JP5313627B2 - Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor - Google Patents

Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor

Info

Publication number
JP5313627B2
JP5313627B2 JP2008276754A JP2008276754A JP5313627B2 JP 5313627 B2 JP5313627 B2 JP 5313627B2 JP 2008276754 A JP2008276754 A JP 2008276754A JP 2008276754 A JP2008276754 A JP 2008276754A JP 5313627 B2 JP5313627 B2 JP 5313627B2
Authority
JP
Japan
Prior art keywords
magnetic flux
iron core
direct current
brush
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008276754A
Other languages
Japanese (ja)
Other versions
JP2010110036A (en
Inventor
哲章 市川
信二 三戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2008276754A priority Critical patent/JP5313627B2/en
Publication of JP2010110036A publication Critical patent/JP2010110036A/en
Application granted granted Critical
Publication of JP5313627B2 publication Critical patent/JP5313627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dc Machiner (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new kind of brush feed type hybrid excited motor the characteristics of which are easily controlled. <P>SOLUTION: The brush feed type hybrid excited motor 1 includes a stator 2 and a rotor 3. In the stator, a plurality of permanent magnets 12, the magnets of which on one side are lined up on one side in its axial direction so that they may project axially from the disklike plane of a yoke 11, and a plurality of iron cores 13 are arranged alternately. The rotor includes an annular outer exciting coil 21 and an inner exciting coil 22, which are arranged outside and inside the permanent magnets 12 and the iron cores 13 and are wound in its circumferential direction and are used to generate and control magnetic flux coming via the iron cores 13, a plurality of armature cores 32b, in its circumferential direction where armature coils 33 arranged to axially face the permanent magnets 12 and the iron cores 13 are wound, and a commutator 34, into which a brush 16 installed in the stator 2 is brought into contact and which supplies the armature coil 33 with an armature current. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ブラシ給電式ハイブリッド励磁モータ及びブラシ給電式ハイブリッド励磁モータの駆動方法に関するものである。   The present invention relates to a brush-fed hybrid excitation motor and a driving method of the brush-fed hybrid excitation motor.

モータにおいて、低速で高トルクを得ることのできるモータとしてハイブリッド励磁モータが提案されている(例えば、特許文献1参照)。
このようなハイブリッド励磁モータでは、励磁コイルに直流電流を供給することで磁束を増減させることができ、ひいてはモータの特性が制御可能とされている。
特開平6−351206号公報
As a motor, a hybrid excitation motor has been proposed as a motor capable of obtaining high torque at a low speed (see, for example, Patent Document 1).
In such a hybrid excitation motor, the magnetic flux can be increased / decreased by supplying a direct current to the excitation coil, and as a result, the characteristics of the motor can be controlled.
JP-A-6-351206

しかしながら、上記したようなハイブリッド励磁モータは、ロータ側に永久磁石が設けられ、ステータに電機子コイルが設けられたブラシレスモータしか無かった。従って、ブラシ給電式のモータに関する異なる種類のハイブリッド励磁モータの実現が望まれていた。   However, the hybrid excitation motor as described above has only a brushless motor in which a permanent magnet is provided on the rotor side and an armature coil is provided in the stator. Therefore, realization of different types of hybrid excitation motors related to brush-fed motors has been desired.

本発明の目的は、容易に特性を制御することができる新たな種類のブラシ給電式ハイブリッド励磁モータ及びブラシ給電式ハイブリッド励磁モータの駆動方法を提供することにある。   An object of the present invention is to provide a new type of brush-fed hybrid excitation motor and a method for driving the brush-fed hybrid excitation motor that can easily control characteristics.

請求項1に記載の発明では、外縁に軸方向に突出する筒状部が形成されたヨークの略円盤状の平面から軸方向に突出するように、複数の永久磁石と複数の鉄心とが周方向に交互に配置され、各永久磁石が軸方向に着磁され軸方向の一方が同じ磁極となるように揃えられたステータと、前記永久磁石及び前記鉄心の径方向外側であって前記筒状部の径方向内側に配置されるとともに周方向に巻回され、前記鉄心を経由する磁束を生成し制御するための円環状の外側励磁コイルと、前記永久磁石及び前記鉄心と軸方向に対向するように配置される電機子コイルが巻装された周方向に複数の電機子コア部と、前記ステータに備えられるブラシが押圧接触され前記電機子コイルに電機子電流を供給するための整流子とを有するロータとを備え、前記外側励磁コイルに直流電流を供給しない通常運転時においては、前記鉄心を経由する磁束が前記永久磁石の磁力に基づき軸方向一方側に向かうものとなり、前記外側励磁コイルに対して一方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ヨークの平面部、前記ヨークの筒状部、前記ロータの電機子コア部、前記鉄心、といったように磁束が通る磁束ループが形成され、前記外側励磁コイルに対して他方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ロータの電機子コア部、前記ヨークの筒状部、前記ヨークの平面部、前記鉄心、といったように磁束が通る磁束ループが形成され、前記鉄心を経由する磁束において、前記外側励磁コイルに対して直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが同じ方向となった場合には、前記鉄心を経由する磁束が増磁され、高トルク、低回転速度となり、前記鉄心を経由する磁束において、前記外側励磁コイルに対して直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが反対方向となった場合には、前記鉄心を経由する磁束が減磁され、低トルク、高回転速度となり、前記外側励磁コイルに供給する直流電流の向きを変えることで、トルク及び回転速度の特性が制御されることを要旨とする。 In the invention described in claim 1, so as to protrude axially from a substantially disc-shaped flat portion of the yoke tubular portion protruding in the axial direction is formed on the outer edge, and a permanent magnet and a plurality of cores of several Are arranged alternately in the circumferential direction, the stator is aligned so that each permanent magnet is magnetized in the axial direction and one of the axial directions is the same magnetic pole, and the outer side in the radial direction of the permanent magnet and the iron core, An annular outer excitation coil that is arranged radially inside the cylindrical portion and wound in the circumferential direction to generate and control magnetic flux passing through the iron core, and the permanent magnet and the iron core in the axial direction Rectification for supplying armature current to the armature coil by pressing and contacting a plurality of armature core portions wound around the armature coil arranged to face each other and a brush provided on the stator a rotor having a child, the During normal operation in which no direct current is supplied to the side excitation coil, the magnetic flux passing through the iron core is directed to one side in the axial direction based on the magnetic force of the permanent magnet, and the direct current flows in one direction with respect to the outer excitation coil. , Based on the direct current, a magnetic flux loop through which the magnetic flux passes is formed, such as the iron core, the plane portion of the yoke, the cylindrical portion of the yoke, the armature core portion of the rotor, and the iron core. When a direct current is supplied to the outer excitation coil in the other direction, based on the direct current, the iron core, the armature core portion of the rotor, the cylindrical portion of the yoke, the plane portion of the yoke, A magnetic flux loop through which the magnetic flux passes is formed, such as an iron core, and the magnetic flux formed when a direct current is supplied to the outer excitation coil in the magnetic flux passing through the iron core. When the direction of the magnetic flux formed based on the magnetic force of the permanent magnet becomes the same direction, the magnetic flux passing through the iron core is increased, resulting in high torque and low rotational speed, and passing through the iron core. In the magnetic flux, when the direction of the magnetic flux formed when a direct current is supplied to the outer excitation coil and the direction of the magnetic flux formed based on the magnetic force of the permanent magnet are opposite to each other, the iron core The main point is that the characteristics of torque and rotational speed are controlled by changing the direction of the direct current supplied to the outer exciting coil by demagnetizing the magnetic flux passing through the magnetic flux, demagnetizing the magnetic flux .

同構成によれば、外側励磁コイルに直流電流を供給すると、ステータの永久磁石の間に設けた鉄心を経由する磁束が制御される。詳しくは、外側励磁コイルに供給する直流電流の向きに応じて、鉄心を経由する磁束が増磁又は減磁され、ひいては電機子コイルに鎖交する鎖交磁束が増減される。よって、永久磁石及び鉄心と電機子コア部とが軸方向に対向するアキシャルギャップ型でブラシ給電式のモータにおいて、容易に特性(トルク及び回転速度の特性)を制御することができる。 According to this configuration, when a direct current is supplied to the outer exciting coil, the magnetic flux passing through the iron core provided between the permanent magnets of the stator is controlled. Specifically, the magnetic flux passing through the iron core is increased or decreased according to the direction of the direct current supplied to the outer exciting coil, and the interlinkage magnetic flux linked to the armature coil is increased or decreased. Therefore, the characteristics (torque and rotational speed characteristics) can be easily controlled in the axial gap type brush-fed motor in which the permanent magnet and the iron core and the armature core are opposed in the axial direction.

