JP2009153358A - Flat motor - Google Patents

Flat motor Download PDF

Info

Publication number
JP2009153358A
JP2009153358A JP2007341851A JP2007341851A JP2009153358A JP 2009153358 A JP2009153358 A JP 2009153358A JP 2007341851 A JP2007341851 A JP 2007341851A JP 2007341851 A JP2007341851 A JP 2007341851A JP 2009153358 A JP2009153358 A JP 2009153358A
Authority
JP
Japan
Prior art keywords
coil
pole
current
cycle
flat motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007341851A
Other languages
Japanese (ja)
Inventor
Koji Tanagawa
幸次 棚川
Yoichi Sato
洋一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007341851A priority Critical patent/JP2009153358A/en
Publication of JP2009153358A publication Critical patent/JP2009153358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a flat motor in a simple constitution, which can surely start normally and reversely and is suitable for operation in a low voltage and high current. <P>SOLUTION: A motor coil is formed of one conductor, and the bending cycle of the motor coil is coincident with the cycle of the SN magnetic poles of a rotor magnet. The flat motor is equipped with two sets of coil, wherein one set of coil is arranged, matching with the cycle of the S-pole and N-pole of the corresponding rotor magnet, while the other one set of coil is arranged, deviating its cycle by half a cycle, thereby the flat motor is driven by the currents of two phases deviated by half a cycle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は簡単な構成で、正逆転が可能な構造の低電圧大電流での使用に適した扁平モータに関する。  The present invention relates to a flat motor suitable for use with a low voltage and large current having a simple configuration and capable of forward and reverse rotation.

従来の扁平モータの例としては小型化、薄型化を図ったもの(特許文献1)、始動を確実にする方法としてマグネットを用いるもの(特許文献2)、磁性体ワイヤを用いるもの(特許文献2)などがある。
特許第3174517号 扁平モータ 特開平10−336983 扁平モータの電機子構造 特開2005−192320 扁平モータ
Examples of conventional flat motors are those that are reduced in size and thickness (Patent Document 1), those that use a magnet as a method for ensuring starting (Patent Document 2), and those that use a magnetic wire (Patent Document 2). )and so on.
Patent No. 3174517 Flat motor JP, 10-336983, A Flat motor armature structure JP, 2005-192320, A Flat motor

以下従来の扁平モータについて説明する。文献1の図2にあるように従来の扁平モータにおいては、電導線(主に銅線)を複数回二等辺三角形状に巻いて一組のコイルを形成し、これを複数個組み合わせてリング状に配置してステータを構成する構造になっている。このコイル(ステータ)を文献1の図1に示されるようにロータを形成する磁石に近接して配置してモータを構成している。コイル各組は3相に結線されておりこの各相に電流を流すことで回転力を発生している。
このような扁平モータにおいて、ロータとステータの構成、配置に関し薄型化、確実な始動方法など多くの提案がある。文献1はコイルとその保持構造を工夫して薄型化を図っている。しかしながら従来の扁平モータにおいては、多数(6ないし9組)のコイルで構成され、さらに巻き数に応じてその厚みが増加するので簡単化や薄型化の限界がある。またロータコイルの位置がステータ磁石のS極とN極の境界に停止したときには磁石の磁束とコイル電流が直交しないため電磁力が発生しない、または弱い状態に置かれ、始動しにくいという課題があった。3相駆動の場合にはホールセンサなどのセンサにてその位置を検出し、ロータが適当な位置になるように初期駆動して解決することが出来るが相応の費用のかかる問題であった。
文献2は確実な始動が可能なようにコイルの停止位置を図3に示すように磁石を用いてステータ磁石のS極とN極の境界に停止しないようにしている。文献3は磁石のかわりに磁性体ワイヤを用いている。
A conventional flat motor will be described below. As shown in Fig. 2 of Document 1, in a conventional flat motor, a conductive wire (mainly copper wire) is wound a plurality of times in an isosceles triangle shape to form a set of coils, and a plurality of these coils are combined to form a ring shape. It is the structure which comprises a stator and comprises. As shown in FIG. 1 of Reference 1, this coil (stator) is arranged close to the magnet forming the rotor to constitute a motor. Each set of coils is connected in three phases, and a rotational force is generated by passing a current through each phase.
In such a flat motor, there are many proposals such as thinning and a reliable starting method regarding the configuration and arrangement of the rotor and the stator. Document 1 attempts to reduce the thickness by devising the coil and its holding structure. However, the conventional flat motor is composed of a large number (6 to 9 sets) of coils, and further increases in thickness depending on the number of turns, so there is a limit to simplification and thinning. Further, when the position of the rotor coil stops at the boundary between the S pole and the N pole of the stator magnet, the magnet magnetic flux and the coil current are not orthogonal to each other, so that electromagnetic force is not generated or is placed in a weak state, which makes it difficult to start. It was. In the case of three-phase driving, the position can be detected by a sensor such as a hall sensor, and the rotor can be driven initially so that the rotor is at an appropriate position.
Document 2 uses a magnet as shown in FIG. 3 to prevent the coil from stopping at the boundary between the S pole and the N pole of the stator magnet so that reliable starting is possible. Document 3 uses a magnetic wire instead of a magnet.

以上に述べたように従来の扁平モータにおいては、簡単な構成であること、始動や正転逆転を容易にすることなどの課題があった。また従来の扁平モータにおいてはコイルが複数回(数十ないし数百回)の巻き線から構成されるため抵抗(インピーダンス)が高くなり、低電圧では大きな電流を流すことが出来ず低電圧大電流での使用には適していない形態であった。
一方、近年、半導体素子の微細化および大容量化が進み、これに伴って動作電圧は低下、動作電流は上昇傾向にある。半導体素子の塊ともいえる最近のマイクロプロセッサーを使用したパーソナルコンピュータ(以下パソコン)では、その電源としても低電圧大電流化(たとえば電源電圧1V前後で電流が100A近いもの)の傾向にある。
また超電導現象を応用した超電導モータなどにおいても低電圧大電流の分野がある。超電導モータは巻き線に超電導線を用いたものであり、超電導線は極低温(たとえばマイナス200度)におくことによってその抵抗値が0になるもので、モータ巻き線に応用した場合発熱がなく効率の改善が図れる。モータ巻き線の電気抵抗が0のため電源に対して本質的に低電圧大電流の要求がある。
本発明はこのような低電圧大電流の応用分野を背景に考案したもので、前述の従来の扁平モータの課題を改善するとともに低電圧大電流での使用に適したモータを提供するものである
As described above, the conventional flat motor has problems such as a simple configuration and facilitating starting and forward / reverse rotation. In addition, in a conventional flat motor, the coil is composed of a plurality of windings (several tens to several hundreds), so that the resistance (impedance) is high, and a large current cannot be passed at a low voltage. The form was not suitable for use in
On the other hand, in recent years, semiconductor elements have been miniaturized and increased in capacity, and accordingly, the operating voltage is decreasing and the operating current is increasing. A personal computer (hereinafter referred to as a personal computer) using a recent microprocessor that can be said to be a lump of semiconductor elements tends to have a low voltage and large current (for example, a current of about 100 A at a power supply voltage of about 1 V) as its power source.
In addition, there is a field of low voltage and large current in superconducting motors that apply the superconducting phenomenon. A superconducting motor uses a superconducting wire as a winding, and the superconducting wire has a resistance value of 0 when placed at an extremely low temperature (for example, minus 200 degrees), and does not generate heat when applied to a motor winding. Efficiency can be improved. Since the electric resistance of the motor winding is zero, there is an essentially low voltage and large current requirement for the power source.
The present invention was devised against the background of the application field of such a low voltage and large current, and provides a motor suitable for use in a low voltage and large current while improving the above-described problems of the conventional flat motor.

コイルは1本の導体で形成し、対応するロータ磁石の回転方向と直行する直線部分を有し、S極とN極の周期にあわせて折り曲げて周期的形状とする。この導体1本でなるコイル二組を備え、一方を対応するロータ磁石のS極とN極の周期にあわせて配置するとともに他方を半周期ずれた配置として、この二組のコイルを互いに半周期ずれた2相の電流で駆動するようにしたものである。  The coil is formed of a single conductor, has a straight portion perpendicular to the rotation direction of the corresponding rotor magnet, and is bent according to the period of the S and N poles to have a periodic shape. Two coils of this conductor are provided, and one of the coils is arranged in accordance with the period of the S pole and N pole of the corresponding rotor magnet, and the other is arranged with a half period shifted, and the two sets of coils are arranged in a half period. The driving is performed with the two-phase currents shifted.

上記の構成による扁平モータを動作させるには、二組のコイルに2相の駆動電流を与える。たとえば一方のコイルにデューティ50%の駆動電流をながし他方のコイルに同じくデューティ50%の半周期遅れた駆動電流を流すと、ロータ磁石がどのような位置にあってもどちらかの、あるいは両方のコイルの駆動電流との間で電磁力が発生し始動、回転する。この場合二組のコイルの電流の位相を変えることで回転方向を逆転することが出来る。たとえば上記、他方のコイルに半周期遅れた電流を与えて回転している場合を正転とすれば、これを半周期進んだ電流とすることで回転方向は逆転する。回転速度は駆動電流の周期を変えることで制御できる。  In order to operate the flat motor having the above-described configuration, a two-phase drive current is applied to the two sets of coils. For example, if a drive current with a duty of 50% is flowed through one coil and a drive current delayed by a half cycle with a duty of 50% is passed through the other coil, either or both of the rotor magnets are in any position. Electromagnetic force is generated between the coil drive current and starts to rotate. In this case, the direction of rotation can be reversed by changing the phase of the current of the two sets of coils. For example, if the current is rotated by applying a current delayed by a half cycle to the other coil, the rotation direction is reversed by setting the forward rotation as a current advanced by a half cycle. The rotation speed can be controlled by changing the period of the drive current.

従来複数組(6−9組)のコイルが二組のコイルですむので構造が簡単になり薄型化も可能である。また駆動回路も従来の3相駆動回路に比べ2相駆動回路で澄むので回路構成が簡単になる。二つのコイルは互いに半周期ずれているためロータ磁石のS極とN極の間に一方のコイルが停止した場合にも他方のコイルは半周期ずれたS極またはN極の中央に位置するので必ず電磁力が発生し、駆動が確実に出来る、さらに低電圧大電流での使用に適した扁平モータが実現できる、などの効果がある。  Conventionally, a plurality of sets (6-9 sets) of coils can be replaced with two sets of coils, so that the structure can be simplified and the thickness can be reduced. In addition, since the drive circuit is clearer with a two-phase drive circuit than a conventional three-phase drive circuit, the circuit configuration is simplified. Since the two coils are shifted from each other by a half cycle, even if one coil stops between the S pole and the N pole of the rotor magnet, the other coil is located at the center of the S pole or N pole shifted by a half cycle. There is an effect that electromagnetic force is always generated and driving can be performed reliably, and a flat motor suitable for use at a low voltage and large current can be realized.

以下本発明の代表的実施例について説明する。図1はドーナツ型の形状で表裏方向(厚み方向)にNSの磁極をもつ磁石を、円周方向に8分割、8極、交互にS,N磁極を持つように着磁したロータ磁石である。図2は端子A1−A2を持つコイルAと端子B1−B2をもつコイルBであり、二つのコイルは図に示すように互いに半周期ずれた配置で構成されている。コイルAとBは導体版(銅版)で構成し絶縁された状態で貼り付けられている。ロータ磁石の面上に配置されるコイルの直線部分がトルクに寄与する有効部分である。外円周及び内円周にあるコイル部分は作図上直線であるが実際にはロータの外円周及び内円周に沿った円弧とした形状が好ましい。二つのコイルの折り曲げ周期(ピッチ)は図3のようにロータ磁石の極間のピッチに対応している、つまりロータ磁石のS極とN極の間に一方のコイルが停止した場合に他方のコイルは半周期(半ピッチ)ずれているためS極またはN極の中央に位置する関係となる。図4は本発明の扁平モータの概略図でありコイルA、BからなるステータHはカバーJに固定して取り付けられている、磁石CとヨークDで構成されるロータEは回転軸Fに取り付けられている。回転軸FはベアリングGを解してカバーに取り付けられ回転可能になっている。  Hereinafter, typical examples of the present invention will be described. FIG. 1 shows a rotor magnet having a donut shape magnet having NS magnetic poles in the front and back direction (thickness direction) divided into 8 parts in the circumferential direction and 8 poles alternately having S and N magnetic poles. . FIG. 2 shows a coil A having terminals A1-A2 and a coil B having terminals B1-B2, and the two coils are arranged so as to be shifted from each other by a half cycle as shown in the figure. The coils A and B are composed of a conductor plate (copper plate) and are affixed in an insulated state. The linear portion of the coil disposed on the surface of the rotor magnet is an effective portion that contributes to torque. Although the coil portions on the outer circumference and the inner circumference are straight lines in the drawing, it is actually preferable to have a circular arc shape along the outer circumference and the inner circumference of the rotor. The bending period (pitch) of the two coils corresponds to the pitch between the poles of the rotor magnet as shown in FIG. 3, that is, when one coil stops between the south pole and the north pole of the rotor magnet, Since the coil is shifted by a half period (half pitch), the coil is in the center of the S or N pole. FIG. 4 is a schematic view of a flat motor according to the present invention. A stator H comprising coils A and B is fixedly attached to a cover J, and a rotor E composed of a magnet C and a yoke D is attached to a rotating shaft F. It has been. The rotating shaft F is attached to the cover through the bearing G and is rotatable.

次に上記構成の動作を説明する。二組のコイルA,Bに図6に示す2相の駆動電流a、bを与える。駆動電流aは周期の50%ごとに電流の方向が反転し、駆動電流bは同じく50%ごとに方向が反転するがaからみて半周期遅れた波形である。ここで周期はロータ磁石のS極、N極の周期に一致している。ロータ磁石がたとえば図3の位置にありAのコイルが磁極間にあって磁気力が発生しない場合でもBのコイルにはS極の上では内向き(軸方向)の、n極の上では外向き(反軸方向)の電流となり、ファラデーの法則から右方向の電磁力が発生する。このとき他の各磁極の上でも同様の電磁力が発生するがコイルが固定されているのでロータ磁石が左回りに始動、回転する。磁石が回転してBコイルの下にS極とN極の間が来たとき、電流は逆転する。このときBコイルの下には磁極がないので電磁力は発生しないが、AコイルはS極上にあり、電流は内向きであるので右方向の電磁力が発生している。よってロータ磁石はさらに左に回転する。次にBコイルがN極上になると、電流が逆転しているので外向きの電流でありファラデーの法則から右方向の電磁力が発生する。つまりA、Bのコイルの電流波形によってS極の上では内向き、n極の上では外向きの電流が流れるように駆動される。  Next, the operation of the above configuration will be described. Two-phase drive currents a and b shown in FIG. 6 are applied to the two sets of coils A and B. The direction of the current of the drive current a is reversed every 50% of the cycle, and the direction of the drive current b is reversed every 50%, but the waveform is delayed by a half cycle from the point of view of a. Here, the period coincides with the S-pole and N-pole periods of the rotor magnet. For example, even when the rotor magnet is at the position shown in FIG. 3 and the A coil is between the magnetic poles and no magnetic force is generated, the B coil is inward (axial) on the S pole and outward (on the n pole) ( (Anti-axial direction) current, and electromagnetic force in the right direction is generated from Faraday's law. At this time, the same electromagnetic force is generated on each of the other magnetic poles, but since the coil is fixed, the rotor magnet starts and rotates counterclockwise. When the magnet rotates and comes between the S and N poles under the B coil, the current is reversed. At this time, since there is no magnetic pole under the B coil, no electromagnetic force is generated. However, since the A coil is on the S pole and the current is inward, a right electromagnetic force is generated. Therefore, the rotor magnet further rotates to the left. Next, when the B coil is on the N pole, since the current is reversed, it is an outward current, and a right electromagnetic force is generated from Faraday's law. In other words, the current waveforms of the A and B coils are driven so that an inward current flows on the S pole and an outward current flows on the n pole.

したがってA、Bのコイルがどのような位置にあってもどちらかの、あるいは両方のコイル駆動電流とロータ磁石の間で電磁力が発生し始動、回転する。この場合二組のコイルの電流の位相を変えることで回転方向を逆転することが出来る。たとえば上記、他方のコイルに半周期遅れた電流を与えて回転している場合を正転とすれば、これを半周期進んだ電流とすることで回転方向は逆転する。回転速度は駆動電流の周期を変えることで制御できるが、より正確な制御のためには回転センサーによって現在の回転数を検出し、設定値との演算をして最適な周波数、電流値などを供給することで可能である。
以上のように単純な構成で確実に始動し、回転方向が制御できる。またコイルの数が少なく、巻き線が少ないため抵抗分(インピーダンス)が小さいので低電圧大電流に適した扁平モータを実現できる。
Therefore, regardless of the position of the coils A and B, an electromagnetic force is generated between one or both of the coil drive currents and the rotor magnet to start and rotate. In this case, the direction of rotation can be reversed by changing the phase of the current of the two sets of coils. For example, if the current is rotated by applying a current delayed by a half cycle to the other coil, the rotation direction is reversed by setting the forward rotation as a current advanced by a half cycle. The rotation speed can be controlled by changing the cycle of the drive current, but for more accurate control, the current rotation speed is detected by the rotation sensor and calculated with the set value to obtain the optimal frequency, current value, etc. It is possible by supplying.
As described above, it is possible to start reliably and control the rotation direction with a simple configuration. In addition, since the number of coils is small and the number of windings is small, the resistance (impedance) is small, so that a flat motor suitable for low voltage and large current can be realized.

コイルは図5のように薄い絶縁基板の両面に形成してもよい、つまりA面にA1−A2のコイルを形成し、B面にはB1−B2のコイルを半周期ずらして形成してステータを構成することもできる。
またコイル部分あるいは全体を極低温環境において該コイル部分に超電導体を使用することで超電導モータとすることが出来る。この場合コイルにはさらに大きな電流が流せるので特性(トルクなど)改善が期待できる。
The coils may be formed on both sides of a thin insulating substrate as shown in FIG. 5, that is, the A1-A2 coil is formed on the A surface, and the B1-B2 coil is formed on the B surface with a half-cycle shift. Can also be configured.
Further, a superconducting motor can be obtained by using a superconductor for the coil portion or the entire coil portion in a cryogenic environment. In this case, since a larger current can flow through the coil, characteristics (torque etc.) can be improved.

本発明は低電圧で動作する小型機械の動力源として、あるいは小型低電圧の発電装置などに利用可能性がある。  The present invention can be used as a power source for a small machine that operates at a low voltage, or a small low-voltage power generator.

ロータ磁石Rotor magnet コイルcoil ロータ磁石とコイルの配置Rotor magnet and coil arrangement 本発明の扁平モータの構造図Structure diagram of flat motor of the present invention コイルの構成例Coil configuration example 駆動波形図Drive waveform diagram

符号の説明Explanation of symbols

A コイルA
B コイルB
C ロータ磁石
D ヨーク
E ロータ
F 回転軸
G ベアリング
H ステータ
J カバー
A Coil A
B Coil B
C Rotor magnet D Yoke E Rotor F Rotating shaft G Bearing H Stator J Cover

Claims (2)

低電圧大電流での使用に適した扁平モータであってコイルを1本の導体で形成し、その折り曲げ周期をロータ磁石のSN磁極の周期に一致させた構造とし、このコイル二組を備え、一方を対応するロータ磁石のS極とN極の周期にあわせて配置するとともに他方を半周期ずれた配置とする扁平モータ。  A flat motor suitable for use at a low voltage and a large current, in which a coil is formed of a single conductor, and its bending cycle is made to coincide with the cycle of the SN magnetic pole of the rotor magnet. A flat motor in which one is arranged in accordance with the period of the S pole and N pole of the corresponding rotor magnet and the other is arranged with a half-cycle shift. 請求項1においてコイル部分が超伝導体で構成された扁平モータ  2. A flat motor having a coil portion made of a superconductor according to claim 1.
JP2007341851A 2007-12-21 2007-12-21 Flat motor Pending JP2009153358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007341851A JP2009153358A (en) 2007-12-21 2007-12-21 Flat motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007341851A JP2009153358A (en) 2007-12-21 2007-12-21 Flat motor

Publications (1)

Publication Number Publication Date
JP2009153358A true JP2009153358A (en) 2009-07-09

Family

ID=40921791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007341851A Pending JP2009153358A (en) 2007-12-21 2007-12-21 Flat motor

Country Status (1)

Country Link
JP (1) JP2009153358A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034277A (en) * 2011-08-01 2013-02-14 Kakei Gakuen Superconducting motor
US20130307366A1 (en) * 2011-01-25 2013-11-21 Coriolis Power Systems Ltd. Axial-flux electric machine
JP2015042113A (en) * 2013-08-23 2015-03-02 三菱電機株式会社 Stator and motor
CN107251367A (en) * 2015-02-13 2017-10-13 电动汽车系统技术有限公司 Electro-motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130307366A1 (en) * 2011-01-25 2013-11-21 Coriolis Power Systems Ltd. Axial-flux electric machine
JP2013034277A (en) * 2011-08-01 2013-02-14 Kakei Gakuen Superconducting motor
JP2015042113A (en) * 2013-08-23 2015-03-02 三菱電機株式会社 Stator and motor
CN107251367A (en) * 2015-02-13 2017-10-13 电动汽车系统技术有限公司 Electro-motor
EP3257138A4 (en) * 2015-02-13 2018-09-26 Electric Vehicle Systems And Technology Pty Ltd Electric motor
CN107251367B (en) * 2015-02-13 2020-05-05 电动汽车系统技术有限公司 Electric motor

Similar Documents

Publication Publication Date Title
TWI311002B (en) Two-phase brushless dc motor
US8890387B2 (en) Stator and motor
JP5922023B2 (en) Electric motor and / or generator with a mechanically variable permanent magnetic field
JP4715305B2 (en) Single phase brushless motor
WO2007105319A1 (en) Electric power generator, method for generating electric power, and motor
US20120175997A1 (en) Switched reluctance motor
KR101184461B1 (en) Mechanically Commutated Switched reluctance motor
US20130069495A1 (en) Switched reluctance motor
TW201136104A (en) Electric machine
JP2009153358A (en) Flat motor
US20100295397A1 (en) Electromechanical Machine
JP2001169517A (en) Capacitor motor
JP2005130689A (en) Rotating electric machine
JP2005020885A (en) Rotary linear dc motor
JP5460807B1 (en) Synchronous motor
WO2021214240A1 (en) An improved axial flux electric motor
JP2018108007A (en) Generator decreasing magnetic force resistance
JP2019216530A (en) Permanent magnet generator
KR101235741B1 (en) Pole change type synchronous motor having a position variable exciting pole
US20170229948A1 (en) Single phase brushless direct current motor
JP2019216531A (en) Cylindrical permanent magnet generator
JP5313627B2 (en) Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor
JP2010166787A (en) Rotating electrical machine
JP2005253135A (en) Dc motor
JP5851972B2 (en) Axial gap type brushless motor