JP2006052432A - Method for manufacturing forged product for connecting rod easily separated through rupture and having high-strength - Google Patents

Method for manufacturing forged product for connecting rod easily separated through rupture and having high-strength Download PDF

Info

Publication number
JP2006052432A
JP2006052432A JP2004233662A JP2004233662A JP2006052432A JP 2006052432 A JP2006052432 A JP 2006052432A JP 2004233662 A JP2004233662 A JP 2004233662A JP 2004233662 A JP2004233662 A JP 2004233662A JP 2006052432 A JP2006052432 A JP 2006052432A
Authority
JP
Japan
Prior art keywords
connecting rod
strength
coining
rough
large end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004233662A
Other languages
Japanese (ja)
Inventor
Junpei Ogawa
隼平 小川
Tomonori Miyazawa
智則 宮澤
Yoshio Okada
義夫 岡田
Shinichiro Kato
進一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004233662A priority Critical patent/JP2006052432A/en
Publication of JP2006052432A publication Critical patent/JP2006052432A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a forged product for a connecting rod which is easily separated through rupture and has high-strengths, by efficiently strengthening only an articulated part to which high yield strength and high fatigue strength are required, without greatly spending an energy cost, a machining cost, a material cost and a die cost. <P>SOLUTION: A material for the forged product is a ferrite/pearlite type non-heat treated steel which has a composition comprising, by mass%, 0.2-0.6% C, 0.05-2% Si, 0.3-1.5% Mn, 0.01-0.2% P, 0.05-1% Cr, 0.02-0.5% V, 0.009-0.03% N and the balance Fe with inevitable impurities. The method for manufacturing the forged product comprises the steps of: hot-forging the above material into a roughly formed body for the connecting rod; and then coining the articulated part of the roughly formed body at a temperature ranging from 200 to 700°C and at a processing rate of 3 to 40% without applying distortion to a large end, in the cooling process, while simultaneously performing shape correction and strain ageing, to strengthen the articulated part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明はコネクティングロッド用鍛造品、詳しくは後において大端部で破断分離され且つその際の破断分離が容易で連接部の耐力に優れた高強度コネクティングロッド用鍛造品の製造方法に関する。   The present invention relates to a forging for a connecting rod, and more particularly to a method for producing a forging for a high-strength connecting rod that is later fractured and separated at a large end, and that is easily broken and separated at that time and has excellent strength at a joint.

図6に一例を示す内燃往復エンジンのコネクティングロッド(以下コンロッド)200は、従来その全体を鍛造で一体に成形加工し、そして必要に応じて仕上げの機械加工を施した後に分離部Pで機械加工により切断分離し、これにより小端部202と連接部204と大端部206の半体206Aとを一体に有する本体側の第1部品と、大端部206の半体206Bから成る第2部品とに分離し、製造していた。
尚208は小端部202の円孔を、210は大端部206の円孔を表している。
A connecting rod (hereinafter referred to as a connecting rod) 200 of an internal combustion reciprocating engine shown as an example in FIG. 6 is conventionally formed integrally by forging, and then machined by a separating portion P after finishing machining as necessary. The first part on the main body side integrally having the small end portion 202, the connecting portion 204, and the half portion 206A of the large end portion 206, and the second part consisting of the half portion 206B of the large end portion 206. It was separated and manufactured.
Reference numeral 208 denotes a circular hole in the small end portion 202, and 210 denotes a circular hole in the large end portion 206.

しかしながら上記の従来の製造方法の場合、切断部分に切代として余分な材料を要するとともに、切断後に分離面を切削加工又は研磨加工等によって仕上加工を施していることから、多大な時間の浪費と価格の上昇をもたらしていた。
更にこのような方法ではいくらクランクシャフト組付前に精度良く加工を施したとしても、加工後に分解してクランクシャフトに組み付けるときに接合面で横滑りが生じ、組付精度即ち真円度(大端部206の円孔210の真円度)が悪化する問題があった。
However, in the case of the above-described conventional manufacturing method, an extra material is required as a cutting allowance for the cut portion, and since the separation surface is subjected to finishing processing by cutting or polishing after cutting, a great amount of time is wasted. The price was rising.
Furthermore, in such a method, no matter how much the machining is performed before assembling the crankshaft, a side slip occurs at the joint surface when disassembling after assembling and assembling to the crankshaft. There is a problem that the roundness of the circular hole 210 of the portion 206 is deteriorated.

このためノックピンを入れたり案内パイプを使用したりして横滑りを防止しているが、それでも十分な組付精度ないし組付状態での形状精度を確保できているわけではない。
またノックピンや案内パイプを設けることは価格の上昇をもたらすので好ましい方法とは言えない。
For this reason, a side pin is prevented by inserting a knock pin or using a guide pipe. However, sufficient assembling accuracy or shape accuracy in an assembled state is not ensured.
In addition, providing a knock pin or a guide pipe is not a preferable method because it increases the price.

これらの問題を解決する一方法として、粉末焼結の手法を用いてコンロッドを製造する方法が提案されているが、この方法では粉末焼結プロセスが複雑なプロセスとなって生産性を阻害し、コスト低下の目的を達し得ない難点があった。   As a method for solving these problems, a method of manufacturing a connecting rod using a powder sintering method has been proposed, but in this method, the powder sintering process becomes a complicated process, which hinders productivity, There was a difficulty that could not achieve the purpose of cost reduction.

そこで近年、熱間鍛造によりコンロッドを最終形状に一体に鍛造加工した後、破断分離によって上記の第1部品と第2部品とに分離する方法が提案され、またそのための材料として破断分離が容易な熱間鍛造用非調質鋼が開発されている。   Therefore, in recent years, a method has been proposed in which a connecting rod is integrally forged into a final shape by hot forging, and then separated into the first part and the second part by breaking separation, and as a material for that, breaking separation is easy. Non-tempered steel for hot forging has been developed.

この方法で得られたコンロッドの分離面、即ち組付接合面は機械加工面とは異なってランダムな凹凸を有する破断面であるので、接合面での横滑りが生じず、従って精度良くこれを組み付けることができる。
またそのための材料として非調質鋼を用いた場合、焼入れ・焼戻し処理が不要であることから、コンロッドの製造工程,製造コストを低減することができる。
Unlike the machined surface, the connecting rod separation surface obtained by this method, that is, the assembled joint surface, is a fractured surface with random irregularities, so that no side slip occurs on the joint surface, so that it is assembled with high accuracy. be able to.
Further, when non-tempered steel is used as the material for that purpose, the quenching / tempering treatment is unnecessary, and therefore the connecting rod manufacturing process and manufacturing cost can be reduced.

現在欧州ではこのような破断分離によってコンロッドを製造するための材料としてXC70(フランス基準)型の鋼が用いられている。
この鋼は米国特許5,135,587号等に紹介されており、ほぼ100%パーライト単一組織の鋼であって、質量%で0.6〜0.75%のCと0.2〜0.5%のMn,0.04〜0.12%のS(Mn/S>3)とを含み、残部はFeと不可避不純物であり、不純物の含有率は1.2%を超えない化学組成のものである。
Currently in Europe, XC70 (French standard) type steel is used as a material for manufacturing connecting rods by such fracture separation.
This steel is introduced in US Pat. No. 5,135,587, etc., and is almost 100% pearlite single structure steel, 0.6 to 0.75% C by mass, 0.2 to 0.5% Mn, 0.04 to 0.12% S. (Mn / S> 3), and the balance is Fe and inevitable impurities, and the impurity content is not more than 1.2%.

しかしながらこの鋼種は、専ら破断分離のし易さを主眼として開発された鋼種であり、従って上記のような破断分離には適しているものの、コンロッドとして必要な耐力や疲労強度が低く、更に被削性も悪いといった問題があり、自動車用部品としては適していない。
このため現在、疲労強度及び耐力に優れ、また被削性も良好で破断分離に適した鋼種の開発が進められている。
However, this steel type was developed mainly for ease of fracture separation, and is therefore suitable for fracture separation as described above. There is a problem that the property is also bad, and it is not suitable as an automobile part.
Therefore, the development of steel types that are excellent in fatigue strength and proof stress, have good machinability, and are suitable for fracture separation is currently underway.

一方、近年のエンジン用コンロッドはコストダウンのため焼入れ焼戻し処理に代えてVやNbを添加した非調質鋼を素材として使用し、これを熱間鍛造した後制御冷却などにより冷却し、強度を付与して使用に供されている。   On the other hand, in recent years, connecting rods for engines use non-tempered steel with V and Nb added as a raw material instead of quenching and tempering treatment for cost reduction. It is provided for use.

更にV添加等の成分調整よりも更なる高強度化を図るため、例えば下記特許文献1には、熱間加工後の冷却過程でAr点以下〜200℃の温度域で歪を与え時効硬化させることで高強度を得る方法も提案されている。
しかしながら温間コイニングの際、破断部である大端部に歪を導入してしまうと冷却時に歪が回復しきれないため、破断後の大端部の再組付性が悪化してしまう。
Furthermore, in order to achieve higher strength than component adjustment such as V addition, for example, Patent Document 1 listed below shows age hardening by imparting strain in the temperature range of Ar 1 point or less to 200 ° C. in the cooling process after hot working. There has also been proposed a method for obtaining a high strength by causing the above to occur.
However, in the case of warm coining, if strain is introduced into the large end, which is a rupture portion, the strain cannot be recovered during cooling, so that the reassembly of the large end portion after rupture deteriorates.

また温間でコイニングを行った場合、鍛造後のコンロッド粗成形体の連接部形状が不均一な場合、温間加工で加えた歪が不均一に連接部に導入されるため、曲りの原因となってしまう。   In addition, when the coining is performed warmly, if the connecting part shape of the connecting rod rough molded body after forging is non-uniform, the strain applied by warm processing is introduced non-uniformly into the connecting part. turn into.

本発明者等は、先に提出した特許願(特願2003−207393:非公開)において、フェライト・パーライト型非調質鋼から成る素材を熱間鍛造してコネクティングロッド用の粗成形体に成形する際に、粗成形体を下記にて規定されるA,B,αがα/(A+B)≦0.05を満足する形状に成形し、その後に大端部に歪を加えることなく連接部のみ部分的に冷間コイニング加工及び高周波誘導加熱による時効処理を施す、破断分離が容易な高強度コネクティングロッド用鍛造品の製造方法を提案している。
A:熱間鍛造後の粗成形体の上,下型の中心線で切断したときの一方の断面積
B:熱間鍛造後の粗成形体の上,下型の中心線で切断したときの他方の断面積
α:熱間鍛造後の粗成形体の上,下型の中心線で折り返したときのA部とB部とが重ならない部分の面積
In the patent application filed previously (Japanese Patent Application No. 2003-207393: not disclosed), the present inventors hot forged a material made of ferritic / pearlite-type non-heat treated steel to form a rough formed body for a connecting rod. When the rough molded body is formed into a shape satisfying A, B, α satisfying α / (A + B) ≦ 0.05 as defined below, only the connecting portion is formed without applying strain to the large end. In particular, it has proposed a method for producing a forged product for a high-strength connecting rod that is easily rupture-separated and that is subjected to aging treatment by cold coining and high-frequency induction heating.
A: One cross-sectional area when cut at the center line of the lower mold on the rough molded body after hot forging B: When cut at the center line of the lower mold on the rough molded body after hot forging The other cross-sectional area α: Area of the part where the A part and the B part do not overlap when folded over the center line of the lower mold on the rough formed body after hot forging

この製造方法によれば、クラッキング性の確保及びコンロッドの曲り量低減を実現し、破断分離が容易な高強度コネクティングロッドを提供することが可能となる。   According to this manufacturing method, it is possible to provide a high-strength connecting rod that can ensure cracking and reduce the amount of bending of the connecting rod and can be easily separated by breaking.

ところがこの方法の場合、部分的に冷間コイニング加工を施した連接部に対して高周波誘導加熱を行う際、加熱が不均一となりやすく、その影響で上記α/(A+B)を0.05以下としなければならない。   However, in the case of this method, when high-frequency induction heating is performed on a joint portion that has been partially subjected to cold coining, heating tends to be non-uniform, and due to the influence, α / (A + B) must be 0.05 or less. Don't be.

即ち連接部の形状を高い精度で均一化しておかなければならない。この場合熱間鍛造型の型精度を高く維持しなければならず、そのため型交換の頻度が高くなってこのことがコストアップの要因となる問題を生ずる。   That is, the shape of the connecting portion must be made uniform with high accuracy. In this case, the die precision of the hot forging die must be kept high, so that the frequency of die replacement becomes high, which causes a problem that causes an increase in cost.

加えてこの先願の方法では、粗成形体を熱間鍛造して室温まで冷却した後において、これとは別工程で冷間コイニング加工及びこれに続く高周波誘導加熱による時効処理を行うこと、即ちそれら工程を別工程として行うことを余儀なくされる問題がある。   In addition, in the method of this prior application, after the rough molded body is hot forged and cooled to room temperature, cold coining processing and subsequent aging treatment by high frequency induction heating are performed in a separate process, that is, these There is a problem that the process is forced to be performed as a separate process.

特開2003−55714号公報JP 2003-55714 A

本発明は以上のような事情を背景とし、エネルギー費,加工費,材料費,型費等の大量追加を行うことなく、高耐力,高疲労強度が求められる連接部のみを効率良く高強度化し、破断分離が容易な高強度コネクティングロッド用鍛造品を提供することを目的としてなされたものである。   The present invention is based on the above circumstances, and it is possible to efficiently increase the strength of only the joints where high proof stress and high fatigue strength are required without adding a large amount of energy costs, processing costs, material costs, mold costs, etc. The purpose of the present invention is to provide a forged product for a high-strength connecting rod that is easy to break and separate.

而して請求項1のものは、質量%で、C:0.2〜0.6%,Si:0.05〜2%,Mn:0.3〜1.5%,P:0.01〜0.2%,Cr:0.05〜1%,V:0.02〜0.5%,N:0.009〜0.03%を含み、残部Fe及び不可避的不純物から成る組成のフェライト・パーライト型非調質鋼を素材とし、熱間鍛造によりコネクティングロッド用の粗成形体を成形した後、その冷却過程において大端部に歪を加えることなく該粗成形体の連接部に対し形状矯正と歪時効のための加工とを兼ねたコイニング加工を200〜700℃の温間領域で且つ加工率3〜40%で行い、該連接部を高強度化することを特徴とする。   Thus, the content of claim 1 is mass%, C: 0.2-0.6%, Si: 0.05-2%, Mn: 0.3-1.5%, P: 0.01-0.2%, Cr: 0.05-1%, V : Ferrite and pearlite type non-heat treated steel with a composition of 0.02 to 0.5%, N: 0.009 to 0.03%, balance Fe and inevitable impurities, and forming a rough formed body for connecting rods by hot forging After that, in the cooling process, a coining process that combines the shape correction and the process for strain aging is performed in the warm region of 200 to 700 ° C. for the joint part of the rough molded body without adding strain to the large end part. And it is performed at a processing rate of 3 to 40% to increase the strength of the connecting portion.

請求項2のものは、請求項1において、前記フェライト・パーライト型非調質鋼の組成を質量%で、Pb:0.01〜0.30%,S:0.02〜0.2%,Te:0.002〜0.3%,Ca:0.0004〜0.01%,Bi:0.01〜0.30%の1種又は2種以上を更に含有した組成となしておくことを特徴とする。   A second aspect of the present invention is the same as in the first aspect, wherein the composition of the ferritic pearlite type non-heat treated steel is in mass%, Pb: 0.01 to 0.30%, S: 0.02 to 0.2%, Te: 0.002 to 0.3%, Ca : 0.0004 to 0.01%, Bi: 0.01 to 0.30%, or a composition further containing one or more.

請求項3のものは、請求項1,2の何れかにおいて、更に下記式(1)
0.74≦[C%]+0.17[Si%]+0.22[Mn%]+[P%]+0.25[Cr%]+1.8[V%]≦1.59・・・式(1)
を満足することを特徴とする。
A third aspect of the present invention provides the method according to any one of the first and second aspects, further comprising the following formula (1):
0.74 ≦ [C%] + 0.17 [Si%] + 0.22 [Mn%] + [P%] + 0.25 [Cr%] + 1.8 [V%] ≦ 1.59 Equation (1)
It is characterized by satisfying.

請求項4のものは、請求項1〜3の何れかにおいて、前記フェライト・パーライト型非調質鋼から成る素材を熱間鍛造してコネクティングロッド用の粗成形体に成形する際に、該粗成形体を下記にて規定されるA,B,αがα/(A+B)≦0.08を満足する形状に成形した後、前記冷却過程において該粗成形体の前記大端部に歪を加えることなく前記加工率で前記コイニング加工を前記連接部に加えることにより、該大端部を破断分離した後の再組付けの際の真円度を500μm以下とすることを特徴とする。
A:熱間鍛造後の粗成形体の上,下型の中心線で切断したときの一方の断面積
B:熱間鍛造後の粗成形体の上,下型の中心線で切断したときの他方の断面積
α:熱間鍛造後の粗成形体の上,下型の中心線で折り返したときのA部とB部とが重ならない部分の面積
According to a fourth aspect of the present invention, in any one of the first to third aspects, when the raw material made of the ferritic / pearlite type non-heat treated steel is hot forged to form a rough formed body for a connecting rod, After the molded body is molded into a shape satisfying A / B, α defined below as α / (A + B) ≦ 0.08, no distortion is applied to the large end portion of the coarse molded body in the cooling process. By adding the coining process to the connecting part at the processing rate, the roundness at the time of reassembly after breaking and separating the large end part is set to 500 μm or less.
A: One cross-sectional area when cut at the center line of the lower mold on the rough molded body after hot forging B: When cut at the center line of the lower mold on the rough molded body after hot forging The other cross-sectional area α: Area of the part where the A part and the B part do not overlap when folded over the center line of the lower mold on the rough formed body after hot forging

発明の作用・効果Effects and effects of the invention

以上のように本発明は、C,Si,Mn,P,Cr,V,Nをそれぞれ所定量で含有させたフェライト・パーライト型非調質鋼を素材として、熱間鍛造によりコンロッド用の粗成形体を成形した後、その冷却過程において後に分割される大端部に歪を加えることなく、粗成形体の連接部に対して形状矯正と歪時効のための加工とを兼ねたコイニング加工200〜700℃の温間領域で、且つ加工率3〜40%で行い、その後これを室温まで冷却して、連接部を歪時効により高強度化するもので、本発明では所定量以上のNを含有させたV添加型フェライト・パーライト型非調質鋼に対してV炭窒化物の析出による硬化と、コイニングにより導入された可動転位を浸入形固溶元素のN,Cで効率的に固着することによる硬化即ち歪時効硬化により、連接部の耐力を効果的に向上させることができる。   As described above, the present invention uses a ferrite-pearlite non-heat treated steel containing C, Si, Mn, P, Cr, V, and N in a predetermined amount as a raw material, and performs rough forming for connecting rods by hot forging. After molding the body, the coining process 200 ~ which combines the shape correction and the process for strain aging on the joint part of the coarse molded body without applying distortion to the large end portion to be divided later in the cooling process. This is performed in a warm region of 700 ° C. and at a processing rate of 3 to 40%, and then cooled to room temperature to increase the strength of the connected part by strain aging. In the present invention, N is contained in a predetermined amount or more. Hardening by precipitating V carbonitride and precipitating V-type ferritic / pearlite non-heat treated steel, and moving dislocations introduced by coining efficiently with N and C interpenetrating solid solution elements The strength of joints is increased by hardening by strain, that is, strain age hardening. It can be improved.

また本発明では熱間鍛造後、その冷却過程の温間領域でコイニング加工を行うため、連接部を均一な温度の下でコイニング加工及び歪時効させることができ、高周波誘導加熱のような不均一加熱に基づいて曲りを生ぜしめるといった問題を解決することが可能となるのに加えて、後において冷間コイニング加工及び高周波誘導加熱を別工程として行うことを余儀なくされるといった問題も併せて解決することが可能となる。   Further, in the present invention, after hot forging, coining is performed in the warm region of the cooling process, so that the joints can be coined and strain-aged at a uniform temperature, and non-uniformity such as high-frequency induction heating can be achieved. In addition to being able to solve the problem of causing bending based on heating, it also solves the problem of being forced to perform cold coining and high-frequency induction heating later as separate processes. It becomes possible.

また後に破断分離される大端部に対しては歪を加えないため、冷却時に歪が回復しきれないことによって破断後の大端部の再組付性が悪化してしまう問題も解決することができる。   In addition, since no distortion is applied to the large end portion that is later broken and separated, the problem that the reassembly property of the large end portion after the breakage is deteriorated due to the fact that the strain cannot be recovered during cooling is solved. Can do.

本発明においては、必要に応じてPb,S,Te,Ca,Biの1種又は2種以上を上記の量で非調質鋼に含有させておくことができ(請求項2)、これにより機械加工に際しての被削性を効果的に高めることができる。   In the present invention, one or more of Pb, S, Te, Ca, Bi can be contained in the non-heat treated steel in the above amount as required (Claim 2). The machinability during machining can be effectively increased.

本発明ではまた、請求項3に従い次の式(1)
0.74≦[C%]+0.17[Si%]+0.22[Mn%]+[P%]+0.25[Cr%]+1.8[V%]≦1.59・・・式(1)
を満たすことで、冷間加工及び時効処理を施さない部位においても適切な硬さを得ることが可能となる。
The present invention also provides the following formula (1) according to claim 3.
0.74 ≦ [C%] + 0.17 [Si%] + 0.22 [Mn%] + [P%] + 0.25 [Cr%] + 1.8 [V%] ≦ 1.59 Equation (1)
By satisfy | filling, it becomes possible to obtain appropriate hardness also in the site | part which does not give cold work and an aging treatment.

本発明においては、熱間鍛造によりコンロッド用の粗成形体を成形するに際し、その粗成形体を請求項4に規定する形状に成形することで、連接部を部分的にコイニング加工した場合であってもコンロッドに曲りを生じ難くでき、曲り量を加工の取り代内に抑えることが可能となる。
またその後において大端部に歪を加えることなく、温間領域でコイニング加工を施すことから、大端部を破断分離した後の再組付けの際の大端部の円孔の真円度を500μm以下に抑えることができる。
In the present invention, when forming a rough formed body for a connecting rod by hot forging, the connecting portion is partially coined by forming the rough formed body into the shape specified in claim 4. However, the connecting rod can hardly be bent, and the amount of bending can be kept within the machining allowance.
In addition, since the coining process is performed in the warm region without applying distortion to the large end, the roundness of the circular hole in the large end at the time of reassembly after breaking the large end is separated. It can be suppressed to 500 μm or less.

ここで真円度とは、破断分離・再組付け後の大端部の円孔において、最長距離をa,最短距離をbとしたとき、(a−b)/2で表される値である。この真円度は後工程の機械加工代を考慮した場合、より小さい方が望ましい。   Here, the roundness is a value represented by (ab) / 2, where a is the longest distance and b is the shortest distance in the large-end circular hole after fracture separation and reassembly. is there. This roundness is preferably smaller when the machining cost of the subsequent process is taken into consideration.

次に本発明の各化学成分等の限定理由について以下に説明する。
[I]成分限定理由
C:0.2〜0.6%
Cは鍛造品の強度を確保するのに有効な元素であり、このような効果を得るためには0.2%以上含有させることが必要である。
しかし多過ぎると硬さが高くなり、被削性が低下するので0.6%以下とする必要がある。
Next, the reasons for limiting each chemical component of the present invention will be described below.
[I] Reason for component limitation
C: 0.2-0.6%
C is an element effective for ensuring the strength of the forged product. In order to obtain such an effect, it is necessary to contain 0.2% or more.
However, if it is too much, the hardness becomes high and the machinability deteriorates, so it is necessary to make it 0.6% or less.

Si:0.05〜2%
Siは鋼溶製時において脱酸作用及び脱硫作用を有しているとともに、フェライト中に固溶してフェライトを強化することにより耐力を向上させる。
しかし多量の含有は硬さを高くし過ぎて被削性を劣化させるとともに、熱間加工性を劣化させるので2%以下とすることが必要である。
Si: 0.05-2%
Si has a deoxidizing action and a desulfurizing action at the time of steel melting, and improves proof stress by strengthening ferrite by solid solution in ferrite.
However, if a large amount is contained, the hardness becomes too high to deteriorate the machinability and the hot workability is deteriorated, so 2% or less is necessary.

Mn:0.3〜1.5%
Cr:0.05〜1%
Mn,Crは鍛造材の強度を確保するのに有効な元素である。
しかしながら多量に添加すると鍛造後にベイナイトが生成し、硬さが著しく増加して被削性を低下させるため、それぞれの範囲をMn:0.3〜1.5%,Cr:0.05〜1%とする。
Mn: 0.3-1.5%
Cr: 0.05-1%
Mn and Cr are effective elements for securing the strength of the forging.
However, if added in a large amount, bainite is formed after forging, the hardness is remarkably increased and the machinability is lowered, so the respective ranges are Mn: 0.3 to 1.5% and Cr: 0.05 to 1%.

P:0.01〜0.2%
Pは粒界への偏析により靭性を低下させる元素として低く抑えるのが一般的であるが、破断分離を行う本発明においては、脆性破面率を高め、破断面の密着性を向上させる元素として非常に有効に作用するため積極的な添加を行う。
しかし多量に添加してもその効果が飽和する上、硬さを高くしてしまうため0.01〜0.2%とする。
P: 0.01-0.2%
P is generally kept low as an element that lowers toughness due to segregation at grain boundaries, but in the present invention where fracture separation is performed, as an element that increases the brittle fracture surface ratio and improves the adhesion of the fracture surface. Because it works very effectively, it is actively added.
However, even if added in a large amount, the effect is saturated and the hardness is increased, so the content is made 0.01 to 0.2%.

V:0.02〜0.5%
本発明ではVを添加することを必須条件とする。一般にVは炭素や窒素と微細な炭窒化物を形成し、鍛造後の強度を高める元素であり、Vを添加することによって高強度化に対する要求を満たすことができる。
更に本発明では、200〜700℃の温間領域で施されるコイニング後の時効温度を400℃以上とした場合、V炭窒化物の析出硬化で歪時効の回復現象による強度低下を防ぐため、一層の強度向上が可能となり、非常に有用な元素として作用する。
しかしながら0.5%より多く添加しても高強度化の効果は飽和し、さらに被削性を低下させるので上限を0.5%とする。
V: 0.02-0.5%
In the present invention, it is essential to add V. In general, V is an element that forms fine carbonitride with carbon or nitrogen, and increases the strength after forging. By adding V, the requirement for high strength can be satisfied.
Furthermore, in the present invention, when the aging temperature after coining applied in the warm region of 200 to 700 ° C. is set to 400 ° C. or more, in order to prevent the strength reduction due to the recovery phenomenon of strain aging by precipitation hardening of V carbonitride, The strength can be further improved, and it acts as a very useful element.
However, adding more than 0.5% saturates the effect of increasing strength and further reduces machinability, so the upper limit is made 0.5%.

N:0.009〜0.03%
本発明ではNも非常に有効な元素として作用する。Nは200〜700℃の温間領域で施されるコイニングにより可動転位を固着し、効果的に耐力を向上させる。そしてこのような効果を得るためには0.009%以上含有させることが必要である。
一方多量に添加してもその効果は飽和するので、上限値0.03%までの範囲で添加量を選択する。
N: 0.009 to 0.03%
In the present invention, N also acts as a very effective element. N fixes movable dislocations by coining performed in a warm region of 200 to 700 ° C., and effectively improves the yield strength. And in order to acquire such an effect, it is necessary to make it contain 0.009% or more.
On the other hand, since the effect is saturated even if it is added in a large amount, the addition amount is selected within the range up to the upper limit of 0.03%.

Pb:0.01〜0.30%
S :0.02〜0.2%
Te:0.002〜0.3%
Ca:0.0004〜0.01%
Bi:0.01〜0.30%
Pb,S,Te,Ca,Biは何れも被削性を向上させるのに有効な元素であるので、鍛造品であるコンロッド粗成形体において被削性が更に良好であることが要求される場合には、必要に応じてこれらの内から選ばれる1種又は2種以上を適量添加するのも良い。
しかしながら添加量が多過ぎると熱間加工性を低下させるので、添加するとしてもPbは0.01〜0.30%,Sは0.02〜0.2%,Teは0.002〜0.3%,Caは0.0004〜0.01,Biは0.01〜0.30%とする。
Pb: 0.01-0.30%
S: 0.02 to 0.2%
Te: 0.002 to 0.3%
Ca: 0.0004 to 0.01%
Bi: 0.01-0.30%
Pb, S, Te, Ca, Bi are all effective elements for improving machinability, so that it is required to have better machinability in the rough formed rods of forged products. It is also possible to add an appropriate amount of one or more selected from these as necessary.
However, if too much is added, the hot workability is lowered, so even if added, Pb is 0.01 to 0.30%, S is 0.02 to 0.2%, Te is 0.002 to 0.3%, Ca is 0.0004 to 0.01, Bi is 0.01 ~ 0.30%.

式(1):0.74≦[C%]+0.17[Si%]+0.22[Mn%]+[P%]+0.25[Cr%]+1.8[V%]≦1.59
式(1)はコンロッド等として適切な強度を得るために必要な炭素当量(Ceq)を規定している。
一般に自動車エンジンに用いられるコンロッド硬さは20〜35HRCである。本発明は連接部の強度を向上させる製造方法に係るものであるが、それ以外の部位即ちコンロッド大端部,小端部も所定の強度が当然必要となる。
即ち硬さが20HRC以下では十分な強度が得られないとともに大端部の破断分離時の変形が大きく、破断分離工程が適用できなくなる。更に35HRC以上では大端部ボルト穴や小端部機械加工等の被削性が低下するためにコンロッドの加工に多大なコストを要する結果となる。このためコンロッド大端部,小端部の硬さは20〜35HRCに調整することが望ましい。
このような硬さを得るために式(1)を0.74〜1.59と規定する必要がある。
Formula (1): 0.74 ≦ [C%] + 0.17 [Si%] + 0.22 [Mn%] + [P%] + 0.25 [Cr%] + 1.8 [V%] ≦ 1.59
Equation (1) defines the carbon equivalent (Ceq) necessary for obtaining an appropriate strength as a connecting rod or the like.
The connecting rod hardness generally used for automobile engines is 20 to 35 HRC. Although the present invention relates to a manufacturing method for improving the strength of the connecting portion, the other portions, that is, the connecting rod large end portion and small end portion, of course, also require predetermined strength.
That is, when the hardness is 20 HRC or less, sufficient strength cannot be obtained, and the deformation at the time of break separation of the large end is large, and the break separation process cannot be applied. Furthermore, at 35 HRC or higher, machinability such as large end bolt holes and small end machining is reduced, resulting in a large cost for machining the connecting rod. For this reason, it is desirable to adjust the hardness of the connecting rod large end and small end to 20 to 35 HRC.
In order to obtain such hardness, it is necessary to define the formula (1) as 0.74 to 1.59.

[II]コイニング条件
コイニングは、通常コンロッド粗成形体の連接部の形状を矯正するために行う加工であるが、本発明のコイニングでは単に形状を矯正するためだけに行うのではなく、コイニングする前より耐力を高くするために行う。
[II] Coining conditions Coining is a process that is usually performed to correct the shape of the connecting portion of the connecting rod rough molded body. However, in the coining of the present invention, it is not only performed to correct the shape, but before the coining. This is done to increase the yield strength.

加工率:3〜40%
本発明ではコイニング加工率を、3〜40%の加工率で行う。
加工率が3%より低いと時効後の耐力の向上が不十分であるとともに、コイニングの本来の目的である形状矯正を十分に行うことができない。
またコイニング加工率が40%を超えると耐力の向上が飽和するとともに加工率の増加により鍛造割れが発生する。
Processing rate: 3-40%
In the present invention, the coining rate is 3 to 40%.
When the processing rate is lower than 3%, the yield strength after aging is not sufficiently improved, and the shape correction which is the original purpose of coining cannot be sufficiently performed.
If the coining rate exceeds 40%, the improvement in yield strength is saturated and forging cracks occur due to the increase in the rate.

大端部に歪を導入しない
本発明は大端部に歪を導入しないことを特徴とする。
前記の通り、連接部に温間コイニングを加える際、大端部に歪を加えてしまうと、冷却時に回復しきれない残留歪が破断時に開放され結果として変形が生じ、分離した破面を突き合せたときに正確に合わないという問題が起きてしまい、破断分離性は悪化してしまう。
よって本発明は連接部のみ接触して温間コイニングを施すことにより大端部に歪を与えないことで、上記問題を解決する。
The present invention is characterized in that no strain is introduced into the large end.
As described above, when warm coining is applied to the joint, if strain is applied to the large end, residual strain that cannot be recovered during cooling is released at the time of rupture, resulting in deformation, and pushing the separated fracture surface. When they are combined, there is a problem that they do not match correctly, and the break separation property is deteriorated.
Therefore, this invention solves the said problem by not giving a distortion to a large end part by contacting only a connection part and giving warm coining.

連接部形状:α/(A+B)≦0.08
(A:熱間鍛造後の粗成形体の上,下型の中心線で切断したときの一方の断面積,B:熱間鍛造後の粗成形体の上,下型の中心線で切断したときの他方の断面積,α:熱間鍛造後の粗成形体の上,下型の中心線で折り返したときのA部とB部とが重ならない部分の面積)を満たすようにする。
前記の通り、温間コイニングの際に大端部に歪みを加えないように、大端部及び小端部に接触せず、連接部のみに接触するような状況で温間コイニングを行うと、連接部形状が不均一で温間コイニング時の接触面積に大きな差がある場合、連接部と温間コイニング加工用の型との不均一接触によりコンロッドに曲りが生じ易くなり、場合により加工の際の取り代を超えてしまい、部品として成立しなくなってしまう。
Articulated part shape: α / (A + B) ≦ 0.08
(A: One cross-sectional area when cut at the center line of the lower mold on the rough formed body after hot forging, B: Cut at the center line of the lower mold on the rough formed body after hot forging The other cross-sectional area at the time, α: the area of the portion where the A portion and the B portion do not overlap each other when folded back at the center line of the lower die on the rough formed body after hot forging.
As described above, when performing warm coining in a situation in which only the connecting portion is contacted without contacting the large end and the small end so as not to add distortion to the large end during warm coining, If the shape of the connecting part is uneven and there is a large difference in the contact area during warm coining, the connecting rod and the mold for warm coining will tend to bend easily and the connecting rod will bend easily. It will exceed the allowance for the product, and will not be established as a part.

そのため、先願発明では熱間鍛造によりコンロッド用の粗成形体をα/(A+B)≦0.05に成形後、連接部に冷間コイニング加工及び高周波誘導加熱による時効処理を施すことによって、冷間コイニング時のプレスに対する不均一接触を抑えコンロッドの曲り量低減を実現し、加工の際の取り代を超えてしまい部品として成立しなくなってしまうことを防ぐことを可能にしたが、その粗成形体形状を得るために従来の2倍に型ズレ精度を上げる必要があった。   Therefore, according to the invention of the prior application, after forming a rough formed body for a connecting rod to α / (A + B) ≦ 0.05 by hot forging, cold coning is performed on the joint part by performing cold coining processing and aging treatment by high frequency induction heating. The non-uniform contact with the press at the time was suppressed, and the bending amount of the connecting rod was reduced, and it was possible to prevent the machining allowance at the time of machining from being exceeded and not becoming a part, but the rough molded body shape Therefore, it was necessary to increase the misalignment accuracy twice as much as the conventional method.

本発明は熱間鍛造後の冷却時に温度分布が均一なままコイニングを施すため、先願発明のように高周波誘導電流による不均一加熱の影響が無く、連接部形状のα/(A+B)の範囲を0.08以下まで緩めても加工の際の取り代内に収めることが可能である。
つまり型ズレ精度を緩くすることができるため、型費低減効果が得られる。
In the present invention, since coining is performed with a uniform temperature distribution during cooling after hot forging, there is no influence of non-uniform heating due to high-frequency induction current as in the prior application, and the range of α / (A + B) of the connecting portion shape. Can be accommodated within the machining allowance during processing even if the screw is loosened to 0.08 or less.
That is, since the mold misalignment accuracy can be relaxed, an effect of reducing the mold cost can be obtained.

破断後の再組付時の大端部加工面の真円度:500μm以下
熱間鍛造、温間コイニング後のコンロッドを粗加工後、大端部加工面にノッチを入れ、破断分離後再組み付けした際に、大端部における円孔の真円度を規定する数値が大きい(つまり真円度が低い)と、その後の仕上げ加工の前に更なる粗加工を導入しなければならず、加工費の削減効果が減殺されてしまう。従って破断後の再組付時の大端部加工面の真円度は500μm以下とする。
Roundness of the machined surface of the large end when reassembling after breakage: 500 μm or less After roughing the connecting rod after hot forging and warm coining, a notch is added to the machined surface of the large end and reassembled after breakage separation. When the numerical value that defines the roundness of the circular hole at the large end is large (that is, the roundness is low), further roughing must be introduced before the subsequent finishing process. Cost reduction effect will be diminished. Accordingly, the roundness of the large end processed surface at the time of reassembly after fracture is set to 500 μm or less.

次に本発明の実施形態を以下に詳述する。
<実施形態1>
下記表1に示す成分組成の本発明例の鋼種及び比較例の鋼種を溶製した後造塊し、鍛造割れ及び鍛造欠陥が発生したものを除いて、熱間鍛造を行って50mm角の鍛造素材とし、これを1200℃で60分間加熱保持した後、直径22mmの丸棒に熱間鍛造を行った。
Next, embodiments of the present invention will be described in detail below.
<Embodiment 1>
50 mm square forging is performed by hot forging except for ingots and forging cracks and forging defects, after melting the steel types of the inventive examples having the composition shown in Table 1 below and the steel types of the comparative examples. A raw material was heated and held at 1200 ° C. for 60 minutes, and then hot forging was performed on a round bar having a diameter of 22 mm.

更にその後の冷却過程でコンロッドの連接部に加えるコイニングに対応するものとして温度600℃で15%の加工を施し、再度室温まで放冷した。
これらの供試材から試験片を切り出して下記方法で硬さ,疲れ限度,0.01%耐力,破断分離性を評価する破断伸び及び被削性を表すドリル加工能率の試験を行った。その結果を下記表1に併せて示す。
Further, 15% processing was performed at a temperature of 600 ° C. to cope with coining applied to the connecting portion of the connecting rod in the subsequent cooling process, and the mixture was allowed to cool to room temperature again.
Test specimens were cut out from these specimens and tested for drilling efficiency representing the elongation to break and machinability to evaluate the hardness, fatigue limit, 0.01% proof stress, fracture separability by the following methods. The results are also shown in Table 1 below.

尚本発明例の鋼種及び比較例の鋼種には、表1に示す成分組成の他に鋼に通常含まれるCu:≦0.3%,Ni:≦0.25%,Mo:≦0.05%,S−Al:≦0.045%,O:≦0.005%の不純物が含まれている。   In addition, in the steel types of the present invention and the steel types of the comparative examples, Cu: ≦ 0.3%, Ni: ≦ 0.25%, Mo: ≦ 0.05%, S—Al: ≤0.045%, O: ≤0.005% impurities.

Figure 2006052432
Figure 2006052432

硬さは、上記コイニングに対応する温間加工後の各試験片の中心部におけるロックウェル硬度計のCスケールで測定した。
疲れ限度は小野式回転曲げ疲労試験機によって測定した。
詳しくは平行部φ8mm平滑形状の小野式回転曲げ試験片を作製し、小野式回転曲げ試験によりSN曲線を作成し、10回の繰返数にて破断しない限度応力を疲れ限度とした。
The hardness was measured on the C scale of the Rockwell hardness meter at the center of each test piece after warm working corresponding to the coining.
The fatigue limit was measured by an Ono rotary bending fatigue tester.
For more details, to prepare a Ono-type rotary bending test piece parallel portion φ8mm smooth shape, to create the SN curve by rotating bending test Ono-type, and the limit fatigue limit stress does not break at 10 7 times of repetition rates.

破断分離特性はJIS Z2201 14A号 引張試験片の長手方向中央部に幅1mm,深さ1mmの環状の切欠きをレーザー加工により施した後、室温で引張試験を行い、その時の伸びを測定し、評価した。   Breaking separation characteristics are as follows: JIS Z2201 14A No. 1A in the longitudinal direction of the tensile test piece was subjected to laser processing a ring cutout with a width of 1 mm and a depth of 1 mm, followed by a tensile test at room temperature and measuring the elongation at that time. evaluated.

0.01%耐力は金属材料引張試験方法によって測定した。
ここで0.01%耐力としたのは、コイニングに対応される塑性加工時に導入される可動転位の影響を明らかにするためである。
ドリル加工能率は供試材の被削性を評価するためのもので、工具:SKH51,送り:0.1mm/rev,穴深さ:10mm,切削油:なし,工具寿命判定:切削不能の条件で測定し、本発明例鋼No.2を100とした場合の相対評価とした。
The 0.01% yield strength was measured by a metal material tensile test method.
The reason why the yield strength is 0.01% is to clarify the influence of movable dislocations introduced during plastic working corresponding to coining.
Drilling efficiency is for evaluating the machinability of the test material. Tool: SKH51, Feed: 0.1 mm / rev, Hole depth: 10 mm, Cutting oil: None, Tool life judgment: Uncutting condition , And relative evaluation was obtained when the present invention steel No. 2 was set to 100.

上記表1に併せて示した結果からも明らかであるように、成分組成が本発明を満足する本発明例No.1〜15では何れも高い強度を有しており、しかも被削性に優れているものであることが認められる。   As is clear from the results shown in Table 1 above, the present invention examples No. 1 to 15 satisfying the present invention have a high strength and excellent machinability. It is recognized that

これに対してC含有量が本発明より少ない比較例Aは、ドリル加工能率が本発明例の被削性改善元素を含まないものより高かったが、硬さ,疲れ限度及び0.01%耐力の何れも本発明例より大幅に低い。また、硬さが十分に出ないので破断伸びが大きくなり、破断分離後の密着性が確保できない。
C含有量又はSi含有量が本発明より多い比較例B及びCは、硬さが高いために疲れ限度及び0.01%耐力は何れも本発明例よりも高いが、硬さが高すぎるためにドリル加工能率が本発明例よりかなり低い。
In contrast, Comparative Example A, which has a lower C content than the present invention, had a higher drilling efficiency than that of the inventive example that did not contain the machinability improving element, but the hardness, fatigue limit, and 0.01% proof stress. Both of these are significantly lower than the examples of the present invention. Further, since the hardness is not sufficient, the elongation at break increases, and the adhesion after break separation cannot be ensured.
Since Comparative Examples B and C having a higher C content or Si content than the present invention are high in hardness, the fatigue limit and 0.01% proof stress are both higher than those of the present invention examples, but the hardness is too high. In addition, the drilling efficiency is considerably lower than the example of the present invention.

Mn含有量又はCr含有量が本発明より多い比較例D及びEは、ベイナイトが発生したため硬さがかなり高く、ドリル加工能率が本発明例よりかなり低い。   Comparative Examples D and E, which have a higher Mn content or Cr content than the present invention, have considerably higher hardness due to the occurrence of bainite, and the drilling efficiency is considerably lower than that of the present invention example.

P含有量が本発明より多い比較例Fは鍛造割れが発生して試験片を作成することができなかった。
V含有量が本発明より多い比較例Gは硬さ,疲れ限度及び0.01%耐力の何れも本発明例の平均値より高いが、硬さが高過ぎるためにドリル加工能率が本発明よりかなり低い。
In Comparative Example F having a P content higher than that of the present invention, forging cracks occurred and a test piece could not be prepared.
Comparative Example G, which has a higher V content than the present invention, has higher hardness, fatigue limit and 0.01% proof stress than the average values of the present invention examples. However, since the hardness is too high, drilling efficiency is higher than that of the present invention. Pretty low.

N含有量が本発明より少ない比較例Hは歪時効の効果が小さく、ほぼ同等の硬さの発明例と較べて疲れ限度及び耐力が大幅に小さい。
N含有量が本発明より多い比較例Iは、鋳造欠陥が発生して試験片を作製することができなかった。
Comparative Example H, which has a lower N content than the present invention, has a small effect of strain aging, and its fatigue limit and proof stress are significantly smaller than those of the inventive examples having almost the same hardness.
In Comparative Example I having a higher N content than the present invention, a casting defect occurred and a test piece could not be produced.

S含有量,Pb又はBi含有量が多い比較例J〜Kは、鍛造割れが発生して試験片を作製することができなかった。   In Comparative Examples J to K having a large S content, Pb or Bi content, forging cracks occurred and a test piece could not be produced.

<実施形態2>
上記実施形態においては、コンロッド連接部に加えるコイニングに対応する、温度600℃,加工率15%の場合の事例を示しているが、表1の発明例No.2の鋼種について、コイニングに対応する加工時の温度を変化させた場合の0.01%耐力及び疲れ限度への影響を調べた。この結果を表2及び図1に示す。
尚表2には、熱間鍛造のままの状態における0.01%耐力及び疲れ限度の測定結果も併せて示す。
<Embodiment 2>
In the above embodiment, an example of the case where the temperature is 600 ° C. and the processing rate is 15% corresponding to coining applied to the connecting rod connecting portion is shown, but the steel type of Invention Example No. 2 in Table 1 corresponds to coining. The effect on 0.01% proof stress and fatigue limit when the temperature during processing was changed was investigated. The results are shown in Table 2 and FIG.
Table 2 also shows the measurement results of 0.01% proof stress and fatigue limit in the hot forging state.

Figure 2006052432
Figure 2006052432

表2及び図1から明らかであるように、加工時の温度が100℃の場合では加工後の耐力が熱間鍛造のままのものと比較して十分でないことが分かる。
また200℃以上の温度では熱間鍛造ままのもの以上に耐力,疲れ限度は向上していることが分かる。
但し800℃では強度が低下する。このためコイニング加工時の温度は200〜700℃とすることが必要である。
As is apparent from Table 2 and FIG. 1, it can be seen that when the temperature at the time of processing is 100 ° C., the yield strength after processing is not sufficient as compared with the one with hot forging.
In addition, it can be seen that the proof stress and fatigue limit are improved at a temperature of 200 ° C. or higher than that of the hot forging.
However, the strength decreases at 800 ° C. For this reason, the temperature at the time of coining needs to be 200-700 degreeC.

表2ではコンロッド連接部に加えるコイニングに対応する加工率を15%とし、加工温度の条件を変化させた場合の0.01%耐力及び疲れ限度への影響を示したが、表3及び図2には0.01%耐力,疲れ限度とも最も優れた値を示した加工温度400℃の下で加工率を変化させたときの0.01%耐力及び疲れ限度への影響も調査して、その結果を示した。   Table 2 shows the effect on the 0.01% proof stress and fatigue limit when the machining rate corresponding to the coining applied to the connecting rod connecting portion is 15% and the machining temperature conditions are changed. Table 3 and FIG. Investigate the effect on the 0.01% proof stress and fatigue limit when changing the processing rate at a processing temperature of 400 ° C, which showed the best values for both 0.01% proof stress and fatigue limit. Results are shown.

Figure 2006052432
Figure 2006052432

表3及び図2に示される通り、加工率:3%未満では熱間鍛造ままと比較して強度向上の効果が十分でないことが分かる。
また加工率40%までは強度は向上するものの、50%まで上げると逆に耐力が低下する。
実体コンロッド連接部へのコイニングを考えた場合、コイニングの目的である矯正作用は3%未満では非常に不安定となり、十分な効果が発揮されない。また、過度に加工率を大きくしても、強度への効果は飽和するのみでなく、コイニング加工時の割れ発生の原因ともなるので、加工率は3〜40%とした。
As shown in Table 3 and FIG. 2, it can be seen that when the processing rate is less than 3%, the effect of improving the strength is not sufficient as compared with the hot forging.
Further, although the strength is improved up to a processing rate of 40%, the yield strength is lowered when the processing rate is increased up to 50%.
When considering coining to the connecting parts of the actual connecting rods, the corrective action, which is the purpose of coining, becomes very unstable at less than 3%, and sufficient effects are not exhibited. Further, even if the processing rate is excessively increased, not only the effect on the strength is saturated, but also the occurrence of cracking during coining processing, so the processing rate was set to 3 to 40%.

次に表1の発明例No.2の鋼種を用いて実体コンロッドの鍛造試作を行い、熱間鍛造後に温間コイニング加工を行った際の温間コイニング後連接部形状と曲り量との関係を図3に示した。
このとき、各条件とも600℃にて30%の温間コイニングを施してある。また比較例として、熱間鍛造後冷間にて30%のコイニング後、高周波誘導加熱(誘導電流)にて600℃に加熱後20秒保持を行ったものの連接部形状と曲り量の関係も示した。
Next, forging trial manufacture of a solid connecting rod using the steel type of invention example No. 2 in Table 1, and the relationship between the shape of the joint after warm coining and the amount of bending when warm coining is performed after hot forging. This is shown in FIG.
At this time, 30% warm coining is performed at 600 ° C. for each condition. In addition, as a comparative example, the relationship between the shape of the joint and the amount of bending is also shown in the case of holding for 20 seconds after heating to 600 ° C. with high frequency induction heating (induction current) after 30% coining after hot forging. It was.

ここで図3中の各発明例,比較例における連接部形状は下記の通りである。
比較例(1):温間α/(A+B)=0.10
比較例(2):温間α/(A+B)=0.19
発明例(1):温間α/(A+B)=0.08
発明例(2):温間α/(A+B)=0.05
比較例(3):冷間α/(A+B)=0.08
比較例(4):冷間α/(A+B)=0.05
Here, the shape of the connecting portion in each invention example and comparative example in FIG. 3 is as follows.
Comparative Example (1): Warm α / (A + B) = 0.10
Comparative Example (2): Warm α / (A + B) = 0.19
Invention Example (1): Warm α / (A + B) = 0.08
Invention Example (2): Warm α / (A + B) = 0.05
Comparative Example (3): Cold α / (A + B) = 0.08
Comparative Example (4): Cold α / (A + B) = 0.05

尚図4において、10は実体コンロッドを熱間鍛造したときの粗成形体の連接部を表しており、Aは上,下型の中心線Xで切断したときの上型側の断面積を、Bは下型側の断面積を表している。
またαは、粗成形体の連接部10を中心線Xで折り返したときのA部とB部とが重ならない部分の面積を表している。
In FIG. 4, 10 represents a connecting portion of the rough molded body when the substantial connecting rod is hot forged, and A is a cross-sectional area on the upper mold side when cut along the center line X of the upper and lower molds. B represents the cross-sectional area on the lower mold side.
Further, α represents the area of the portion where the A portion and the B portion do not overlap when the connecting portion 10 of the roughly molded body is folded back along the center line X.

連接部のみに接触し温間コイニング加工を加えた場合の前述α/(A+B)が0.08より大きい場合(比較例(1),(2))は曲り量が加工取り代を超えて大きく、これに対して、α/(A+B)が0.08以下の範囲内に収まっているもの(発明例(1),発明例(2))は、曲り量が加工取り代内となっている。α/(A+B)はできるだけ小さい方が望ましい。
一方冷間コイニング後に高周波誘導電流にて加熱する場合、どうしても不均一加熱となってしまうため、α/(A+B)を0.05より小さくしなければ曲り量を加工取り代内に抑えることができない(比較例(3),(4)参照)ので、曲りを防止するには温間コイニングのほうが有利であることが分かる。
尚発明例のコンロッドは熱間鍛造時の型ずれ精度を従来の1.3倍(比較例(4)に対しては0.65倍)にすることによって作製した。
When the above-mentioned α / (A + B) is larger than 0.08 when only the connecting part is touched and warm coining is applied (Comparative examples (1) and (2)), the bending amount is larger than the machining allowance. On the other hand, when α / (A + B) is within 0.08 or less (invention example (1), invention example (2)), the bending amount is within the machining allowance. . α / (A + B) is desirably as small as possible.
On the other hand, when heating with high frequency induction current after cold coining, uneven heating will inevitably occur. Therefore, if α / (A + B) is not smaller than 0.05, the bending amount cannot be suppressed within the machining allowance. Thus, it can be seen that warm coining is more advantageous in preventing bending.
The connecting rod of the inventive example was manufactured by increasing the die misalignment accuracy at the time of hot forging 1.3 times that of the prior art (0.65 times that of Comparative Example (4)).

次に、表1の発明例No.7鋼種を用いて実体コンロッドの鍛造試験を行い、熱間鍛造後に温間コイニング加工を大端部及び小端部をクランプする方法と、しない方法の2通りで行った。
このとき、各条件とも600℃にて30%の温間コイニングを施してある。
更にこれらのコンロッドの大端部及び小端部を機械加工後、大端部加工面にノッチを導入し破断分離を行った。
破断分離後、再組み付けしたコンロッドの大端部加工面の真円度測定結果を図5に示す。
Next, a forging test of the solid connecting rod is conducted using the invention example No. 7 steel type in Table 1, and after the hot forging, the warm coining process is performed in two ways: a method in which the large end and the small end are clamped, and a method in which it is not performed. I went there.
At this time, 30% warm coining is performed at 600 ° C. for each condition.
Further, after machining the large end portion and the small end portion of these connecting rods, notches were introduced into the large end processed surface to perform break separation.
FIG. 5 shows the roundness measurement result of the large end processed surface of the connecting rod which has been reassembled after the fracture separation.

大端部クランプを行い、歪が導入されたものは冷却時に回復しきれない残留歪が破断時に開放され結果として変形が生じ、分離した破面を突き合せたときに正確に合わないという問題が起きてしまい真円度が悪化した。
大端部に歪が導入されないように温間コイニングされたもの(クランプ無しのもの)は、再組付け後の真円度を規定する数値が500μm以下の範囲内に納まり、仕上げ加工のみで完成品とすることができた。
尚、規定範囲の真円度を得るために破断部の熱間鍛造後の冷却速度を従来の2倍に速めてある。
When a large end clamp is applied and strain is introduced, the residual strain that cannot be recovered during cooling is released at the time of breakage, resulting in deformation, and when the separated fracture surfaces are abutted, there is a problem that they do not fit correctly. I got up and my roundness deteriorated.
Warm-coined so that no distortion is introduced at the large end (without clamping), the roundness after reassembly is within the range of 500μm or less, and is completed only by finishing. I was able to make it.
In addition, in order to obtain the roundness within a specified range, the cooling rate after hot forging of the fractured portion is increased twice as much as the conventional method.

加工温度と0.01%耐力,疲れ限度との関係を表した図である。It is a figure showing the relation between processing temperature, 0.01% proof stress, and fatigue limit. 加工率と0.01%耐力,疲れ限度との関係を表した図である。It is a figure showing the relation between a processing rate, 0.01% proof stress, and a fatigue limit. コイニング加工後におけるα/(A+B)と曲り量との関係を表した示した図である。It is the figure showing the relationship between (alpha) / (A + B) and the amount of bending after coining process. α/(A+B)におけるα,A,Bを表した図である。It is a figure showing α, A, B in α / (A + B). 実体コンロッド鍛造試験におけるコンロッドの大端部加工面の真円度測定結果を表した図である。It is a figure showing the roundness measurement result of the big end part processed surface of a connecting rod in a solid connecting rod forging test. 従来のコンロッドの一例を示す図である。It is a figure which shows an example of the conventional connecting rod.

Claims (4)

質量%で
C :0.2〜0.6%
Si:0.05〜2%
Mn:0.3〜1.5%
P :0.01〜0.2%
Cr:0.05〜1%
V :0.02〜0.5%
N :0.009〜0.03%
を含み、残部Fe及び不可避的不純物から成る組成のフェライト・パーライト型非調質鋼を素材とし、熱間鍛造によりコネクティングロッド用の粗成形体を成形した後、その冷却過程において大端部に歪を加えることなく該粗成形体の連接部に対し形状矯正と歪時効のための加工とを兼ねたコイニング加工を200〜700℃の温間領域で且つ加工率3〜40%で行い、該連接部を高強度化することを特徴とする破断分離が容易な高強度コネクティングロッド用鍛造品の製造方法。
In mass%
C: 0.2-0.6%
Si: 0.05-2%
Mn: 0.3-1.5%
P: 0.01-0.2%
Cr: 0.05-1%
V: 0.02-0.5%
N: 0.009 to 0.03%
After forming a rough shaped body for a connecting rod by hot forging using a ferritic pearlite non-heat treated steel with a composition comprising the balance Fe and inevitable impurities, the large end is strained during the cooling process. Coining that combines shape correction and processing for strain aging is performed on the connecting portion of the rough molded body without adding a material in a warm region of 200 to 700 ° C. and a processing rate of 3 to 40%. A method for producing a forged product for a high-strength connecting rod, which is easy to break and separate, characterized by increasing the strength of the part.
請求項1において、前記フェライト・パーライト型非調質鋼の組成を質量%で
Pb:0.01〜0.30%
S :0.02〜0.2%
Te:0.002〜0.3%
Ca:0.0004〜0.01%
Bi:0.01〜0.30%
の1種又は2種以上を更に含有した組成となしておくことを特徴とする破断分離が容易な高強度コネクティングロッド用鍛造品の製造方法。
2. The composition of the ferritic pearlite non-heat treated steel according to claim 1 in mass%.
Pb: 0.01-0.30%
S: 0.02 to 0.2%
Te: 0.002 to 0.3%
Ca: 0.0004 to 0.01%
Bi: 0.01-0.30%
A method for producing a forged product for a high-strength connecting rod that is easy to break and separate, wherein the composition further comprises one or more of the above.
請求項1,2の何れかにおいて、更に下記式(1)
0.74≦[C%]+0.17[Si%]+0.22[Mn%]+[P%]+0.25[Cr%]+1.8[V%]≦1.59・・・式(1)
を満足することを特徴とする破断分離が容易な高強度コネクティングロッド用鍛造品の製造方法。
The following formula (1) in any one of claims 1 and 2
0.74 ≦ [C%] + 0.17 [Si%] + 0.22 [Mn%] + [P%] + 0.25 [Cr%] + 1.8 [V%] ≦ 1.59 Equation (1)
A method for producing a forged product for a high-strength connecting rod, which is easy to break and separate.
請求項1〜3の何れかにおいて、前記フェライト・パーライト型非調質鋼から成る素材を熱間鍛造してコネクティングロッド用の粗成形体に成形する際に、該粗成形体を下記にて規定されるA,B,αがα/(A+B)≦0.08を満足する形状に成形した後、前記冷却過程において該粗成形体の前記大端部に歪を加えることなく前記加工率で前記コイニング加工を前記連接部に加えることにより、該大端部を破断分離した後の再組付けの際の真円度を500μm以下とすることを特徴とする破断分離が容易な高強度コネクティングロッド用鍛造品の製造方法。
A:熱間鍛造後の粗成形体の上,下型の中心線で切断したときの一方の断面積
B:熱間鍛造後の粗成形体の上,下型の中心線で切断したときの他方の断面積
α:熱間鍛造後の粗成形体の上,下型の中心線で折り返したときのA部とB部とが重ならない部分の面積
4. The method according to claim 1, wherein when the material comprising the ferrite-pearlite-type non-heat treated steel is hot-forged to form a rough formed body for a connecting rod, the rough formed body is defined as follows. A, B, α are formed into a shape satisfying α / (A + B) ≦ 0.08, and then the coining process is performed at the processing rate without adding strain to the large end portion of the rough formed body in the cooling process. Forgings for high strength connecting rods with easy breaking separation, wherein roundness in reassembly after breaking the large end portion is 500 μm or less by adding to the connecting portion Manufacturing method.
A: One cross-sectional area when cut at the center line of the lower mold on the rough molded body after hot forging B: When cut at the center line of the lower mold on the rough molded body after hot forging The other cross-sectional area α: Area of the part where the A part and the B part do not overlap when folded over the center line of the lower mold on the rough formed body after hot forging
JP2004233662A 2004-08-10 2004-08-10 Method for manufacturing forged product for connecting rod easily separated through rupture and having high-strength Pending JP2006052432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233662A JP2006052432A (en) 2004-08-10 2004-08-10 Method for manufacturing forged product for connecting rod easily separated through rupture and having high-strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233662A JP2006052432A (en) 2004-08-10 2004-08-10 Method for manufacturing forged product for connecting rod easily separated through rupture and having high-strength

Publications (1)

Publication Number Publication Date
JP2006052432A true JP2006052432A (en) 2006-02-23

Family

ID=36030093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233662A Pending JP2006052432A (en) 2004-08-10 2004-08-10 Method for manufacturing forged product for connecting rod easily separated through rupture and having high-strength

Country Status (1)

Country Link
JP (1) JP2006052432A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180473A (en) * 2009-02-09 2010-08-19 Daido Steel Co Ltd Cracking connecting rod and method for producing the same
EP2305851A1 (en) * 2008-07-29 2011-04-06 Nippon Steel Corporation High-strength untempered steel for fracture splitting and steel component for fracture splitting
JP2012020298A (en) * 2010-07-12 2012-02-02 Nissan Motor Co Ltd Method for manufacturing forging
JP2012180566A (en) * 2011-03-02 2012-09-20 Sumitomo Metal Ind Ltd Method for producing steel-made hot-worked product having high strength and strength gradient
CN102806289A (en) * 2011-06-01 2012-12-05 现代自动车株式会社 Method of manufacturing non-quenched and tempered steel product
WO2013114553A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Process for producing forged product
JP2014077200A (en) * 2013-12-04 2014-05-01 Daido Steel Co Ltd Cracking connecting rod and its manufacturing method
EP3366801A4 (en) * 2015-10-19 2019-05-01 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel and steel part
EP3396002A4 (en) * 2015-12-25 2019-08-14 Nippon Steel Corporation Steel component
JP2019524995A (en) * 2016-07-08 2019-09-05 ザ・ナノスティール・カンパニー・インコーポレーテッド High yield strength steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305851A1 (en) * 2008-07-29 2011-04-06 Nippon Steel Corporation High-strength untempered steel for fracture splitting and steel component for fracture splitting
EP2305851A4 (en) * 2008-07-29 2014-01-29 Nippon Steel & Sumitomo Metal Corp High-strength untempered steel for fracture splitting and steel component for fracture splitting
JP2010180473A (en) * 2009-02-09 2010-08-19 Daido Steel Co Ltd Cracking connecting rod and method for producing the same
JP2012020298A (en) * 2010-07-12 2012-02-02 Nissan Motor Co Ltd Method for manufacturing forging
JP2012180566A (en) * 2011-03-02 2012-09-20 Sumitomo Metal Ind Ltd Method for producing steel-made hot-worked product having high strength and strength gradient
CN102806289A (en) * 2011-06-01 2012-12-05 现代自动车株式会社 Method of manufacturing non-quenched and tempered steel product
KR101284294B1 (en) * 2011-06-01 2013-07-08 현대자동차주식회사 Producing method for non quenched and tempered steel product
US9738945B2 (en) 2012-01-31 2017-08-22 Nissan Motor Co., Ltd. Process for producing forged product
WO2013114553A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Process for producing forged product
CN104093863A (en) * 2012-01-31 2014-10-08 日产自动车株式会社 Process for producing forged product
JP2014077200A (en) * 2013-12-04 2014-05-01 Daido Steel Co Ltd Cracking connecting rod and its manufacturing method
EP3366801A4 (en) * 2015-10-19 2019-05-01 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel and steel part
US10344363B2 (en) 2015-10-19 2019-07-09 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel and steel component
EP3396002A4 (en) * 2015-12-25 2019-08-14 Nippon Steel Corporation Steel component
JP2019524995A (en) * 2016-07-08 2019-09-05 ザ・ナノスティール・カンパニー・インコーポレーテッド High yield strength steel
JP7028856B2 (en) 2016-07-08 2022-03-02 ザ・ナノスティール・カンパニー・インコーポレーテッド High yield strength steel

Similar Documents

Publication Publication Date Title
JP4314851B2 (en) High strength non-tempered steel suitable for fracture separation
EP3401412A1 (en) Large crankshaft
JP4415219B2 (en) Age hardened steel
JP2006052432A (en) Method for manufacturing forged product for connecting rod easily separated through rupture and having high-strength
JP5421029B2 (en) Method for manufacturing fracture split connecting rod
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP4923927B2 (en) Crankshaft manufacturing method
JP4396561B2 (en) Induction hardening steel
WO2017056896A1 (en) Preform for crankshaft, nitride crankshaft, and manufacturing method for same
JP5580517B2 (en) Manufacturing method for nitrocarburized crankshaft materials
JP3887271B2 (en) High-strength non-tempered steel that can be separated by breakage and intermediate products
JPH09310146A (en) Production of non-heat treated steel for high strength connecting rod and high strength connecting rod
JP2008013807A (en) Method for manufacturing nitrided component
JP4255861B2 (en) Non-tempered connecting rod and method for manufacturing the same
JP5916553B2 (en) Steel for connecting rod and connecting rod
US6391124B1 (en) Non-heat treated, soft-nitrided steel parts
KR101634055B1 (en) Wire for piston rings
JP5476766B2 (en) Machine structural steel with excellent cold forgeability and method for producing the same
JP5131770B2 (en) Non-tempered steel for soft nitriding
JP7273324B2 (en) Nitrided part blanks and nitrided parts
JP4343019B2 (en) Non-tempered steel for induction-hardened connecting rods with easy fracture separation
JP2017179475A (en) Molding component for breaking separation type connecting rod, connecting rod and manufacturing method of the connecting rod
JP4821711B2 (en) Steel for soft nitriding
JP2005059013A (en) Method for producing forged product for high strength connecting rod with easy fracture separation
WO2013114723A1 (en) Processes for producing gear