請求項2に記載の発明では、請求項1に記載のブラシ給電式ハイブリッド励磁モータにおいて、前記永久磁石及び前記鉄心の径方向内側に配置されるとともに周方向に巻回され、前記鉄心を経由する磁束を生成し制御するための円環状の内側励磁コイルをさらに備え、前記ロータは、前記電機子コア部及び前記整流子と一体回転する回転軸をさらに有し、前記外側励磁コイル及び前記内側励磁コイルに直流電流を供給しない通常運転時においては、前記鉄心を経由する磁束が前記永久磁石の磁力に基づき軸方向一方側に向かうものとなり、前記内側励磁コイルに対して一方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ヨークの平面部、前記回転軸、前記ロータの電機子コア部、前記鉄心、といったように磁束が通る磁束ループが形成され、前記内側励磁コイルに対して他方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ロータの電機子コア部、前記回転軸、前記ヨークの平面部、前記鉄心、といったように磁束が通る磁束ループが形成され、前記鉄心を経由する磁束において、前記外側励磁コイル及び前記内側励磁コイルに対し周方向において互いに反対方向の直流電流を供給した場合に形成される磁束の向きは同じ方向となり、前記鉄心を経由する磁束において、前記外側励磁コイル及び前記内側励磁コイルに対し互いに反対方向の直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが同じ方向となった場合には、前記鉄心を経由する磁束が増磁され、高トルク、低回転速度となり、前記鉄心を経由する磁束において、前記外側励磁コイル及び前記内側励磁コイルに対し互いに反対方向の直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが反対方向となった場合には、前記鉄心を経由する磁束が減磁され、低トルク、高回転速度となり、前記外側励磁コイル及び前記内側励磁コイルに供給する直流電流の向きを変えることで、トルク及び回転速度の特性が制御されることを要旨とする。 According to a second aspect of the invention, in the brush-fed hybrid excitation motor according to the first aspect, the brush-feed type hybrid excitation motor is disposed on the radially inner side of the permanent magnet and the iron core and wound in the circumferential direction, and passes through the iron core. The rotor further includes an annular inner excitation coil for generating and controlling magnetic flux, and the rotor further includes a rotating shaft that rotates integrally with the armature core and the commutator, and the outer excitation coil and the inner excitation coil. During normal operation in which no direct current is supplied to the coil, the magnetic flux passing through the iron core is directed to one side in the axial direction based on the magnetic force of the permanent magnet, and the direct current is supplied to the inner excitation coil in one direction. In this case, based on the direct current, the magnetic flux passes through the iron core, the plane portion of the yoke, the rotating shaft, the armature core portion of the rotor, the iron core, and the like. When a magnetic flux loop is formed and a direct current is supplied to the inner exciting coil in the other direction, the iron core, the armature core portion of the rotor, the rotating shaft, and the plane portion of the yoke are based on the direct current. A magnetic flux loop through which magnetic flux passes is formed, such as the iron core, and is formed when direct currents in opposite directions in the circumferential direction are supplied to the outer exciting coil and the inner exciting coil in the magnetic flux passing through the iron core. The direction of the magnetic flux to be generated is the same direction, and in the magnetic flux passing through the iron core, the direction of the magnetic flux formed when direct currents in opposite directions are supplied to the outer excitation coil and the inner excitation coil, and the permanent When the direction of the magnetic flux formed based on the magnetic force of the magnet becomes the same direction, the magnetic flux passing through the iron core is increased, resulting in high torque and low rotation. In the magnetic flux passing through the iron core, it is formed based on the direction of magnetic flux formed when direct currents in opposite directions are supplied to the outer exciting coil and the inner exciting coil and the magnetic force of the permanent magnet. When the direction of the magnetic flux is opposite, the magnetic flux passing through the iron core is demagnetized, resulting in a low torque and high rotational speed, and the direction of the direct current supplied to the outer excitation coil and the inner excitation coil is changed. The gist is that the characteristics of torque and rotational speed are controlled by changing .

同構成によれば、励磁コイルは、永久磁石及び鉄心の径方向外側及び内側の両方に配置されるため、いずれか一方に配置した場合に比べて、前記鎖交磁束の増減幅を大きくすることができる。よって、特性(トルク及び回転速度の特性)を大幅に制御することができる。
請求項3に記載の発明では、ヨークの略円盤状の平面部から軸方向に突出するように、複数の永久磁石と複数の鉄心とが周方向に交互に配置され、各永久磁石が軸方向に着磁され軸方向の一方が同じ磁極となるように揃えられたステータと、前記永久磁石及び前記鉄心の径方向内側に配置されるとともに周方向に巻回され、前記鉄心を経由する磁束を生成し制御するための円環状の内側励磁コイルと、前記永久磁石及び前記鉄心と軸方向に対向するように配置される電機子コイルが巻装された周方向に複数の電機子コア部と、前記ステータに備えられるブラシが押圧接触され前記電機子コイルに電機子電流を供給するための整流子と、前記電機子コア部及び前記整流子と一体回転する回転軸とを有するロータとを備え、前記内側励磁コイルに直流電流を供給しない通常運転時においては、前記鉄心を経由する磁束が前記永久磁石の磁力に基づき軸方向一方側に向かうものとなり、前記内側励磁コイルに対して一方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ヨークの平面部、前記回転軸、前記ロータの電機子コア部、前記鉄心、といったように磁束が通る磁束ループが形成され、前記内側励磁コイルに対して他方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ロータの電機子コア部、前記回転軸、前記ヨークの平面部、前記鉄心、といったように磁束が通る磁束ループが形成され、前記鉄心を経由する磁束において、前記内側励磁コイルに対して直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが同じ方向となった場合には、前記鉄心を経由する磁束が増磁され、高トルク、低回転速度となり、前記鉄心を経由する磁束において、前記内側励磁コイルに対して直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが反対方向となった場合には、前記鉄心を経由する磁束が減磁され、低トルク、高回転速度となり、前記内側励磁コイルに供給する直流電流の向きを変えることで、トルク及び回転速度の特性が制御されることを要旨とする。
同構成によれば、内側励磁コイルに直流電流を供給すると、ステータの永久磁石の間に設けた鉄心を経由する磁束が制御される。詳しくは、内側励磁コイルに供給する直流電流の向きに応じて、鉄心を経由する磁束が増磁又は減磁され、ひいては電機子コイルに鎖交する鎖交磁束が増減される。よって、永久磁石及び鉄心と電機子コア部とが軸方向に対向するアキシャルギャップ型でブラシ給電式のモータにおいて、容易に特性(トルク及び回転速度の特性)を制御することができる。
According to the same configuration, the exciting coil is arranged on both the radially outer side and the inner side of the permanent magnet and the iron core. Can do. Therefore, the characteristics (torque and rotational speed characteristics) can be greatly controlled.
In the invention according to claim 3, the plurality of permanent magnets and the plurality of iron cores are alternately arranged in the circumferential direction so as to protrude in the axial direction from the substantially disk-shaped flat portion of the yoke, and each permanent magnet is axially arranged. And a stator that is aligned so that one of the axial directions is the same magnetic pole, and is disposed radially inside the permanent magnet and the iron core and is wound in the circumferential direction, and the magnetic flux that passes through the iron core A plurality of armature core portions wound in the circumferential direction around which an inner armature coil for generation and control, and an armature coil disposed so as to face the permanent magnet and the iron core in the axial direction are wound; A rotor having a commutator for supplying an armature current to the armature coil when a brush included in the stator is pressed and contacted, and a rotating shaft that rotates integrally with the armature core part and the commutator; To the inner excitation coil During normal operation in which no current is supplied, the magnetic flux passing through the iron core is directed to one side in the axial direction based on the magnetic force of the permanent magnet, and a direct current is supplied in one direction to the inner excitation coil. Based on the direct current, a magnetic flux loop is formed through which the magnetic flux passes, such as the iron core, the plane portion of the yoke, the rotating shaft, the armature core portion of the rotor, and the iron core. When a direct current is supplied in the other direction, a magnetic flux loop through which the magnetic flux passes, such as the iron core, the armature core portion of the rotor, the rotating shaft, the plane portion of the yoke, and the iron core, based on the direct current. In the magnetic flux passing through the iron core, based on the direction of the magnetic flux formed when a direct current is supplied to the inner excitation coil and the magnetic force of the permanent magnet. When the direction of the formed magnetic flux is the same direction, the magnetic flux passing through the iron core is increased, resulting in a high torque and a low rotational speed. With respect to the magnetic flux passing through the iron core, When the direction of the magnetic flux formed when a direct current is supplied and the direction of the magnetic flux formed based on the magnetic force of the permanent magnet are opposite to each other, the magnetic flux passing through the iron core is demagnetized and reduced. The gist is that the torque and the rotational speed characteristics are controlled by changing the direction of the direct current supplied to the inner excitation coil.
According to this configuration, when a direct current is supplied to the inner exciting coil, the magnetic flux passing through the iron core provided between the permanent magnets of the stator is controlled. Specifically, the magnetic flux passing through the iron core is increased or decreased depending on the direction of the direct current supplied to the inner excitation coil, and the interlinkage magnetic flux linked to the armature coil is increased or decreased. Therefore, the characteristics (torque and rotational speed characteristics) can be easily controlled in the axial gap type brush-fed motor in which the permanent magnet and the iron core and the armature core are opposed in the axial direction.

請求項に記載の発明では、請求項又はに記載のブラシ給電式ハイブリッド励磁モータにおいて、前記ヨークの軸中心には、前記回転軸を回転可能に支持するための軸受が設けられ、前記軸受は、磁性材料よりなることを要旨とする。 The invention according to claim 4, in the brush powered hybrid excitation motor according to claim 2 or 3, the axial center of the pre-Symbol yoke, a bearing for rotatably supporting the rotary shaft is provided, The gist is that the bearing is made of a magnetic material.

同構成によれば、励磁コイルに直流電流を供給した際の磁気回路(磁路)の一部を構成する軸受が磁性材料よりなることから、前記鎖交磁束を効率良く増減させることができる。   According to this configuration, since the bearing that forms part of the magnetic circuit (magnetic path) when a direct current is supplied to the exciting coil is made of a magnetic material, the interlinkage magnetic flux can be increased or decreased efficiently.

請求項に記載の発明では、請求項1乃至のいずれか1項に記載のブラシ給電式ハイブリッド励磁モータにおいて、前記整流子は、前記電機子コア部の径方向内側に配置され、前記ブラシと軸方向に押圧接触されるものであることを要旨とする。 According to a fifth aspect of the present invention, in the brush-fed hybrid excitation motor according to any one of the first to fourth aspects, the commutator is disposed radially inside the armature core portion, and the brush The main point is that they are pressed and contacted in the axial direction.

同構成によれば、整流子は、電機子コア部の径方向内側に配置され、ブラシと軸方向に押圧接触されるものであるため、ブラシ給電式ハイブリッド励磁モータを径方向及び軸方向に小型化することができる。   According to this configuration, the commutator is disposed on the radially inner side of the armature core portion and pressed against the brush in the axial direction, so that the brush-fed hybrid excitation motor is reduced in size in the radial and axial directions. Can be

請求項に記載の発明では、請求項1乃至のいずれか1項に記載のブラシ給電式ハイブリッド励磁モータの駆動方法であって、前記励磁コイルに供給する直流電流の向き及び値を変えることで、前記鉄心を経由する磁束を制御してトルク及び回転速度の特性を制御することを要旨とする。 According to a sixth aspect of the invention, there is provided the method for driving a brush-fed hybrid excitation motor according to any one of the first to fifth aspects, wherein the direction and value of a direct current supplied to the excitation coil are changed. Thus, the gist is to control the characteristics of torque and rotational speed by controlling the magnetic flux passing through the iron core.

同発明の方法によれば、永久磁石及び鉄心と電機子コア部とが軸方向に対向するアキシャルギャップ型でブラシ給電式のモータの駆動方法において、励磁コイルに供給する直流電流の向き及び値を変えるだけで容易に特性(トルク及び回転速度の特性)を制御することができる。   According to the method of the present invention, in the method of driving an axial gap type brush-fed motor in which the permanent magnet and the iron core and the armature core portion are opposed in the axial direction, the direction and value of the direct current supplied to the exciting coil are determined. It is possible to easily control the characteristics (torque and rotational speed characteristics) simply by changing them.

本発明によれば、容易に特性を制御することができる新たな種類のブラシ給電式ハイブリッド励磁モータ及びブラシ給電式ハイブリッド励磁モータの駆動方法を提供することができる。   According to the present invention, it is possible to provide a new type of brush-fed hybrid excitation motor and a method for driving the brush-fed hybrid excitation motor that can easily control characteristics.

以下、本発明を具体化した一実施の形態を図1〜図7に従って説明する。
図1に示すように、ブラシ給電式ハイブリッド励磁モータ1は、ステータ2とロータ3とを備えている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the brush-fed hybrid excitation motor 1 includes a stator 2 and a rotor 3.

ステータ2は、図1〜図3に示すように、略円盤状のヨーク11と、該ヨーク11に固定される複数(本実施の形態では2個)の永久磁石12、複数(本実施の形態では2個)の鉄心13、軸受14、及びブラシホルダ15と、該ブラシホルダ15に保持される一対のブラシ16とを備える。   As shown in FIGS. 1 to 3, the stator 2 includes a substantially disc-shaped yoke 11, a plurality (two in this embodiment) of permanent magnets 12 fixed to the yoke 11, and a plurality (this embodiment). 2) iron cores 13, bearings 14, and brush holders 15, and a pair of brushes 16 held by the brush holders 15.

ヨーク11の外縁には、軸方向に突出する筒状の筒状部11aが形成されている。又、ヨーク11の内側中央には、2段階の段差を有して前記筒状部11aの突出する方向の反対方向に突出する内側突出部11bが形成されている。又、内側突出部11bの軸中心には軸方向に貫通する貫通孔11cが形成されている。   On the outer edge of the yoke 11, a cylindrical cylindrical portion 11a protruding in the axial direction is formed. Further, an inner protruding portion 11b is formed at the inner center of the yoke 11 so as to protrude in a direction opposite to the protruding direction of the cylindrical portion 11a with two steps. Further, a through hole 11c penetrating in the axial direction is formed at the axial center of the inner protruding portion 11b.

そして、ヨーク11の平面には、該平面から軸方向(筒状部11aが突出する方向)に突出するように、永久磁石12と鉄心13とが周方向に交互に配置固定されている。永久磁石12及び鉄心13は、図2及び図3に示すように、扇形状に形成され、それぞれ周方向に僅かな隙間を有して等角度間隔に配置されている。又、2つの永久磁石12は、一方の磁極(本実施の形態ではN極)が軸方向の一方(本実施の形態では筒状部11aが突出する方向)に揃えられている。即ち、2つの永久磁石12は、着磁方向が軸線方向の同じ方向に揃えられている。   The permanent magnets 12 and the iron cores 13 are alternately arranged and fixed in the circumferential direction on the plane of the yoke 11 so as to protrude from the plane in the axial direction (the direction in which the cylindrical portion 11a protrudes). As shown in FIGS. 2 and 3, the permanent magnet 12 and the iron core 13 are formed in a fan shape, and are arranged at equiangular intervals with a slight gap in the circumferential direction. The two permanent magnets 12 have one magnetic pole (N pole in the present embodiment) aligned with one in the axial direction (the direction in which the cylindrical portion 11a protrudes in the present embodiment). That is, the magnetization directions of the two permanent magnets 12 are aligned in the same axial direction.

又、ヨーク11の内側突出部11bにおける中央側には軸受14が固定されている。本実施の形態の軸受14は、ボールベアリングであって、磁性材料よりなる。又、ヨーク11の内側突出部11bにおける外側(軸受14の径方向外側)には、環状のブラシホルダ15が固定されている。そして、ブラシホルダ15には、一対のブラシ16が等角度(180°)間隔で保持されている。尚、このブラシ16は、軸方向に沿って移動可能に保持されるとともに、図示しないスプリング等の付勢手段にて軸方向(筒状部11aが突出する方向)に付勢される。又、ブラシ16には、図示しない外部の制御装置が電気的に接続される。   A bearing 14 is fixed on the center side of the inner protruding portion 11 b of the yoke 11. The bearing 14 of the present embodiment is a ball bearing and is made of a magnetic material. An annular brush holder 15 is fixed to the outer side of the inner protrusion 11b of the yoke 11 (the outer side in the radial direction of the bearing 14). The brush holder 15 holds a pair of brushes 16 at equiangular (180 °) intervals. The brush 16 is held movably along the axial direction, and is urged in the axial direction (direction in which the cylindrical portion 11a protrudes) by an urging means such as a spring (not shown). The brush 16 is electrically connected to an external control device (not shown).

又、ヨーク11において、前記永久磁石12及び鉄心13の径方向外側及び内側の両方には、周方向に巻回され、鉄心13を経由する(後述する)磁束を生成し制御するための円環状の励磁コイルとしての外側励磁コイル21と内側励磁コイル22とが固定されている。外側励磁コイル21は、永久磁石12及び鉄心13の外周面(外側の円弧面)とヨーク11における筒状部11aの内周面との間でそれぞれの面と当接するように配置されている。又、内側励磁コイル22は、永久磁石12及び鉄心13の径方向内側であって、更に前記ブラシ16の径方向内側に(ブラシホルダ15と当接して)配置されている。これら外側励磁コイル21及び内側励磁コイル22には、図示しない外部の制御装置が電気的に接続される。   Further, in the yoke 11, an annular shape for generating and controlling a magnetic flux (described later) wound around the radial direction of the permanent magnet 12 and the iron core 13 in the circumferential direction and passing through the iron core 13. An outer excitation coil 21 and an inner excitation coil 22 are fixed as the excitation coils. The outer excitation coil 21 is disposed between the outer peripheral surfaces (outer circular arc surfaces) of the permanent magnet 12 and the iron core 13 and the inner peripheral surface of the cylindrical portion 11a of the yoke 11 so as to come into contact with the respective surfaces. Further, the inner excitation coil 22 is disposed radially inward of the permanent magnet 12 and the iron core 13 and further radially inward of the brush 16 (in contact with the brush holder 15). An external control device (not shown) is electrically connected to the outer excitation coil 21 and the inner excitation coil 22.

ロータ3は、図1及び図3に示すように、回転軸31と、略円盤状のロータコア32と、電機子コイル33と、整流子34とを備える。
回転軸31は、その一端側(図1中、上端側)が前記軸受14にて回転可能に支持されている。ロータコア32の中央には、固定孔32aが形成され、該固定孔32aには前記回転軸31が挿通された状態で固定されている。
As shown in FIGS. 1 and 3, the rotor 3 includes a rotating shaft 31, a substantially disc-shaped rotor core 32, an armature coil 33, and a commutator 34.
One end side (the upper end side in FIG. 1) of the rotating shaft 31 is rotatably supported by the bearing 14. A fixing hole 32a is formed at the center of the rotor core 32, and the rotating shaft 31 is fixed in the fixing hole 32a.

又、ロータコア32において、前記永久磁石12及び鉄心13と軸方向に対向する径方向位置には、軸方向(前記対向する方向)に突出する電機子コア部32bが周方向に等角度間隔で複数(本実施の形態では16個)形成されている。この電機子コア部32bは、図3に示すように、軸線方向から見て扇形状に形成されている。そして、各電機子コア部32bには、それぞれ電機子コイル33が巻装されている。この電機子コイル33は、軸線方向から見て前記扇形状を周回するように巻装されている。   In the rotor core 32, a plurality of armature core portions 32b projecting in the axial direction (the facing direction) are provided at equal angular intervals in the circumferential direction at radial positions facing the permanent magnet 12 and the iron core 13 in the axial direction. (16 in this embodiment) are formed. As shown in FIG. 3, the armature core portion 32 b is formed in a fan shape when viewed from the axial direction. An armature coil 33 is wound around each armature core portion 32b. The armature coil 33 is wound so as to go around the fan shape when viewed from the axial direction.

又、ロータコア32において、電機子コア部32bの径方向内側であって、前記ブラシ16と軸方向に対向する径方向位置には、該ブラシ16が押圧接触され、該ブラシ16及び自身を介して前記電機子コイル33に電機子電流を供給するための整流子34が固定されている。整流子34は、図1及び図3に示すように、ロータコア32上に固定された環状の絶縁樹脂34a(図1参照)と、該絶縁樹脂34a上において周方向に複数並設された整流子セグメント34bとからなる。そして、前記ブラシ16は、前記整流子セグメント34b上を周方向に沿って摺接可能とされている。   Further, in the rotor core 32, the brush 16 is pressed and contacted at a radial position inside the armature core portion 32b and facing the brush 16 in the axial direction, through the brush 16 and itself. A commutator 34 for supplying an armature current to the armature coil 33 is fixed. 1 and 3, the commutator 34 includes an annular insulating resin 34a (see FIG. 1) fixed on the rotor core 32, and a plurality of commutators arranged in the circumferential direction on the insulating resin 34a. Segment 34b. The brush 16 can be slidably contacted on the commutator segment 34b along the circumferential direction.

又、ロータコア32は、その外縁(前記電機子コア部32bより径方向外側の部分)が前記ヨーク11の筒状部11aと軸方向に対向すべく該筒状部11aの外周位置と同じ径方向位置まで形成されている。   Further, the rotor core 32 has the same radial direction as the outer peripheral position of the cylindrical portion 11a so that the outer edge thereof (the portion radially outside the armature core portion 32b) faces the cylindrical portion 11a of the yoke 11 in the axial direction. To the position.

ここで、上記のように構成されたブラシ給電式ハイブリッド励磁モータ1において、前記外側励磁コイル21及び内側励磁コイル22に直流電流を供給した場合の作用について説明する。   Here, in the brush-fed hybrid excitation motor 1 configured as described above, an operation when a direct current is supplied to the outer excitation coil 21 and the inner excitation coil 22 will be described.

まず、外側励磁コイル21及び内側励磁コイル22に直流電流を供給しない場合(これを通常の場合とする)、鉄心13を経由する磁束φ1は、永久磁石12の磁力にのみ基づいたものとなり、図4に示すように、電機子コア部32bから鉄心13を経由してヨーク11に向かうものとなる。尚、図4は、模式的に矢印で示す磁束φ1を視覚的に分かり易くするために、図1に示す断面図のハッチングを除去した説明図として図示している。   First, when a direct current is not supplied to the outer exciting coil 21 and the inner exciting coil 22 (this is a normal case), the magnetic flux φ1 passing through the iron core 13 is based only on the magnetic force of the permanent magnet 12, FIG. As shown in FIG. 4, the armature core portion 32 b goes to the yoke 11 via the iron core 13. FIG. 4 is an explanatory diagram in which the hatching of the cross-sectional view shown in FIG. 1 is removed in order to make it easy to visually understand the magnetic flux φ1 schematically indicated by an arrow.

次に、図5に示すように、平面視で、外側励磁コイル21に反時計回り方向に直流電流を供給し、内側励磁コイル22に時計回り方向に直流電流を供給した場合、鉄心13を経由する磁束φ2は、新たに外側励磁コイル21及び内側励磁コイル22に基づいたものが加えられ、増磁されることになる。尚、図5は、模式的に矢印で示す磁束φ2を視覚的に分かり易くするために、図1に示す断面図のハッチングを除去した説明図として図示している。   Next, as shown in FIG. 5, when a DC current is supplied to the outer excitation coil 21 in the counterclockwise direction and a DC current is supplied to the inner excitation coil 22 in the clockwise direction in plan view, The magnetic flux φ2 to be added is newly added based on the outer excitation coil 21 and the inner excitation coil 22, and is magnetized. FIG. 5 is an explanatory diagram in which the hatching of the cross-sectional view shown in FIG. 1 is removed in order to make it easy to visually understand the magnetic flux φ2 schematically indicated by an arrow.

反対に、図6に示すように、平面視で、外側励磁コイル21に時計回り方向に直流電流を供給し、内側励磁コイル22に反時計回り方向に直流電流を供給した場合、鉄心13を経由する磁束φ3は、新たに外側励磁コイル21及び内側励磁コイル22に基づいたものが加えられ、減磁されることになる。尚、図6は、模式的に矢印で示す磁束φ3を視覚的に分かり易くするために、図1に示す断面図のハッチングを除去した説明図として図示している。   On the other hand, as shown in FIG. 6, when a DC current is supplied to the outer excitation coil 21 in the clockwise direction and a DC current is supplied to the inner excitation coil 22 in the counterclockwise direction in plan view, it passes through the iron core 13. The magnetic flux φ3 to be added is newly added based on the outer excitation coil 21 and the inner excitation coil 22, and is demagnetized. FIG. 6 is an explanatory diagram from which the hatching of the cross-sectional view shown in FIG. 1 is removed in order to make the magnetic flux φ3 schematically indicated by an arrow easy to understand visually.

又、図7は、外側励磁コイル21及び内側励磁コイル22に供給する直流電流の電流値Iaと、電機子コイル33に鎖交する鎖交磁束の増減率との関係を示す。
図7において、中央は、図4に示す通常の場合である。
FIG. 7 shows the relationship between the current value Ia of the direct current supplied to the outer exciting coil 21 and the inner exciting coil 22 and the increase / decrease rate of the interlinkage magnetic flux interlinked with the armature coil 33.
In FIG. 7, the center is the normal case shown in FIG.

そして、図7において、右半分、即ち電流値Iaのプラス側(0〜500[AT])は、図5に示すように、平面視で、外側励磁コイル21に反時計回り方向に直流電流を供給し、内側励磁コイル22に時計回り方向に直流電流を供給した(増磁した)場合であって、鎖交磁束の増減率は、電流値Iaのプラス側の増加に応じて大きくなる。   In FIG. 7, the right half, that is, the positive side (0 to 500 [AT]) of the current value Ia applies a direct current in a counterclockwise direction to the outer exciting coil 21 in a plan view as shown in FIG. In this case, a direct current is supplied to the inner exciting coil 22 in the clockwise direction (magnetization is increased), and the increase / decrease rate of the flux linkage increases as the current value Ia increases on the plus side.

又、図8において、左半分、即ち電流値Iaのマイナス側(0〜−500[AT])は、図6に示すように、平面視で、外側励磁コイル21に時計回り方向に直流電流を供給し、内側励磁コイル22に反時計回り方向に直流電流を供給した(減磁した)場合であって、鎖交磁束の増減率は、電流値Iaのマイナス側の増加に応じて小さくなる。   Further, in FIG. 8, the left half, that is, the negative side (0 to −500 [AT]) of the current value Ia applies a DC current to the outer exciting coil 21 in the clockwise direction in a plan view as shown in FIG. In this case, the direct current is supplied to the inner exciting coil 22 in the counterclockwise direction (demagnetized), and the increase / decrease rate of the flux linkage decreases as the current value Ia increases on the negative side.

次に、上記実施の形態の特徴的な作用効果を以下に記載する。
(1)外側励磁コイル21及び内側励磁コイル22に直流電流を供給すると、ステータ2の永久磁石12の間に設けた鉄心13を経由する磁束が制御される。詳しくは、外側励磁コイル21及び内側励磁コイル22に供給する直流電流の向き(及び値(電流値Iaの絶対値))に応じて、鉄心13を経由する磁束が増磁(図5参照)又は減磁(図6参照)され、ひいては電機子コイル33に鎖交する鎖交磁束が増減される(図7参照)。よって、永久磁石12及び鉄心13と電機子コア部32bとが軸方向に対向するアキシャルギャップ型でブラシ給電式のモータ(本実施の形態のブラシ給電式ハイブリッド励磁モータ1)において、容易に特性(トルク及び回転速度の特性)を制御することができる。尚、前述したように増磁した場合、その特性は、高トルク、低回転速度となり、減磁した場合、その特性は、低トルク、高回転速度となる。
Next, characteristic effects of the above embodiment will be described below.
(1) When a direct current is supplied to the outer exciting coil 21 and the inner exciting coil 22, the magnetic flux passing through the iron core 13 provided between the permanent magnets 12 of the stator 2 is controlled. Specifically, depending on the direction (and value (absolute value of the current value Ia)) of the direct current supplied to the outer exciting coil 21 and the inner exciting coil 22, the magnetic flux passing through the iron core 13 is increased (see FIG. 5) or The magnetic flux is demagnetized (see FIG. 6), and as a result, the flux linkage linked to the armature coil 33 is increased or decreased (see FIG. 7). Therefore, in the axial gap type brush-fed motor (the brush-fed hybrid excitation motor 1 of the present embodiment) in which the permanent magnet 12 and the iron core 13 and the armature core part 32b face each other in the axial direction, the characteristics ( Torque and rotational speed characteristics) can be controlled. As described above, when the magnetization is increased, the characteristics are high torque and low rotation speed, and when the magnetization is demagnetized, the characteristics are low torque and high rotation speed.

(2)励磁コイルを、永久磁石12及び鉄心13の径方向外側及び内側の両方に配置した(外側励磁コイル21及び内側励磁コイル22を設けた)ため、いずれか一方に配置した場合に比べて、前記鎖交磁束の増減幅を大きくすることができる。よって、特性(トルク及び回転速度の特性)を大幅に制御することができる。   (2) Since the exciting coils are arranged on both the radially outer side and the inner side of the permanent magnet 12 and the iron core 13 (the outer exciting coil 21 and the inner exciting coil 22 are provided), compared with the case where they are arranged on either one. The increase / decrease width of the interlinkage magnetic flux can be increased. Therefore, the characteristics (torque and rotational speed characteristics) can be greatly controlled.

(3)軸受14は、磁性材料よりなる。このようにすると、外側励磁コイル21及び内側励磁コイル22に直流電流を供給した際の磁気回路(磁路)の一部を構成する軸受14が磁性材料よりなることから、前記鎖交磁束を効率良く増減させることができる。   (3) The bearing 14 is made of a magnetic material. In this case, since the bearings 14 constituting a part of the magnetic circuit (magnetic path) when a direct current is supplied to the outer exciting coil 21 and the inner exciting coil 22 are made of a magnetic material, the interlinkage magnetic flux is efficiently used. Can increase or decrease well.

(4)整流子34は、電機子コア部32bの径方向内側に配置され、ブラシ16と軸方向に押圧接触されるものであるため、ブラシ給電式ハイブリッド励磁モータ1を径方向及び軸方向に小型化することができる。   (4) Since the commutator 34 is disposed on the radially inner side of the armature core portion 32b and is in press contact with the brush 16 in the axial direction, the brush-fed hybrid excitation motor 1 is moved in the radial direction and the axial direction. It can be downsized.

上記実施の形態は、以下のように変更してもよい。
・上記実施の形態では、励磁コイルを、永久磁石12及び鉄心13の径方向外側及び内側の両方に配置した(外側励磁コイル21及び内側励磁コイル22を設けた)が、径方向外側及び内側の少なくとも一方に配置すればよい。
The above embodiment may be modified as follows.
In the above embodiment, the excitation coils are arranged on both the radially outer side and the inner side of the permanent magnet 12 and the iron core 13 (the outer excitation coil 21 and the inner excitation coil 22 are provided). What is necessary is just to arrange | position to at least one.

例えば、図8及び図9に示すように、励磁コイルを、永久磁石12及び鉄心13の径方向外側のみに配置した(外側励磁コイル21のみ設け、上記実施の形態の内側励磁コイル22を削除した)構成としてもよい。又、逆に、図10及び図11に示すように、励磁コイルを、永久磁石12及び鉄心13の径方向内側のみに配置した(内側励磁コイル22のみ設け、上記実施の形態の外側励磁コイル21を削除した)構成としてもよい。   For example, as shown in FIGS. 8 and 9, the exciting coils are arranged only on the radially outer side of the permanent magnet 12 and the iron core 13 (only the outer exciting coil 21 is provided, and the inner exciting coil 22 of the above embodiment is deleted). ) Configuration is also possible. On the other hand, as shown in FIGS. 10 and 11, the exciting coil is disposed only in the radial direction of the permanent magnet 12 and the iron core 13 (only the inner exciting coil 22 is provided, and the outer exciting coil 21 of the above embodiment is provided). It is good also as a structure which deleted ().

このようにしても、上記実施の形態と同様に鉄心13を経由する磁束を制御することができるが、その制御できる幅は上記実施の形態に比べて小さくなる。図12は、外側励磁コイル21のみの場合(図8及び図9参照)の外側励磁コイル21に供給する直流電流の電流値Iaと、電機子コイル33に鎖交する鎖交磁束の増減率との関係を示す。又、図13は、内側励磁コイル22のみの場合(図10及び図11参照)の内側励磁コイル22に供給する直流電流の電流値Iaと、電機子コイル33に鎖交する鎖交磁束の増減率との関係を示す。図12及び図13から分かるように、外側励磁コイル21のみの場合(図8及び図9参照)、内側励磁コイル22のみの場合(図10及び図11参照)に比べて、前記鎖交磁束を効率良く増減させることができる。即ち、励磁コイルを、永久磁石12及び鉄心13の径方向外側のみに配置した場合(図8及び図9参照)の前記鎖交磁束の増減幅(図12参照)は、径方向内側のみに配置した場合(図10及び図11参照)の前記鎖交磁束の増減幅(図13参照)より大幅に大きいため、前記鎖交磁束を効率良く(効果的に)増減させることができる。   Even if it does in this way, although the magnetic flux which passes along the iron core 13 can be controlled similarly to the said embodiment, the controllable width | variety becomes small compared with the said embodiment. FIG. 12 shows the current value Ia of the direct current supplied to the outer exciting coil 21 when only the outer exciting coil 21 is used (see FIGS. 8 and 9), and the increase / decrease rate of the interlinkage magnetic flux interlinked with the armature coil 33. The relationship is shown. FIG. 13 shows the increase / decrease in the interlinkage magnetic flux interlinked with the armature coil 33 and the current value Ia of the direct current supplied to the inner excitation coil 22 when only the inner excitation coil 22 is used (see FIGS. 10 and 11). The relationship with the rate is shown. As can be seen from FIGS. 12 and 13, the interlinkage magnetic flux is greater than the case of only the outer excitation coil 21 (see FIGS. 8 and 9) and the case of only the inner excitation coil 22 (see FIGS. 10 and 11). It can be increased or decreased efficiently. That is, when the exciting coil is arranged only on the outer side in the radial direction of the permanent magnet 12 and the iron core 13 (see FIGS. 8 and 9), the increase / decrease width of the interlinkage magnetic flux (see FIG. 12) is arranged only on the inner side in the radial direction. In this case (see FIG. 10 and FIG. 11), the linkage flux is significantly larger than the increase / decrease width of the linkage flux (see FIG. 13), so that the linkage flux can be efficiently increased / decreased.

・上記実施の形態では、整流子34は、電機子コア部32bの径方向内側に配置され、ブラシ16と軸方向に押圧接触されるものであるとしたが、これに限定されず、他の構成でブラシ16と押圧接触されるものとしてもよい。   In the above embodiment, the commutator 34 is disposed on the radially inner side of the armature core portion 32b, and is in press contact with the brush 16 in the axial direction. It is good also as what is press-contacted with the brush 16 by a structure.

上記各実施の形態から把握できる技術的思想について、以下にその効果とともに記載する。
(イ)請求項1に記載のブラシ給電式ハイブリッド励磁モータにおいて、前記励磁コイルは、前記永久磁石及び前記鉄心の径方向外側のみに配置されたことを特徴とするブラシ給電式ハイブリッド励磁モータ。
The technical idea that can be grasped from the above embodiments will be described below together with the effects thereof.
(B) The brush-fed hybrid excitation motor according to claim 1, wherein the excitation coil is disposed only on a radially outer side of the permanent magnet and the iron core.

同構成によれば、励磁コイルは、永久磁石及び鉄心の径方向外側のみに配置されるため、例えば、内側のみに配置した場合に比べて、前記鎖交磁束を効率良く増減させることができる(図12及び図13参照)。即ち、励磁コイルを、永久磁石及び鉄心の径方向外側のみに配置した場合の前記鎖交磁束の増減幅(図12参照)は、径方向内側のみに配置した場合の前記鎖交磁束の増減幅(図13参照)より大幅に大きいため、前記鎖交磁束を効率良く(効果的に)増減させることができる。   According to this configuration, since the exciting coil is disposed only on the radially outer side of the permanent magnet and the iron core, for example, the interlinkage magnetic flux can be increased / decreased more efficiently than when disposed only on the inner side ( (See FIG. 12 and FIG. 13). That is, the increase / decrease width of the interlinkage magnetic flux when the exciting coil is arranged only on the radially outer side of the permanent magnet and the iron core (see FIG. 12) is the increase / decrease width of the interlinkage magnetic flux when arranged only on the radially inner side. Since it is much larger (see FIG. 13), the flux linkage can be increased or decreased efficiently (effectively).

本実施の形態におけるブラシ給電式ハイブリッド励磁モータの断面図であって、図2のB−B線と対応した断面図。It is sectional drawing of the brush electric power feeding type hybrid excitation motor in this Embodiment, Comprising: Sectional drawing corresponding to the BB line of FIG. 本実施の形態におけるブラシ給電式ハイブリッド励磁モータの断面図であって、図1のA−A線と対応した断面図。It is sectional drawing of the brush electric power feeding type hybrid excitation motor in this Embodiment, Comprising: Sectional drawing corresponding to the AA line of FIG. 本実施の形態におけるブラシ給電式ハイブリッド励磁モータの一部断面分解斜視図。The partial cross-section disassembled perspective view of the brush electric power feeding type hybrid excitation motor in this Embodiment. 本実施の形態における磁束の流れを説明するための模式説明図。The model explanatory drawing for demonstrating the flow of the magnetic flux in this Embodiment. 本実施の形態における磁束の流れを説明するための模式説明図。The model explanatory drawing for demonstrating the flow of the magnetic flux in this Embodiment. 本実施の形態における磁束の流れを説明するための模式説明図。The model explanatory drawing for demonstrating the flow of the magnetic flux in this Embodiment. 本実施の形態における励磁コイルの電流値−鎖交磁束の増減率特性図。The current value of the exciting coil in this Embodiment-the increase / decrease rate characteristic figure of a linkage flux. 別例におけるブラシ給電式ハイブリッド励磁モータの断面図であって、図9のB−B線と対応した断面図。It is sectional drawing of the brush electric power feeding type hybrid excitation motor in another example, Comprising: Sectional drawing corresponding to the BB line of FIG. 別例におけるブラシ給電式ハイブリッド励磁モータの断面図であって、図8のA−A線と対応した断面図。It is sectional drawing of the brush electric power feeding type hybrid excitation motor in another example, Comprising: Sectional drawing corresponding to the AA line of FIG. 別例におけるブラシ給電式ハイブリッド励磁モータの断面図であって、図11のB−B線と対応した断面図。It is sectional drawing of the brush electric power feeding type hybrid excitation motor in another example, Comprising: Sectional drawing corresponding to the BB line of FIG. 別例におけるブラシ給電式ハイブリッド励磁モータの断面図であって、図10のA−A線と対応した断面図。It is sectional drawing of the brush electric power feeding type hybrid excitation motor in another example, Comprising: Sectional drawing corresponding to the AA line of FIG. 別例における励磁コイルの電流値−鎖交磁束の増減率特性図。The current value of the exciting coil in another example-the increase / decrease rate characteristic diagram of a linkage flux. 別例における励磁コイルの電流値−鎖交磁束の増減率特性図。The current value of the exciting coil in another example-the increase / decrease rate characteristic diagram of a linkage flux.

符号の説明Explanation of symbols

2…ステータ、3…ロータ、11…ヨーク、12…永久磁石、13…鉄心、14…軸受、16…ブラシ、21…外側励磁コイル(励磁コイル)、22…内側励磁コイル(励磁コイル)、31…回転軸、32b…電機子コア部、33…電機子コイル、34…整流子。   DESCRIPTION OF SYMBOLS 2 ... Stator, 3 ... Rotor, 11 ... Yoke, 12 ... Permanent magnet, 13 ... Iron core, 14 ... Bearing, 16 ... Brush, 21 ... Outer excitation coil (excitation coil), 22 ... Inner excitation coil (excitation coil), 31 Rotating shaft, 32b Armature core, 33 Armature coil, 34 Commutator.

Claims (6)

外縁に軸方向に突出する筒状部が形成されたヨークの略円盤状の平面から軸方向に突出するように、複数の永久磁石と複数の鉄心とが周方向に交互に配置され、各永久磁石が軸方向に着磁され軸方向の一方が同じ磁極となるように揃えられたステータと、
前記永久磁石及び前記鉄心の径方向外側であって前記筒状部の径方向内側に配置されるとともに周方向に巻回され、前記鉄心を経由する磁束を生成し制御するための円環状の外側励磁コイルと、
前記永久磁石及び前記鉄心と軸方向に対向するように配置される電機子コイルが巻装された周方向に複数の電機子コア部と、前記ステータに備えられるブラシが押圧接触され前記電機子コイルに電機子電流を供給するための整流子とを有するロータとを備え
前記外側励磁コイルに直流電流を供給しない通常運転時においては、前記鉄心を経由する磁束が前記永久磁石の磁力に基づき軸方向一方側に向かうものとなり、
前記外側励磁コイルに対して一方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ヨークの平面部、前記ヨークの筒状部、前記ロータの電機子コア部、前記鉄心、といったように磁束が通る磁束ループが形成され、
前記外側励磁コイルに対して他方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ロータの電機子コア部、前記ヨークの筒状部、前記ヨークの平面部、前記鉄心、といったように磁束が通る磁束ループが形成され、
前記鉄心を経由する磁束において、前記外側励磁コイルに対して直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが同じ方向となった場合には、前記鉄心を経由する磁束が増磁され、高トルク、低回転速度となり、
前記鉄心を経由する磁束において、前記外側励磁コイルに対して直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが反対方向となった場合には、前記鉄心を経由する磁束が減磁され、低トルク、高回転速度となり、
前記外側励磁コイルに供給する直流電流の向きを変えることで、トルク及び回転速度の特性が制御されることを特徴とするブラシ給電式ハイブリッド励磁モータ。
A substantially disc-shaped flat portion of the yoke tubular portion protruding in the axial direction is formed so as to protrude axially outer edge, and the permanent magnet and a plurality of cores of several alternately arranged in the circumferential direction, A stator in which each permanent magnet is magnetized in the axial direction and aligned so that one of the axial directions becomes the same magnetic pole ;
The permanent with magnets and a radially outer side of said core being located radially inwardly of the tubular portion wound in the circumferential direction, the outer annular to control generating a magnetic flux passing through the core An exciting coil;
A plurality of armature core portions wound around an armature coil disposed so as to face the permanent magnet and the iron core in the axial direction and a brush provided in the stator are pressed and contacted, and the armature coil a rotor having a commutator for supplying armature current,
During normal operation in which no direct current is supplied to the outer excitation coil, the magnetic flux passing through the iron core is directed to one side in the axial direction based on the magnetic force of the permanent magnet,
When a direct current is supplied to the outer excitation coil in one direction, based on the direct current, the iron core, the flat portion of the yoke, the cylindrical portion of the yoke, the armature core portion of the rotor, the iron core A magnetic flux loop through which magnetic flux passes is formed,
When a direct current is supplied to the outer excitation coil in the other direction, based on the direct current, the iron core, the armature core portion of the rotor, the cylindrical portion of the yoke, the plane portion of the yoke, the iron core A magnetic flux loop through which magnetic flux passes is formed,
In the magnetic flux passing through the iron core, the direction of the magnetic flux formed when a direct current is supplied to the outer excitation coil and the direction of the magnetic flux formed based on the magnetic force of the permanent magnet are the same direction The magnetic flux passing through the iron core is increased, resulting in high torque and low rotational speed.
In the magnetic flux passing through the iron core, the direction of the magnetic flux formed when a direct current is supplied to the outer excitation coil and the direction of the magnetic flux formed based on the magnetic force of the permanent magnet are opposite to each other. The magnetic flux passing through the iron core is demagnetized, resulting in low torque and high rotational speed.
A brush-fed hybrid excitation motor characterized in that characteristics of torque and rotational speed are controlled by changing the direction of a direct current supplied to the outer excitation coil .
請求項1に記載のブラシ給電式ハイブリッド励磁モータにおいて、The brush-fed hybrid excitation motor according to claim 1,
前記永久磁石及び前記鉄心の径方向内側に配置されるとともに周方向に巻回され、前記鉄心を経由する磁束を生成し制御するための円環状の内側励磁コイルをさらに備え、The inner magnet coil further includes an annular inner excitation coil that is arranged on the inner side in the radial direction of the permanent magnet and the iron core and wound in the circumferential direction, and generates and controls a magnetic flux that passes through the iron core,
前記ロータは、前記電機子コア部及び前記整流子と一体回転する回転軸をさらに有し、The rotor further includes a rotating shaft that rotates integrally with the armature core portion and the commutator;
前記外側励磁コイル及び前記内側励磁コイルに直流電流を供給しない通常運転時においては、前記鉄心を経由する磁束が前記永久磁石の磁力に基づき軸方向一方側に向かうものとなり、During normal operation in which no direct current is supplied to the outer excitation coil and the inner excitation coil, the magnetic flux passing through the iron core is directed to one side in the axial direction based on the magnetic force of the permanent magnet,
前記内側励磁コイルに対して一方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ヨークの平面部、前記回転軸、前記ロータの電機子コア部、前記鉄心、といったように磁束が通る磁束ループが形成され、When a direct current is supplied to the inner excitation coil in one direction, based on the direct current, the iron core, the flat portion of the yoke, the rotating shaft, the armature core of the rotor, the iron core, etc. A magnetic flux loop through which the magnetic flux passes is formed,
前記内側励磁コイルに対して他方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ロータの電機子コア部、前記回転軸、前記ヨークの平面部、前記鉄心、といったように磁束が通る磁束ループが形成され、When a direct current is supplied to the inner excitation coil in the other direction, based on the direct current, the iron core, the armature core portion of the rotor, the rotating shaft, the plane portion of the yoke, the iron core, etc. A magnetic flux loop through which the magnetic flux passes is formed,
前記鉄心を経由する磁束において、前記外側励磁コイル及び前記内側励磁コイルに対し周方向において互いに反対方向の直流電流を供給した場合に形成される磁束の向きは同じ方向となり、In the magnetic flux passing through the iron core, the direction of the magnetic flux formed when supplying DC currents in opposite directions in the circumferential direction to the outer excitation coil and the inner excitation coil is the same direction,
前記鉄心を経由する磁束において、前記外側励磁コイル及び前記内側励磁コイルに対し互いに反対方向の直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが同じ方向となった場合には、前記鉄心を経由する磁束が増磁され、高トルク、低回転速度となり、In the magnetic flux passing through the iron core, the direction of the magnetic flux formed when DC currents in opposite directions are supplied to the outer exciting coil and the inner exciting coil, and the magnetic flux formed based on the magnetic force of the permanent magnet. When the direction is the same direction, the magnetic flux passing through the iron core is increased, resulting in high torque and low rotational speed,
前記鉄心を経由する磁束において、前記外側励磁コイル及び前記内側励磁コイルに対し互いに反対方向の直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが反対方向となった場合には、前記鉄心を経由する磁束が減磁され、低トルク、高回転速度となり、In the magnetic flux passing through the iron core, the direction of the magnetic flux formed when DC currents in opposite directions are supplied to the outer exciting coil and the inner exciting coil, and the magnetic flux formed based on the magnetic force of the permanent magnet. When the direction is the opposite direction, the magnetic flux passing through the iron core is demagnetized, resulting in low torque and high rotational speed.
前記外側励磁コイル及び前記内側励磁コイルに供給する直流電流の向きを変えることで、トルク及び回転速度の特性が制御されることを特徴とするブラシ給電式ハイブリッド励磁モータ。A brush-fed hybrid excitation motor, wherein characteristics of torque and rotational speed are controlled by changing the direction of a direct current supplied to the outer excitation coil and the inner excitation coil.
ヨークの略円盤状の平面部から軸方向に突出するように、複数の永久磁石と複数の鉄心とが周方向に交互に配置され、各永久磁石が軸方向に着磁され軸方向の一方が同じ磁極となるように揃えられたステータと、A plurality of permanent magnets and a plurality of iron cores are alternately arranged in the circumferential direction so as to protrude in the axial direction from the substantially disk-shaped flat portion of the yoke, and each permanent magnet is magnetized in the axial direction, and one of the axial directions is A stator aligned to have the same magnetic pole,
前記永久磁石及び前記鉄心の径方向内側に配置されるとともに周方向に巻回され、前記鉄心を経由する磁束を生成し制御するための円環状の内側励磁コイルと、An annular inner exciting coil that is arranged on the radially inner side of the permanent magnet and the iron core and wound in the circumferential direction, and generates and controls a magnetic flux that passes through the iron core;
前記永久磁石及び前記鉄心と軸方向に対向するように配置される電機子コイルが巻装された周方向に複数の電機子コア部と、前記ステータに備えられるブラシが押圧接触され前記電機子コイルに電機子電流を供給するための整流子と、前記電機子コア部及び前記整流子と一体回転する回転軸とを有するロータとを備え、A plurality of armature core portions wound around an armature coil disposed so as to face the permanent magnet and the iron core in the axial direction and a brush provided in the stator are pressed and contacted, and the armature coil A rotor having a commutator for supplying an armature current to the armature and a rotating shaft that rotates integrally with the armature core part and the commutator;
前記内側励磁コイルに直流電流を供給しない通常運転時においては、前記鉄心を経由する磁束が前記永久磁石の磁力に基づき軸方向一方側に向かうものとなり、During normal operation in which no direct current is supplied to the inner excitation coil, the magnetic flux passing through the iron core is directed to one side in the axial direction based on the magnetic force of the permanent magnet,
前記内側励磁コイルに対して一方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ヨークの平面部、前記回転軸、前記ロータの電機子コア部、前記鉄心、といったように磁束が通る磁束ループが形成され、When a direct current is supplied to the inner excitation coil in one direction, based on the direct current, the iron core, the flat portion of the yoke, the rotating shaft, the armature core of the rotor, the iron core, etc. A magnetic flux loop through which the magnetic flux passes is formed,
前記内側励磁コイルに対して他方向に直流電流を供給した場合、その直流電流に基づいて、前記鉄心、前記ロータの電機子コア部、前記回転軸、前記ヨークの平面部、前記鉄心、といったように磁束が通る磁束ループが形成され、When a direct current is supplied to the inner excitation coil in the other direction, based on the direct current, the iron core, the armature core portion of the rotor, the rotating shaft, the plane portion of the yoke, the iron core, etc. A magnetic flux loop through which the magnetic flux passes is formed,
前記鉄心を経由する磁束において、前記内側励磁コイルに対して直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが同じ方向となった場合には、前記鉄心を経由する磁束が増磁され、高トルク、低回転速度となり、In the magnetic flux passing through the iron core, the direction of the magnetic flux formed when a direct current is supplied to the inner excitation coil and the direction of the magnetic flux formed based on the magnetic force of the permanent magnet are the same direction The magnetic flux passing through the iron core is increased, resulting in high torque and low rotational speed.
前記鉄心を経由する磁束において、前記内側励磁コイルに対して直流電流を供給した場合に形成される磁束の向きと、前記永久磁石の磁力に基づき形成される磁束の向きが反対方向となった場合には、前記鉄心を経由する磁束が減磁され、低トルク、高回転速度となり、In the magnetic flux passing through the iron core, the direction of the magnetic flux formed when a direct current is supplied to the inner excitation coil and the direction of the magnetic flux formed based on the magnetic force of the permanent magnet are opposite to each other. The magnetic flux passing through the iron core is demagnetized, resulting in low torque and high rotational speed.
前記内側励磁コイルに供給する直流電流の向きを変えることで、トルク及び回転速度の特性が制御されることを特徴とするブラシ給電式ハイブリッド励磁モータ。A brush-fed hybrid excitation motor, wherein characteristics of torque and rotational speed are controlled by changing a direction of a direct current supplied to the inner excitation coil.
請求項又はに記載のブラシ給電式ハイブリッド励磁モータにおいて、
記ヨークの軸中心には、前記回転軸を回転可能に支持するための軸受が設けられ、
前記軸受は、磁性材料よりなることを特徴とするブラシ給電式ハイブリッド励磁モータ。
The brush-fed hybrid excitation motor according to claim 2 or 3 ,
The axial center of the pre-Symbol yoke, a bearing for rotatably supporting the rotary shaft is provided,
The brush-fed hybrid excitation motor, wherein the bearing is made of a magnetic material.
請求項1乃至のいずれか1項に記載のブラシ給電式ハイブリッド励磁モータにおいて、
前記整流子は、前記電機子コア部の径方向内側に配置され、前記ブラシと軸方向に押圧接触されるものであることを特徴とするブラシ給電式ハイブリッド励磁モータ。
The brush-fed hybrid excitation motor according to any one of claims 1 to 4 ,
The brush commutation type hybrid excitation motor, wherein the commutator is disposed radially inside the armature core portion and is pressed against the brush in the axial direction.
請求項1乃至のいずれか1項に記載のブラシ給電式ハイブリッド励磁モータの駆動方法であって、
前記励磁コイルに供給する直流電流の向き及び値を変えることで、前記鉄心を経由する磁束を制御してトルク及び回転速度の特性を制御することを特徴とするブラシ給電式ハイブリッド励磁モータの駆動方法。
A method for driving a brush-fed hybrid excitation motor according to any one of claims 1 to 5 ,
A method of driving a brush-fed hybrid excitation motor, wherein the characteristics of torque and rotational speed are controlled by controlling the magnetic flux passing through the iron core by changing the direction and value of a direct current supplied to the excitation coil. .
JP2008276754A 2008-10-28 2008-10-28 Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor Expired - Fee Related JP5313627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008276754A JP5313627B2 (en) 2008-10-28 2008-10-28 Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008276754A JP5313627B2 (en) 2008-10-28 2008-10-28 Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor

Publications (2)

Publication Number Publication Date
JP2010110036A JP2010110036A (en) 2010-05-13
JP5313627B2 true JP5313627B2 (en) 2013-10-09

Family

ID=42298934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008276754A Expired - Fee Related JP5313627B2 (en) 2008-10-28 2008-10-28 Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor

Country Status (1)

Country Link
JP (1) JP5313627B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3062252B1 (en) * 2017-01-20 2019-11-22 Valeo Equipements Electriques Moteur TENSILE ROTATING ELECTRIC MACHINE FOR A MOTOR VEHICLE WITH FLOW SWITCHING

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192147A (en) * 1984-10-11 1986-05-10 Nippon Radiator Co Ltd Flat motor
JPS6278073U (en) * 1985-10-31 1987-05-19
JPH0217977U (en) * 1988-07-21 1990-02-06
JPH06351206A (en) * 1993-04-14 1994-12-22 Meidensha Corp Hybrid excitation-type permanent-magnet synchronous rotating machine
JP2000092799A (en) * 1998-09-04 2000-03-31 Nippon Densan Corp Spindle motor and its manufacture
JP3740372B2 (en) * 2001-02-21 2006-02-01 アスモ株式会社 Hybrid magnet type DC machine
JP5290795B2 (en) * 2008-09-22 2013-09-18 アスモ株式会社 Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor

Also Published As

Publication number Publication date
JP2010110036A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
EP1922796B1 (en) Monopole filed electric motor generator
EP1925070B1 (en) Monopole field electric motor-generator with switchable coil configuration
JP4728765B2 (en) Rotating machine
JP5290795B2 (en) Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor
JP2005160197A (en) Wind and hydraulic power utilization generator
JP5869306B2 (en) Rotor and motor
JP5313627B2 (en) Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor
JP2016077130A (en) DC motor
JP2009153358A (en) Flat motor
JP2006025486A (en) Electric electric machine
JP2009273231A (en) Hybrid exciting motor
JP2011010421A (en) Motor
JP3776721B2 (en) DC motor and armature structure thereof
KR101748829B1 (en) Convergence-type dc motor
JP3740372B2 (en) Hybrid magnet type DC machine
JP3737750B2 (en) Hybrid magnet type DC machine
WO2021090550A1 (en) Electric motor and electric apparatus
JP3655201B2 (en) Hybrid magnet type DC machine
JPH0746894B2 (en) Brushless DC motor
JP2010166787A (en) Rotating electrical machine
JP2008228544A (en) Permanent magnet commutator motor
KR20090004179U (en) A Motor Structure of Disk Shape
JP2012060709A (en) Permanent magnet motor
JP5851972B2 (en) Axial gap type brushless motor
JP2005253135A (en) Dc motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees