JP5314582B2 - Manufacturing method of machine parts - Google Patents

Manufacturing method of machine parts Download PDF

Info

Publication number
JP5314582B2
JP5314582B2 JP2009274704A JP2009274704A JP5314582B2 JP 5314582 B2 JP5314582 B2 JP 5314582B2 JP 2009274704 A JP2009274704 A JP 2009274704A JP 2009274704 A JP2009274704 A JP 2009274704A JP 5314582 B2 JP5314582 B2 JP 5314582B2
Authority
JP
Japan
Prior art keywords
strength
amount
region
cold forging
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009274704A
Other languages
Japanese (ja)
Other versions
JP2011115815A (en
Inventor
智一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009274704A priority Critical patent/JP5314582B2/en
Publication of JP2011115815A publication Critical patent/JP2011115815A/en
Application granted granted Critical
Publication of JP5314582B2 publication Critical patent/JP5314582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、機械構造用鋼を冷間鍛造して機械部品を製造する方法に関するものである。   The present invention relates to a method for manufacturing a machine part by cold forging machine structural steel.

従来より、自動車等の車両に用いられている機械部品は、一般的に、機械構造用炭素鋼材や機械構造用低合金鋼材を熱間鍛造および切削加工することによって製造されている。これらの機械部品としては、コンロッド、クランクシャフト、等速ジョイント、トランスミッションギア、大型ねじ(ネジ)、歯車、プーリー、ボルト・ナット、ピニオンギヤ、ステアリングシャフト、バルブリフター、コモンレール、トーションバー等が例示される。   Conventionally, machine parts used in vehicles such as automobiles are generally manufactured by hot forging and cutting a carbon steel material for machine structure and a low alloy steel material for machine structure. Examples of these mechanical parts include connecting rods, crankshafts, constant velocity joints, transmission gears, large screws (screws), gears, pulleys, bolts / nuts, pinion gears, steering shafts, valve lifters, common rails, torsion bars, etc. .

ただ、近年では、前記機械部品の製造において、生産性の向上や地球環境の問題から、前記熱間鍛造工程から冷間鍛造工程による製造への切り替えが指向されている。すなわち、大きな熱量を必要とする熱間鍛造から冷間鍛造への切り替えで、機械部品製造工程における炭酸ガス排出量の削減をすることができる。また、冷間鍛造によって加工した成形品の寸法精度は高いので、最終の部品形状に仕上げるための切削加工工程での切削代を少なくする、あるいは切削加工工程を省略でき、生産性の向上や製造コストの低減を図ることができる。   However, in recent years, in the manufacture of the mechanical parts, switching from the hot forging process to the manufacturing by the cold forging process is directed due to the improvement of productivity and the problem of the global environment. That is, by switching from hot forging that requires a large amount of heat to cold forging, it is possible to reduce the amount of carbon dioxide emission in the mechanical component manufacturing process. In addition, since the dimensional accuracy of the molded product processed by cold forging is high, the cutting cost in the cutting process for finishing to the final part shape can be reduced, or the cutting process can be omitted, improving the productivity and manufacturing. Cost can be reduced.

しかしながら、熱間鍛造によって製造していたコンロッドや大型ねじなどの機械部品を、冷間鍛造に切り替えて製造する場合、熱間鍛造に比べて冷間鍛造は変形抵抗が高い。このため、球状化焼鈍、強化に寄与する合金元素の低減によって変形抵抗を低減し、変形能を向上させる必要がある。ただし、通常の冷間鍛造用鋼では、変形抵抗に応じた部品強度しか得られないため、冷間鍛造後に焼入れ焼戻し、時効処理を施し、必要とされる部品強度を得ている。   However, when machine parts such as connecting rods and large screws manufactured by hot forging are manufactured by switching to cold forging, cold forging has higher deformation resistance than hot forging. For this reason, it is necessary to reduce the deformation resistance and improve the deformability by reducing the alloy elements that contribute to spheroidizing annealing and strengthening. However, in normal cold forging steel, only the component strength corresponding to the deformation resistance can be obtained. Therefore, quenching and tempering and aging treatment are performed after cold forging to obtain the required component strength.

一方、冷間鍛造ままで必要とされる部品強度を得るためには、ある程度変形抵抗の高い鋼材を用いる必要があるが、そのような鋼材は加工性が劣るため、金型寿命を大きく低減させたり、冷間鍛造中の機械部品に割れが生じやすくなる懸念があった。   On the other hand, in order to obtain the required component strength in cold forging, it is necessary to use steel materials with a high degree of deformation resistance. However, such steel materials are inferior in workability and thus greatly reduce the mold life. There is a concern that the machine parts during cold forging are likely to crack.

つまり、変形抵抗と部品強度は相反する関係にあり、従来技術で変形抵抗と部品強度を両立させるためには、熱処理など工程を追加する必要があった。このため、機械部品の最終形状(仕上げ形状)の完成までに、冷間鍛造と軟化のための熱処理を複数回繰返す必要があるので、却って、製造工程が多くなったり、処理時間が増加する。この結果、冷間鍛造による機械部品の製造が、必ずしも前記生産性の向上やコスト低減、あるいは製造工程における炭酸ガス排出量の削減に結びついてはいなかった。   That is, the deformation resistance and the component strength are in a contradictory relationship, and it has been necessary to add a process such as a heat treatment in order to make the deformation resistance and the component strength compatible in the prior art. For this reason, it is necessary to repeat the cold forging and the heat treatment for softening a plurality of times until the final shape (finished shape) of the machine part is completed. On the contrary, the number of manufacturing steps increases and the processing time increases. As a result, the manufacture of machine parts by cold forging has not necessarily led to the improvement of productivity, cost reduction, or reduction of carbon dioxide emission in the manufacturing process.

これに対して、従来から、冷間鍛造用鋼の鋼成分や鋼組織を制御して、冷間鍛造性を高めた鋼が種々提案されている。例えば、代表的には、素材鋼材の、特にSとO(酸素)の含有量などを制限し、また、鋼材に存在する、特定組成あるいは粗大な介在物あるいは非金属介在物を制限したり、MnSなどの形状を制御することが提案されている。また、冷間鍛造用鋼のフェライト・パーライト組織におけるセメンタイトの量を規制することなども提案されている。   On the other hand, conventionally, various steels having improved cold forgeability by controlling the steel components and the steel structure of the steel for cold forging have been proposed. For example, typically, the steel material, in particular, the content of S and O (oxygen), etc. is limited, and the specific composition or coarse inclusions or non-metallic inclusions present in the steel material are limited, It has been proposed to control the shape of MnS or the like. It has also been proposed to regulate the amount of cementite in the ferrite-pearlite structure of cold forging steel.

しかしながら、これら従来の冷間鍛造用鋼の冷間鍛造性向上技術は、必要とされる部品強度を得るために、通常汎用される、0.3質量%以下で0.1質量%以上のC(炭素)を含む低炭素鋼あるいは0.3〜0.7質量%のCを含む中炭素鋼を対象としている。このため、冷間鍛造性を向上し得たとしても、前記熱間鍛造並の低い変形抵抗、高い加工性を得ることはやはり困難である。   However, these conventional techniques for improving cold forgeability of steel for cold forging are generally used in order to obtain the required component strength. Low carbon steel containing (carbon) or medium carbon steel containing 0.3 to 0.7% by mass of C is targeted. For this reason, even if the cold forgeability can be improved, it is still difficult to obtain the same low deformation resistance and high workability as the hot forge.

鋼の変形抵抗を低下させ、変形能を向上させるためには、C(炭素)、Si、Mnなどの添加元素を低下させればよいことが知られている。しかしながら、単純に添加元素を低減し、変形抵抗を低下させると、工具の寿命は改善できるものの、冷間鍛造後に必要な部品強度が得られないという問題が生じる。そのため、従来、鋼を所定形状に冷間鍛造した後は、所定の硬度を確保するために焼入れ焼戻し処理などの熱処理が施されていた。   In order to reduce the deformation resistance of steel and improve the deformability, it is known that additive elements such as C (carbon), Si, and Mn may be reduced. However, if the additive element is simply reduced and the deformation resistance is lowered, the tool life can be improved, but the problem arises that the required component strength cannot be obtained after cold forging. Therefore, conventionally, after cold forging steel into a predetermined shape, heat treatment such as quenching and tempering has been performed to ensure a predetermined hardness.

しかしながら、部品加工後に熱処理を施すと、部品寸法が変化してしまうため、更に部品加工を行わなければならない。生産性向上や省エネルギーのためには、所定の硬度を確保すると同時に、冷間鍛造後の熱処理やその後の加工を省略できるような解決策が望まれている。   However, if the heat treatment is performed after the parts are processed, the dimensions of the parts will change, so that the parts must be further processed. In order to improve productivity and save energy, there is a demand for a solution that can secure a predetermined hardness and at the same time omit the heat treatment after cold forging and the subsequent processing.

このような背景の下、固溶N(固溶窒素)か窒化化合物(窒化物、N化合物)かの窒素の存在状態によって、冷間鍛造性(変形抵抗および変形能)と冷間鍛造後の強度とを両立させる試みが従来からなされてきた。   Against such a background, depending on the presence of nitrogen of solid solution N (solid solution nitrogen) or nitride compound (nitride, N compound), cold forgeability (deformation resistance and deformability) and after cold forging Attempts have been made in the past to balance strength.

特許文献1は、冷間鍛造加工中の変形抵抗の増大を抑制するために、フェライト粒内に微細な窒化化合物を析出させ、これを核としてセメンタイトなどの炭化物を析出させることについて開示している。これより、固溶Nおよび固溶炭素を窒化化合物および炭化物として固定化し、加工中の動的ひずみ時効を抑制することによって、変形抵抗の増大を抑制することを開示している。   Patent Document 1 discloses that a fine nitride compound is precipitated in ferrite grains and a carbide such as cementite is precipitated using this as a nucleus in order to suppress an increase in deformation resistance during cold forging. . From this, it is disclosed that solid solution N and solid solution carbon are fixed as nitride compounds and carbides to suppress an increase in deformation resistance by suppressing dynamic strain aging during processing.

特許文献2は、Nおよび固溶Al量を制御してNをAlNとして固定し、さらに時効処理により炭素を炭化物として析出させることによって、炭素および窒素による時効硬化を抑制することを開示している。   Patent Document 2 discloses that age hardening due to carbon and nitrogen is suppressed by controlling the amount of N and solute Al to fix N as AlN, and further precipitating carbon as a carbide by aging treatment. .

上記の特許文献1及び2の方法では、動的ひずみ時効を抑制し、変形抵抗の増加を抑制するために、フェライト粒内に固溶Nおよび固溶炭素を窒化化合物および炭化物として固定化している。固溶Nおよび固溶炭素を固定化するためには、Alを添加する必要がある。実施例のようにAlが0.039〜0.045%あれば、窒素量が0.015%であっても、固溶Nは殆ど存在しないものと考えられる。   In the methods of Patent Documents 1 and 2 described above, in order to suppress dynamic strain aging and suppress an increase in deformation resistance, solid solution N and solid solution carbon are fixed as nitride compounds and carbides in ferrite grains. . In order to fix solute N and solute carbon, it is necessary to add Al. If Al is 0.039 to 0.045% as in the examples, it is considered that there is almost no solid solution N even if the nitrogen content is 0.015%.

特許文献3は、Cr添加による固溶軟化による鋼材の硬さの低下とAl添加による固溶Nの固定化で、冷間加工時の変形抵抗を低減する方法が開示されている。しかしながら、当該方法でもAlを添加することで固溶Nが固定化されているために、上記の特許文献1及び2と同様に固溶Nは殆ど存在しないと考えられる。   Patent Document 3 discloses a method for reducing deformation resistance during cold working by lowering the hardness of a steel material due to softening by solid solution by adding Cr and fixing solid solution N by adding Al. However, even in this method, since solid solution N is fixed by adding Al, it is considered that there is almost no solid solution N as in Patent Documents 1 and 2 above.

冷間加工後の冷間加工部品では、所定の硬度を確保するために硬化熱処理、例えば焼入れ焼戻しが行われることがあるが、上述したように、生産性向上および省エネルギーの観点から、焼入れ焼戻しを省略することが求められている。例えば、特許文献4では、冷間鍛造後の発熱温度から常温まで50〜70℃/hrの冷却速度で冷却することにより、冷間鍛造後の時効処理(焼入れ焼戻し)を省略できることを開示している。   In cold-worked parts after cold working, hardening heat treatment, for example, quenching and tempering, may be performed to ensure a predetermined hardness, but as described above, quenching and tempering are performed from the viewpoint of productivity improvement and energy saving. There is a need to omit it. For example, Patent Document 4 discloses that aging treatment (quenching and tempering) after cold forging can be omitted by cooling from the exothermic temperature after cold forging to room temperature at a cooling rate of 50 to 70 ° C./hr. Yes.

しかし、前記した通り、冷間鍛造加工性と冷間鍛造後の硬さは相反する性質であり、従来、これらの双方ともが良好な冷間加工用鋼は得られていない。これに対して、特許文献5では、予め素材鋼材に、固溶Nを所定量以上含有させ、冷間加工後の硬さを上昇させ、且つ高速冷間加工により、固溶Nの弊害を抑制して良好な冷間加工性を維持し、冷間加工後の焼入れ焼戻しを省略しても、冷間加工後の鋼部品の硬さを向上させることを提案している。   However, as described above, cold forging workability and hardness after cold forging are contradictory properties, and conventionally, a steel for cold working that is good for both has not been obtained. On the other hand, in Patent Document 5, the material steel material contains a predetermined amount or more of solid solution N, the hardness after cold working is increased, and the harmful effects of solid solution N are suppressed by high-speed cold working. Thus, it has been proposed to maintain good cold workability and improve the hardness of steel parts after cold work even if quenching and tempering after cold work is omitted.

具体的には、高速冷間加工用鋼として、質量%で、C:0.03〜0.15%、Si:0.005〜0.6%、Mn:0.05〜2%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、およびN:0.04%以下(0%を含まない)を含有し、残部は鉄および不可避的不純物からなり、鋼中の固溶N量が0.006%以上であることとしている。   Specifically, as steel for high-speed cold working, in mass%, C: 0.03-0.15%, Si: 0.005-0.6%, Mn: 0.05-2%, P: 0.05% or less (not including 0%), S: 0.05% or less (not including 0%), and N: 0.04% or less (not including 0%), the balance being iron It consists of unavoidable impurities, and the amount of solute N in the steel is 0.006% or more.

特許第3515923号公報Japanese Patent No. 3515923 特開昭60−82618号公報JP 60-82618 特公昭57−60416号公報Japanese Patent Publication No.57-60416 特開2003−266144号公報JP 2003-266144 A 特開2008−163410号公報JP 2008-163410 A

しかし、特許文献5でも、冷間加工後の焼入れ焼戻しを省略するための必要な強度を得るための、予め素材鋼材全体の固溶N量を高くした場合には、やはり冷間鍛造性が低下する。これは、固溶N量が高い素材鋼材の全体に亙って、動的ひずみ時効の影響が顕著になるため、強度の増加代よりも変形能の劣化が顕著になり、冷間鍛造中の製品に割れが発生しやすくなるからである。   However, even in Patent Document 5, if the amount of solute N in the entire steel material is increased in advance in order to obtain the necessary strength for omitting quenching and tempering after cold working, the cold forgeability also decreases. To do. This is because the influence of dynamic strain aging becomes significant over the entire material steel material with a high amount of solute N, so the deterioration of deformability becomes more significant than the increase in strength, and during cold forging This is because cracks are likely to occur in the product.

このため、冷間鍛造性向上を図るために、C含有量を0.06質量%以下の極低炭素領域に下げた軟質の鋼材を用いた場合に、前記機械部品(冷間鍛造製品)に要求される強度を十分に確保することができる製造技術は、これまで無かったのが実情である。   For this reason, in order to improve cold forgeability, when a soft steel material whose C content is lowered to an extremely low carbon region of 0.06 mass% or less is used, the machine part (cold forged product) is used. In fact, there has never been a manufacturing technique that can sufficiently ensure the required strength.

本発明はかかる問題に鑑みなされたものであって、前記軟質の鋼材を用いても、製品の強度を十分に確保することができ、前記変形抵抗と部品強度との両立を図れる、冷間鍛造を用いた機械部品の製造方法を提供する。   The present invention has been made in view of such a problem, and even if the soft steel material is used, the strength of the product can be sufficiently ensured, and cold forging can achieve both the deformation resistance and the component strength. A method of manufacturing a machine part using the

この目的を達成するための本発明機械部品の製造方法の要旨は、質量%で、C:0.005〜0.06%、Si:0.005〜0.05%、Mn:0.4〜1%、P:0.05%以下(0%を含まない)、S:0.005〜0.05%、Al:0.005〜0.1%、N:0.008〜0.02%を各々含み、残部は鉄および不可避不純物からなる機械構造用鋼を冷間鍛造して機械部品を製造するに際し、前記機械部品の部分的な高強度化領域に対応する、前記冷間鍛造前の前記機械構造用鋼における部分的な高強度化領域を予め決定し、この部分的な高強度化領域の固溶N量を前記高強度化のために必要な量に予め部分的に高めた上で、少なくともこの部分的な高強度化領域に対して200℃以下の雰囲気温度で塑性ひずみを付与するとともに、前記部分的な高強度化領域以外の部分に対しても塑性ひずみを付与する冷間鍛造を行い、前記機械部品の部分的な高強度化領域の強度を高めるとともに、前記機械部品形状とすることである。
The gist of the manufacturing method of the machine part of the present invention for achieving this object is mass%, C: 0.005 to 0.06%, Si: 0.005 to 0.05%, Mn: 0.4 to 1%, P: 0.05% or less (excluding 0%), S: 0.005 to 0.05%, Al: 0.005 to 0.1%, N: 0.008 to 0.02% Each of which comprises a steel for structural machine made of iron and inevitable impurities, and when the machine part is manufactured by cold forging, corresponding to a partially strengthened region of the machine part, before the cold forging A partial high-strength region in the mechanical structural steel is determined in advance, and the solid solution N amount in the partial high-strength region is partially increased to an amount necessary for the high strength in advance. in, when imparting plastic strain at least this partial strengthening region 200 ° C. below ambient temperatures for preparative To perform a cold forging which imparts plastic strain against a portion other than the partial strengthening region, to increase the strength of the partial high intensity region of the machine component, said machine component shape It is to be.

ここで、前記機械部品の部分的な高強度化領域とは、前記機械部品において他の部分よりも高強度化が必要な部分の意味である。また、前記冷間鍛造前の素材機械構造用鋼における部分的な高強度化領域とは、前記冷間鍛造によって前記機械部品の部分的な高強度化領域となる領域である。ただ、この部分的な高強度化領域が、冷間鍛造性を阻害しない範囲で、それ以外の(高強度化が不要な)部分を含んで、前記部分的な高強度化領域よりも面積が大きくても良い。また、一方で、前記機械部品における高強度化が保証されるなら、この部分的な高強度化領域が、必ずしも、前記機械部品における部分的な高強度化領域全てを含む必要は無く、前記部分的な高強度化領域よりも面積が小さくても良い。本発明では、これらの意味を込めて、前記冷間鍛造前の前記機械構造用鋼における部分的な高強度化領域を、前記機械部品の部分的な高強度化領域に対応する、と記載している。   Here, the partial strength enhancement region of the mechanical component means a portion of the mechanical component that requires higher strength than other portions. In addition, the partial strength enhancement region in the material machine structural steel before cold forging is a region that becomes a partial strength enhancement region of the mechanical component by the cold forging. However, as long as this partial high-strength region does not impair the cold forgeability, it includes other parts (no need for high-strength) and has an area larger than that of the partial high-strength region. It may be large. On the other hand, if high strength in the machine part is guaranteed, the partial high strength region does not necessarily need to include all of the partial high strength region in the machine part. The area may be smaller than a typical high-strength region. In the present invention, with these meanings, it is described that the partially strengthened region in the mechanical structural steel before the cold forging corresponds to the partially strengthened region of the machine part. ing.

また、前記冷間鍛造の際には、前記冷間鍛造前の素材機械構造用鋼における部分的な高強度化領域に対して、200℃以下の雰囲気温度での塑性ひずみ(歪)付与が必要であり、それ以外の部分に対しては、この条件を外れても良い。すなわち、前記部分的な高強度化領域に対する悪影響を与えなければ、200℃を超える雰囲気温度となってもよく、塑性ひずみが与えられない部分があっても良い。したがって、本発明では、これらの意味を込めて、この冷間鍛造の際に少なくとも前記部分的な高強度化領域に対して200℃以下の雰囲気温度で塑性ひずみを付与すると記載している。   Moreover, in the case of the cold forging, it is necessary to apply plastic strain (strain) at an atmospheric temperature of 200 ° C. or less to a partially strengthened region in the material machine structural steel before the cold forging. For other parts, this condition may be removed. That is, as long as it does not adversely affect the partial strength enhancement region, the ambient temperature may exceed 200 ° C., and there may be a portion where plastic strain is not applied. Therefore, in the present invention, with these meanings, it is described that plastic strain is applied at an atmospheric temperature of 200 ° C. or less to at least the partial high-strength region during the cold forging.

本発明では、好ましい態様として、前記機械構造用鋼における部分的な高強度化領域の固溶N量を0.008〜0.014%の範囲とするとともに、この部分的な高強度化領域に付与される冷間鍛造塑性ひずみを0.5〜5の範囲とする。また、好ましい態様として、前記部分的な高強度化領域の固溶N量を、変形抵抗(DR)、部品強度(Hv)、疲労強度(F)のいずれかに基づいたモデル式か、又は予め取得した経験値から求める。また、好ましい態様として、前記機械構造用鋼における部分的な高強度化領域の固溶N量を、この部分的な高強度化領域の熱処理によって高める。   In the present invention, as a preferred embodiment, the solid solution N amount in the partially strengthened region in the mechanical structural steel is in the range of 0.008 to 0.014%, and in this partially strengthened region. The applied cold forging plastic strain is in the range of 0.5-5. As a preferred embodiment, the solid solution N amount in the partially strengthened region is a model formula based on any one of deformation resistance (DR), component strength (Hv), and fatigue strength (F), or in advance. Obtain from the acquired experience. As a preferred embodiment, the amount of solute N in the partially strengthened region in the mechanical structural steel is increased by heat treatment in the partially strengthened region.

本発明では、極低炭素で軟質な鋼材を冷間鍛造用素材に用いるに際して、前記機械部品において強度が必要な部分のみ固溶N量(固溶窒素量)を増加させ、冷間鍛造の塑性ひずみによって部分的に高強度化させる。この際、他の部分は全体として、元の固溶N量、すなわち元の軟質な冷間鍛造用鋼材のままとして、冷間鍛造性を確保する。言い換えると、この強度が必要な部分を熱処理するなどして、強度増加に必要な固溶N量に、部分的に固溶N量を増加させる。そして、この固溶N量が増加した部分領域への冷間鍛造塑性ひずみの付与によって、この部分(強度が必要な部分)の強度を前記必要強度にまで増加させる。本発明では、このような素材冷間鍛造用鋼材の固溶N量を部分的に増加させるものであり、前記特許文献5のように、素材冷間鍛造用鋼材全体の固溶N量を予め高くして、強度増加のために冷間鍛造性を犠牲にすることが無い。   In the present invention, when using an extremely low carbon and soft steel material as a material for cold forging, the amount of solid solution N (solid nitrogen amount) is increased only in a portion where the strength is required in the mechanical parts, and the plasticity of cold forging is increased. The strength is partially increased by strain. At this time, the other portions as a whole ensure the cold forgeability while maintaining the original solid solution N amount, that is, the original soft steel for cold forging. In other words, the solid solution N amount is partially increased to the solid solution N amount necessary for increasing the strength by, for example, heat-treating the portion requiring this strength. And the intensity | strength of this part (part which requires intensity | strength) is increased to the said required intensity | strength by provision of the cold forging plastic strain to the partial area | region where this amount of solute N increased. In the present invention, the amount of solid solution N of such a steel material for cold forging is partially increased. As in Patent Document 5, the amount of solid solution N of the whole material for cold forging material is set in advance. Higher, the cold forgeability is not sacrificed for increasing the strength.

極低炭素で軟質な冷間鍛造用鋼材は、通常は冷間鍛造しても、変形抵抗に応じた部品強度しか得られない。しかし、本発明者らの知見によれば、冷間鍛造時に前記固溶Nによって動的ひずみ時効を生じさせた場合、通常よりも可動転位が多く生成し、冷間鍛造時の発熱とその後の冷却によって、加工後に静的ひずみ時効が発生することが明らかになった。すなわち、鋼材の加工硬化代に、固溶Nによる静的ひずみ時効の強化代が相乗して付与されるため、通常の変形抵抗以上に、機械部品強度を高めることができる。しかも、元の固溶N量のままとした、他の部分は全体として通常の変形抵抗代しか強度が増加せず、冷間鍛造性を確保できる。   A steel material for cold forging that is extremely low carbon and soft can usually obtain only a component strength corresponding to deformation resistance even when cold forging. However, according to the knowledge of the present inventors, when dynamic strain aging is caused by the solid solution N during cold forging, more mobile dislocations are generated than usual, and heat generation during cold forging and subsequent It became clear that the static strain aging occurs after processing by cooling. That is, since the allowance for static strain aging due to the solid solution N is synergistically added to the work hardening allowance of the steel material, the mechanical component strength can be increased more than the normal deformation resistance. In addition, the strength of the other portion, which is the original amount of solute N, is increased only by the ordinary deformation resistance, and the cold forgeability can be ensured.

したがって、本発明によれば、C含有量が0.06質量%以下の極低炭素領域にある軟質の鋼材を冷間鍛造によって機械部品とするに際し、製品の強度を十分に確保することができ、前記変形抵抗と部品強度との両立を図ることができる。   Therefore, according to the present invention, when a soft steel material having a C content of 0.06% by mass or less in an extremely low carbon region is made into a mechanical part by cold forging, the strength of the product can be sufficiently secured. Thus, it is possible to achieve both the deformation resistance and the component strength.

本発明における冷間鍛造の工程を順に示したフローチャートである。It is the flowchart which showed the process of the cold forging in this invention in order. 本発明による大型ねじ(機械部品)の製造工程を順に示した説明図である。It is explanatory drawing which showed the manufacturing process of the large sized screw (mechanical component) by this invention in order.

本発明の機械部品の製造方法について、以下に図面を用いて具体的に説明する。本発明では、前記した従来より熱間鍛造あるいは冷間鍛造により製造されてきた種々の機械部品に適用できるが、以下の説明では、大型ねじを代表的な例として説明する。   The method for manufacturing a machine part according to the present invention will be specifically described below with reference to the drawings. The present invention can be applied to various machine parts that have been manufactured by hot forging or cold forging as described above. In the following description, a large screw will be described as a representative example.

図1は、本発明における冷間鍛造の工程(機械部品の製造方法の手順)を順に示したフローチャートを示している。図2は、本発明による大型ねじの製造工程(機械部品の製造方法の手順)を順に示している。   FIG. 1: has shown the flowchart which showed in order the process (procedure of the manufacturing method of a machine component) of the cold forging in this invention. FIG. 2 shows in sequence a manufacturing process of a large screw according to the present invention (procedure of a manufacturing method of a machine part).

以下の、この図1、2 に基づく、機械部品の製造方法の説明においては、設計段階の内容説明も含んでおり、後述するS1:製品形状決定工程〜S4:材料性状決定工程までが設計段階(加工前段階)であり、S5以降が具体的な加工段階となる。   In the following description of the method for manufacturing a machine part based on FIGS. 1 and 2, the contents of the design stage are included, and S1: product shape determination process to S4: material property determination process, which will be described later, are in the design stage. (Pre-processing stage), and S5 and subsequent stages are specific processing stages.

S1:製品形状決定工程
図1及び図2に示すように、まず、大型ねじ1を製造するにあたっては、S1:製品形状決定工程のように、大型ねじ1の製品形状Aを決定する。すなわち、冷間鍛造後(強度増加後)に機械加工が施されるが、この機械加工終了後の大型ねじ1の形状、即ち、製品にしたときの大型ねじ1の製品形状Aを製作図面中から決定する。なお、この形状はユーザからの要求により決まることが多い。
S1: Product Shape Determination Step As shown in FIGS. 1 and 2, first, when manufacturing the large screw 1, the product shape A of the large screw 1 is determined as in the S1: product shape determination step. That is, machining is performed after cold forging (after strength increase), but the shape of the large screw 1 after the completion of the machining, that is, the product shape A of the large screw 1 when made into a product is in the production drawing. Determine from. This shape is often determined by user requests.

S2:冷間鍛造前形状決定工程
次に、S2:冷間鍛造前形状決定工程として、前記製品形状決定工程S1で決定した製品形状Aに、冷間鍛造中の鋼材の流れを考慮することで、冷間鍛造前形状Bを決定する。例えば、冷間鍛造工程では、ねじ部とヘッド部の鋼材が移動する量(例えば、鋼材の体積から計算される)の寸法を加算することによって、前記冷間鍛造前形状Bが決定される。
S2: Shape determination step before cold forging Next, S2: As a shape determination step before cold forging, considering the flow of the steel material during cold forging into the product shape A determined in the product shape determination step S1. The shape B before cold forging is determined. For example, in the cold forging process, the shape B before cold forging is determined by adding the dimensions of the amount (for example, calculated from the volume of the steel material) that the steel material of the screw part and the head part moves.

より具体的には、この工程S2では、点線で示す大型ねじ1における製品輪郭線(製造後の輪郭線)に、各箇所の機械加工代(例えば、数mm)の寸法を加算して、冷間鍛造後の輪郭線(強度増加後輪郭線)を求め、冷間鍛造によって形成できる冷間鍛造前形状Bを決定する。強度増加前形状(ひずみ前形状)を決定し、この強度増加前形状(幅や高さ、体積等)から、大型ねじ1の元になる丸棒3の直径、長さ等を決定して、材料の初期形状を決める。   More specifically, in this step S2, the dimensions of the machining allowance (for example, several millimeters) at each location are added to the product contour line (manufactured contour line) of the large screw 1 indicated by the dotted line, A contour line after cold forging (contour line after increasing strength) is obtained, and a shape B before cold forging that can be formed by cold forging is determined. Determine the shape before the strength increase (shape before strain), and determine the diameter, length, etc. of the round bar 3 from which the large screw 1 is based from the shape before the strength increase (width, height, volume, etc.) Determine the initial shape of the material.

部分的な高強度化領域:
ここで、前記製品形状A(機械部品)の、他の部分よりも高強度化が必要な、部分的な高強度化領域に対応する、冷間鍛造前の素材機械構造用鋼における部分的な高強度化領域も予め決定する。機械部品が前記大型ねじ1とすると、高強度化が必要な部分は大型ねじ1の軸部およびねじ部の領域である。この大型ねじ1の軸部およびねじ部の部分的な高強度化領域に対応する冷間鍛造前の素材機械構造用鋼における部分的な高強度化領域とは、図2の素材機械構造用鋼形状Bにおける、S3で黒塗りされた部分である。
Partially strengthened areas:
Here, the product shape A (mechanical part), which requires a higher strength than the other parts, corresponds to a partial strength-enhanced region, and is a partial in the material machine structural steel before cold forging. The high strength region is also determined in advance. If the machine part is the large screw 1, the parts that require high strength are the shaft portion and the screw portion region of the large screw 1. The material mechanical structure steel in FIG. 2 is the partial strength enhancement region in the steel for structural machinery before cold forging corresponding to the partial strength enhancement region of the shaft portion and screw portion of the large screw 1. This is a blackened portion in S3 in the shape B.

図2のS3で黒塗りされた部分(素材機械構造用鋼における部分的な高強度化領域)は、大型ねじ1の軸部およびねじ部の領域とほぼ一対一に対応している。言い換えると、冷間鍛造によって、ほぼ大型ねじ1の軸部およびねじ部の領域となるように、大きさと位置とが設定されている。ただ、前記した通り、素材機械構造用鋼におけるこの部分的な高強度化領域が、冷間鍛造性を阻害しない範囲で、それ以外の(高強度化が不要な)部分を含んでも良い。また、一方で、前記機械部品における高強度化が保証されるなら、この部分的な高強度化領域が、必ずしも、前記機械部品における部分的な高強度化領域全てを含む必要は無い。   The portion blacked out in S3 of FIG. 2 (partial high-strength region in the material machine structural steel) substantially corresponds to the shaft portion and the screw portion region of the large screw 1 on a one-to-one basis. In other words, the size and the position are set so that the region of the shaft portion and the screw portion of the large screw 1 is almost formed by cold forging. However, as described above, this partially strengthened region in the raw material machine structural steel may include other portions (which do not require increased strength) as long as the cold forgeability is not impaired. On the other hand, if high strength is guaranteed in the machine part, this partial high strength region does not necessarily need to include all of the partial high strength region in the mechanical component.

S3:強度増加代決定工程(強度増加のための固溶N量決定工程)
本発明では、前記素材機械構造用鋼における部分的な高強度化領域の固溶N量の制御と、この部分的な高強度化領域に付与される冷間鍛造による塑性ひずみ(歪)の制御とによって、機械部品における部分的な高強度化領域の必要強度を得る。このうち、先ず、S3:強度増加代決定工程として、前記冷間鍛造前形状決定工程S2で決定した冷間鍛造前形状Bに、強度が必要な部分に対して冷間鍛造時に付与される塑性ひずみ量εに基づき、固溶N量を決定する。この好ましい塑性ひずみ量εについては後述する。ここで、固溶N量は、前記部分的な高強度化領域の、機械部品の高強度化領域に対応する部分のみ高めればよいが、冷間鍛造性を阻害しない範囲で、他の箇所の固溶N量を増加させても良い。
S3: Strength increase allowance determining step (Solution of N amount for increasing strength)
In the present invention, the amount of solid solution N in the partially strengthened region in the raw structural steel and the control of plastic strain (strain) by cold forging applied to the partially strengthened region. Thus, the required strength of the partially strengthened region in the machine part is obtained. Among these, first, as S3: strength increase allowance determining step, the plasticity imparted during cold forging to the pre-cold forging shape B determined in the pre-cold forging shape determination step S2 to the portion requiring strength. Based on the strain amount ε, the solute N amount is determined. This preferable plastic strain amount ε will be described later. Here, the amount of solute N should be increased only in the part of the partially strengthened region corresponding to the highly strengthened region of the machine part. The amount of solute N may be increased.

例えば、前記大型ねじ1において、前記ねじの軸部およびねじ部に強度が必要な場合、必要とされる強化代を計算することによって、このねじの軸部およびねじ部の領域(高強度化領域、高強度化が必要な部分)で必要とされる固溶N量が決定される。このS3:強度増加代決定工程では、強度が必要な部分(部分的な高強度化領域)に対して、予め意図的あるいは強制的に、かつ、この高強度化領域に対応する素材領域のみ、部分的に固溶N量を増加させて、この部分のYS(降伏強度)、TS(引張強度)を冷間鍛造によって増加させる。即ち、この高強度化領域での強度を増加させることを意図して、予め必要な固溶N量を計算している。   For example, in the large screw 1, when strength is required for the shaft portion and the screw portion of the screw, the region of the shaft portion and the screw portion of the screw (high-strength region) is calculated by calculating the required reinforcement allowance. The amount of solute N required in the portion where high strength is required) is determined. In this S3: strength increase allowance determining step, only a material region corresponding to the high-strength region intentionally or forcibly in advance for a portion requiring strength (partial high-strength region), The amount of solute N is partially increased, and YS (yield strength) and TS (tensile strength) of this portion are increased by cold forging. That is, the necessary amount of solute N is calculated in advance with the intention of increasing the strength in this high strength region.

前記素材の部分的な高強度化領域の固溶N量の決定には、変形抵抗(DR)、部品強度(硬度Hv)、疲労強度(F)のいずれかに基づいたモデル式か、又は予め取得した経験値を用いる。ここで、前記モデル式としては、例えば下記式(1)〜(4)に示したモデル式を用いて前記固溶N量を決定する。   The determination of the amount of solute N in the partially strengthened region of the material is based on a model formula based on one of deformation resistance (DR), component strength (hardness Hv), and fatigue strength (F), or in advance. Use the acquired experience. Here, as the model formula, for example, the solid solution N amount is determined using model formulas shown in the following formulas (1) to (4).

固溶N量=f-1(要求される降伏強度−鋼材の降伏強度) ・・・(1)
固溶N量=g-1(要求される引張強度−鋼材の引張強度) ・・・(2)
固溶N量=h-1(要求される硬度−鋼材の硬度) ・・・(3)
固溶N量=i-1(要求される疲労強度−鋼材の疲労強度) ・・・(4)
ここで、f、g:応力−固溶N量曲線、あるいは、変形抵抗−固溶N量曲線の関数、h:硬度−固溶N量曲線の関数、i:疲労強度−固溶N量曲線の関数である。
Solid solution N amount = f- 1 (required yield strength-yield strength of steel) (1)
Solid solution N amount = g- 1 (Required tensile strength-Tensile strength of steel) (2)
Solid solution N amount = h- 1 (Required hardness-Hardness of steel) (3)
Solid solution N amount = i- 1 (Required fatigue strength-Fatigue strength of steel) (4)
Here, f, g: stress-solid solution N amount curve or deformation resistance-solid solution N amount curve function, h: hardness-solid solution N amount curve function, i: fatigue strength-solid solution N amount curve Is a function of

固溶Nによる強度向上メカニズム:
固溶Nによる強度向上メカニズムについて説明する。固溶Nは一般的に、侵入型固溶元素として鋼中に存在し、冷間鍛造などの塑性変形中に、動的ひずみ時効を発生させることによって、鋼材の変形抵抗を増加させ、変形能(加工性)を劣化させる問題がある。したがって、この種、冷間鍛造用鋼分野では、有害な不純物として扱われ、通常は、AlやTiなどで,窒化化合物として全量固定されることが行われてきた。
Strength improvement mechanism by solute N:
The strength improvement mechanism by the solute N will be described. Solid solution N is generally present in steel as an interstitial solid solution element, and increases the deformation resistance of the steel material by generating dynamic strain aging during plastic deformation such as cold forging. There is a problem of degrading (workability). Therefore, in this type of cold forging steel field, it is treated as a harmful impurity and is usually fixed as a nitride compound with Al, Ti or the like.

ところで、冷間鍛造用鋼におけるこのような変形能の劣化は、主に鋼中の硬質相(例えばパーライト)と軟質相(例えばフェライト)の界面で生じることが発明者の検討によって明らかとなった。そこで、極低炭素鋼として、炭素量を著しく下げて、前記硬質相を極力低減することで、変形能を向上させることができた。また、変形抵抗の増加に関しても、固溶N量の動的ひずみ時効によるフェライトの強化によって、硬質相にひずみが入りやすくなり、結果として変形抵抗が高くなっている可能性が考えられた。このため、本発明のような極低炭素鋼では、炭素量を著しく下げて、前記硬質相を極力低減している結果、変形抵抗はある固溶N量の範囲ではあまり増加しないことが明らかになった。   By the way, the inventors have clarified that the deterioration of the deformability in the steel for cold forging mainly occurs at the interface between the hard phase (for example, pearlite) and the soft phase (for example, ferrite) in the steel. . Therefore, as an ultra-low carbon steel, the deformability could be improved by significantly reducing the carbon content and reducing the hard phase as much as possible. In addition, regarding the increase in deformation resistance, it was considered that the strengthening of ferrite by dynamic strain aging with a solid solution N amount facilitates strain into the hard phase, resulting in a high deformation resistance. For this reason, in the ultra-low carbon steel as in the present invention, as a result of significantly reducing the carbon content and reducing the hard phase as much as possible, it is clear that the deformation resistance does not increase so much within a certain range of solute N content. became.

一方、部品強度に関しても、通常の冷間鍛造用鋼では、変形抵抗に応じた部品強度しか得られないが、冷間鍛造時に固溶Nによって動的ひずみ時効を生じさせた場合、通常よりも可動転位が多く生成し、冷間鍛造時の発熱とその後の冷却によって、加工後に静的ひずみ時効が発生することが明らかになった。すなわち、鋼材の加工硬化代に固溶Nによる静的ひずみ時効の強化代が付与されるため、変形抵抗以上に部品強度を高めることができることが明らかになった。これによって、鋼材の強度を増加させたい部分のみ固溶N量を増加させることによって、強度のそれほど要求されない箇所の変形抵抗は、そのままで、結果的に下げることができ、部品強度の保証と冷間金型寿命向上とを両立させることができる。従来の技術のように、固溶N量を制御せずに、大型ねじ1を単に冷間鍛造するだけでは、前記した通り、製品として必要な強度が得られない箇所が出てくる。   On the other hand, with regard to component strength, ordinary cold forging steel can only obtain component strength according to deformation resistance. However, when dynamic strain aging is caused by solute N during cold forging, it is more than usual. It was found that many mobile dislocations were generated, and static strain aging occurred after machining due to heat generation during cold forging and subsequent cooling. That is, it became clear that the strength of static strain aging due to solute N is added to the work hardening allowance of the steel material, so that the component strength can be increased more than the deformation resistance. As a result, by increasing the amount of solute N only in the part where the strength of the steel material is to be increased, the deformation resistance of the part where the strength is not so required can be reduced as a result, and as a result, the strength of the component can be ensured and the cooling can be reduced. It is possible to achieve both improvement of the mold life. If the large screw 1 is simply cold forged without controlling the amount of solute N as in the prior art, as described above, there are places where the strength required for the product cannot be obtained.

強度向上に必要な固溶N量:
ここで、前記素材の部分的な高強度化領域の強度向上に必要な固溶N量(予め調整される固溶N量)は0.008〜0.014質量%である。この範囲に前記素材の部分的な高強度化領域の固溶N量を、冷間鍛造前に予め調整することで、変形抵抗をあまり上げず、固溶N量に応じた強化代を付与することが可能となる。
Solid solution N amount required for strength improvement:
Here, the amount of solute N necessary for improving the strength of the partially strengthened region of the material (the amount of solute N adjusted in advance) is 0.008 to 0.014% by mass. By adjusting the solid solution N amount of the partially strengthened region of the material in this range in advance before cold forging, the deformation resistance is not increased so much and a strengthening allowance according to the solid solution N amount is given. It becomes possible.

一方、前記固溶N量が0.008質量%未満の場合には、固溶Nが少なすぎて、冷間鍛造によっても十分な強化代が得られない。また、固溶N量が0.014質量%を超える場合には、動的ひずみ時効の影響が顕著になるため、強度の増加代よりも変形能の劣化が顕著になり、冷間鍛造中の製品に割れが発生しやすくなる。   On the other hand, when the amount of the solid solution N is less than 0.008% by mass, the amount of the solid solution N is too small and a sufficient strengthening allowance cannot be obtained even by cold forging. In addition, when the amount of solute N exceeds 0.014% by mass, the effect of dynamic strain aging becomes remarkable, so that the deterioration of deformability becomes more significant than the increase in strength, and during cold forging, The product tends to crack.

固溶N量の測定方法:
本発明における固溶N量の測定方法は、JIS G1228に準拠し、鋼中の全N(全窒素)含有量から、全N(全窒素)化合物を差し引くことで鋼中の固溶N量を算出する。まず、鋼中の全N含有量測定には(a)不活性ガス融解法−熱伝導度法を用いる。供試鋼素材からサンプルを切り出し、サンプルをるつぼに入れ、不活性ガス気流中で融解してNを抽出し、熱伝導度セルに搬送して熱伝導度の変化を測定して、鋼中の全N含有量を算出する。
Method for measuring the amount of solute N:
The method for measuring the amount of solute N in the present invention is based on JIS G1228, and the amount of solute N in steel is obtained by subtracting the total N (total nitrogen) compound from the total N (total nitrogen) content in the steel. calculate. First, (a) inert gas melting method-thermal conductivity method is used for measuring the total N content in steel. Cut the sample from the test steel material, put the sample in a crucible, extract it in an inert gas stream, extract N, transport it to the thermal conductivity cell, measure the change in thermal conductivity, Calculate the total N content.

次に、鋼中の全窒化化合物量は(b)アンモニア蒸留分離インドフェノール青吸光光度法を用いる。供試鋼素材からサンプルを切り出し、10%AA系電解液(鋼表面に不働態皮膜を生成させない非水溶媒系の電解液であり、具体的には10%アセチルアセトン、10%塩化テトラメチルアンモニウム、残部:メタノール)の中で、定電流電解を行なう。そして、約0.5gのサンプルを溶解させ、不溶解残渣(窒化化合物)を、穴サイズが0.1μmのポリカーボネート製のフィルタでろ過する。この不溶解残渣を硫酸、硫酸カリウム及び純Cuチップ中で加熱して分解し、ろ液に合わせる。この溶液を水酸化ナトリウムでアルカリ性にした後、水蒸気蒸留を行い、留出したアンモニアを希硫酸に吸収させる。フェノール、次亜塩素酸ナトリウム及びペンタシアノニトロシル鉄(III)酸ナトリウムを加えて青色錯体を生成させ、吸光光度計を用いて吸光度を測定し、鋼中の全窒化化合物量を求める。   Next, (b) ammonia distillation separation indophenol blue absorptiometry is used for the amount of all nitride compounds in steel. A sample is cut out from the test steel material, 10% AA electrolyte (non-aqueous solvent electrolyte that does not produce a passive film on the steel surface, specifically 10% acetylacetone, 10% tetramethylammonium chloride, Constant current electrolysis is performed in the remainder: methanol). Then, about 0.5 g of the sample is dissolved, and the insoluble residue (nitride compound) is filtered through a polycarbonate filter having a hole size of 0.1 μm. This insoluble residue is decomposed by heating in sulfuric acid, potassium sulfate and pure Cu chips and combined with the filtrate. After making this solution alkaline with sodium hydroxide, steam distillation is performed, and the distilled ammonia is absorbed by dilute sulfuric acid. Phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and the absorbance is measured using an absorptiometer to determine the total amount of nitrided compounds in the steel.

そして、前記(a)の方法によって求められた全N量から、前記(b)の方法によって求められた全窒化化合物量を差し引いて、固溶N量を求めることができる。   And the amount of solid solution N can be calculated | required by subtracting the total amount of nitriding compounds calculated | required by the method of said (b) from the total amount of N calculated | required by the method of said (a).

固溶N量の増加手段:
前記素材の部分的な高強度化領域の、強度向上に必要な固溶N量を増加させる(固溶N量を必要量確保する)手段は、窒化化合物として全量固定されているNの制御、すなわち、窒化化合物の析出量を制御することで行う。固溶Nは、特にAl、Ti、Nb、V、B、Hf、Ta、Zrなどと窒化化合物(窒素化合物)を形成しやすい。ただ、本発明製造方法の固溶N量を必要量確保する熱処理温度範囲では、支配的には、概ねAlと窒素との結合状態によって、固溶N量が決定される。前記Ti、Nb、V、B、Hf、Ta、ZrなどのAl以外の元素の窒化化合物は、本発明製造方法の前記熱処理温度範囲では、分解しにくく、生産性良く、固溶N量を必要量確保することがAlよりも難しい。したがって、本発明では、固溶N量の必要量の確保にAlを主として用いる。
Means for increasing the amount of solute N:
Means for increasing the amount of solute N necessary for improving the strength of the partially strengthened region of the material (to secure the necessary amount of solute N) is a control of N that is fixed as a nitride compound. That is, it is carried out by controlling the amount of precipitation of the nitride compound. Solid solution N tends to form nitride compounds (nitrogen compounds) with Al, Ti, Nb, V, B, Hf, Ta, Zr, and the like. However, in the heat treatment temperature range in which the necessary amount of solid solution N is ensured in the production method of the present invention, the amount of solid solution N is determined mainly by the bonding state between Al and nitrogen. Nitride compounds of elements other than Al, such as Ti, Nb, V, B, Hf, Ta, and Zr, are difficult to decompose in the heat treatment temperature range of the production method of the present invention, require good productivity, and require a solid solution N amount. It is more difficult to secure the amount than Al. Therefore, in the present invention, Al is mainly used for securing the necessary amount of the solute N amount.

このためには、前記S2:冷間鍛造前形状決定工程によって決定された、大型ねじ1の軸部およびねじ部の領域(図2の冷間鍛造前の素材機械構造用鋼形状BにおけるS3で黒塗りされた部分)=冷間鍛造前形状Bの(前記部分的な高強度化領域に対応する)部分的な高強度化領域に対して、後述する熱処理を行って、前記冷間鍛造時に付与される塑性ひずみ量εに基づき決定された固溶N量に調整する。   For this purpose, the shaft portion of the large screw 1 and the region of the screw portion determined by the S2: shape determination step before cold forging (in S3 in the steel shape B for material mechanical structure before cold forging in FIG. 2) Blackened portion) = Cold forging is performed by performing a heat treatment to be described later on a partially strengthened region (corresponding to the partially strengthened region) of the shape B before cold forging. It adjusts to the amount of solute N determined based on the plastic strain amount (epsilon) provided.

冷間鍛造で付与する塑性ひずみ量:
本発明では、前記した通り、前記素材の部分的な高強度化領域の固溶N量を、前記した0.008〜0.014%の範囲に制御するとともに、この部分的な高強度化領域に付与される冷間鍛造塑性ひずみを制御して、機械部品として必要な強度を得る。冷間鍛造によって、前記した鋼材の加工硬化代に、固溶Nによる静的ひずみ時効の強化代を付与して、前記素材の部分的な高強度化領域の強度を、変形抵抗以上に高めるためには、前記素材の部分的な高強度化領域の固溶N量の範囲を前提に、冷間鍛造塑性ひずみを0.5〜5の範囲とする。
Plastic strain applied by cold forging:
In the present invention, as described above, the amount of solid solution N in the partially strengthened region of the material is controlled to the above-described range of 0.008 to 0.014%, and the partially strengthened region is included. By controlling the cold forging plastic strain applied to the steel, the necessary strength as a machine part is obtained. In order to increase the strength of the partially strengthened region of the material more than the deformation resistance by cold forging, giving the work hardening allowance of the steel material the strengthening allowance of static strain aging by solute N. The cold forging plastic strain is set in the range of 0.5 to 5 on the premise of the range of the solid solution N amount in the partially strengthened region of the material.

この範囲の塑性ひずみを付与することで、鋼中に適度に可動転位が導入されるため、加工後の冷却中の静的ひずみ時効によって部品強度を向上させることができる。前記素材の部分的な高強度化領域に付与する塑性ひずみ量が0.5未満の場合、十分な強化代を付与することができない。なお、強化が必要な部位の塑性変形量が、通常の冷間鍛造工程において、0.5に満たない場合には、塑性加工代を予め加算し(その部分の鋼材量を予め増やしておく)、冷間鍛造を実施しても良い。   By imparting plastic strain within this range, movable dislocations are appropriately introduced into the steel, so that the component strength can be improved by static strain aging during cooling after processing. When the amount of plastic strain applied to the partially strengthened region of the material is less than 0.5, it is not possible to provide sufficient strengthening allowance. In addition, when the amount of plastic deformation of a portion requiring reinforcement is less than 0.5 in a normal cold forging process, a plastic working allowance is added in advance (the amount of steel in that portion is increased in advance). Cold forging may be performed.

一方、前記素材の部分的な高強度化領域に付与する塑性ひずみ量が5を超える場合には鋼材の加工限界を超え、変形能が劣化し始めるため、部品に割れが生じやすくなり、冷間鍛造による部品加工ができなくなる。   On the other hand, when the amount of plastic strain applied to the partially strengthened region of the material exceeds 5, the processing limit of the steel material is exceeded, and the deformability starts to deteriorate, so that the part is likely to crack, Parts cannot be processed by forging.

前記塑性ひずみ量が0.5は、円柱状の鋼材の両端を拘束した状態から、円柱鋼材の高さが34%減少(元の高さに対して66%の高さ)するまで圧縮した時のひずみ量に相当する。前記塑性ひずみ量5は、同じように圧縮させた時に高さが99%減少するまで圧縮した時のひずみ量に相当する。したがって本発明では塑性ひずみの単位は無次元とする。ただし、各種部品において多軸方向からひずみが付与された場合には、単純に高さが減少する加工方法とは異なるため、より少ない変形量でも、大きなひずみが付与される場合がある。   When the plastic strain amount is 0.5, the cylindrical steel material is compressed from the state where both ends of the cylindrical steel material are constrained until the height of the cylindrical steel material is reduced by 34% (66% of the original height). It corresponds to the amount of strain. The plastic strain amount 5 corresponds to the strain amount when compressed until the height is reduced by 99% when compressed in the same manner. Therefore, in the present invention, the unit of plastic strain is dimensionless. However, when strain is applied from various axes in various parts, it is different from a processing method in which the height is simply reduced, and thus a large strain may be applied even with a smaller amount of deformation.

なお、前記素材の部分的な高強度化領域以外の鋼材部分に付与する塑性ひずみ量は、この部分的な高強度化領域(高強度化領域)と同じとしても良いが、変えても良く、この場合には1以上8以下の範囲から選択することが好ましい。塑性ひずみ量が8よりも大きい場合、強度が上がりすぎて鋼材の加工能が劣化し、冷間鍛造では部品加工ができなくなる。また、付与する塑性ひずみ量が1未満であると、機械部品全体で十分な部品強度が得られなくなる。   In addition, the amount of plastic strain to be applied to the steel material part other than the partial high strength region of the material may be the same as this partial high strength region (high strength region), but may be changed, In this case, it is preferable to select from the range of 1 to 8. If the amount of plastic strain is greater than 8, the strength increases too much and the workability of the steel material deteriorates, and parts cannot be processed by cold forging. Further, if the amount of plastic strain to be applied is less than 1, sufficient part strength cannot be obtained for the entire machine part.

S4:材料性状決定工程:
以上を前提として、S4:材料性状決定工程として、鋼材のN含有量との関係で、前記素材の部分的な高強度化領域を必要な固溶N量とするための、前記熱処理条件(熱処理手段、加熱速度、加熱温度、保持温度・時間、冷却速度など)を選択、決定する。
S4: Material property determining step:
Based on the above, S4: As the material property determination step, the heat treatment conditions (heat treatment) for setting the partial strength-enhancing region of the material to the necessary solute N amount in relation to the N content of the steel material Means, heating rate, heating temperature, holding temperature / time, cooling rate, etc.) are selected and determined.

固溶N量−温度曲線の求め方は、Thermo-calcによる計算、溶解度積による計算、各温度で固溶N量を調整した鋼材を前記した抽出残渣法によって実測する方法などが用いられる。   As a method for obtaining the solid solution N amount-temperature curve, a calculation by Thermo-calc, a calculation by a solubility product, a method of actually measuring a steel material whose solid solution N amount is adjusted at each temperature by the extraction residue method described above, and the like are used.

この熱処理では、前記素材の部分的な高強度化領域(高強度化領域)のみを部分的に加熱して、元の鋼材中の存在形態であるAlNを分解して、前記素材の部分的な高強度化領域の固溶N量を高める方法がある。また、元々の鋼材の固溶N量を全体的に前記必要な量だけ高めておき、強度が必要でない部分にのみ熱処理を実施して、AlNを形成させることで、強度が必要でない部分のみ、固溶N量を低減させる方法がある。   In this heat treatment, only a partial high-strength region (high-strength region) of the material is partially heated to decompose AlN, which is an existing form in the original steel material, There is a method for increasing the amount of solute N in the high strength region. In addition, the amount of solute N of the original steel material is increased by the necessary amount as a whole, and heat treatment is performed only on the portion where strength is not required, and by forming AlN, only the portion where strength is not required, There is a method for reducing the amount of solute N.

AlNの結合状態は温度に依存する。加熱温度が高いほど、AlNは分解しやすく、加熱、保持後の冷却速度をある程度以上の速度(0.5℃/s以上)とすることで、冷却中にAlNを析出させず、固溶N量を設計どおりに調整することができる。   The bonding state of AlN depends on temperature. The higher the heating temperature, the easier it is for AlN to decompose. By setting the cooling rate after heating and holding to a certain level (0.5 ° C / s or higher), AlN does not precipitate during cooling, and the amount of dissolved N can be reduced. It can be adjusted as designed.

具体的な熱処理条件としては、予め焼ならした鋼材の前記部分的な高強度化領域(高強度化領域である大型ねじ1の軸部およびねじ部に相当する領域)のみを、加熱して700〜1100℃の範囲で保持および前記冷却速度で冷却することによって、鋼中に生成しているAlNをの一部を分解させて、固溶Nを必要量確保する。これによって、鋼材の前記部分的な高強度化領域のみを前記適量に固溶N量を増加、調整することができる。   As specific heat treatment conditions, only the partially strengthened region (region corresponding to the shaft portion and the screw portion of the large screw 1 which is the strengthened region) of the steel material that has been preliminarily heated is heated to 700. By holding in the range of ˜1100 ° C. and cooling at the cooling rate, a part of the AlN produced in the steel is decomposed to ensure the required amount of solid solution N. Thus, the amount of solute N can be increased and adjusted to the appropriate amount only in the partially strengthened region of the steel material.

このような部分的で、急速な加熱や冷却の熱処理に適した手段として、公知の高周波加熱手段が好適である。高強度化領域のみ、あるいは、強度が必要でない部分のみを、前記したように部分的に熱処理するためには、鋼材材料に対して部分的に適用できるとともに、急速に加熱(急熱)および急速に冷却(急冷)できる熱処理手段が必要となる。熱処理手段が鋼材全体に適用されたり(及んだり)、これら加熱速度や冷却速度が遅いと、熱伝導によって、鋼材全体が熱処理されて、前記部分的な固溶N量の制御が困難になる。   A known high-frequency heating means is suitable as a means suitable for such a partial and rapid heat treatment or cooling heat treatment. In order to partially heat-treat only the high-strength region or only the portion that does not require strength as described above, it can be partially applied to steel materials, and can be rapidly heated (rapidly heated) and rapidly Therefore, a heat treatment means capable of cooling (rapid cooling) is required. If the heat treatment means is applied to the entire steel material (or extends), or if the heating rate or the cooling rate is slow, the entire steel material is heat-treated by heat conduction, making it difficult to control the partial amount of solute N. .

以上の工程設計の基に、図1、2では、S5〜S7の工程によって、冷間鍛造を中心とする機械部品の製造を行う。   Based on the above process design, in FIG. 1 and FIG. 2, the process of S5-S7 manufactures machine parts centering on cold forging.

S5:冷間鍛造前形状加工工程(予備加工工程)
大型ねじ1の元になる丸棒3の初期形状(直径、長さ等)が、冷間鍛造前の形状B(冷間鍛造に適した強度増加前形状、ひずみ前形状)となるように、S5として、予備の加工を行う。この予備の加工は、熱間鍛造、又は、切削などの機械加工により行う。
S5: Shape processing step before cold forging (preliminary processing step)
The initial shape (diameter, length, etc.) of the round bar 3 that is the basis of the large screw 1 is the shape B before cold forging (the shape before increasing strength suitable for cold forging, the shape before strain). In S5, preliminary processing is performed. This preliminary processing is performed by hot forging or machining such as cutting.

S6:材料性状処理工程
次いで、S6の材料性状処理工程(前記熱処理工程)によって、前記素材の部分的な高強度化領域(強度が必要な部分)の固溶N量を、前記した条件によって、高周波加熱などによる部分的な熱処理を行って制御する。
S6: Material property processing step Next, in the material property processing step (the heat treatment step) of S6, the amount of solid solution N in the partially strengthened region (a portion requiring strength) of the material is determined according to the above-described conditions. Control by performing partial heat treatment such as by high-frequency heating.

S7:強度増加工程(冷間鍛造工程)
このS6の材料性状処理工程(前記熱処理工程)後に、前記塑性ひずみを付与しながら冷間鍛造を行って、特に、前記素材の部分的な高強度化領域の強度を増加させるとともに、機械部品(製品)形状とする。この冷間鍛造(強度増加工程)は、前記冷間鍛造前形状Bの材料に対して、前記塑性ひずみ量が付与されて、前記素材の部分的な高強度化領域を必要な高強度とするとともに、図2の製品形状Aにする。
S7: Strength increasing process (cold forging process)
After the material property processing step of S6 (the heat treatment step), cold forging is performed while applying the plastic strain, and in particular, the strength of the partially strengthened region of the material is increased, and mechanical parts ( Product) shape. In this cold forging (strength increasing step), the plastic strain amount is given to the material of the shape B before cold forging, and a partial high strength region of the raw material is set to a necessary high strength. At the same time, the product shape A shown in FIG.

例えば、設計段階にて説明したように、この大型ねじ1においては軸部2の強度を増加させることから、強度増加工程S6では、軸部2にひずみを入れつつ冷間鍛造を行っている。詳しくは、この強度増加工程S6では、軸部2に対応するひずみ付与前輪郭線L4が鍛造後輪郭線(強度増加後輪郭線)L2に一致するように圧縮等(部分圧下)を行い、塑性ひずみを入れ、これにより、軸部2のTS(引っ張り強度)を増加させている。   For example, as described in the design stage, since the strength of the shaft portion 2 is increased in the large screw 1, cold forging is performed while straining the shaft portion 2 in the strength increasing step S6. Specifically, in this strength increasing step S6, compression or the like (partial reduction) is performed so that the pre-strained contour line L4 corresponding to the shaft portion 2 matches the post-forging contour line (contour line after increasing strength) L2. Strain is applied, thereby increasing the TS (tensile strength) of the shaft 2.

冷間鍛造を行う方法については限定されず、軸方向への圧縮(圧縮部分圧下)を行ってもよいし、押し出し成形(押し出し型鍛造)を行ってもよいし、型鍛造を行っても良い。   The method for performing cold forging is not limited, and compression in the axial direction (compression partial compression) may be performed, extrusion molding (extrusion die forging) may be performed, or die forging may be performed. .

冷間鍛造(冷間加工)時に、前記部分的な高強度化領域に対しては、200℃以下の雰囲気温度での塑性ひずみ付与が必要であり、材料の加工前温度を100℃未満とすることが好ましい。また、冷間鍛造時の加工発熱を抑制するために、前記部分的な高強度化領域を強制的に冷却しても良い。なお、それ以外の部分に対しては、この条件を外れても良い。すなわち、前記部分的な高強度化領域に対する悪影響を与えなければ、200℃を超える雰囲気温度となってもよく、塑性ひずみが与えられない部分があっても良い。   At the time of cold forging (cold working), it is necessary to apply plastic strain at an atmospheric temperature of 200 ° C. or lower for the partial high-strength region, and the temperature before processing of the material is less than 100 ° C. It is preferable. Moreover, in order to suppress the process heat generation at the time of cold forging, the partially strengthened region may be forcibly cooled. For other parts, this condition may be removed. That is, as long as it does not adversely affect the partial strength enhancement region, the ambient temperature may exceed 200 ° C., and there may be a portion where plastic strain is not applied.

なお、上記説明では、予備加工工程S5を経てから強度増加工程(冷間鍛造工程)S7を行っているが、図2のS2の上側から伸びる矢印でに示すように、この予備加工工程S5を行わずに、前記冷間鍛造前形状決定工程S2で決定した丸棒2に対して、直接冷間鍛造工程S7を行ってもよい。この場合は、機械加工代が付与された形状となるように冷間鍛造を行いつつ、強度の必要な部分(例えば、軸部)に塑性ひずみ量εに応じたひずみ付与を行うことになる。   In the above description, the strength increasing step (cold forging step) S7 is performed after the preliminary processing step S5. However, as shown by the arrow extending from the upper side of S2 in FIG. Without performing, you may perform cold forging process S7 directly with respect to the round bar 2 determined by the said shape determination process S2 before cold forging. In this case, while performing cold forging so as to have a shape with machining allowance, a strain is applied to a portion (for example, a shaft portion) requiring strength according to the plastic strain amount ε.

鋼材の組成:
機械部品の材料(素材)である鋼材の組成について以下に説明する。素材鋼材には、冷間鍛造によって前記塑性ひずみを付与するとTSやYSが向上する特性が必要である。特に、与える塑性ひずみに比例してTSが向上する特性が必要である。また、前記部分的な高強度化領域の固溶N量を前記高強度化のために必要な量に予め調整できるだけの全N含有量が必要である。更に、機械部品用としての強度、加工性、切削性、耐食性などの諸特性を満たすことも必要である。
Steel composition:
The composition of the steel material that is the material (material) of the machine part will be described below. The material steel material must have a property of improving TS and YS when the plastic strain is applied by cold forging. In particular, the property that TS improves in proportion to the applied plastic strain is required. Further, the total N content that can be adjusted in advance to the amount necessary for increasing the strength of the solid solution N in the partially increased strength region is required. Furthermore, it is necessary to satisfy various characteristics such as strength, workability, machinability, and corrosion resistance for machine parts.

このための鋼材の組成は、質量%で、C:0.005〜0.06%、Si:0.005〜0.05%、Mn:0.4〜1%、P:0.05%以下(0%を含まない)、S:0.005〜0.05%、Al:0.005〜0.1%、N:0.008〜0.02%を各々含み、残部は鉄および不可避不純物からなる機械構造用鋼である。ここで記載元素含有量は全て質量%である。   The composition of the steel material for this purpose is mass%, C: 0.005 to 0.06%, Si: 0.005 to 0.05%, Mn: 0.4 to 1%, P: 0.05% or less. (Excluding 0%), S: 0.005 to 0.05%, Al: 0.005 to 0.1%, N: 0.008 to 0.02%, the balance being iron and inevitable impurities It is a steel for machine structural use. The element contents described here are all mass%.

C:0.005〜0.06%
Cは、鋼材の組織の形成に大きな影響を及ぼす元素であり、鋼材の組織をフェライト単相組織とするために、極力低減する必要がある。また、冷間鍛造時の変形抵抗および変形能に大きな影響を及ぼす元素であり、冷間鍛造性のために、極力低減することが望ましい。過剰に含有すると、鋼材の組織中にパーライトが生成し、パーライトの加工硬化によって変形抵抗が過大となって冷間鍛造性が悪化する。したがって、C含有量は0.06質量%とする必要があり、好ましくは0.055%以下、より好ましくは0.045質量%以下とする。しかし、C含有量が極端に少なくなると、鋼材の溶製中の脱酸が困難になるため、下限は0.005%とし、好ましくは0.008%以上、より好ましくは0.013%以上である。
C: 0.005-0.06%
C is an element that greatly affects the formation of the structure of the steel material, and it is necessary to reduce it as much as possible in order to make the structure of the steel material a ferrite single phase structure. Further, it is an element that greatly affects deformation resistance and deformability during cold forging, and it is desirable to reduce it as much as possible for cold forgeability. When it contains excessively, pearlite will produce | generate in the structure | tissue of steel materials, deformation resistance will become excessive by the work hardening of pearlite, and cold forgeability will deteriorate. Therefore, the C content needs to be 0.06% by mass, preferably 0.055% or less, more preferably 0.045% by mass or less. However, if the C content is extremely low, deoxidation during steel melting becomes difficult, so the lower limit is made 0.005%, preferably 0.008% or more, more preferably 0.013% or more. is there.

Si:0.005〜0.05%
Siは、溶製中の脱酸元素として有効である。Si含有量が0.005%未満であると、脱酸が不十分になって溶製中にブローホールを発生することになる。しかしながら、Si含有量が過剰になって0.05%を超えると、Siのフェライト相の固溶強化によって、変形抵抗の増大を招くと共に、変形能の低下を生じさせる。このため、割れの発生が顕著になり、冷間鍛造性が悪化する。したがって、Si含有量は好ましくは0.007%以上、より好ましくは0.012%以上であり、好ましくは0.044質量%以下、より好ましくは0.031%以下である。
Si: 0.005 to 0.05%
Si is effective as a deoxidizing element during melting. If the Si content is less than 0.005%, deoxidation is insufficient and blow holes are generated during melting. However, if the Si content is excessive and exceeds 0.05%, the deformation resistance is increased and the deformability is lowered due to the solid solution strengthening of the ferrite phase of Si. For this reason, generation | occurrence | production of a crack becomes remarkable and cold forgeability deteriorates. Therefore, the Si content is preferably 0.007% or more, more preferably 0.012% or more, preferably 0.044% by mass or less, more preferably 0.031% or less.

Mn:0.4〜1%
Mnは溶製中の脱酸、脱硫元素として有効である。また、鋼材中のN含有量を高めた場合、冷間鍛造加工中の発熱による動的ひずみ時効によって割れが発生しやすくなるが、Mnは、MnSとして、そのときの(変形能)加工性を向上させ、割れを抑制する効果がある。この様な効果を有効に発揮させるには、0.4%以上含有させることが必要であり、好ましくは0.42%以上、より好ましくは0.48%以上である。一方、Mnが過剰に含まれると変形抵抗が過大となるだけでなく、偏析による組織の不均一性が生じるので、1%以下とする必要があり、好ましくは0.92%以下、より好ましくは0.83%以下である。
Mn: 0.4 to 1%
Mn is effective as a deoxidizing and desulfurizing element during melting. In addition, when the N content in the steel material is increased, cracking is likely to occur due to dynamic strain aging due to heat generation during cold forging, but Mn is MnS, and the workability at that time (deformability) is improved. It has the effect of improving and suppressing cracking. In order to effectively exhibit such an effect, it is necessary to contain 0.4% or more, preferably 0.42% or more, more preferably 0.48% or more. On the other hand, if Mn is contained excessively, not only the deformation resistance becomes excessive, but also the structure non-uniformity due to segregation occurs, so it is necessary to make it 1% or less, preferably 0.92% or less, more preferably 0.83% or less.

P:0.05%以下(0%を含まない)
リン(P)は不可避的不純物である。これが鋼材組織のフェライトに含有されると、フェライト粒界上に偏析して、変形能を劣化させ、冷間鍛造性を低下させる。また、前記フェライトを固溶強化させて変形抵抗の増大をもたらし、冷間鍛造性を劣化させる元素でもある。よって、冷間鍛造性向上のために、P含有量は0.05%以下とする。また、好ましくは0.022%以下である。P含有量を0%にすることは、工業上困難で、経済的でもないので、0%を含まないと但し書きで規定した。
P: 0.05% or less (excluding 0%)
Phosphorus (P) is an inevitable impurity. When this is contained in the ferrite of the steel structure, it segregates on the ferrite grain boundary, deteriorates the deformability, and lowers the cold forgeability. It is also an element that causes solid solution strengthening of the ferrite to increase deformation resistance and deteriorate cold forgeability. Therefore, in order to improve cold forgeability, the P content is 0.05% or less. Moreover, Preferably it is 0.022% or less. Setting the P content to 0% is industrially difficult and not economical, so it is specified in the proviso that 0% is not included.

S:0.005〜0.05%
硫黄(S)もPと同様に不可避的不純物である。SはFeSとして結晶粒界上に膜状に析出し、冷間鍛造性などの加工性を劣化させる。また、熱間脆性を引き起こす作用がある。そこで、変形能を向上させる観点から、S含有量は0.05%以下、好ましくは0.019%以下とする。但しS含有量を0%にすることは、工業上困難であるし、Sは被削性を向上させる効果も有する。このため、変形能と被削性および経済的に低減できる量のバランスを考慮して、S含有量の下限は0.005%以上とする。好ましくは0.008%以上含有させる。
S: 0.005-0.05%
Sulfur (S), like P, is an inevitable impurity. S is deposited as a film on the grain boundary as FeS, and deteriorates workability such as cold forgeability. It also has the effect of causing hot brittleness. Therefore, from the viewpoint of improving the deformability, the S content is set to 0.05% or less, preferably 0.019% or less. However, it is industrially difficult to reduce the S content to 0%, and S also has an effect of improving machinability. For this reason, the lower limit of the S content is set to 0.005% or more in consideration of the balance between the deformability, the machinability, and the amount that can be economically reduced. Preferably it is contained 0.008% or more.

Al:0.005〜0.1%
Alは、強い脱酸効果を有して、鋼材の内部品質を向上させることができる。また、鋼中のNと結合して、AlNを形成し、フェライト結晶粒を整粒化する効果も有する。また、前記熱処理によって固溶N量を制御するのに重要な元素である。これらの効果を有効に発揮させるためには、0.005%以上のAlが必要であり、0.008%以上が好ましく、0.015%以上が更に好ましい。Alの含有量が0.005%未満であると、前記熱処理によって固溶N量を制御できなくなる。また、溶製時にガス欠陥が発生しやすく、冷間鍛造時に割れが発生しやすい。一方、0.1%を超えると、固溶Nとの結合力が顕著になるため、前記熱処理によって固溶N量を制御できなくなる。このため、固溶N量を低下させ、所定の部品強度が得られなくなる。したがって、Al含有量は0.1%以下とし、好ましくは0.032%以下、さらに好ましくは0.026%以下とする。
Al: 0.005 to 0.1%
Al has a strong deoxidation effect and can improve the internal quality of the steel material. Moreover, it combines with N in steel to form AlN, and has the effect of regulating the ferrite crystal grains. Further, it is an important element for controlling the amount of dissolved N by the heat treatment. In order to effectively exhibit these effects, 0.005% or more of Al is necessary, 0.008% or more is preferable, and 0.015% or more is more preferable. When the Al content is less than 0.005%, the solid solution N amount cannot be controlled by the heat treatment. In addition, gas defects are likely to occur during melting, and cracks are likely to occur during cold forging. On the other hand, if it exceeds 0.1%, the bonding strength with solute N becomes remarkable, so that the amount of solute N cannot be controlled by the heat treatment. For this reason, the amount of solute N is reduced, and a predetermined component strength cannot be obtained. Therefore, the Al content is 0.1% or less, preferably 0.032% or less, more preferably 0.026% or less.

N:0.008〜0.02%
窒素(N)は、冷間鍛造後に所望の部品強度を得るために必要な固溶N量を確保するために所定量添加する必要がある。また、冷間鍛造加工後の静的ひずみ時効によって所定の強度を得るためにも重要な元素である。こうした効果を発揮させるためには、全N含有量を0.008%以上とする必要がある。しかしながら、このN含有量が過剰になって0.02%を超えると、静的ひずみ時効よりも加工中の動的ひずみ時効の影響が顕著になり、変形抵抗が増大することになる。N含有量の好ましい下限は0.010%以上、より好ましくは0.012%以上であり、好ましい上限は0.0155%、より好ましくは0.0140%以下である。
N: 0.008 to 0.02%
Nitrogen (N) needs to be added in a predetermined amount in order to secure a solid solution N amount necessary for obtaining a desired component strength after cold forging. It is also an important element for obtaining a predetermined strength by static strain aging after cold forging. In order to exert such effects, the total N content needs to be 0.008% or more. However, when the N content becomes excessive and exceeds 0.02%, the influence of dynamic strain aging during processing becomes more significant than static strain aging, and the deformation resistance increases. The preferable lower limit of the N content is 0.010% or more, more preferably 0.012% or more, and the preferable upper limit is 0.0155%, more preferably 0.0140% or less.

その他の元素:
本発明では、固溶Nと窒素化合物を形成しやすい元素として、例えば、Ti、Nb、V、B(硼素)、Hf、Taなどの元素を、不可避的不純物として、これらの合計の含有量で2%以下(0%を含む)含んでも良い。
Other elements:
In the present invention, for example, elements such as Ti, Nb, V, B (boron), Hf, and Ta are unavoidable impurities as elements that easily form a solid solution N and a nitrogen compound. It may contain 2% or less (including 0%).

また、例えば、Cr、Mo、Cu、Ni、Ca、REM、Mg、Liなどの他の元素も、不純物として溶解原料などから混入しやすい元素であるが、前記固溶Nの効果や機械部品の特性を損なわない範囲で、不可避的不純物として、各々下記する許容量だけ含んでも良い。Cr:2%以下(0%を含む)、Mo:1%以下(0%を含む)、Cu:5%以下(0%を含む)、Ni:5%以下(0%を含む)、Ca、REM:各0.2%以下(0%を含む)、Mg、Li:各0.01%以下(0%を含む)。   Further, for example, other elements such as Cr, Mo, Cu, Ni, Ca, REM, Mg, and Li are also elements that are easily mixed from dissolved raw materials as impurities. As long as the characteristics are not impaired, the following inevitable amounts may be included as inevitable impurities. Cr: 2% or less (including 0%), Mo: 1% or less (including 0%), Cu: 5% or less (including 0%), Ni: 5% or less (including 0%), Ca, REM: each 0.2% or less (including 0%), Mg, Li: each 0.01% or less (including 0%).

以上の材料を用いて、大型ねじ1を本発明に示した鍛造方法により製造することにより、従来、熱間鍛造を用いてしか大型ねじ1を製造できなかったものが、冷間鍛造を用いて製造することができるようになった。なお、本発明の製造方法は、大型ねじ1のみならず、これまで熱間鍛造によって加工されていたクランクシャフト、コンロッド、トランスミッションギヤ等の自動車用部品、その他の機械部品)にも適用することができる。   By manufacturing the large screw 1 by the forging method shown in the present invention using the above-mentioned materials, conventionally, the large screw 1 can be manufactured only by using hot forging. It can be manufactured. Note that the manufacturing method of the present invention can be applied not only to the large screw 1 but also to automotive parts such as crankshafts, connecting rods, transmission gears, and other machine parts that have been processed by hot forging so far. it can.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Of course, any of these is also included in the technical scope of the present invention.

表1に記載の化学成分組成を有する鋼(各元素の含有量は質量%)を、転炉により溶製し、連続鋳造で鋼片とした後、φ12mmの線材に圧延した。その後、この圧延線材に800℃×2時間の焼ならし熱処理を施し、圧延線材全体における固溶Nの一部をAlNに形成した。ここで、表1の「N」は窒化化合物、固溶Nを全て含めた全窒素の量を示す。   Steel having the chemical composition shown in Table 1 (the content of each element is mass%) was melted by a converter, made into a steel piece by continuous casting, and then rolled into a wire with a diameter of 12 mm. Thereafter, the rolled wire rod was subjected to a normalizing heat treatment at 800 ° C. for 2 hours to form a part of the solid solution N in the entire rolled wire rod in AlN. Here, “N” in Table 1 indicates the amount of total nitrogen including all nitride compounds and solid solution N.

得られた前記線材(冷間鍛造前の機械構造用鋼)の前記大型ねじ1(機械部品)における高強度化が必要な大型ねじ1の軸部およびねじ部の領域に対応する、部分的な高強度化領域を予め決定し、この部分的な高強度化領域の固溶N量を前記高強度化のために必要な量に予め高めた上で前記冷間鍛造を行った。すなわち、前記S1〜S7までの工程を経て前記大型ねじ1を製造した。   The obtained wire (machine structural steel before cold forging) is a partial corresponding to the shaft portion of the large screw 1 and the region of the screw portion that require high strength in the large screw 1 (machine part). A high-strength region was determined in advance, and the cold forging was performed after the amount of solid solution N in this partial high-strength region was increased to a necessary amount for increasing the strength. That is, the large screw 1 was manufactured through the steps S1 to S7.

この際、S6:材料性状処理工程(前記熱処理工程)によって、前記部分的な高強度化領域(強度が必要な部分)の固溶N量を、高周波加熱によって、表2に示す部分的に異なる熱処理を行って制御した。ここで、前記部分的な高強度化領域(強度が必要な部分)のみを、表2に各々示す各温度に急速、短時間に加熱(前記φ12mmのねじ径で約100℃/sec程度)することによって、素材中のAlNなどの前記窒化化合物を分解させて、この高強度化領域の固溶N量を増加させた。この際、加熱および保持の合計時間は各例とも共通して300秒程度の短時間とし、それ以外の強度が必要でない部分はできるだけ加熱されないようにした。すなわち、特に発明例においては、この高強度化領域以外の強度が必要でない部分は、加熱処理しなかった(熱処理無し)。   At this time, the amount of solid solution N in the partially increased strength region (the portion requiring strength) is partially changed as shown in Table 2 by high-frequency heating depending on S6: material property processing step (the heat treatment step). Heat treatment was performed and controlled. Here, only the partial high-strength region (portion where strength is required) is heated to each temperature shown in Table 2 rapidly and in a short time (about 100 ° C./sec with the φ12 mm screw diameter). Thus, the nitride compound such as AlN in the material was decomposed to increase the amount of solute N in the high strength region. At this time, the total time for heating and holding was set to a short time of about 300 seconds in common with each example, and other portions where strength was not required were not heated as much as possible. That is, particularly in the inventive examples, the portions other than the high-strength region that do not require strength were not heat-treated (no heat treatment).

加熱保持後の冷却では、発明例を含めて、前記部分的な高強度化領域の冷却速度を1℃/sに制御し、前記部分的な高強度化領域に生成させた固溶Nが、冷却過程で再度析出し、冷間鍛造での強度増加に必要な量未満に減らないようにした。   In cooling after heating and holding, including the invention example, the cooling rate of the partially strengthened region is controlled at 1 ° C./s, and the solid solution N generated in the partially strengthened region is It was precipitated again in the cooling process, so that it did not decrease below the amount necessary for the strength increase in cold forging.

素材鋼線材の前記部分的な高強度化領域と、それ以外の軸部相当部の「固溶N量」を前記分析方法で求めた。この結果を表2に示す。表2で「固溶N量」は質量%で示す。   The “strengthened N amount” of the partial strength-enhancing region of the raw steel wire and the other shaft-corresponding portion was determined by the analysis method. The results are shown in Table 2. In Table 2, “Solution N amount” is expressed in mass%.

また、冷間鍛造の際には、各例とも共通して、前記部分的な高強度化領域を含めて、それ以外の部分に対しても、200℃以下の雰囲気温度で塑性ひずみを付与して、前記機械部品における高強度化が必要な部分の強度を部分的に高めることを試みるとともに、前記大型ねじ1形状とした。   Also, during cold forging, in common with each example, plastic strain was applied at an ambient temperature of 200 ° C. or lower to the other portions including the partial strength enhancement region. Then, while trying to partially increase the strength of the mechanical part that requires high strength, the large screw 1 was formed.

冷間鍛造は、前記熱処理を施した線材に10%の減面伸線加工を施した後、パーツフォーマを用いて、M12のねじ加工を行った。その後、仕上げのねじ加工を、連続4段の冷間鍛造にて行い、図1に示す大型ねじ部品のねじ形状に仕上げた。この4段の冷間鍛造の加工速度は60個/分である。   In the cold forging, the wire rod subjected to the heat treatment was subjected to 10% area-reduction drawing, and then M12 was threaded using a parts former. After that, finishing threading was performed by continuous four-stage cold forging to finish the screw shape of the large screw part shown in FIG. The processing speed of this four-stage cold forging is 60 pieces / minute.

得られた大型ねじ部品の強度の評価として、素材を前記部分的な高強度化領域とした、前記軸部およびねじ部の領域のビッカース硬さ(Hv)、それ以外の部分(首下部分)のビッカース硬さ(Hv)を、各々ビッカース硬さ試験機にて測定し、これらの部位の硬さの差(軸部およびねじ部の領域の硬さの増加)も求めた。この際、前記軸部およびねじ部の領域のビッカース硬さがは300Hv以上である部品を強度に優れると判定し、300Hv未満を強度に劣ると判定した。この結果も表2に示す。なお、前記部品のビッカース硬さは、前記ねじを軸心にて長手方向に亘って等分に2分割するように(縦方向に)切断し、この切断面における、前記軸部と首下との各長手方向位置で、かつ、これら各断面部のD/4(D:ねじ部品直径)の深さ位置での、硬さを各々測定した。ビッカース硬さの測定は、荷重:1000g、測定回数:5回の共通する条件で測定し、その平均をとった。   As an evaluation of the strength of the obtained large-sized screw component, the Vickers hardness (Hv) of the region of the shaft portion and the screw portion, the other portion (the lower neck portion), where the material is the partial high-strength region The Vickers hardness (Hv) of each was measured with a Vickers hardness tester, and the difference in hardness between these parts (increase in the hardness of the shaft portion and the screw portion) was also obtained. At this time, it was determined that a component having a Vickers hardness of 300 Hv or more in the region of the shaft portion and the screw portion was excellent in strength, and that less than 300 Hv was inferior in strength. The results are also shown in Table 2. The Vickers hardness of the component is cut so that the screw is equally divided into two along the longitudinal direction at the axial center (in the vertical direction). The hardness was measured at each longitudinal position and at a depth position of D / 4 (D: diameter of threaded part) of each cross section. The Vickers hardness was measured under the common conditions of load: 1000 g and measurement frequency: 5 times, and the average was taken.

得られた大型ねじ部品の冷間鍛造性も評価した。すなわち、前記ねじの軸部と首下の各長手方向の中心部からφ10mm×長さ15mmの試験片を各々切り出し、これらの試験片を、ひずみ速度:10/S(加工中のひずみ速度の平均値)、加工温度:室温、圧縮率:80%の加工条件で、1600トンプレスを用いて、端部を拘束した状態で据え込み加工を行った。この加工後、観察倍率20倍での実態顕微鏡で表面を観察して、割れの有無を確認し、冷間鍛造性を評価した。この結果も表2に示す。本実施例では、前記ねじの軸部と首下のいずれの試験においても割れが観察されない場合を冷間鍛造性に優れる(○)、前記ねじの軸部と首下のいずれか一方あるいは両方の試験において、小さくても部品に割れが観察される場合を冷間鍛造性に劣る(×)と判定した。   The cold forgeability of the large screw parts obtained was also evaluated. That is, test pieces each having a diameter of 10 mm and a length of 15 mm were cut out from the axial portion of the screw and the central portion in the longitudinal direction under the neck, and these test pieces were strain rate: 10 / S (average strain rate during processing) Value), processing temperature: room temperature, compression ratio: 80%, and upsetting was performed using a 1600 ton press with the ends restrained. After this processing, the surface was observed with an actual microscope at an observation magnification of 20 times, the presence or absence of cracks was confirmed, and the cold forgeability was evaluated. The results are also shown in Table 2. In this example, the case where cracks are not observed in any of the tests on the shaft and the neck of the screw is excellent in cold forgeability (O), either one or both of the shaft and / or the neck of the screw. In the test, even if it was small, the case where cracks were observed in the part was determined to be inferior in cold forgeability (x).

表1、2の発明例、鋼種A4−A5、B3−B5、C、D、E、F、G、Hは、鋼材組成を満足するとともに、高強度化が必要な部分に対応する冷間鍛造前の部分的な高強度化領域を予め決定し、この高強度化領域の固溶N量を高強度化のために必要な量に予め熱処理によって部分的に高めている。そして、その上で冷間鍛造を行い、この冷間鍛造の際に少なくとも前記部分的な高強度化領域に対して200℃以下の雰囲気温度で塑性ひずみを付与して、機械部品における高強度化が必要な部分のみの強度を部分的に高めている。この結果、発明例は、冷間鍛造性に優れ、かつ前記ねじ軸部の硬度が300HVを超え、部品強度に優れている。   Inventive examples in Tables 1 and 2, steel types A4-A5, B3-B5, C, D, E, F, G, and H satisfy the steel composition, and cold forging corresponding to parts that require high strength. The previous partially strengthened region is determined in advance, and the amount of solute N in this strengthened region is partially increased by heat treatment in advance to an amount necessary for increasing strength. Then, cold forging is performed, and at the time of this cold forging, plastic strain is applied at an atmospheric temperature of 200 ° C. or lower to at least the partial high strength region, thereby increasing the strength of the machine part. The strength of only the necessary parts is partially increased. As a result, the inventive example is excellent in cold forgeability, the hardness of the screw shaft portion exceeds 300 HV, and is excellent in component strength.

これに対して本発明で規定する要件を満たさないものは、以下に記載するように、冷間加工性または部品強度が劣っている。   On the other hand, those that do not satisfy the requirements defined in the present invention are inferior in cold workability or component strength, as described below.

鋼種A1−A3、B1−B2は、前記部分的な高強度化領域(強度が必要な部分)の加熱温度が低すぎて、この高強度化領域のAlNなどの前記窒化化合物を分解させて、固溶N量を十分増加させることができず、この高強度化領域の固溶N量が不足している。この結果、冷間鍛造性は当然ながら良いものの、冷間鍛造によっても、前記ねじ軸部の硬度は300HV未満であり、高強度化ができておらず、強度不足である。   Steel grades A1-A3, B1-B2 have the heating temperature of the partially strengthened region (portion requiring strength) too low, and decompose the nitride compound such as AlN in the strengthened region, The amount of solute N cannot be increased sufficiently, and the amount of solute N in this high strength region is insufficient. As a result, although the cold forgeability is naturally good, the hardness of the screw shaft portion is less than 300 HV even by cold forging, the strength cannot be increased, and the strength is insufficient.

鋼種Iは、素材鋼線材の全N量が不足している。このため、前記部分的な高強度化領域(強度が必要な部分)の加熱温度が低すぎることと相まって、前記高強度化領域の固溶N量が不足して、冷間鍛造によっても、前記ねじ軸部の硬度は300HV未満であり、高強度化ができておらず、強度不足である。   Steel type I lacks the total N amount of the raw steel wire rod. For this reason, coupled with the fact that the heating temperature of the partially strengthened region (portion requiring strength) is too low, the amount of solute N in the strengthened region is insufficient, and even by cold forging, The hardness of the screw shaft portion is less than 300 HV, the strength cannot be increased, and the strength is insufficient.

鋼種J−1〜J−5はAlの含有量が少なすぎる。このため、発明例と同様な加熱条件、あるいは加熱温度が低すぎる条件であっても、前記熱処理によってAlと窒素との結合状態による固溶N量の制御ができない。この結果、共通して、元の素材鋼線材の固溶N量のままであり、前記高強度化領域やそれ以外の領域を含めて、素材鋼線材全体の固溶N量が多すぎて、冷間鍛造性が劣っている。   Steel types J-1 to J-5 have too little Al content. For this reason, even if the heating conditions are the same as those of the invention example or the heating temperature is too low, the amount of solid solution N cannot be controlled by the heat treatment due to the bonding state of Al and nitrogen. As a result, in common, the amount of solute N in the original material steel wire remains as it is, and the amount of solute N in the entire material steel wire is too large, including the high strength region and other regions. Cold forgeability is inferior.

鋼種K−1は、前記した固溶N量を増す熱処理を、前記高強度化領域やそれ以外の領域を含めて、一切行っていない。このため、特に前記高強度化領域の固溶N量が不足して、冷間鍛造によっても、前記ねじ軸部の硬度は300HV未満であり、高強度化ができておらず、強度不足である。   Steel type K-1 is not subjected to any heat treatment for increasing the amount of dissolved N, including the high-strength region and other regions. For this reason, especially the amount of solute N in the high strength region is insufficient, and even by cold forging, the hardness of the screw shaft portion is less than 300 HV, the strength cannot be increased, and the strength is insufficient. .

鋼種K−2は、前記した固溶N量を増す熱処理を、前記高強度化領域やそれ以外の領域を含めて、線材全体に行っている。このため、線材全体の固溶N量が多すぎて、冷間鍛造性が劣っている。   In steel type K-2, the heat treatment for increasing the amount of solute N described above is performed on the entire wire including the high-strength region and other regions. For this reason, there is too much solid solution N amount of the whole wire, and cold forgeability is inferior.

Figure 0005314582
Figure 0005314582

Figure 0005314582
Figure 0005314582

本発明によれば、C含有量を0.06質量%未満の極低炭素領域に下げた軟質の鋼材を用いても、製品の強度を十分に確保することができ、前記変形抵抗と部品強度との両立を図れる、冷間鍛造を用いた機械部品の製造方法を提供できる。したがって、自動車等の車両に用いられている機械部品の製造方法として、広く用いることができる。   According to the present invention, even when a soft steel material whose C content is reduced to an extremely low carbon region of less than 0.06 mass% is used, the strength of the product can be sufficiently ensured, and the deformation resistance and the component strength can be ensured. It is possible to provide a method of manufacturing a machine part using cold forging that can achieve both of the above. Therefore, it can be widely used as a method for manufacturing machine parts used in vehicles such as automobiles.

1:大型ねじ、2:軸部、3:丸棒 1: Large screw, 2: Shaft, 3: Round bar

Claims (4)

質量%で、C:0.005〜0.06%、Si:0.005〜0.05%、Mn:0.4〜1%、P:0.05%以下(0%を含まない)、S:0.005〜0.05%、Al:0.005〜0.1%、N:0.008〜0.02%を各々含み、残部は鉄および不可避不純物からなる機械構造用鋼を冷間鍛造して機械部品を製造するに際し、前記機械部品の部分的な高強度化領域に対応する、前記冷間鍛造前の前記機械構造用鋼における部分的な高強度化領域を予め決定し、この部分的な高強度化領域の固溶N量を前記高強度化のために必要な量に予め部分的に高めた上で、少なくともこの部分的な高強度化領域に対して200℃以下の雰囲気温度で塑性ひずみを付与するとともに、前記部分的な高強度化領域以外の部分に対しても塑性ひずみを付与する冷間鍛造を行い、前記機械部品の部分的な高強度化領域の強度を高めるとともに、前記機械部品形状とすることを特徴とする機械部品の製造方法。 In mass%, C: 0.005 to 0.06%, Si: 0.005 to 0.05%, Mn: 0.4 to 1%, P: 0.05% or less (not including 0%), S: 0.005 to 0.05%, Al: 0.005 to 0.1%, N: 0.008 to 0.02%, respectively. When producing a machine part by cold forging, a partially strengthened region in the mechanical structural steel before the cold forging corresponding to a partially strengthened region of the machine part is determined in advance, after having previously partially increased to the amount required for the amount of dissolved N in the partial high intensity region of the high strength, the 200 ° C. or less for at least this partial strengthening region with imparting plastic strain at ambient temperature, the plastic His against a portion other than the partial strengthening region Perform cold forging of imparting, to increase the strength of the partial high intensity region of the machine component producing process of mechanical components, characterized in that the said mechanical part shape. 前記機械構造用鋼における部分的な高強度化領域の固溶N量を0.008〜0.014%の範囲とするとともに、この部分的な高強度化領域に付与される冷間鍛造塑性ひずみを0.5〜5の範囲とする請求項1に記載の機械部品の製造方法。   The amount of solute N in the partially strengthened region in the mechanical structural steel is in the range of 0.008 to 0.014%, and cold forging plastic strain applied to the partially strengthened region. The method for manufacturing a machine part according to claim 1, wherein the range of 0.5 to 5 is set. 前記部分的な高強度化領域の固溶N量を、変形抵抗(DR)、部品強度(Hv)、疲労強度(F)のいずれかに基づいたモデル式か、又は予め取得した経験値から求める請求項1または2に記載の機械部品の製造方法。   The amount of solute N in the partially strengthened region is obtained from a model formula based on any one of deformation resistance (DR), component strength (Hv), and fatigue strength (F), or from an empirical value acquired in advance. The manufacturing method of the machine component of Claim 1 or 2. 前記機械構造用鋼における部分的な高強度化領域の固溶N量を、この部分的な高強度化領域の熱処理によって高める請求項1乃至3のいずれか1項に記載の機械部品の製造方法。   The method for manufacturing a machine part according to any one of claims 1 to 3, wherein the solid solution N amount in the partially strengthened region in the mechanical structural steel is increased by heat treatment in the partially strengthened region. .
JP2009274704A 2009-12-02 2009-12-02 Manufacturing method of machine parts Expired - Fee Related JP5314582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274704A JP5314582B2 (en) 2009-12-02 2009-12-02 Manufacturing method of machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009274704A JP5314582B2 (en) 2009-12-02 2009-12-02 Manufacturing method of machine parts

Publications (2)

Publication Number Publication Date
JP2011115815A JP2011115815A (en) 2011-06-16
JP5314582B2 true JP5314582B2 (en) 2013-10-16

Family

ID=44281779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274704A Expired - Fee Related JP5314582B2 (en) 2009-12-02 2009-12-02 Manufacturing method of machine parts

Country Status (1)

Country Link
JP (1) JP5314582B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794113A (en) * 1980-12-01 1982-06-11 Sakamura Machine Female screw articles and its manufacture
JPH0655237A (en) * 1992-06-08 1994-03-01 Rhythm Corp Manufacture of steering tie rod
JP3117601B2 (en) * 1994-05-09 2000-12-18 新日本製鐵株式会社 Non-tempered machine part and method of manufacturing the same
JP4295314B2 (en) * 2006-12-28 2009-07-15 株式会社神戸製鋼所 Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts

Also Published As

Publication number Publication date
JP2011115815A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP4295314B2 (en) Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts
WO2012046779A1 (en) Case hardened steel and method for producing the same
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
EP2660348B1 (en) Die steel having superior rusting resistance and thermal conductivity, and method for producing same
CN107406949B (en) Steel wire for machine structural parts
JP2012207244A (en) Case hardening steel, method for producing the same, and mechanical structural part using the case hardening steel
CN114752849B (en) High-strength and high-toughness free-cutting non-quenched and tempered round steel and manufacturing method thereof
JP5368830B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
KR101449111B1 (en) Steel wire rod having excellent strength and ductility and method for manufacturing the same
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP2006052432A (en) Method for manufacturing forged product for connecting rod easily separated through rupture and having high-strength
JP6614349B2 (en) Rolled wire rod
CN112969808A (en) Steel for bolt and method for producing same
JP4113453B2 (en) Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method
JP5314582B2 (en) Manufacturing method of machine parts
JP5282501B2 (en) Manufacturing method of high strength non-tempered forged parts
JP2018165403A (en) Steel for carburizing having excellent low cycle fatigue strength and machinability, and carburized component
JP2007277654A (en) Cold forged components, manufacturing method for obtaining the same, and steel material
JP5476766B2 (en) Machine structural steel with excellent cold forgeability and method for producing the same
JP5363882B2 (en) Cold-working steel, cold-working steel manufacturing method, machine structural component manufacturing method, and machine structural component
JP5385661B2 (en) Steel with improved impact deformation resistance
JP2015212414A (en) Steel for cold-forged component
JP2006118014A (en) Method for producing case hardening steel having excellent cold workability and crystal grain coarsening resistance
JP2009030085A (en) Method for manufacturing non-heat-treated small screw
JP5286217B2 (en) Machine structural steel with excellent hot workability, cold workability, and hardness after cold work

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees