 211 by exposure using white light, the exposure apparatus is not expensive and the manufacturing cost can be suppressed.
  • the ND filter can be completed with only two components of the glass plate 210 and the optical layer 211.
  • the silver halide photographic photosensitive film itself is composed of two components, a base and an optical layer.
  • the silver halide photographic photosensitive film itself is not rigid, it is necessary to affix the silver halide photographic photosensitive film to a transparent substrate such as a glass plate with an adhesive. Therefore, at least four members (base, optical layer, adhesive, transparent substrate) constituting the ND filter are required.
  • the ND filters 21 and 22 of the present embodiment can be configured with a minimum of two components, it is possible to reduce the reflection of light at the interface between the components and to prevent deterioration of the video quality.
  • the two ND filters included in the ND filter unit 20 have the same configuration, but one of the two ND filters has a cross-sectional configuration shown in FIG. 2 and the other is, for example, The ND filter described in Patent Document 1 may be used. Even in this case, compared with the case of using two ND filters of the conventional configuration, it is possible to reduce the ghost due to light reflection.
  • the ND filter unit 20 is built in the camera body 2, but the ND filter unit 20 may be built in the lens device 1. In this case, the ND filter unit 20 may be disposed on the object side or the opposite side of the photographing lens 10 of the lens apparatus 1. When the photographing lens 10 is composed of a plurality of lenses, the ND filter unit 20 may be disposed between the plurality of lenses.
  • the ND filter unit 20 may be built in the adapter, and the adapter may be attached to the subject side of the lens apparatus 1 or may be attached between the lens apparatus 1 and the camera body 2.
  • the ND filters 21 and 22 have a disk shape, as described in Patent Document 4, they have a rectangular plate shape, and the ND filters 21 and 22 are moved in a direction perpendicular to the optical axis K, respectively. You may be able to do it. Furthermore, shapes other than a disk shape or a rectangular plate shape are possible. In such a case, the light transmittance may be continuously changed in one direction within the surface.
  • the ND filter unit 20 shown in FIG. 1 is configured to be applied to a commercial camera system for television and movie shooting.
  • the present invention is not limited to this, and a single-lens reflex camera, a handheld type camera system, or the like. However, it is generally applicable to any imaging optical system.
  • a sample H1 was prepared by coating an undercoat layer, an emulsion layer, and a protective layer in this order on a PET support having a thickness of 125 ⁇ m from the support side.
  • the emulsion is composed of 55 mol% of silver chloride and 45 mol% of silver bromide.
  • Physically ripened and desalted Lippmann-type silver halide photographic emulsion having an average particle size of 0.17 ⁇ m according to a conventional method to obtain sodium thiosulfate and gold chloride [ III] Prepared by adding chemical acid aging.
  • 1,2-bis (vinylsulfonylacetamido) ethane as a hardening agent, 4-hydroxy-6-methyl-1,3,3a, 7-tetrazaindene as a stabilizer, 1-phenyl-as an antifoggant
  • 5-mercaptotetrazole sodium bis (2-ethylhexyl) sulfosuccinate as the surfactant
  • poly (potassium p-styrenesulfonate) as the thickener
  • subbing layer subbing layer (gelatin 50 mg / mg) on the PET support.
  • the above emulsion layer was formed by coating on m 2 ) so as to be 3.5 g / m 2 silver and 5.0 g / m 2 gelatin.
  • Sample H1 was exposed while adjusting the amount of light with an incandescent lamp light source through an ND filter preparation mask prepared in advance, and developed with a commercial FT-803R developer manufactured by FUJIFILM Corporation for 3 minutes at 20 ° C. Then, it was immersed in a commercial Fuji acetic acid stop solution manufactured by FUJIFILM Corporation for 30 seconds at 20 ° C. Further, after fixing for 3 minutes at 20 ° C. with a commercially available LF-308 fixing solution manufactured by FUJIFILM Corporation, the film was washed with running water for 3 minutes at room temperature and dried naturally. As a result, an optical layer made of developed silver was formed. Thus, the glass plate was affixed on both surfaces of the sample obtained with the adhesive agent, and ND filter A was formed.
  • Example 1 Sample H1 was produced in the same manner as in Comparative Example 1 except that the PET support was changed to a glass support having a thickness of 1.6 mm. The sample H1 was obtained by exposing, developing, fixing, washing and drying the sample H1 in the same manner as in Comparative Example 1, and a glass plate was attached to the opposite surface of the glass support with an adhesive to produce an ND filter B. did. In a state where the two ND filters B are arranged in opposite phases on the lens tip of a camera having a recording pixel of 2 megapixels, and the light transmittance of the ND filter unit YB including the two ND filters B is 25%. The spotlight was photographed.
  • the resolution chart was photographed with the light transmittance of the ND filter unit YB being 25% and 6.3%. Further, the light transmittance of the ND filter B alone was measured. Further, the reflectance of light at a position where the transmittance of the ND filter B with respect to light having a wavelength of 550 nm was 6.3% was measured.
  • FIG. 4 is a diagram showing a photographed image obtained by photographing spot light in a state where the light transmittance of the ND filter unit YA of Comparative Example 1 is 25%.
  • FIG. 5 is a diagram illustrating a photographed image obtained by photographing spot light in a state where the light transmittance of the ND filter unit YB of Example 1 is 25%.
  • the ND filter unit YA of Comparative Example 1 composed of an ND filter in which glass plates are attached to both surfaces of a sample in which an optical layer is formed on a PET support has a large range of image turbidity. It can be seen that light scattering is increased.
  • FIG. 6 is a partially enlarged view of a photographed image obtained by photographing a resolution chart in a state where the light transmittance of the ND filter unit YA of Comparative Example 1 is 25%.
  • FIG. 7 is a partially enlarged view of a photographed image obtained by photographing a resolution chart in a state where the light transmittance of the ND filter unit YB of Example 1 is 25%.
  • FIG. 8 is a partially enlarged view of a photographed image obtained by photographing a resolution chart in a state where the light transmittance of the ND filter unit YB of Example 1 is set to 6.3%.
  • the ND filter unit YA of Comparative Example 1 As can be seen from FIG. 6 to FIG. 8, in the ND filter unit YA of Comparative Example 1, the resolution of the image is 600 TV lines or less, and the resolution degradation is remarkable. On the other hand, the ND filter unit YB of the first embodiment has an image resolution of 800 TV lines or more regardless of the transmittance.
  • Example 2 An ND filter C was prepared in the same manner as in Example 1 except that the average grain size of silver halide in the emulsion was changed to 0.06 ⁇ m. About this ND filter C, the light transmittance was measured. In addition, two ND filters C are arranged in the opposite phase on the lens tip of a camera having a recording pixel of 2 megapixels, and the light transmittance of the ND filter unit YC including the two ND filters C is 6.3%. The resolution chart was taken in the state.
  • FIG. 9 is a partially enlarged view of a photographed image obtained by photographing a resolution chart in a state where the light transmittance of the ND filter unit YC of Example 2 is set to 6.3%.
  • the ND filter unit YC of the second embodiment has an image resolution of 800 TV lines or more.
  • FIG. 10 is a diagram showing the transmittance characteristics for each wavelength at the positions of the maximum transmittances of the ND filter B (Example 1) and the ND filter C (Example 2).
  • FIG. 11 is a diagram showing the transmittance characteristics for each wavelength at the position where the light transmittance is 6.3% with respect to the wavelength of 550 nm of the ND filter B (Example 1) and the ND filter C (Example 2).
  • the average grain size of silver halide used as the raw material of the optical layer 211 in the ND filters 21 and 22 is preferably 0.1 ⁇ m or more. Further, since the ND filter B has an average grain size of silver halide of 0.2 ⁇ m or less, a decrease in resolution due to an excessively large average grain size is also suppressed.
  • FIG. 12 is a diagram showing an outline of reflectance measurement at a position where the transmittance of the ND filter B is 6.3%.
  • Light incident from the upper side of the AR film 213 is reflected mainly at the interface between the AR film 213 and air and the interface between the adhesive layer 212 and the optical layer 211.
  • the reflectance of the two reflected lights was measured with a spectrophotometer.
  • FIG. 13 is a diagram showing the reflectance characteristics for each wavelength at the position where the transmittance of the ND filter B is 6.3%.
  • a film with a transmittance of 6.3% is formed of a metal film such as chromium
  • a reflectance of 30% or more cannot be avoided.
  • the amount of ghosts cannot be ignored. Deteriorate.
  • the reflectance is less than 0.5% in the wavelength region of 420 nm to 670 nm, and the ghost caused by this reflection is a negligible minute amount.
  • the disclosed ND filter unit includes two ND filters each having an optical layer whose light transmittance continuously changes in one direction or one circumferential direction, and the two ND filters include light of the optical layer.
  • the transmission gradations are arranged so as to be opposite to each other, and at least one of the two ND filters has the optical layer formed on a transparent substrate, and the optical layer has an average particle diameter. It is composed of developed silver obtained by exposing and developing a silver halide photographic emulsion containing silver halide grains of 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the disclosed ND filter unit includes one in which the transparent substrate is a glass plate.
  • the disclosed ND filter unit includes a transparent plate on the optical layer.
  • the transparent plate is attached to the optical layer via an adhesive.
  • the transparent plate has an antireflection function.
  • the disclosed ND filter unit includes those in which the average grain size of the silver halide grains is 0.1 ⁇ m to 0.2 ⁇ m.
  • the disclosed ND filter unit includes a mechanism for moving the two ND filters in opposite directions.
  • the disclosed imaging system includes an imaging lens, an imaging element that captures an optical image that passes through the imaging lens, and the ND filter unit that is disposed in front of the imaging element.
  • the disclosed manufacturing method of the ND filter includes a step of coating a silver halide photographic emulsion containing silver halide having an average grain size of 0.01 ⁇ m or more and 0.2 ⁇ m or less on a transparent substrate, and the coated silver halide.
  • the photographic emulsion is unidirectional or Forming an optical layer whose light transmittance continuously changes in the circumferential direction.
  • the ND filter unit of the present invention can be mounted on an imaging device such as a digital camera, for example, and can contribute to improvement of imaging image quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

[Problem] To provide a low-cost ND filter capable of reducing light scattering. [Solution] An ND filter includes a disk-shaped glass plate (210) and an optical layer (211) which is formed on the base material of the glass plate (210) and has a luminous transmittance that continuously changes toward the circumferential direction. The optical layer (211) is constituted by developed silver acquired by exposing and developing a silver halide photography emulsion.

Description

NDフィルタユニット、撮影システム、及びNDフィルタの製造方法ND filter unit, photographing system, and manufacturing method of ND filter
 本発明は、ND(ニュートラルデンシティ、Neutral Densityの略)フィルタ、NDフィルタユニット、及びNDフィルタの製造方法に関する。 The present invention relates to an ND (Neutral Density) filter, an ND filter unit, and an ND filter manufacturing method.
 NDフィルタは、カメラ等の撮影系に使用され、強い光の下などで、色に影響を与えずに光量を減らして撮影する際に有効である。 The ND filter is used in a photographing system such as a camera, and is effective when photographing under a strong light and reducing the light amount without affecting the color.
 NDフィルタとして、円盤状の基材の円周方向に光学濃度が連続的に変化する光学膜を形成したグラデーションタイプのNDフィルタが提案されている(特許文献1~4参照)。 As a ND filter, a gradation type ND filter in which an optical film whose optical density continuously changes in the circumferential direction of a disk-shaped base material is proposed (see Patent Documents 1 to 4).
 特許文献1には、ガラス基材に金属膜でグラデーションパターンを形成したNDフィルタを2つ重ねた構成のNDフィルタユニットが記載れている。 Patent Document 1 describes an ND filter unit having a configuration in which two ND filters each having a gradation pattern formed of a metal film on a glass substrate are stacked.
 特許文献2には、フイルムベースと乳剤層からなるハロゲン化銀写真感光フイルムの乳剤層を露光・現像して、光透過率が連続的に変化するNDフィルタを形成することが記載されている。 Patent Document 2 describes that an emulsion layer of a silver halide photographic light-sensitive film comprising a film base and an emulsion layer is exposed and developed to form an ND filter whose light transmittance changes continuously.
 特許文献3には、透明基材(例えばガラス基材)上に色材を塗布した後、この色材を活性エネルギー線により露光後、現像して、光透過率が連続的に変化するNDフィルタを形成することが記載されている。 Patent Document 3 discloses an ND filter in which a color material is applied on a transparent base material (for example, a glass base material), then the color material is exposed to active energy rays, developed, and light transmittance continuously changes. Is described.
 特許文献4には、ガラス基材上にインクジェットプリンタによって濃度パターンを印刷して、光透過率が連続的に変化するNDフィルタを形成することが記載されている。 Patent Document 4 describes that a density pattern is printed on a glass substrate by an ink jet printer to form an ND filter whose light transmittance changes continuously.
日本国特開平3-6511号公報Japanese Unexamined Patent Publication No. 3-6511 日本国特開2003-248107号公報Japanese Unexamined Patent Publication No. 2003-248107 日本国特開2003-241251号公報Japanese Unexamined Patent Publication No. 2003-241251 日本国特開2007-243928号公報Japanese Unexamined Patent Publication No. 2007-243928
 特許文献1に記載のNDフィルタユニットは、金属膜によってグラデーションパターンが形成されているため、この金属膜による光の多重反射によってゴーストが発生し、画像品質が劣化する。 In the ND filter unit described in Patent Document 1, since a gradation pattern is formed by a metal film, a ghost is generated due to multiple reflection of light by the metal film, and image quality is deteriorated.
 特許文献2に記載のNDフィルタは、ハロゲン化銀写真感光フイルムのベースが光の散乱源となるため、撮像画像の解像度が劣化する。また、このNDフィルタを製品として利用するためには、このNDフィルタをガラス基材等の硬質基材に接着剤等で貼り付ける必要があり、この硬質基材や接着剤がある分、光透過率が低下したり光が散乱したりする可能性がある。 In the ND filter described in Patent Document 2, since the base of the silver halide photographic photosensitive film becomes a light scattering source, the resolution of the captured image is deteriorated. In order to use this ND filter as a product, it is necessary to attach this ND filter to a hard substrate such as a glass substrate with an adhesive or the like. The rate may decrease and light may be scattered.
 また、特許文献3に記載のNDフィルタは、ガラス基材上に形成した色材を活性エネルギー線によって露光するものであるため、露光装置が高価になり、製造コストが増大する。また、光の散乱を減らすためには、色材を構成する粒子を細かくする必要があるが、色材を構成する粒子を細かくすることは技術的に難しい。 Further, since the ND filter described in Patent Document 3 exposes a color material formed on a glass substrate with active energy rays, the exposure apparatus becomes expensive and the manufacturing cost increases. Further, in order to reduce light scattering, it is necessary to make particles constituting the color material fine, but it is technically difficult to make particles constituting the color material fine.
 また、特許文献4に記載のNDフィルタは、ガラス基材上に色素のパターンを形成するものであり、光の散乱を減らすためには、色素粒子を細かくする必要がある。しかし、色素粒子を細かくすることは技術的に難しい。 Further, the ND filter described in Patent Document 4 forms a pigment pattern on a glass substrate, and it is necessary to make the pigment particles fine in order to reduce light scattering. However, it is technically difficult to make the pigment particles fine.
 本発明は、上記事情に鑑みてなされたものであり、光の反射と散乱を容易に少なくすることが可能な低コストのNDフィルタユニット、それを備える撮影システム、及びそのNDフィルタユニットに用いるNDフィルタの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a low-cost ND filter unit capable of easily reducing reflection and scattering of light, an imaging system including the ND filter unit, and an ND used for the ND filter unit. It aims at providing the manufacturing method of a filter.
 本発明のNDフィルタユニットは、一方向又は一円周方向に向かって光透過率が連続的に変化する光学層を有する2つのNDフィルタを備え、上記2つのNDフィルタは、上記光学層の光透過率のグラデーションが互いに逆相となるように重ねて配置され、上記2つのNDフィルタの少なくとも一方は、透明基板上に上記光学層が形成されており、かつ、上記光学層は平均粒径が0.01μm以上0.2μm以下のハロゲン化銀粒子を含むハロゲン化銀写真乳剤を露光及び現像して得られる現像銀によって構成されているものである。 The ND filter unit of the present invention includes two ND filters having an optical layer whose light transmittance continuously changes in one direction or one circumferential direction, and the two ND filters are light beams of the optical layer. The transmission gradations are arranged so as to be opposite to each other, and at least one of the two ND filters has the optical layer formed on a transparent substrate, and the optical layer has an average particle diameter. It is composed of developed silver obtained by exposing and developing a silver halide photographic emulsion containing silver halide grains of 0.01 μm or more and 0.2 μm or less.
 本発明の撮影システムは、撮影レンズと、上記撮影レンズを通った光学像を撮像する撮像素子と、上記撮像素子の前方に配置される上記NDフィルタユニットとを備えるものである。 The imaging system of the present invention includes an imaging lens, an imaging element that captures an optical image that has passed through the imaging lens, and the ND filter unit that is disposed in front of the imaging element.
 本発明のNDフィルタの製造方法は、透明基板上に、平均粒径が0.01μm以上0.2μm以下のハロゲン化銀粒子を含むハロゲン化銀写真乳剤を塗布する工程と、上記塗布したハロゲン化銀写真乳剤を、連続的に変化する光透過率分布を持つマスクを介して露光する工程と、上記露光後のハロゲン化銀写真乳剤を現像処理して得られる現像銀のパターンにより、一方向又は一円周方向に向かって光透過率が連続的に変化する光学層を形成する工程とを備えるものである。 The method for producing an ND filter of the present invention comprises a step of coating a silver halide photographic emulsion containing silver halide grains having an average particle size of 0.01 μm or more and 0.2 μm or less on a transparent substrate, and the coated halide Depending on the pattern of the developed silver obtained by developing the silver photographic emulsion through a mask having a continuously changing light transmittance distribution and developing the silver halide photographic emulsion after exposure, the silver photographic emulsion may be unidirectional or And a step of forming an optical layer whose light transmittance changes continuously in the circumferential direction.
 本発明によれば、光の反射と散乱を少なくすることが可能な低コストのNDフィルタユニット、それを備える撮影システム、及びそのNDフィルタユニットに用いるNDフィルタの製造方法を提供することができる。 According to the present invention, it is possible to provide a low-cost ND filter unit capable of reducing light reflection and scattering, an imaging system including the ND filter unit, and a method for manufacturing an ND filter used in the ND filter unit.
本発明の一実施形態を説明するための撮影システム100の概略構成を示す図The figure which shows schematic structure of the imaging | photography system 100 for describing one Embodiment of this invention. 図1に示すNDフィルタ21の断面模式図Schematic sectional view of the ND filter 21 shown in FIG. 図2に示すNDフィルタ21を光学層211側から見たときの平面模式図2 is a schematic plan view when the ND filter 21 shown in FIG. 2 is viewed from the optical layer 211 side. 比較例1のNDフィルタユニットによってスポット光を撮影した結果得られた撮影画像を示す図The figure which shows the picked-up image obtained as a result of image | photographing spot light with the ND filter unit of the comparative example 1. 実施例1のNDフィルタユニットによってスポット光を撮影した結果得られた撮影画像を示す図The figure which shows the picked-up image obtained as a result of image | photographing spot light with the ND filter unit of Example 1. FIG. 比較例1のNDフィルタユニットの透過率を25%にして解像度チャートを撮影した結果得られた撮影画像の部分拡大図Partial enlarged view of a photographed image obtained as a result of photographing a resolution chart with the transmittance of the ND filter unit of Comparative Example 1 set to 25% 実施例1のNDフィルタユニットの透過率を25%にして解像度チャートを撮影した結果得られた撮影画像の部分拡大図Partial enlarged view of a photographed image obtained as a result of photographing a resolution chart with the transmittance of the ND filter unit of Example 1 set to 25% 実施例1のNDフィルタユニットの透過率を6.3%にして解像度チャートを撮影した結果得られた撮影画像の部分拡大図Partial enlarged view of a photographed image obtained as a result of photographing a resolution chart with the transmittance of the ND filter unit of Example 1 set to 6.3% 実施例2のNDフィルタユニットの透過率を6.3%にして解像度チャートを撮影した結果得られた撮影画像の部分拡大図Partial enlarged view of a photographed image obtained as a result of photographing a resolution chart with the transmittance of the ND filter unit of Example 2 set to 6.3% 最大透過率での実施例1のNDフィルタBと実施例2のNDフィルタCのそれぞれの波長毎の透過率特性を示す図The figure which shows the transmittance | permeability characteristic for each wavelength of ND filter B of Example 1 and ND filter C of Example 2 in the maximum transmittance | permeability. 透過率6.3%での実施例1のNDフィルタBと実施例2のNDフィルタCのそれぞれの波長毎の透過率特性を示す図The figure which shows the transmittance | permeability characteristic for each wavelength of ND filter B of Example 1 and ND filter C of Example 2 in the transmittance | permeability 6.3%. NDフィルタB(実施例1)の透過率6.3%の位置での反射率測定の概略を示す図The figure which shows the outline of the reflectance measurement in the position of the transmittance | permeability 6.3% of ND filter B (Example 1). NDフィルタB(実施例1)の透過率6.3%の位置での波長毎の反射率特性を示す図The figure which shows the reflectance characteristic for every wavelength in the position of the transmittance | permeability 6.3% of ND filter B (Example 1).
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態を説明するための撮影システム100の概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of an imaging system 100 for explaining an embodiment of the present invention.
 撮影システム100は、カメラ本体2と、カメラ本体2に着脱可能なレンズ装置1とを備える。なお、カメラ本体2とレンズ装置1は一体化されていてもよい。 The imaging system 100 includes a camera body 2 and a lens device 1 that can be attached to and detached from the camera body 2. The camera body 2 and the lens device 1 may be integrated.
 レンズ装置1は、ズームレンズ、フォーカスレンズ等の撮影レンズ10を備える。 The lens apparatus 1 includes a photographing lens 10 such as a zoom lens or a focus lens.
 カメラ本体2は、NDフィルタユニット20と、撮影ユニット30とを備える。 The camera body 2 includes an ND filter unit 20 and a photographing unit 30.
 撮影ユニット30は、撮影レンズ10によって集光された光を赤緑青の3色に分解する色分解プリズム31と、色分解プリズム31の赤色光の出射面に設けられた撮像素子31Rと、色分解プリズム31の緑色光の出射面に設けられた撮像素子31Gと、色分解プリズム31の青色光の出射面に設けられた撮像素子31Bとを備える。これら撮像素子31R,31G,31Bにより、撮影レンズ10を通った光学像が撮像される。ただし、カメラ本体2の中に色分解プリズム31を含む、いわゆる3板式の構成は1例であり、カメラ本体2の中に1個の撮像素子で構成する、いわゆる単板式の構成でも本願の主旨は成立する。 The photographing unit 30 includes a color separation prism 31 that separates the light collected by the photographing lens 10 into three colors of red, green, and blue, an image sensor 31R provided on a red light emission surface of the color separation prism 31, and a color separation. An image sensor 31G provided on the green light exit surface of the prism 31 and an image sensor 31B provided on the blue light exit surface of the color separation prism 31 are provided. An optical image passing through the taking lens 10 is picked up by these image pickup devices 31R, 31G, and 31B. However, the so-called three-plate configuration including the color separation prism 31 in the camera body 2 is an example, and the so-called single-plate configuration including one image sensor in the camera body 2 is the gist of the present application. Holds.
 NDフィルタユニット20は、撮影レンズ10の光軸K上に並べて配置された円盤状のNDフィルタ21,22と、NDフィルタ21,22の各々を各々の円周方向に回転させる回転機構23とを備える。 The ND filter unit 20 includes disk- shaped ND filters 21 and 22 arranged side by side on the optical axis K of the photographing lens 10, and a rotation mechanism 23 that rotates each of the ND filters 21 and 22 in the circumferential direction thereof. Prepare.
 図2は、図1に示すNDフィルタ21の断面模式図である。NDフィルタ21は、透明基板であるガラス板210と、ガラス板210上に形成された光学層211と、光学層211上に形成された接着層212と、接着層212上に形成された反射防止(AR)機能付フイルム213とを備える。AR機能付きフイルムとは、例えば反射干渉膜をもつフイルムである。本明細書において、透明基板とは、ハロゲン化銀写真感光フイルムのベースのように柔軟性のあるものではなく、ガラス板及び樹脂板等のように、光散乱の少ない透明な硬質の板のことを言う。 FIG. 2 is a schematic cross-sectional view of the ND filter 21 shown in FIG. The ND filter 21 includes a glass plate 210 which is a transparent substrate, an optical layer 211 formed on the glass plate 210, an adhesive layer 212 formed on the optical layer 211, and an antireflection coating formed on the adhesive layer 212. (AR) a film 213 with a function. The film with an AR function is a film having a reflective interference film, for example. In this specification, the transparent substrate is not a flexible substrate such as a base of a silver halide photographic photosensitive film, but a transparent hard plate with little light scattering such as a glass plate and a resin plate. Say.
 光学層211は、ガラス板210上にハロゲン化銀写真乳剤を塗布し、このハロゲン化銀写真乳剤を露光し、現像して得られた現像銀で構成される層である。なお、AR機能付フイルム213の代わりに透明なガラス板を設けてもよい。ガラス板210、及び、AR機能付フイルム213の代わりに設けたガラス板は、空気との界面側にAR機能が付加されたものでもよいのは言うまでもない。また、接着層212とAR機能付フイルム213又は透明なガラス板は必須ではなく省略してもよい。 The optical layer 211 is a layer composed of developed silver obtained by coating a silver halide photographic emulsion on a glass plate 210, exposing the silver halide photographic emulsion, and developing it. A transparent glass plate may be provided instead of the AR function-added film 213. Needless to say, the glass plate 210 and the glass plate provided in place of the AR function-equipped film 213 may have an AR function added to the interface with the air. Further, the adhesive layer 212 and the AR function-equipped film 213 or a transparent glass plate are not essential and may be omitted.
 NDフィルタ21は、ガラス板210の表面の法線方向が光軸Kと平行になるように配置される。なお、NDフィルタ22の構成はNDフィルタ21と同じであり、NDフィルタ22も、ガラス板210の表面の法線方向が光軸Kと平行になるように配置される。NDフィルタ21,22は、それぞれ、ガラス板210とAR機能付フイルム213のどちらをレンズ装置1に向けて配置してもよい。 The ND filter 21 is arranged so that the normal direction of the surface of the glass plate 210 is parallel to the optical axis K. The configuration of the ND filter 22 is the same as that of the ND filter 21, and the ND filter 22 is also arranged so that the normal direction of the surface of the glass plate 210 is parallel to the optical axis K. The ND filters 21 and 22 may be arranged such that either the glass plate 210 or the AR function-equipped film 213 faces the lens device 1.
 図3は、図2に示すNDフィルタ21を光学層211側から見たときの平面模式図である。なお、図3では、接着層212及びAR機能付フイルム213の図示を省略している。 FIG. 3 is a schematic plan view when the ND filter 21 shown in FIG. 2 is viewed from the optical layer 211 side. In FIG. 3, illustration of the adhesive layer 212 and the AR function-equipped film 213 is omitted.
 図3に示すように、ガラス板210上に形成される光学層211は、NDフィルタ21の一円周方向に向かって光透過率が連続的に変化している(図中、色が濃いところほど光透過率が小さい)。この光学層211は、例えば、ガラス板210の円周方向の角度θが285°の範囲において透過率が約99%~約1%に連続的に変化するように形成され、残りの75°の範囲が透過率約100%であるガラス板210となっている。 As shown in FIG. 3, in the optical layer 211 formed on the glass plate 210, the light transmittance continuously changes toward the one circumferential direction of the ND filter 21 (where the color is dark in the figure). The smaller the light transmittance). For example, the optical layer 211 is formed so that the transmittance continuously changes from about 99% to about 1% in the range where the circumferential angle θ of the glass plate 210 is 285 °, and the remaining 75 °. The range is a glass plate 210 having a transmittance of about 100%.
 NDフィルタ21とNDフィルタ22は、軸Pが回転機構23に接続されており、それぞれがこの軸Pを中心に回転できるようになっている。NDフィルタ21とNDフィルタ22は、光学層211の光透過率のグラデーションが、互いに逆相となるように重ねて配置される。逆相とは、光透過率の変化方向が逆方向であることを意味する。また、NDフィルタ21,22は、透過率約100%となる領域の角度範囲(75°)における中心角度(37.5°)の位置が光軸K方向で合わせられた(光軸K方向に見て重ねられた)姿勢をホームポジションとして設定している。その姿勢からNDフィルタ21は、例えば光軸Kを中心とする光の通過エリアに対して、光透過率が大きい方から小さい方に向けて回動され、NDフィルタ22も同様に、通過エリアに対して光透過率が大きい方から小さい方に向けて回動されるように、NDフィルタ21,22は互いに等速で逆方向に回動される。そして、このように逆相に配置されて逆方向に回動された際に、通過エリアの全域において濃度が常に均一になるように、円周方向の角度に対して比例的な濃度変化の傾斜がNDフィルタ21,22に付けられている。なお、NDフィルタ21,22を連動して逆方向に同速度で回転させるのではなく、各々独立して回転駆動させてもよい。また、その回転方向は逆方向に限定されず、同方向に回転させてもよい。NDフィルタ21,22を同方向に回転させる場合には、各々の回転速度に差を付ければよい。また、NDフィルタ21,22のいずれか一方のみを回転させる構成としてもよい。NDフィルタ21とNDフィルタ22の位置関係及び回転動作は、特開2007-243928号公報に記載されたものを採用することができる。 The ND filter 21 and the ND filter 22 have a shaft P connected to the rotation mechanism 23 and can rotate around the shaft P. The ND filter 21 and the ND filter 22 are arranged so that the gradation of the light transmittance of the optical layer 211 is opposite to each other. Reverse phase means that the direction of change in light transmittance is the reverse direction. The ND filters 21 and 22 have the center angle (37.5 °) in the angle range (75 °) of the region where the transmittance is about 100% aligned in the optical axis K direction (in the optical axis K direction). The posture (superimposed) is set as the home position. From that posture, for example, the ND filter 21 is rotated from the larger light transmittance to the smaller light transmission area with respect to the light passage area centered on the optical axis K, and the ND filter 22 is similarly moved to the passage area. On the other hand, the ND filters 21 and 22 are rotated in the opposite directions at the same speed so that the light transmittance is rotated from the larger one toward the smaller one. Then, when arranged in the opposite phase and rotated in the opposite direction, the gradient of concentration change proportional to the angle in the circumferential direction so that the concentration is always uniform over the entire passage area. Are attached to the ND filters 21 and 22. Note that the ND filters 21 and 22 may be rotated independently of each other instead of being rotated in the reverse direction at the same speed. Moreover, the rotation direction is not limited to the reverse direction, and it may be rotated in the same direction. When the ND filters 21 and 22 are rotated in the same direction, a difference may be added to each rotation speed. Alternatively, only one of the ND filters 21 and 22 may be rotated. As the positional relationship and rotation operation between the ND filter 21 and the ND filter 22, those described in Japanese Patent Application Laid-Open No. 2007-243928 can be employed.
 撮影システム100に用いられるNDフィルタ21,22は、それぞれ、光透過率が円周方向に連続的に変化する光学層211がガラス板210上に形成され、更に、この光学層211がハロゲン化銀写真乳剤を露光し、現像して得られた現像銀によって形成されていることが特徴である。 In each of the ND filters 21 and 22 used in the photographing system 100, an optical layer 211 whose light transmittance continuously changes in the circumferential direction is formed on the glass plate 210. Further, the optical layer 211 is made of silver halide. It is characterized by being formed by developed silver obtained by exposing and developing a photographic emulsion.
 ガラス板210は、ハロゲン化銀写真感光フイルムに用いられるPET(ポリエチレンテレフタレート)及びTAC(トリアセチルセルロース)等のプラスチックのベースと比較すると、光の散乱が少ない。そのため、ガラス板210による光の散乱はほとんど起きない。このように、NDフィルタ21,22は、ガラス板210上に光学層211が形成されていることにより、ハロゲン化銀写真感光フイルムを用いた従来のNDフィルタと比較して、光の散乱を少なくすることができる。 The glass plate 210 scatters less light than plastic bases such as PET (polyethylene terephthalate) and TAC (triacetyl cellulose) used in silver halide photographic photosensitive films. Therefore, light scattering by the glass plate 210 hardly occurs. As described above, the ND filters 21 and 22 have the optical layer 211 formed on the glass plate 210, thereby reducing light scattering as compared with the conventional ND filter using a silver halide photographic photosensitive film. can do.
 また、NDフィルタ21,22は、光学層211を、ハロゲン化銀写真乳剤を露光、現像して得られた現像銀によって形成している。ハロゲン化銀写真乳剤は、ハロゲン化銀粒子の直径を小さくすることが容易であるため、現像銀の粒子の直径(粒径)を小さくすることも容易である。したがって、色素等によって光学層を形成する従来技術と比較すると、光の散乱を抑えることが容易となり、製造コストの増大も防ぐこができる。 In the ND filters 21 and 22, the optical layer 211 is formed of developed silver obtained by exposing and developing a silver halide photographic emulsion. Since the silver halide photographic emulsion can easily reduce the diameter of silver halide grains, the diameter (particle diameter) of developed silver grains can also be easily reduced. Therefore, as compared with the prior art in which the optical layer is formed with a dye or the like, it becomes easier to suppress light scattering, and an increase in manufacturing cost can be prevented.
 なお、光学層211を構成する現像銀の原材料となるハロゲン化銀写真乳剤に含まれるハロゲン化銀粒子の平均粒径が大きいと、乳剤層を露光、現像して得られる現像銀のサイズが大きくなる。このため、ハロゲン化銀粒子の平均粒径は小さいほうが好ましい。様々な検討を行った結果、ハロゲン化銀写真乳剤のハロゲン化銀粒子の平均粒径を0.2μm以下にすると、現像銀による散乱をより少なくできることが分かった。そのため、ハロゲン化銀粒子の平均粒径は0.2μm以下とするのが好ましい。ハロゲン化銀粒子の平均粒径は、電子顕微鏡によって観測することで得られる。 If the average grain size of the silver halide grains contained in the silver halide photographic emulsion which is the raw material of developed silver constituting the optical layer 211 is large, the size of the developed silver obtained by exposing and developing the emulsion layer is large. Become. For this reason, it is preferable that the average grain size of the silver halide grains is small. As a result of various studies, it has been found that when the average grain size of silver halide grains in a silver halide photographic emulsion is 0.2 μm or less, scattering by developed silver can be reduced. For this reason, the average grain size of the silver halide grains is preferably 0.2 μm or less. The average grain size of the silver halide grains can be obtained by observing with an electron microscope.
 しかし、ハロゲン化銀粒子の平均粒径があまり小さすぎて0.01μmを下回ってしまうと、乳剤層を露光、現像して得られる現像銀の分光的ニュートラル性(波長による透過率の平坦性)が損なわれる可能性がある。現像銀の分光的ニュートラル性を維持するために様々な添加剤が検討されているが、添加剤そのものが光学層211の特性や安定性を阻害する可能性がある。このため、ハロゲン化銀粒子の平均粒径は0.01μm以上とするのが好まく、0.1μm以上とするのがより好ましい。なお、ハロゲン化銀写真乳剤のハロゲン組成には塩化銀、塩臭化銀、臭化銀、ヨウ臭化銀等、いずれも利用することができる。 However, if the average grain size of the silver halide grains is too small to be less than 0.01 μm, the spectral neutrality of the developed silver obtained by exposing and developing the emulsion layer (flatness of transmittance with wavelength) May be damaged. Various additives have been studied in order to maintain the spectral neutrality of developed silver. However, the additive itself may inhibit the characteristics and stability of the optical layer 211. Therefore, the average grain size of the silver halide grains is preferably 0.01 μm or more, and more preferably 0.1 μm or more. For the halogen composition of the silver halide photographic emulsion, any of silver chloride, silver chlorobromide, silver bromide, silver iodobromide and the like can be used.
 NDフィルタ21,22は次のようにして製造する。 ND filters 21 and 22 are manufactured as follows.
 まず、ガラス板210上にハロゲン化銀写真乳剤を一定厚みに塗布して乳剤層を形成する。次に、乳剤層が形成されたガラス板210上にハードマスクを配置し、このマスクを介し、例えばハロゲンランプ等の白色光源を用いて乳剤層を露光する。 First, a silver halide photographic emulsion is coated on a glass plate 210 to a certain thickness to form an emulsion layer. Next, a hard mask is placed on the glass plate 210 on which the emulsion layer is formed, and the emulsion layer is exposed through this mask using a white light source such as a halogen lamp.
 ここで用いるマスクは、図3に示したような光学層211の光学濃度のグラデーションと同様のパターンを、透明なガラス板上に金属を蒸着することで形成したものを用いることができる。このマスクにおいて、金属が蒸着されていない領域では、その領域に入射した光がそのまま通過して乳剤層に入射し、金属が蒸着されている領域では、その領域に入射した光が、その領域の金属膜の厚みに応じた透過量で当該領域を通過して乳剤層に入射する。これにより、乳剤層は、露光光が強く照射される部分と弱く照射される部分が円周方向に連続して形成される。 As the mask used here, a mask formed by depositing a metal on a transparent glass plate in the same pattern as the optical density gradation of the optical layer 211 as shown in FIG. 3 can be used. In this mask, in the area where the metal is not deposited, the light incident on the area passes as it is and enters the emulsion layer, and in the area where the metal is deposited, the light incident on the area passes through the area. The light passes through the region with a transmission amount corresponding to the thickness of the metal film and enters the emulsion layer. As a result, the emulsion layer is formed such that a portion that is strongly irradiated with exposure light and a portion that is weakly irradiated are continuously formed in the circumferential direction.
 露光終了後、現像処理する。この現像処理により、乳剤層では、露光光が照射された部分が、その照射量に応じて現像銀を形成し、上記マスクに対応した光学濃度のグラデーションパターンが形成される。現像処理後、定着、水洗、及び乾燥を順に行って、光学層211を形成する。 Develop after exposure. By this development processing, in the emulsion layer, the portion irradiated with the exposure light forms developed silver according to the irradiation amount, and a gradation pattern of optical density corresponding to the mask is formed. After the development processing, the optical layer 211 is formed by sequentially performing fixing, washing with water, and drying.
 光学層211の形成後、光学層211上に、この光学層211表面に形成された微小な凹凸を埋めて滑らかにできる厚さ、即ち、凹凸の頂点部から谷底部までの深さ以上の厚さを有した無色透明樹脂層(接着層212)を形成する。この工程により、光学層211の表面の凹凸による散乱光の発生を防止することができる。また、光学層211表面に画像欠陥を発生させる除去困難な埃等が付着するのを防ぐことができる。 After the formation of the optical layer 211, the thickness that can be smoothed by filling the optical layer 211 with the fine irregularities formed on the surface of the optical layer 211, that is, the thickness greater than the depth from the apex portion of the irregularities to the bottom of the valley A colorless transparent resin layer (adhesive layer 212) having a thickness is formed. By this step, generation of scattered light due to the unevenness of the surface of the optical layer 211 can be prevented. In addition, it is possible to prevent adhesion of dust or the like that causes image defects on the surface of the optical layer 211.
 最後に、接着層212上に透明な反射防止機能付フイルム213(又は透明ガラス板)を置いて、光学層211と反射防止機能付フイルム213(又は透明ガラス板)を接着し、NDフィルタ21を完成させる。 Finally, a transparent antireflection film 213 (or transparent glass plate) is placed on the adhesive layer 212, the optical layer 211 and the antireflection film 213 (or transparent glass plate) are adhered, and the ND filter 21 is attached. Finalize.
 上述したように、接着層212と反射防止機能付フイルム213を設けることで、光学層211表面への異物の付着を防ぐことができると共に、光学層211を保護して、NDフィルタの品質を保つことができる。なお、光学層211にフイルムを貼り付ける場合、フイルムは解像力劣化を発生させ、映像品質を劣化させることがあるので、映像劣化の少ないフイルムを用いることが望ましい。 As described above, by providing the adhesive layer 212 and the film 213 with an antireflection function, it is possible to prevent foreign matter from adhering to the surface of the optical layer 211 and to protect the optical layer 211 and maintain the quality of the ND filter. be able to. Note that, when a film is pasted on the optical layer 211, it is desirable to use a film with little image degradation because the film may cause degradation of resolution and image quality.
 以上のように、NDフィルタ21,22は、白色光を用いた露光によって光学層211を形成することができるため、露光装置が高価にならず、製造コストを抑えることができる。 As described above, since the ND filters 21 and 22 can form the optical layer 211 by exposure using white light, the exposure apparatus is not expensive and the manufacturing cost can be suppressed.
 また、NDフィルタ21,22によれば、ガラス板210と光学層211の2つの構成要素のみでNDフィルタを完成させることができる。ハロゲン化銀写真感光フイルムを用いてNDフィルタを作製する従来方式では、ハロゲン化銀写真感光フイルム自体がベースと光学層の2つの構成要素で構成される。更に、ハロゲン化銀写真感光フイルム自体は剛性がないため、このハロゲン化銀写真感光フイルムをガラス板等の透明基板に接着剤を介して貼り付ける必要がある。そのため、NDフィルタを構成する部材の数が少なくとも4つ(ベース、光学層、接着剤、透明基板)は必要になる。NDフィルタを構成する構成要素の数が増えると、それだけ構成要素の界面における光の反射によって映像品質の劣化が懸念される。本実施形態のNDフィルタ21,22は、最小で2つの構成要素で構成することができるため、構成要素同士の界面における光の反射を減らすことができ、映像品質の劣化を防ぐことができる。 Further, according to the ND filters 21 and 22, the ND filter can be completed with only two components of the glass plate 210 and the optical layer 211. In the conventional method of producing an ND filter using a silver halide photographic photosensitive film, the silver halide photographic photosensitive film itself is composed of two components, a base and an optical layer. Furthermore, since the silver halide photographic photosensitive film itself is not rigid, it is necessary to affix the silver halide photographic photosensitive film to a transparent substrate such as a glass plate with an adhesive. Therefore, at least four members (base, optical layer, adhesive, transparent substrate) constituting the ND filter are required. As the number of components constituting the ND filter increases, there is a concern that the image quality is degraded due to the reflection of light at the interface of the components. Since the ND filters 21 and 22 of the present embodiment can be configured with a minimum of two components, it is possible to reduce the reflection of light at the interface between the components and to prevent deterioration of the video quality.
 なお、図1の例では、NDフィルタユニット20に含まれる2つのNDフィルタを同じ構成にしたが、2つのNDフィルタのうちの一方を図2に示す断面構成のものとし、他方を、例えば、特許文献1に記載されているNDフィルタとしてもよい。このようにしても、従来構成のNDフィルタを2つ用いる場合と比較すると、光の反射によるゴーストを低減することができる。 In the example of FIG. 1, the two ND filters included in the ND filter unit 20 have the same configuration, but one of the two ND filters has a cross-sectional configuration shown in FIG. 2 and the other is, for example, The ND filter described in Patent Document 1 may be used. Even in this case, compared with the case of using two ND filters of the conventional configuration, it is possible to reduce the ghost due to light reflection.
 また、図1の例では、NDフィルタユニット20がカメラ本体2に内蔵されるものとしたが、NDフィルタユニット20は、レンズ装置1に内蔵してあってもよい。この場合、レンズ装置1の撮影レンズ10よりも被写体側又はそれとは反対側にNDフィルタユニット20を配置すればよい。また、撮影レンズ10が複数枚のレンズから構成される場合には、これら複数枚のレンズの間にNDフィルタユニット20を配置してもよい。 In the example of FIG. 1, the ND filter unit 20 is built in the camera body 2, but the ND filter unit 20 may be built in the lens device 1. In this case, the ND filter unit 20 may be disposed on the object side or the opposite side of the photographing lens 10 of the lens apparatus 1. When the photographing lens 10 is composed of a plurality of lenses, the ND filter unit 20 may be disposed between the plurality of lenses.
 また、NDフィルタユニット20をアダプタに内蔵し、このアダプタを、レンズ装置1の被写体側に装着できるようにしたり、レンズ装置1とカメラ本体2との間に装着できるようにしたりしてもよい。 Further, the ND filter unit 20 may be built in the adapter, and the adapter may be attached to the subject side of the lens apparatus 1 or may be attached between the lens apparatus 1 and the camera body 2.
 また、NDフィルタ21,22の形状は円盤状としたが、特許文献4に記載されているように、長方形の板状とし、NDフィルタ21,22をそれぞれ光軸Kに対して垂直方向に移動できるようにしてもよい。更に、円盤状や長方形の板状以外の形状も可能である。このような場合は、面内の一方向に光透過率を連続的に変化させればよい。 Although the ND filters 21 and 22 have a disk shape, as described in Patent Document 4, they have a rectangular plate shape, and the ND filters 21 and 22 are moved in a direction perpendicular to the optical axis K, respectively. You may be able to do it. Furthermore, shapes other than a disk shape or a rectangular plate shape are possible. In such a case, the light transmittance may be continuously changed in one direction within the surface.
 また、図1に示したNDフィルタユニット20は、テレビ用、映画撮影用の業務用カメラシステムへの適用を想定した構成であるが、これに限らず、一眼レフカメラ、ハンドヘルドタイプのカメラシステム等でも、撮像光学系であれば一般的に適用が可能である。 Further, the ND filter unit 20 shown in FIG. 1 is configured to be applied to a commercial camera system for television and movie shooting. However, the present invention is not limited to this, and a single-lens reflex camera, a handheld type camera system, or the like. However, it is generally applicable to any imaging optical system.
 以下、本発明の実施例を説明する。以下実施例に示す材料、使用量、割合、処理内容、処理手順は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本発明の範囲は以下に示す具体例に限定されるものではない。 Hereinafter, examples of the present invention will be described. Hereinafter, materials, usage amounts, ratios, processing contents, and processing procedures shown in the examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
 (比較例1)
 厚み125μmのPET支持体上に、支持体側から下引層、乳剤層、保護層の順に塗布して、試料H1を作製した。
(Comparative Example 1)
A sample H1 was prepared by coating an undercoat layer, an emulsion layer, and a protective layer in this order on a PET support having a thickness of 125 μm from the support side.
 乳剤は、塩化銀55モル%、臭化銀45モル%からなり、平均粒径0.17μmのリップマン型ハロゲン化銀写真乳剤を常法に従って物理熟成、脱塩し、チオ硫酸ナトリウム及び塩化金[III]酸を添加して化学熟成することで調製した。 The emulsion is composed of 55 mol% of silver chloride and 45 mol% of silver bromide. Physically ripened and desalted Lippmann-type silver halide photographic emulsion having an average particle size of 0.17 μm according to a conventional method to obtain sodium thiosulfate and gold chloride [ III] Prepared by adding chemical acid aging.
 上記乳剤に硬膜剤として1,2‐ビス(ビニルスルホニルアセトアミド)エタン、安定剤として4‐ヒドロキシ‐6‐メチル-1,3,3a,7-テトラザインデン、カブリ防止剤として1‐フェニル‐5‐メルカプトテトラゾール、界面活性剤としてビス(2‐エチルへキシル)スルホコハク酸ナトリウム、増粘剤としてポリ(p‐スチレンスルホン酸カリウム)を加えて、PET支持体上の下引層(ゼラチン50mg/m)の上に、銀3.5g/m、ゼラチン5.0g/mとなるように塗布して上記乳剤層を形成した。 In the above emulsion, 1,2-bis (vinylsulfonylacetamido) ethane as a hardening agent, 4-hydroxy-6-methyl-1,3,3a, 7-tetrazaindene as a stabilizer, 1-phenyl-as an antifoggant Add 5-mercaptotetrazole, sodium bis (2-ethylhexyl) sulfosuccinate as the surfactant, poly (potassium p-styrenesulfonate) as the thickener, and subbing layer (gelatin 50 mg / mg) on the PET support. The above emulsion layer was formed by coating on m 2 ) so as to be 3.5 g / m 2 silver and 5.0 g / m 2 gelatin.
 試料H1を、事前に用意したNDフィルタ作製用マスクを介して白熱灯光源でそれぞれ光量を調節しながら露光し、富士フイルム株式会社製の市販のFT-803R現像液で20℃、3分現像し、富士フイルム株式会社製の市販の富士酢酸停止液に20℃で30秒浸けた。更に富士フイルム株式会社製の市販のLF-308定着液で20℃、3分定着した後に、室温において3分間流水で水洗し、自然乾燥した。これにより現像銀による光学層が形成された。このようにして得られた試料の両面に、接着剤によりガラス板を貼り付けて、NDフィルタAを形成した。 Sample H1 was exposed while adjusting the amount of light with an incandescent lamp light source through an ND filter preparation mask prepared in advance, and developed with a commercial FT-803R developer manufactured by FUJIFILM Corporation for 3 minutes at 20 ° C. Then, it was immersed in a commercial Fuji acetic acid stop solution manufactured by FUJIFILM Corporation for 30 seconds at 20 ° C. Further, after fixing for 3 minutes at 20 ° C. with a commercially available LF-308 fixing solution manufactured by FUJIFILM Corporation, the film was washed with running water for 3 minutes at room temperature and dried naturally. As a result, an optical layer made of developed silver was formed. Thus, the glass plate was affixed on both surfaces of the sample obtained with the adhesive agent, and ND filter A was formed.
 記録画素が2メガピクセルのカメラのレンズ先端に、2つのNDフィルタAを逆相に重ねて配置し、2つのNDフィルタAを併せたNDフィルタユニットYAの光透過率を25%にした状態で、スポット光の撮影を行った。また、同様のシステム構成で、NDフィルタユニットYAの光透過率を25%にした状態で、解像度チャートの撮影を行った。 In a state where the two ND filters A are arranged in opposite phases on the lens tip of a camera having a recording pixel of 2 megapixels, and the light transmittance of the ND filter unit YA including the two ND filters A is 25%. I took a spotlight. Further, with the same system configuration, the resolution chart was taken in a state where the light transmittance of the ND filter unit YA was 25%.
 (実施例1)
 PET支持体を厚み1.6mmのガラス支持体に変更した以外は、比較例1と同様の方法で試料H1を作製した。この試料H1を比較例1と同様の方法で露光、現像、定着、水洗、及び乾燥して得られたもののガラス支持体の反対面に、接着剤によりガラス板を貼り付けてNDフィルタBを作製した。記録画素が2メガピクセルのカメラのレンズ先端に、2つのNDフィルタBを逆相に重ねて配置し、2つのNDフィルタBを併せたNDフィルタユニットYBの光透過率を25%にした状態でスポット光の撮影を行った。また、同様のシステム構成で、NDフィルタユニットYBの光透過率を25%と6.3%にした状態で解像度チャートの撮影を行った。また、NDフィルタB単体の光透過率の測定を行った。また、NDフィルタBの、波長550nmの光に対する透過率が6.3%となる位置での光の反射率の測定を行った。
Example 1
Sample H1 was produced in the same manner as in Comparative Example 1 except that the PET support was changed to a glass support having a thickness of 1.6 mm. The sample H1 was obtained by exposing, developing, fixing, washing and drying the sample H1 in the same manner as in Comparative Example 1, and a glass plate was attached to the opposite surface of the glass support with an adhesive to produce an ND filter B. did. In a state where the two ND filters B are arranged in opposite phases on the lens tip of a camera having a recording pixel of 2 megapixels, and the light transmittance of the ND filter unit YB including the two ND filters B is 25%. The spotlight was photographed. Further, with the same system configuration, the resolution chart was photographed with the light transmittance of the ND filter unit YB being 25% and 6.3%. Further, the light transmittance of the ND filter B alone was measured. Further, the reflectance of light at a position where the transmittance of the ND filter B with respect to light having a wavelength of 550 nm was 6.3% was measured.
 図4は、比較例1のNDフィルタユニットYAの光透過率を25%にした状態でスポット光を撮影して得られた撮影画像を示す図である。図5は、実施例1のNDフィルタユニットYBの光透過率を25%にした状態でスポット光を撮影して得られた撮影画像を示す図である。 FIG. 4 is a diagram showing a photographed image obtained by photographing spot light in a state where the light transmittance of the ND filter unit YA of Comparative Example 1 is 25%. FIG. 5 is a diagram illustrating a photographed image obtained by photographing spot light in a state where the light transmittance of the ND filter unit YB of Example 1 is 25%.
 図4、5の比較から、PET支持体上に光学層が形成された試料の両面にガラス板を貼り付けたNDフィルタからなる比較例1のNDフィルタユニットYAでは、画像の白濁の範囲が大きく、光散乱が多くなっていることが分かる。 4 and 5, the ND filter unit YA of Comparative Example 1 composed of an ND filter in which glass plates are attached to both surfaces of a sample in which an optical layer is formed on a PET support has a large range of image turbidity. It can be seen that light scattering is increased.
 図6は、比較例1のNDフィルタユニットYAの光透過率を25%にした状態で解像度チャートを撮影して得られた撮影画像の部分拡大図である。図7は、実施例1のNDフィルタユニットYBの光透過率を25%にした状態で解像度チャートを撮影して得られた撮影画像の部分拡大図である。図8は、実施例1のNDフィルタユニットYBの光透過率を6.3%にした状態で解像度チャートを撮影して得られた撮影画像の部分拡大図である。 FIG. 6 is a partially enlarged view of a photographed image obtained by photographing a resolution chart in a state where the light transmittance of the ND filter unit YA of Comparative Example 1 is 25%. FIG. 7 is a partially enlarged view of a photographed image obtained by photographing a resolution chart in a state where the light transmittance of the ND filter unit YB of Example 1 is 25%. FIG. 8 is a partially enlarged view of a photographed image obtained by photographing a resolution chart in a state where the light transmittance of the ND filter unit YB of Example 1 is set to 6.3%.
 図6~図8を見て分かるように、比較例1のNDフィルタユニットYAでは、画像の解像度が600TV本以下となり、解像劣化が著しい。これに対し、実施例1のNDフィルタユニットYBは、透過率によらずに、画像の解像度が800TV本以上となっている。 As can be seen from FIG. 6 to FIG. 8, in the ND filter unit YA of Comparative Example 1, the resolution of the image is 600 TV lines or less, and the resolution degradation is remarkable. On the other hand, the ND filter unit YB of the first embodiment has an image resolution of 800 TV lines or more regardless of the transmittance.
 (実施例2)
 乳剤のハロゲン化銀の平均粒径を0.06μmに変更した以外は、実施例1と同様の方法でNDフィルタCを作製した。このNDフィルタCについて、光透過率の測定を行った。また、記録画素が2メガピクセルのカメラのレンズ先端に、2つのNDフィルタCを逆相に重ねて配置し、2つのNDフィルタCを併せたNDフィルタユニットYCの光透過率を6.3%にした状態で解像度チャートの撮影を行った。
(Example 2)
An ND filter C was prepared in the same manner as in Example 1 except that the average grain size of silver halide in the emulsion was changed to 0.06 μm. About this ND filter C, the light transmittance was measured. In addition, two ND filters C are arranged in the opposite phase on the lens tip of a camera having a recording pixel of 2 megapixels, and the light transmittance of the ND filter unit YC including the two ND filters C is 6.3%. The resolution chart was taken in the state.
 図9は、実施例2のNDフィルタユニットYCの光透過率を6.3%にした状態で解像度チャートを撮影して得られた撮影画像の部分拡大図である。実施例2のNDフィルタユニットYCは、画像の解像度が800TV本以上となっている。 FIG. 9 is a partially enlarged view of a photographed image obtained by photographing a resolution chart in a state where the light transmittance of the ND filter unit YC of Example 2 is set to 6.3%. The ND filter unit YC of the second embodiment has an image resolution of 800 TV lines or more.
 図10は、NDフィルタB(実施例1)とNDフィルタC(実施例2)のそれぞれの最大透過率の位置での波長毎の透過率特性を示す図である。図11は、NDフィルタB(実施例1)とNDフィルタC(実施例2)のそれぞれの波長550nmに対する光透過率6.3%の位置での波長毎の透過率特性を示す図である。 FIG. 10 is a diagram showing the transmittance characteristics for each wavelength at the positions of the maximum transmittances of the ND filter B (Example 1) and the ND filter C (Example 2). FIG. 11 is a diagram showing the transmittance characteristics for each wavelength at the position where the light transmittance is 6.3% with respect to the wavelength of 550 nm of the ND filter B (Example 1) and the ND filter C (Example 2).
 図11を見てわかるようにNDフィルタC(実施例2)では、短波長側での透過率の透過率が低下している。これは光学層を形成する現像銀の分光的ニュートラル性が若干低下していることを示している。 As can be seen from FIG. 11, in the ND filter C (Example 2), the transmittance of the transmittance on the short wavelength side is lowered. This indicates that the spectral neutrality of the developed silver forming the optical layer is slightly reduced.
 一方、NDフィルタB(実施例1)では、短波長側での透過率の低下は小さく、光学層を形成する現像銀の分光的ニュートラル性が十分に維持されていることがわかる。この結果から、NDフィルタ21,22における光学層211の原材料となるハロゲン化銀の平均粒径は0.1μm以上とするのが好ましいことが分かる。また、NDフィルタBは、ハロゲン化銀の平均粒径を0.2μm以下としているため、平均粒径が大きすぎることによる解像力の低下も抑制されている。 On the other hand, in the ND filter B (Example 1), the decrease in the transmittance on the short wavelength side is small, and it can be seen that the spectral neutrality of the developed silver forming the optical layer is sufficiently maintained. From this result, it can be seen that the average grain size of silver halide used as the raw material of the optical layer 211 in the ND filters 21 and 22 is preferably 0.1 μm or more. Further, since the ND filter B has an average grain size of silver halide of 0.2 μm or less, a decrease in resolution due to an excessively large average grain size is also suppressed.
 図12は、NDフィルタBの透過率6.3%の位置での反射率測定の概略を示す図である。ARフイルム213上側から入射してきた光は、主にARフイルム213と空気との界面、及び接着層212と光学層211との界面で反射する。本実施例では、この二つの反射光を併せた反射率を分光光度計で測定した。 FIG. 12 is a diagram showing an outline of reflectance measurement at a position where the transmittance of the ND filter B is 6.3%. Light incident from the upper side of the AR film 213 is reflected mainly at the interface between the AR film 213 and air and the interface between the adhesive layer 212 and the optical layer 211. In this example, the reflectance of the two reflected lights was measured with a spectrophotometer.
 図13は、NDフィルタBの透過率6.3%の位置での波長毎の反射率特性を示す図である。一般的にクロム等の金属膜で透過率6.3%の膜を形成すると30%以上の反射率は避けられず、光学機器へ組み込んだ場合にはゴーストが無視できない量となって画像品質を劣化させる。しかし、NDフィルタBでは420nm~670nmの波長域で反射率が0.5%を下回っており、この反射によるゴーストは無視できるレベルの微小量となっている。 FIG. 13 is a diagram showing the reflectance characteristics for each wavelength at the position where the transmittance of the ND filter B is 6.3%. In general, when a film with a transmittance of 6.3% is formed of a metal film such as chromium, a reflectance of 30% or more cannot be avoided. When incorporated in an optical instrument, the amount of ghosts cannot be ignored. Deteriorate. However, in the ND filter B, the reflectance is less than 0.5% in the wavelength region of 420 nm to 670 nm, and the ghost caused by this reflection is a negligible minute amount.
 以上説明してきたように、本明細書には以下の事項が開示されている。 As described above, the following items are disclosed in this specification.
 開示されたNDフィルタユニットは、一方向又は一円周方向に向かって光透過率が連続的に変化する光学層を有する2つのNDフィルタを備え、上記2つのNDフィルタは、上記光学層の光透過率のグラデーションが互いに逆相となるように重ねて配置され、上記2つのNDフィルタの少なくとも一方は、透明基板上に上記光学層が形成されており、かつ、上記光学層は平均粒径が0.01μm以上0.2μm以下のハロゲン化銀粒子を含むハロゲン化銀写真乳剤を露光及び現像して得られる現像銀によって構成されているものである。 The disclosed ND filter unit includes two ND filters each having an optical layer whose light transmittance continuously changes in one direction or one circumferential direction, and the two ND filters include light of the optical layer. The transmission gradations are arranged so as to be opposite to each other, and at least one of the two ND filters has the optical layer formed on a transparent substrate, and the optical layer has an average particle diameter. It is composed of developed silver obtained by exposing and developing a silver halide photographic emulsion containing silver halide grains of 0.01 μm or more and 0.2 μm or less.
 開示されたNDフィルタユニットは、上記透明基板がガラス板であるものを含む。 The disclosed ND filter unit includes one in which the transparent substrate is a glass plate.
 開示されたNDフィルタユニットは、上記光学層上に透明板を備えるものである。 The disclosed ND filter unit includes a transparent plate on the optical layer.
 開示されたNDフィルタユニットは、上記透明板が、上記光学層上に接着剤を介して貼り付けられているものである。 In the disclosed ND filter unit, the transparent plate is attached to the optical layer via an adhesive.
 開示されたNDフィルタユニットは、上記透明板が反射防止機能を有するものである。 In the disclosed ND filter unit, the transparent plate has an antireflection function.
 開示されたNDフィルタユニットは、上記ハロゲン化銀粒子の平均粒径が0.1μm~0.2μmであるものを含む。 The disclosed ND filter unit includes those in which the average grain size of the silver halide grains is 0.1 μm to 0.2 μm.
 開示されたNDフィルタユニットは、上記2つのNDフィルタを互いに逆向きに移動させる機構を備えるものである。 The disclosed ND filter unit includes a mechanism for moving the two ND filters in opposite directions.
 開示された撮影システムは、撮影レンズと、上記撮影レンズを通った光学像を撮像する撮像素子と、上記撮像素子の前方に配置される上記NDフィルタユニットとを備えるものである。 The disclosed imaging system includes an imaging lens, an imaging element that captures an optical image that passes through the imaging lens, and the ND filter unit that is disposed in front of the imaging element.
 開示されたNDフィルタの製造方法は、透明基板上に、平均粒径が0.01μm以上0.2μm以下のハロゲン化銀を含むハロゲン化銀写真乳剤を塗布する工程と、上記塗布したハロゲン化銀写真乳剤を、連続的に変化する光透過率分布を持つマスクを介して露光する工程と、上記露光後のハロゲン化銀写真乳剤を現像処理して得られる現像銀のパターンにより、一方向又は一円周方向に向かって光透過率が連続的に変化する光学層を形成する工程とを備えるものである。 The disclosed manufacturing method of the ND filter includes a step of coating a silver halide photographic emulsion containing silver halide having an average grain size of 0.01 μm or more and 0.2 μm or less on a transparent substrate, and the coated silver halide. Depending on the pattern of the developed silver obtained by developing the photographic emulsion through a mask having a continuously varying light transmittance distribution and developing the silver halide photographic emulsion after exposure, the photographic emulsion is unidirectional or Forming an optical layer whose light transmittance continuously changes in the circumferential direction.
 本発明のNDフィルタユニットは、例えばデジタルカメラ等の撮像装置に搭載して、撮像画質向上に寄与することができる。 The ND filter unit of the present invention can be mounted on an imaging device such as a digital camera, for example, and can contribute to improvement of imaging image quality.
 本発明を詳細にまた特定の実施態様について説明したが、開示された発明の技術思想を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2011年11月15日出願の日本特許出願(特願2011-250157)、2012年10月16日出願の日本特許出願(特願2012-229093)に基づくものであり、その内容はここに取り込まれる。 Although the present invention has been described in detail and with specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the technical spirit of the disclosed invention. This application is based on a Japanese patent application filed on November 15, 2011 (Japanese Patent Application No. 2011-250157) and a Japanese patent application filed on October 16, 2012 (Japanese Patent Application No. 2012-229093). Captured here.
20 NDフィルタユニット
21,22 NDフィルタ
210 ガラス板
211 光学層
212 接着層
213 反射防止機能付フイルム
20 ND filter unit 21, 22 ND filter 210 Glass plate 211 Optical layer 212 Adhesive layer 213 Film with antireflection function

Claims (9)

  1.  一方向又は一円周方向に向かって光透過率が連続的に変化する光学層を有する2つのNDフィルタを備え、
     前記2つのNDフィルタは、前記光学層の光透過率のグラデーションが互いに逆相となるように重ねて配置され、
     前記2つのNDフィルタの少なくとも一方は、透明基板上に前記光学層が形成されており、かつ、前記光学層は平均粒径が0.01μm以上0.2μm以下のハロゲン化銀粒子を含むハロゲン化銀写真乳剤を露光及び現像して得られる現像銀によって構成されているNDフィルタユニット。
    Comprising two ND filters having an optical layer whose light transmittance continuously changes in one direction or one circumferential direction;
    The two ND filters are arranged so that gradations of light transmittance of the optical layer are opposite to each other,
    At least one of the two ND filters has the optical layer formed on a transparent substrate, and the optical layer contains silver halide grains having an average grain size of 0.01 μm or more and 0.2 μm or less. An ND filter unit composed of developed silver obtained by exposing and developing a silver photographic emulsion.
  2.  請求項1記載のNDフィルタユニットであって、
     前記透明基板はガラス板であるNDフィルタユニット。
    The ND filter unit according to claim 1,
    The ND filter unit, wherein the transparent substrate is a glass plate.
  3.  請求項1又は2記載のNDフィルタユニットであって、
     前記光学層上に透明板を備えるNDフィルタユニット。
    The ND filter unit according to claim 1 or 2,
    An ND filter unit comprising a transparent plate on the optical layer.
  4.  請求項3記載のNDフィルタユニットであって、
     前記透明板は、前記光学層上に接着剤を介して貼り付けられているNDフィルタユニット。
    The ND filter unit according to claim 3,
    The transparent plate is an ND filter unit that is attached to the optical layer via an adhesive.
  5.  請求項3又は4記載のNDフィルタユニットであって、
     前記透明板は反射防止機能を有するNDフィルタユニット。
    The ND filter unit according to claim 3 or 4,
    The transparent plate is an ND filter unit having an antireflection function.
  6.  請求項1~5のいずれか1項記載のNDフィルタユニットであって、
     前記ハロゲン化銀粒子の平均粒径が0.1μm以上0.2μm以下であるNDフィルタユニット。
    An ND filter unit according to any one of claims 1 to 5,
    An ND filter unit in which an average particle diameter of the silver halide grains is 0.1 μm or more and 0.2 μm or less.
  7.  請求項1~6のいずれか1項記載のNDフィルタユニットであって、
     前記2つのNDフィルタを互いに逆向きに移動させる機構を備えるNDフィルタユニット。
    The ND filter unit according to any one of claims 1 to 6,
    An ND filter unit comprising a mechanism for moving the two ND filters in opposite directions.
  8.  撮影レンズと、
     前記撮影レンズを通った光学像を撮像する撮像素子と、
     前記撮像素子の前方に配置される請求項1~7のいずれか1項記載のNDフィルタユニットとを備える撮影システム。
    A taking lens,
    An image pickup device for picking up an optical image passing through the photographing lens;
    An imaging system comprising: the ND filter unit according to any one of claims 1 to 7 disposed in front of the imaging device.
  9.  透明基板上に、平均粒径が0.01μm以上0.2μm以下のハロゲン化銀を含むハロゲン化銀写真乳剤を塗布する工程と、
     前記塗布したハロゲン化銀写真乳剤を、連続的に変化する光透過率分布を持つマスクを介して露光する工程と、
     前記露光後のハロゲン化銀写真乳剤を現像処理して得られる現像銀のパターンにより、一方向又は一円周方向に向かって光透過率が連続的に変化する光学層を形成する工程とを備えるNDフィルタの製造方法。
    Coating a silver halide photographic emulsion containing silver halide having an average grain size of 0.01 μm or more and 0.2 μm or less on a transparent substrate;
    Exposing the coated silver halide photographic emulsion through a mask having a continuously varying light transmittance distribution;
    Forming an optical layer whose light transmittance continuously changes in one direction or one circumferential direction by a developed silver pattern obtained by developing the exposed silver halide photographic emulsion. Manufacturing method of ND filter.
PCT/JP2012/079298 2011-11-15 2012-11-12 Nd filter unit, imaging system and method for manufacturing nd filter WO2013073502A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-250157 2011-11-15
JP2011250157 2011-11-15
JP2012-229093 2012-10-16
JP2012229093 2012-10-16

Publications (1)

Publication Number Publication Date
WO2013073502A1 true WO2013073502A1 (en) 2013-05-23

Family

ID=48429560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079298 WO2013073502A1 (en) 2011-11-15 2012-11-12 Nd filter unit, imaging system and method for manufacturing nd filter

Country Status (1)

Country Link
WO (1) WO2013073502A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695208A (en) * 1992-09-17 1994-04-08 Canon Electron Inc Nd filter for light quantity diaphragm device
JPH10104407A (en) * 1996-09-27 1998-04-24 Matsushita Electric Ind Co Ltd Light quantity adjusting filter, and method and device for its manufacture
JPH1172603A (en) * 1997-06-30 1999-03-16 Konica Corp Light-controlling film and manufacture thereof
JP2003248107A (en) * 2002-02-22 2003-09-05 Olympus Optical Co Ltd Nd filter, its manufacturing method, and multi-display device and image generation device using the same
JP2007243928A (en) * 2006-02-09 2007-09-20 Nippon Hoso Kyokai <Nhk> Gradation nd filter unit for television camera, nd adapter, and television camera
JP2009094197A (en) * 2007-10-05 2009-04-30 Fujifilm Corp Conductive film, silver halide photosensitive material, manufacturing method of silver halide photosensitive material, manufacturing method of conductive film, optical filter for plasma display panel and plasma display panel
JP2011070150A (en) * 2009-04-14 2011-04-07 Nippon Hoso Kyokai <Nhk> Nd filter, television camera, and method for manufacturing nd filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695208A (en) * 1992-09-17 1994-04-08 Canon Electron Inc Nd filter for light quantity diaphragm device
JPH10104407A (en) * 1996-09-27 1998-04-24 Matsushita Electric Ind Co Ltd Light quantity adjusting filter, and method and device for its manufacture
JPH1172603A (en) * 1997-06-30 1999-03-16 Konica Corp Light-controlling film and manufacture thereof
JP2003248107A (en) * 2002-02-22 2003-09-05 Olympus Optical Co Ltd Nd filter, its manufacturing method, and multi-display device and image generation device using the same
JP2007243928A (en) * 2006-02-09 2007-09-20 Nippon Hoso Kyokai <Nhk> Gradation nd filter unit for television camera, nd adapter, and television camera
JP2009094197A (en) * 2007-10-05 2009-04-30 Fujifilm Corp Conductive film, silver halide photosensitive material, manufacturing method of silver halide photosensitive material, manufacturing method of conductive film, optical filter for plasma display panel and plasma display panel
JP2011070150A (en) * 2009-04-14 2011-04-07 Nippon Hoso Kyokai <Nhk> Nd filter, television camera, and method for manufacturing nd filter

Similar Documents

Publication Publication Date Title
JP6525077B2 (en) Optical filter
KR100538298B1 (en) Lenticular lens sheet having light-shielding layer and method for manufacture thereof
US20100259824A1 (en) Nd filter and television camera, and manufacturing method of nd filter
WO2011108077A1 (en) Projecting display device
JP4801442B2 (en) ND filter for diaphragm
JP2006163275A (en) Optical component
US9560279B2 (en) Camera device and projector device having protective lens
JP3993444B2 (en) Manufacturing method of ND filter
TW201923440A (en) Image exposing apparatus and image exposing method
WO2013073502A1 (en) Nd filter unit, imaging system and method for manufacturing nd filter
WO2013146051A1 (en) Filter device, lens apparatus and image pickup apparatus
JP2771078B2 (en) ND filter for light intensity diaphragm device
EP0710875B1 (en) Image reading device for photographic printing
WO2018043955A1 (en) Optical article for near-infrared cut-off filter included in camera module and camera module near-infrared cut-off filter comprising same
JP3792992B2 (en) Optical low-pass filter and optical apparatus using the same
JP2004112661A (en) Imaging system and imaging apparatus used therefor
TWI844279B (en) Anti-scattering and anti-interference coating pattern structure of an optical thin film
JP2004246018A (en) Light quantity adjusting device and optical equipment
JP2000206325A (en) Infrared ray cut filter and imaging device by using infrared ray cut filter
JPS5879206A (en) Image-forming lens for copying machine
US20230076944A1 (en) Optical filter and image capturing apparatus
KR100662911B1 (en) Lenticular lens sheet and preparation method thereof
CN207571368U (en) A kind of colour lens assembly and camera
JP2010205770A (en) Imaging device
JP3701931B2 (en) Manufacturing method of ND filter, ND filter, light quantity diaphragm device and camera having these ND filters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849952

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP