JP2013034277A - Superconducting motor - Google Patents

Superconducting motor Download PDF

Info

Publication number
JP2013034277A
JP2013034277A JP2011168061A JP2011168061A JP2013034277A JP 2013034277 A JP2013034277 A JP 2013034277A JP 2011168061 A JP2011168061 A JP 2011168061A JP 2011168061 A JP2011168061 A JP 2011168061A JP 2013034277 A JP2013034277 A JP 2013034277A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
stator
rotation axis
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011168061A
Other languages
Japanese (ja)
Other versions
JP5700445B2 (en
Inventor
Mina Kawamura
実生 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kake Educational Institution
Original Assignee
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kake Educational Institution filed Critical Kake Educational Institution
Priority to JP2011168061A priority Critical patent/JP5700445B2/en
Publication of JP2013034277A publication Critical patent/JP2013034277A/en
Application granted granted Critical
Publication of JP5700445B2 publication Critical patent/JP5700445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting motor that is applied with an alternating current and does not spoil cooling efficiency of a superconducting wire while suppressing hysteresis loss of the superconducting wire.SOLUTION: There is provided an axial gap type superconducting motor characterized in that a stator 1 has a pair of superconducting wires 12a, 12b extending radially from a rotating shaft 2 as a center in point symmetry relationship, rotors 21, 22 are configured to have pairs of permanent magnets 21a, 21b and 22a, 22b with mutually opposite polarities in a direction of the rotating shaft allocated to two halved regions across a diameter having its center on the rotating shaft, an alternating current is supplied to one of the superconducting wires 12a, 12b in the point symmetry relationship from an inner periphery to an outer periphery, and an alternating current in phase is supplied to the other of the superconducting wires 12a, 12b from an outer periphery to an inner periphery.

Description

本発明は、ローレンツ力を利用した超伝導モーターに関する。   The present invention relates to a superconducting motor using Lorentz force.

本発明の超伝導モーターは、電力を供給して回転動力を出力する装置であり、回転動力を入力すれば電力を出力する超伝導発電機として利用できる。以下では、主に超伝導モーターについて説明し、必要に応じて超伝導発電機について言及する。   The superconducting motor of the present invention is a device that supplies electric power and outputs rotational power, and can be used as a superconducting generator that outputs electric power when rotational power is input. In the following, the superconducting motor will be mainly described, and the superconducting generator will be referred to when necessary.

電気抵抗が「0(ゼロ)」になる超伝導現象を利用する超伝導モーターは、電流を流す超伝導ワイヤーを冷却する必要がある。例えば特許文献1が開示する超伝導モーター(超伝導回転機)は、超伝導ワイヤー(超伝導線)を巻き付けた回転子を冷凍機(スターリングパルス管式冷凍機(クライオクーラーの一種)、特許文献1・[0026]参照)に接続し、回転子と前記冷凍機の冷凍部とを真空断熱構造の本体に収納することにより、高い冷却効率を実現している(特許文献1・[請求項1][請求項2])。回転子と共に回転する超伝導ワイヤーは、真空断熱構造の本体の外にまで引き出されて回転子用回転給電機に接続される(特許文献1・[請求項5])。   A superconducting motor using a superconducting phenomenon in which the electric resistance becomes “0 (zero)” needs to cool a superconducting wire through which a current flows. For example, a superconducting motor (superconducting rotator) disclosed in Patent Document 1 is a refrigerator (Stirling pulse tube refrigerator (a type of cryocooler)) in which a rotor around which a superconducting wire (superconducting wire) is wound. 1 [Refer to [0026]), and the rotor and the refrigeration unit of the refrigerator are housed in the main body of the vacuum heat insulating structure to achieve high cooling efficiency (Patent Document 1 [Claim 1]. [Claim 2]). The superconducting wire that rotates together with the rotor is drawn out of the main body of the vacuum heat insulating structure and connected to the rotor rotary feeder (Patent Document 1 [Claim 5]).

特許文献1が開示するモーター構造は、ラジアルギャップ形(特許文献1・[図1]〜[図3])又はアキシャルギャップ形(特許文献1・[0053][0054][図4])のいずれにも利用される。いずれについても、超伝導ワイヤーを具体的にどのように巻き付けているかが明示されていないが、例示されたラジアルギャップ形又はアキシャルギャップ形が従来通りの構成であれば、いずれも超伝導ワイヤーを巻回した単位(回転子コイル)を周方向等間隔に配置し、磁石は全周にわたって半径方向(ラジアルギャップ形)又は回転軸方向(アキシャルギャップ形)に同一極性で固定子に組み付けられていると考えられる。   The motor structure disclosed in Patent Document 1 is either a radial gap type (Patent Document 1, [FIG. 1] to [FIG. 3]) or an axial gap type (Patent Document 1, [0053], [0054], [FIG. 4]). Also used for. In both cases, it is not clearly shown how the superconducting wire is wound. However, if the illustrated radial gap type or axial gap type is a conventional configuration, the superconducting wire is wound. When rotating units (rotor coils) are arranged at equal intervals in the circumferential direction, the magnet is assembled to the stator with the same polarity in the radial direction (radial gap type) or rotating shaft direction (axial gap type) over the entire circumference. Conceivable.

特開2010-093886号公報JP 2010-093886

超伝導ワイヤーを用いた超伝導モーターは、従来のモーターにおける回転子コイルを超伝導ワイヤーで構成し、回転子コイルに発生する電磁力と永久磁石との反発力を利用することも考えられる。この場合、前記電磁力の大きさ又は極性を変化させる必要から、超伝導ワイヤーには交流を印加する。このように超伝導モーターの超伝導ワイヤーに交流を印加する場合、超伝導ワイヤーにヒステリシス損失が発生して少なからず加熱され、超伝導現象を発現するまで前記超伝導ワイヤーが冷却されることを妨げることが知られている。   In a superconducting motor using a superconducting wire, a rotor coil in a conventional motor may be composed of a superconducting wire, and the electromagnetic force generated in the rotor coil and the repulsive force between permanent magnets may be used. In this case, since it is necessary to change the magnitude or polarity of the electromagnetic force, an alternating current is applied to the superconducting wire. In this way, when applying an alternating current to the superconducting wire of the superconducting motor, hysteresis loss occurs in the superconducting wire and it is heated, and prevents the superconducting wire from being cooled until the superconducting phenomenon occurs. It is known.

特許文献1が開示する超伝導モーターは、超伝導ワイヤーに交流を印加すると見られる(特許文献1・[0055]参照)から、上述したヒステリシス損失の発生が懸念される。また、特許文献1は、例示した超伝導モーターの極数を明示していないが、多くの交流モーターに見られる三相交流を印加する構成とすれば、点対称に同相の交流を流す回転子コイルが周方向等間隔に3組並べられると考えられる。この場合、印加される交流の周波数は回転軸の回転数の3倍となり、ヒステリシス損失も大きくなる。   The superconducting motor disclosed in Patent Document 1 is considered to apply an alternating current to the superconducting wire (see Patent Document 1 [0055]). Moreover, although patent document 1 does not specify the number of poles of the exemplified superconducting motor, if it is configured to apply a three-phase alternating current found in many alternating-current motors, a rotor that flows alternating-phase alternating current in a point-symmetric manner. It is considered that three sets of coils are arranged at equal intervals in the circumferential direction. In this case, the frequency of the applied alternating current is three times the rotational speed of the rotating shaft, and the hysteresis loss is also increased.

ヒステリシス損失は、超伝導ワイヤーの材質を適切に選択して小さくする前提として、印加する交流の周波数をできる限り下げて、できれば回転軸の回転数に等しくできるとよい。そこで、交流を印加する超伝導モーターにおける超伝導ワイヤーのヒステリシス損失を抑制しつつ、超伝導ワイヤーの冷却効率を損ねない超伝導モーターに適した構成について検討した。   Assuming that the material of the superconducting wire is appropriately selected to reduce the hysteresis loss, it is preferable that the applied AC frequency be lowered as much as possible and, if possible, equal to the rotational speed of the rotating shaft. Therefore, a configuration suitable for a superconducting motor that does not impair the cooling efficiency of the superconducting wire while suppressing the hysteresis loss of the superconducting wire in the superconducting motor that applies alternating current was studied.

検討の結果開発したものが、回転軸を回転自在に貫通させた固定子の前記回転軸に直交する平面内の超伝導ワイヤーと、前記回転軸と共に回転する回転子の前記回転軸に直交する平面内の永久磁石とを対向させるアキシャルギャップ型の超伝導モーターにおいて、固定子は、回転軸を中心とする半径方向に延びる超伝導ワイヤーを点対称な位置関係に2本一組で有し、回転子は、回転軸を中心とする直径を挟んで二分された半割領域それぞれに、回転軸方向の極性が互いに逆である一対の永久磁石を割り当てて構成され、点対称な位置関係にある超伝導ワイヤーの一方に内周から外周に向けて交流を通電し、前記超伝導ワイヤーの他方に外周から内周に向けて同位相の交流を通電することを特徴とする超伝導モーターである。「内周から外周に向けて交流を通電」するとは、例えば交流の極性が正の時に内周から外周に向けて電流が流れ、前記極性が負になると外周から内周に向けて電流が流れることを意味する。「外周から内周に向けて交流を通電」するも、同様の意味である。   What has been developed as a result of the study is a superconducting wire in a plane perpendicular to the rotation axis of the stator having a rotation shaft that freely penetrates, and a plane perpendicular to the rotation axis of the rotor rotating together with the rotation axis In the axial gap type superconducting motor facing the inner permanent magnet, the stator has a pair of superconducting wires extending in the radial direction around the rotation axis in a point-symmetrical positional relationship, and rotates. The child is constructed by allocating a pair of permanent magnets whose polarities in the rotation axis direction are opposite to each other to each of the halved regions with a diameter around the rotation axis, and having a point-symmetrical positional relationship. The superconducting motor is characterized in that an alternating current is supplied to one of the conductive wires from the inner periphery to the outer periphery, and an alternating current of the same phase is supplied to the other of the superconductive wires from the outer periphery to the inner periphery. “Energizing the alternating current from the inner periphery to the outer periphery” means that, for example, when the polarity of the alternating current is positive, current flows from the inner periphery to the outer periphery, and when the polarity becomes negative, current flows from the outer periphery to the inner periphery. Means that. “Energizing alternating current from the outer circumference toward the inner circumference” has the same meaning.

固定子の回転軸に直交する平面内の超伝導ワイヤーとは、回転軸に直交する平面に沿って超伝導ワイヤーが2次元的に延びていることを意味し、例えば固定子を構成する円板の表面に超伝導ワイヤーが固定されているほか、回転軸に直交する仮想的な平面に沿って、前記円板内に超伝導ワイヤーが埋め込まれている場合を含む。同様に、回転軸に直交する平面内の永久磁石とは、回転軸に直交する平面に永久磁石が並べられていることを意味し、例えば回転子を構成する円板の表面に永久磁石が固定されているほか、回転軸に直交する仮想的な平面に倣って、前記円板内に永久磁石が埋め込まれている場合を含む。   The superconducting wire in the plane orthogonal to the rotation axis of the stator means that the superconducting wire extends two-dimensionally along the plane orthogonal to the rotation axis. For example, the disk constituting the stator In addition, the superconducting wire is fixed to the surface of the disc, and the superconducting wire is embedded in the disk along a virtual plane orthogonal to the rotation axis. Similarly, a permanent magnet in a plane orthogonal to the rotation axis means that the permanent magnets are arranged in a plane orthogonal to the rotation axis. For example, the permanent magnet is fixed to the surface of the disk constituting the rotor. In addition to this, it includes a case where a permanent magnet is embedded in the disk following a virtual plane orthogonal to the rotation axis.

本発明の超伝導モーターは、回転子が有する回転軸に直交する平面内の永久磁石から延びる磁束を、固定子が有する点対称な位置関係にある超伝導ワイヤーに交差させると、フレミングの左手の法則により、各超伝導ワイヤーにローレンツ力を発生させ、前記ローレンツ力の反作用を利用して回転子を回転させる。点対称な位置関係にある超伝導ワイヤーは、半径方向に逆向きに電流が流れるが、それぞれの超伝導ワイヤーに対向する磁石の磁性も逆になっているため、各超伝導ワイヤーに発生するローレンツ力は、周方向に同じ向きを向く。これから、ローレンツ力の反作用も周方向に同じ向きを向き、回転子に点対称な位置関係で同方向の回転力が与えられる。また、本発明の超伝導モーターを超伝導発電機とした場合、フレミングの右手の法則により、極性の切り替わる電流、すなわち交流が各超伝導ワイヤーに発生する。   In the superconducting motor of the present invention, when the magnetic flux extending from a permanent magnet in a plane perpendicular to the rotation axis of the rotor intersects the superconducting wire in the point-symmetrical positional relationship of the stator, the left hand of Fleming According to the law, a Lorentz force is generated in each superconducting wire, and the rotor is rotated using the reaction of the Lorentz force. A superconducting wire that is in a point-symmetrical positional relationship causes current to flow in the opposite direction in the radial direction, but the magnetism of the magnet facing each superconducting wire is also reversed, so the Lorentz that occurs in each superconducting wire The force is directed in the same direction in the circumferential direction. From this, the reaction of the Lorentz force is also directed in the same direction in the circumferential direction, and the rotational force in the same direction is given to the rotor in a point-symmetric positional relationship. In addition, when the superconducting motor of the present invention is a superconducting generator, a current whose polarity is switched, that is, an alternating current is generated in each superconducting wire according to Fleming's right-hand rule.

本発明の超伝導モーターは、回転子の永久磁石が2極しかなく、回転により入れ替わる各極に対応して超伝導ワイヤーに流す交流の極性を反転させればよい。これは、回転子の1回転と交流の1周期とが同期する、すなわち回転軸の回転数と印加する交流の周波数とが一致することを意味する。これにより、印加する交流の周波数に比例するヒステリシス損失を、最小限まで抑制できる。本発明の超伝導モーターは、上述のようにローレンツ力を利用しており、永久磁石の極数が2極でも、前記永久磁石の磁束に直交する超伝導ワイヤーが多ければ得られるローレンツ力を大きくし、回転力を大きくできる。同様に、本発明の超伝導モーターを超伝導発電機とした場合、超伝導ワイヤーの本数に従って得られる電流が増える。   The superconducting motor of the present invention has only two permanent magnets for the rotor, and it is only necessary to reverse the polarity of the alternating current flowing through the superconducting wire corresponding to each pole that is switched by rotation. This means that one rotation of the rotor and one cycle of alternating current are synchronized, that is, the number of rotations of the rotating shaft and the frequency of the alternating current applied are the same. Thereby, the hysteresis loss proportional to the frequency of the alternating current to apply can be suppressed to the minimum. The superconducting motor of the present invention utilizes the Lorentz force as described above, and even if the number of poles of the permanent magnet is two, the Lorentz force obtained can be increased if there are many superconducting wires orthogonal to the magnetic flux of the permanent magnet. And increase the rotational force. Similarly, when the superconducting motor of the present invention is a superconducting generator, the current obtained according to the number of superconducting wires increases.

本発明の超伝導モーターが回転子を安定して回転させるには、超伝導ワイヤーに発生するローレンツ力の反作用を、全周にわたって発揮させればよい。具体的には、固定子は、周方向等間隔にある2n条(nは2以上の自然数)の超伝導ワイヤーを有し、回転軸を中心とする直径を挟んで二分された半割領域の一方に割り当てられたn条の超伝導ワイヤーに、回転子の回転上流から回転下流に向けて基準位相からπ/nずつ遅れ位相をつけた交流を内周から外周に向けて通電し、前記二分された半割領域の他方に割り当てられたn条の超伝導ワイヤーに、回転子の回転上流から回転下流に向けて基準位相からπ/nずつ遅れ位相をつけた交流を外周から内周に向けて通電する。   In order for the superconducting motor of the present invention to rotate the rotor stably, the reaction of the Lorentz force generated in the superconducting wire may be exhibited over the entire circumference. Specifically, the stator has 2n superconducting wires (n is a natural number of 2 or more) that are equally spaced in the circumferential direction, and is a halved region that is divided into two with a diameter around the rotation axis. An alternating current having a phase delayed by π / n from the reference phase from the upstream to the downstream of the rotor is energized from the inner periphery to the outer periphery to the n superconducting wires assigned to one side, From the outer circumference to the inner circumference, an alternating current with a phase delayed by π / n from the reference phase from the upstream of the rotor to the downstream of rotation is applied to the n superconducting wires assigned to the other half of the halved region. To energize.

超伝導ワイヤーが周方向等間隔に2n条並んだ場合、本発明の超伝導モーターはヒステリシス損失に加え、結合損失も抑制できるようになる。本発明の超伝導モーターは、回転子の永久磁石が2極しかないため、回転子が1回転する間に、各超伝導ワイヤーに印加する交流が1周期変化すればよい。このため、印加する交流の周波数と回転軸の回転数とを同一にして、ヒステリシス損失を抑制できる。また、回転子の永久磁石の境界を跨いで隣り合う超伝導ワイヤー以外、隣り合う超伝導ワイヤーが形成する磁界はいずれも右ネジの法則に従って発生し、互いに打ち消し合う関係にあるため、結合損失が抑制される。このように、本発明は、超伝導モーターに適したアキシャルギャップ形により、ヒステリシス損失と結合損失とを低減する。   When superconducting wires are arranged in 2n strips at equal intervals in the circumferential direction, the superconducting motor of the present invention can suppress coupling loss in addition to hysteresis loss. In the superconducting motor of the present invention, since the rotor has only two permanent magnets, the AC applied to each superconducting wire only needs to change by one period while the rotor makes one revolution. For this reason, hysteresis loss can be suppressed by making the frequency of the alternating current applied and the rotation speed of the rotating shaft the same. In addition, the magnetic fields formed by adjacent superconducting wires other than the adjacent superconducting wires straddling the boundary of the permanent magnets of the rotor are generated according to the right-handed screw law and cancel each other. It is suppressed. Thus, the present invention reduces hysteresis loss and coupling loss by an axial gap type suitable for a superconducting motor.

ここで、n条の超伝導ワイヤーは、各条が1本の超伝導ワイヤーである構成のほか、多数本の超伝導ワイヤーを同方向にまとめた一束として1条を構成する場合を含む。2n条の超伝導ワイヤーは、前記構成の超伝導ワイヤーが偶数条あることを意味する。また、回転子が上流から下流に向けて回転しているとして、前記上流を回転子の回転上流、同じく前記下流を回転下流と呼ぶ。具体的には、回転子が平面視で右回転している場合、左回りが回転子の回転上流、右回りが回転子の回転下流となる。この場合、固定子の超伝導ワイヤーに回転下流から回転上流に向けたローレンツ力が発生するとすれば、回転子は前記ローレンツ力の向きと逆方向、すなわち右回転する。   Here, n superconducting wires include the case where each strip is a single superconducting wire, as well as the case where a single strip is formed as a bundle of a large number of superconducting wires in the same direction. A 2n superconducting wire means that there is an even number of superconducting wires having the above-described configuration. Further, assuming that the rotor rotates from upstream to downstream, the upstream is referred to as the rotational upstream of the rotor, and the downstream is also referred to as the rotational downstream. Specifically, when the rotor rotates clockwise in plan view, the counterclockwise direction is the upstream rotation of the rotor and the clockwise direction is the downstream rotation of the rotor. In this case, if Lorentz force is generated in the stator superconducting wire from downstream to upstream, the rotor rotates in the direction opposite to the direction of the Lorentz force, that is, clockwise.

固定子は、点対称な位置関係で、回転軸を中心とする半径方向に延びる超伝導ワイヤーが2本一組であればよい。しかし、超伝導ワイヤーは、前記点対称な位置関係で、回転軸を中心とする半径方向に延びる部分のみを設けることができず、前記半径方向に延びる部分以外が存在する。こうした半径方向に延びる部分以外の超伝導ワイヤーは、周方向に沿って円弧状に延ばすとよい。周方向に沿って円弧状に延びる超伝導ワイヤーに発生するローレンツ力は半径方向を向き、回転子の回転に影響を与えない。これにより、回転軸に直交する平面内の超伝導ワイヤーは、一筆書きのように取り回すことができ、例えば超伝導ワイヤーの出入り口を固定子外周の一箇所に集中させることもできる。   The stator may be a set of two superconducting wires extending in the radial direction around the rotation axis in a point-symmetrical positional relationship. However, the superconducting wire cannot provide only a portion extending in the radial direction around the rotation axis in the point-symmetrical positional relationship, and there are portions other than the portion extending in the radial direction. The superconducting wire other than the portion extending in the radial direction may be extended in an arc shape along the circumferential direction. The Lorentz force generated in the superconducting wire extending in an arc along the circumferential direction faces the radial direction and does not affect the rotation of the rotor. Thereby, the superconducting wire in the plane orthogonal to the rotation axis can be routed like a single stroke, and for example, the entrance / exit of the superconducting wire can be concentrated at one place on the outer periphery of the stator.

回転軸を中心とする半径方向に延びる超伝導ワイヤーに、回転下流から回転上流に向けて発生するローレンツ力を最大にするには、超伝導ワイヤーと磁束とができる限り正しく直交することが望ましい。これから、固定子は、一対の回転子に挟まれ、前記回転子は、回転軸を中心とする直径を挟んで二分された半割領域それぞれに、回転軸方向の極性の向きが逆である永久磁石を、回転軸方向の極性を揃え、かつ半割領域を周方向に一致させてそれぞれ割り当てるとよい。これにより、固定子を挟んで永久磁石のN極及びS極が形成する磁束が超伝導ワイヤーと直交し、各超伝導ワイヤーに発生するローレンツ力を最大にできる。また、永久磁石の回転軸方向の極性を揃え、かつ半割領域を周方向に一致させた複数(m+1個、mは自然数)の回転子と複数(m個)の固定子とを互い違いに積層すれば、各固定子を挟む一対の回転子が形成する磁束を前記各固定子の超伝導ワイヤーに直交させた積層単位を複数重ねた構成を実現でき、超伝導モーターとして回転駆動力を増大させたり、超伝導発電機として発電量を増大させたりできる。   In order to maximize the Lorentz force generated from the downstream of the rotation to the upstream of the rotation, it is desirable that the superconducting wire and the magnetic flux are orthogonal to each other as accurately as possible. From this, the stator is sandwiched between a pair of rotors, and each of the rotors has a permanent direction whose direction of polarity in the direction of the rotation axis is opposite to each of the halved regions with a diameter centered on the rotation axis. The magnets may be assigned with the polarities in the direction of the rotation axis aligned and the halved regions aligned in the circumferential direction. Thereby, the magnetic flux formed by the N pole and S pole of the permanent magnet across the stator is orthogonal to the superconducting wires, and the Lorentz force generated in each superconducting wire can be maximized. Also, multiple (m + 1, m is a natural number) rotors and multiple (m) stators with the same polarity in the rotation axis direction of the permanent magnet and with the halved region aligned in the circumferential direction are stacked alternately. By doing so, it is possible to realize a configuration in which a plurality of stacked units in which the magnetic flux formed by a pair of rotors sandwiching each stator is perpendicular to the superconducting wires of each stator are stacked, and the rotational driving force is increased as a superconducting motor. Or the amount of power generation can be increased as a superconducting generator.

本発明の超伝導モーターは、非磁性、電気絶縁性及び熱伝導性を備えた材料により形成される冷却板に超伝導ワイヤーを密着させて構成された固定子が、回転子と共に単一の真空容器に内蔵され、断熱性を備えた支持体により前記冷却板が真空容器に固定され、真空容器の外から内へ貫通させた熱伝導体により前記冷却板と冷凍機とが接続され、同じく真空容器の外から内へ貫通させた電気伝導体により外部電力線と超伝導ワイヤーとが接続された構成にするとよい。冷凍機は、特許文献1が挙げるスターリングパルス管式冷凍機を含むクライオクーラーを例示できる。   In the superconducting motor of the present invention, a stator constituted by adhering a superconducting wire to a cooling plate formed of a material having non-magnetic properties, electrical insulation properties, and thermal conductivity has a single vacuum together with a rotor. The cooling plate is fixed to the vacuum vessel by a support body that is built in the container and has heat insulation properties, and the cooling plate and the refrigerator are connected by a heat conductor that penetrates from the outside to the inside of the vacuum vessel. It is preferable that the external power line and the superconducting wire are connected by an electric conductor that penetrates from the outside to the inside of the container. An example of the refrigerator is a cryocooler including a Stirling pulse tube refrigerator described in Patent Document 1.

真空容器は、断熱素材で形成された金属製又は樹脂製の一方又は双方から構成される密閉容器で、好ましくは輻射熱の小さな銀薄膜を内面に形成する。真空容器の内部のガスは、排気パイプを通じて真空ポンプにより排出する。残存するガスや外部から進入するガスは、冷却された固定子により接触して固体化されるので、真空容器の真空度を極めて高くできる利点がある。これにより、超伝導ワイヤーに対する高い断熱性が発揮され、超伝導ワイヤーの冷却状態を維持しやすくする。   The vacuum container is a sealed container made of one or both of a metal and a resin formed of a heat insulating material, and preferably a silver thin film having a small radiant heat is formed on the inner surface. The gas inside the vacuum vessel is discharged by a vacuum pump through an exhaust pipe. The remaining gas and the gas entering from the outside are brought into contact and solidified by the cooled stator, so that there is an advantage that the vacuum degree of the vacuum vessel can be extremely increased. Thereby, the high heat insulation with respect to a superconducting wire is exhibited, and it becomes easy to maintain the cooling state of a superconducting wire.

固定子は、冷凍機により超伝導ワイヤーが超伝導現象を発現するまで冷却されるので、冷却板を形成する材料は前記低温下で強度が十分で、熱膨張係数が金属並みであることが望ましく、例えば熱伝導率の高い窒化アルミ、窒化ケイ素、炭化ケイ素、アルミナ等が挙げられる。特に、窒化アルミは、低温になるほど熱伝導率が高くなる利点もある。固定子は、輻射熱を抑えるため、真空容器同様、銀薄膜で覆うとよい。この場合、冷却板に密着させた超伝導ワイヤーと一体に固定子を銀薄膜で覆ってもよい。回転子は、永久磁石を磁化されない樹脂製の回転体に保持させた構成がよく、輻射熱を抑えるため、固定子同様、前記回転体を銀薄膜で覆うとよい。この場合、永久磁石と一体に回転体を銀薄膜で覆ってもよい。   Since the stator is cooled by the refrigerator until the superconducting wire exhibits a superconducting phenomenon, it is desirable that the material forming the cooling plate has sufficient strength at the low temperature and has a thermal expansion coefficient comparable to that of metal. Examples thereof include aluminum nitride, silicon nitride, silicon carbide, and alumina having high thermal conductivity. In particular, aluminum nitride has an advantage that the thermal conductivity increases as the temperature decreases. In order to suppress radiant heat, the stator is preferably covered with a silver thin film like the vacuum vessel. In this case, the stator may be covered with a silver thin film integrally with the superconducting wire in close contact with the cooling plate. The rotor preferably has a structure in which a permanent magnet is held by a non-magnetized resin rotating body, and in order to suppress radiant heat, the rotor is preferably covered with a silver thin film like the stator. In this case, the rotating body may be covered with a silver thin film integrally with the permanent magnet.

支持体は、固定子と真空容器とを結び、真空容器に固定子を回転不能に支持できる断熱性を備えた部材であればよく、例えばピン(棒材)又はフランジ(板材)として構成される。熱伝導体は、冷凍機の低温ヘッドと固定子とを熱的に接続する部材で、固定子同様、熱伝導率が高い部材であることが好ましく、例えばピン(棒材)として構成される。熱伝導体は、冷凍機がクライオクーラーの場合、前記低温ヘッドが進退することから、低温ヘッドと固定子との距離の変化を吸収できることが望ましい。電気伝導体は、超伝導ワイヤーと電力供給源又は電力出力先とを電気的に接続する部材で、例えばリード線として構成される。電気伝導体は、超伝導ワイヤーと同程度の電気伝導率を備えながら、熱伝導率の低い超伝導リード線が望ましい。   The support body may be a member having a heat insulating property that connects the stator and the vacuum vessel and can support the stator in a non-rotatable manner, and is configured as a pin (bar material) or a flange (plate material), for example. . The heat conductor is a member that thermally connects the low-temperature head of the refrigerator and the stator, and is preferably a member having a high thermal conductivity like the stator, and is configured as a pin (bar), for example. When the refrigerator is a cryocooler, the thermal conductor desirably absorbs a change in the distance between the low-temperature head and the stator because the low-temperature head moves back and forth. The electrical conductor is a member that electrically connects the superconducting wire and the power supply source or the power output destination, and is configured as, for example, a lead wire. The electrical conductor is preferably a superconducting lead having a low thermal conductivity while having the same electrical conductivity as the superconducting wire.

本発明の超伝導モーターは、回転軸を中心とする半径方向に延びる超伝導ワイヤーを、点対称な位置関係に2本一組で有する固定子と、回転軸を中心とする直径を挟んで二分された半割領域それぞれに、回転軸方向の極性が互いに逆である一対の永久磁石を組み付けた回転子とから構成するアキシャルギャップ形を採用したことにより、超伝導ワイヤーのヒステリシス損失を抑制して超伝導ワイヤーの加熱を防ぎ、また超伝導ワイヤーの本数を増やせば結合損失も低減して永久磁石の加熱を防ぐことにより、超伝導ワイヤーの冷却効率を高める効果のほか、ローレンツ力を最大限利用して回転子を回転させたり、装置全体を小型化したりする効果を得る。   The superconducting motor of the present invention is divided into two parts with a stator having a pair of two superconducting wires extending in the radial direction centered on the rotation axis in a point-symmetrical positional relationship and a diameter centered on the rotation axis. By adopting an axial gap type composed of a pair of permanent magnets with opposite polarities in the rotation axis direction in each of the halved regions, the hysteresis loss of the superconducting wire is suppressed. By preventing the heating of the superconducting wire and increasing the number of superconducting wires, the coupling loss is reduced and the permanent magnet is prevented from being heated, thereby improving the cooling efficiency of the superconducting wire and making the best use of the Lorentz force Thus, the effect of rotating the rotor or reducing the size of the entire apparatus is obtained.

ヒステリシス損失の抑制は、回転子の永久磁石が2極であることから、超伝導ワイヤーに印加する交流の周波数と回転軸の回転数とを等しくできることにより得られる効果である。また、結合損失の抑制は、回転軸を中心とする半径方向に延びる超伝導ワイヤーの本数が増え、隣り合う超伝導ワイヤーが近接する場合、前記超伝導ワイヤーそれぞれが形成する磁界の打ち消し合いによりもたらされる効果である。ヒステリシス損失と結合損失との抑制は、超伝導ワイヤーの冷却を阻害する要因をなくす。そして、固定子を構成する冷却板に超伝導ワイヤーを密着させ、前記冷却板を真空容器に内蔵して冷凍機により冷却して超伝導ワイヤーを効率よく冷却し、超伝導ワイヤーの冷却効率を向上させている。   Suppression of hysteresis loss is an effect obtained by making the frequency of the alternating current applied to the superconducting wire equal to the number of rotations of the rotating shaft because the permanent magnet of the rotor has two poles. Further, the suppression of the coupling loss is brought about by canceling out the magnetic field formed by each superconducting wire when the number of superconducting wires extending in the radial direction around the rotation axis increases and adjacent superconducting wires are close to each other. This is an effect. Suppression of hysteresis loss and coupling loss eliminates a factor that impedes cooling of the superconducting wire. Then, the superconducting wire is brought into close contact with the cooling plate constituting the stator, and the cooling plate is built in the vacuum vessel and cooled by the refrigerator to efficiently cool the superconducting wire, thereby improving the cooling efficiency of the superconducting wire. I am letting.

アキシャルギャップ形を採用した本発明の超伝導モーターは、固定子の半径方向に延びる超伝導ワイヤーと、回転子の永久磁石が形成する回転軸方向の磁束とを正しく直交させて、前記超伝導ワイヤーに周方向のローレンツ力を最大限大きくする。これは、超伝導モーターとしての回転効率や超伝導発電機としての発電効率を向上させる効果をもたらす。また、一対の回転子が固定子を挟む構成であれば、永久磁石が超伝導ワイヤーに直交させる磁束は固定子に対して一様となり、超伝導ワイヤーの磁場に対する異方性による利点を引き出しやすい効果も得られる。このほか、冷媒を使用しない冷却方式は、固定子及び回転子を合わせて真空容器に内蔵させることができるので、アキシャルギャップ形の特徴である薄型化と相俟って、本発明の超伝導モーター全体の小型化をもたらす効果もある。   The superconducting motor of the present invention adopting the axial gap type is the superconducting wire in which the superconducting wire extending in the radial direction of the stator and the magnetic flux in the rotation axis direction formed by the permanent magnet of the rotor are orthogonally crossed correctly. In addition, maximize the circumferential Lorentz force. This brings about the effect which improves the rotational efficiency as a superconducting motor, and the power generation efficiency as a superconducting generator. Further, if the pair of rotors sandwich the stator, the magnetic flux that the permanent magnet makes perpendicular to the superconducting wire is uniform with respect to the stator, and it is easy to draw out the advantage due to the anisotropy of the superconducting wire with respect to the magnetic field. An effect is also obtained. In addition, since the cooling system that does not use a refrigerant allows the stator and the rotor to be combined and incorporated in the vacuum vessel, the superconducting motor of the present invention is coupled with the thinning that is characteristic of the axial gap type. There is also an effect of reducing the overall size.

本発明の超伝導モーターの一例を表す断面図である。It is sectional drawing showing an example of the superconducting motor of this invention. 本例の回転子及び固定子の関係を表す分解斜視図である。It is a disassembled perspective view showing the relationship between the rotor of this example, and a stator. 本例の固定子の超伝導ワイヤーに流す電流iの波形図である。It is a wave form diagram of electric current i sent through the superconducting wire of the stator of this example. 本例の超伝導モーターの回転状態における固定子及び回転子を表す経時的関係図である。It is a time-dependent relationship figure showing the stator and rotor in the rotation state of the superconducting motor of this example. 別例の回転子及び固定子の関係を表す図2相当分解斜視図である。FIG. 4 is an exploded perspective view corresponding to FIG. 2 illustrating a relationship between a rotor and a stator of another example. 別例の固定子の構成を表す分解斜視図である。It is a disassembled perspective view showing the structure of the stator of another example. 別例の固定子の超伝導ワイヤーに流す電流i1〜電流i4の波形図である。It is a wave form diagram of electric current i1-electric current i4 sent through a superconducting wire of a stator of another example. 別例の超伝導モーターの回転状態における固定子及び回転子を表す経時的関係図である。It is a time-dependent relationship figure showing the stator and rotor in the rotation state of the superconducting motor of another example.

以下、本発明を実施するための形態について図を参照しながら説明する。本発明が適用される超伝導モーターは、図1に見られるように、回転軸2を回転自在に貫通させた固定子1と、前記固定子1を挟んで、回転軸2と共に回転する上段の回転子21及び下段の回転子22とを真空容器3に内蔵するアキシャルギャップ型である。超伝導モーターの回転軸方向の厚みは、固定子1及び回転子21,22の厚みに依存するので、前記固定子1及び回転子21,22を薄くすれば、前記超伝導モーターの回転軸方向の厚みを小さくできる。図1中、固定子1の超伝導ワイヤー12は、直径方向に延在した1本で図示してあるが、具体的には後掲図2のように、冷却板11の凸部111及び環状壁112に掛け回している。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, the superconducting motor to which the present invention is applied includes a stator 1 that has a rotating shaft 2 rotatably inserted therein, and an upper stage that rotates with the rotating shaft 2 across the stator 1. It is an axial gap type in which the rotor 21 and the lower rotor 22 are built in the vacuum vessel 3. Since the thickness of the superconducting motor in the rotation axis direction depends on the thickness of the stator 1 and the rotors 21 and 22, if the stator 1 and the rotors 21 and 22 are thinned, the rotation axis direction of the superconducting motor is reduced. Can be reduced in thickness. In FIG. 1, the superconducting wire 12 of the stator 1 is shown as one extending in the diametrical direction. Specifically, as shown in FIG. It hangs around the wall 112.

真空容器3は、金属製又は樹脂製の扁平な円柱状で、平面視円環状の側面に、回転軸2を下方から支持する平面視円形の底面と、前記回転軸2を磁性流体軸受け37で支持しながら貫通させる平面視円形の上面とを組み付けて密閉される。磁性流体軸受け37は、真空容器3の内外のガスの流出入を遮断しながら(ハーメチックシール)、回転軸2を貫通させる。これにより、真空容器3の真空度を保ちつつ、回転動力を外部に出力できる。これから、回転軸2を底面からも突出させる場合、前記底面に設けた磁性流体軸受け37を貫通させて、前記回転軸2を突出させるとよい。   The vacuum vessel 3 has a flat cylindrical shape made of metal or resin, and has a circular bottom in plan view, a circular bottom in plan view for supporting the rotary shaft 2 from below, and the rotary shaft 2 by a magnetic fluid bearing 37. It is hermetically sealed by assembling a circular upper surface in plan view that is penetrated while being supported. The magnetic fluid bearing 37 allows the rotary shaft 2 to pass through while blocking the flow of gas inside and outside the vacuum vessel 3 (hermetic seal). Thereby, rotational power can be output outside, maintaining the vacuum degree of the vacuum vessel 3. From this, when the rotating shaft 2 is protruded from the bottom surface, the rotating shaft 2 is preferably protruded through the magnetic fluid bearing 37 provided on the bottom surface.

真空容器3の上面及び底面は、例えば接着剤やボルト等により取り外し不能に側面に固着してもよい。本例は、回転子21,22を回転させる際、真空容器3の内部が真空になり、上面及び底面が側面から外れなくなるので、断熱性及び気密性を備えたシールリングを介装し、上面及び底面を側面に着脱自在に組み付けただけである。側面、上面及び底面は、すべて同素材でもよいし、例えば側面及び上面のみを樹脂製とし、底面のみを金属製としても構わない。真空容器3から固定子1及び超伝導ワイヤー12への輻射熱を抑制するため、前記側面、上面及び底面の内側に銀薄膜を形成するとよい。   The upper surface and the bottom surface of the vacuum vessel 3 may be fixed to the side surfaces so as not to be removed by, for example, an adhesive or a bolt. In this example, when the rotors 21 and 22 are rotated, the inside of the vacuum vessel 3 is evacuated, and the upper surface and the bottom surface cannot be detached from the side surfaces. Therefore, a seal ring having heat insulation and airtightness is interposed, In addition, the bottom surface is simply detachably attached to the side surface. The side surface, the top surface, and the bottom surface may all be made of the same material. For example, only the side surface and the top surface may be made of resin, and only the bottom surface may be made of metal. In order to suppress radiant heat from the vacuum vessel 3 to the stator 1 and the superconducting wire 12, a silver thin film may be formed inside the side surface, the top surface, and the bottom surface.

クライオクーラー32は、真空容器3の底面外側に固定して低温ヘッド321を真空容器3の内部に突出させ、固定子1から半径方向外側に突出した熱伝導ピン31と前記低温ヘッド321とを、銅板からなる熱伝導プレート321により接続している。本例の熱伝導ピン31は、固定子1を真空容器3に対して支持する支持ピン36と別体に固定子1から突出している(図1中、図示の便宜上、支持ピン36と重なっている)。熱伝導プレート321は、弾性変形することにより、上下方向に進退する低温ヘッド321と熱伝導ピン31との距離変化を吸収する。クライオクーラー4の低温ヘッド321は、真空容器6の底面に開口した貫通孔に貫通させ、前記底面に接触しないようにしている。   The cryocooler 32 is fixed to the outside of the bottom surface of the vacuum vessel 3 so that the low-temperature head 321 protrudes inside the vacuum vessel 3, and the heat conduction pin 31 protruding radially outward from the stator 1 and the low-temperature head 321 are They are connected by a heat conduction plate 321 made of a copper plate. The heat conduction pin 31 of this example protrudes from the stator 1 separately from the support pin 36 that supports the stator 1 with respect to the vacuum vessel 3 (in FIG. 1, for convenience of illustration, it overlaps with the support pin 36. ) The heat conduction plate 321 absorbs a change in the distance between the low temperature head 321 moving back and forth in the vertical direction and the heat conduction pin 31 by elastic deformation. The cryogenic head 321 of the cryocooler 4 is passed through a through-hole opened in the bottom surface of the vacuum vessel 6 so as not to contact the bottom surface.

真空容器3は、開閉バルブ351を介在させて真空ポンプ(図示略)に接続された排気パイプ35を真空容器3の底面から貫通させて内部に突出させ、前記真空ポンプにより排気することで内部を真空にする。内部が十分に排気された真空容器3は、残存するガスや侵入するガスは低温状態で固化するため、開閉バルブ351を閉じてガスの侵入を十分に防止すれば、前記真空が維持される。これは、超伝導モーターを駆動している間、常時真空ポンプを働かせなくてよいことを意味し、超伝導モーターの駆動に要するエネルギーの低減という効果をもたらしている。   The vacuum vessel 3 has an exhaust pipe 35 that is connected to a vacuum pump (not shown) through an open / close valve 351, protrudes from the bottom surface of the vacuum vessel 3, and is exhausted by the vacuum pump. Apply vacuum. In the vacuum chamber 3 in which the inside is sufficiently evacuated, the remaining gas and the invading gas are solidified at a low temperature, so that the vacuum is maintained if the on-off valve 351 is closed to sufficiently prevent the gas from entering. This means that it is not necessary to always operate the vacuum pump while driving the superconducting motor, and this has the effect of reducing the energy required to drive the superconducting motor.

固定子1は、図2に見られるように、窒化アルミ製の円板である冷却板11の表面及び裏面それぞれに、前記冷却板11の半割形状に類似な平面視扇状の凸部111,111を線対称に設け、回転軸2を囲んで環状壁112を設けて、前記凸部111と環状壁112とに1本の超伝導ワイヤー12を掛け回して構成され、周方向等間隔の支持ピン36を介して真空容器3に位置固定される。凸部111は、回転軸を中心とする半径方向と平行に延びる一対の径方向壁面と、前記回転軸に同心で前記一対の径方向壁面の内周及び外周をそれぞれ結ぶ円弧状の内周壁面及び外周壁面とから構成される扇状である。   As seen in FIG. 2, the stator 1 has fan-shaped convex portions 111 and 111 similar to the halved shape of the cooling plate 11 on the front and rear surfaces of the cooling plate 11 that is a disk made of aluminum nitride. Provided in line symmetry, an annular wall 112 is provided surrounding the rotary shaft 2, and a single superconducting wire 12 is wound around the convex portion 111 and the annular wall 112. The position is fixed to the vacuum vessel 3 via The convex portion 111 includes a pair of radial wall surfaces extending in parallel with the radial direction around the rotation axis, and an arcuate inner wall surface concentrically connected to the rotation shaft and connecting the inner and outer circumferences of the pair of radial wall surfaces. And a fan shape composed of an outer peripheral wall surface.

説明の便宜上、各凸部111の径方向壁面に直交する直径を境界として、図2中左側を半割領域A、同右側を半割領域Bと定義する。これから、超伝導ワイヤー12は、後述するように、一筆書きで1本を凸部111に掛け回すが、特に半割領域Aの超伝導ワイヤー12a、同様に半割領域Bの超伝導ワイヤー12bと呼ぶ。これに対応して、超伝導ワイヤー12に流れる電流iも、前記超伝導ワイヤー12aの部分を電流ia、超伝導ワイヤー12bの部分を電流ibと区別するが、電流ia及び電流ibはいずれも電流iに変わりないので、位相は同じである。   For convenience of explanation, the left side in FIG. 2 is defined as a half area A and the right side is defined as a half area B with the diameter orthogonal to the radial wall surface of each convex portion 111 as a boundary. From now on, as will be described later, the superconducting wire 12 is wound around the convex portion 111 with a single stroke as described later. In particular, the superconducting wire 12a in the halved region A, and similarly the superconducting wire 12b in the halved region B Call. Correspondingly, the current i flowing through the superconducting wire 12 also distinguishes the portion of the superconducting wire 12a from the current ia and the portion of the superconducting wire 12b from the current ib. Both the current ia and the current ib are currents. Since it does not change to i, the phase is the same.

超伝導ワイヤー12は、支持ピン36から冷却板11の表面(又は裏面)に導き、半割領域Bにある凸部111の外周側から内周側へ径方向壁面に押し当てながら半径内向きに延ばし、内周壁面又は環状壁112に宛てがいながら回転軸2を避けて周方向に延ばし、半割領域Aにある凸部111の内周側から外周側へ径方向壁面に押し当てながら半径外向きに延ばし、外周壁に宛てがいながら周方向に延ばして戻して前記支持ピン36から取り出す一筆書きで、凸部111に掛け回す。これにより、冷却板11がクライオクーラー32により冷却されると、冷却板11と熱的に一体である凸部111及び環状壁112を介して超伝導ワイヤー12も冷却される。   The superconducting wire 12 is guided from the support pin 36 to the front surface (or the back surface) of the cooling plate 11 and radially inward while pressing against the radial wall surface from the outer peripheral side to the inner peripheral side of the convex portion 111 in the halved region B. While extending to the inner peripheral wall surface or annular wall 112 and extending in the circumferential direction while avoiding the rotating shaft 2, the outer surface of the projection 111 in the halved region A is radially outward from the inner peripheral side to the outer peripheral side while pressing against the radial wall surface. It extends in the direction, extends in the circumferential direction while addressing to the outer peripheral wall, returns to the support pin 36, and is wound around the convex portion 111 with a single stroke. Thus, when the cooling plate 11 is cooled by the cryocooler 32, the superconducting wire 12 is also cooled via the convex portion 111 and the annular wall 112 that are thermally integrated with the cooling plate 11.

超伝導ワイヤー12は、冷却板11の表面及び裏面それぞれに設けられた2基の凸部111それぞれに掛け回される。これから、半径方向に延びる超伝導ワイヤー12a,12bそれぞれは、最低限2本の超伝導ワイヤー12から構成される。実際には、各凸部111に複数本の超伝導ワイヤー12が掛け回されるので、半径方向に延びる超伝導ワイヤー12a,12bそれぞれは、2M本(Mは凸部に掛け回す超伝導ワイヤー12の本数)の束となる。各超伝導ワイヤー12は、真空容器3の底面から支持ピン36まで延びる超伝導リード線33に接続され、前記超伝導リード線が真空容器3外の外部電力線34に接続されることにより、交流が供給(超伝導モーターとして)又は出力(超伝導発電機として)される。   The superconducting wire 12 is wound around each of the two convex portions 111 provided on the front surface and the back surface of the cooling plate 11, respectively. From here on, each of the superconducting wires 12a, 12b extending in the radial direction is composed of at least two superconducting wires 12. Actually, since a plurality of superconducting wires 12 are wound around each convex portion 111, each of the superconducting wires 12a and 12b extending in the radial direction has 2M pieces (M is a superconducting wire 12 hung around the convex portion). Number). Each superconducting wire 12 is connected to a superconducting lead wire 33 extending from the bottom surface of the vacuum vessel 3 to the support pin 36, and the superconducting lead wire is connected to an external power line 34 outside the vacuum vessel 3. Supplied (as a superconducting motor) or output (as a superconducting generator).

支持ピン36は、低温に冷却される冷却板11を真空容器3に対して回転不能に支持するため、耐熱性及び強度に優れた素材(例えばポリベンゾイミダゾール(PBI)樹脂)が好ましい。また、冷却により冷却板11が微小に収縮し、真空容器3の側面に対して支持ピン36が進退するので、各支持ピン36は断熱性及び気密性を備えたシールリングを介して真空容器3の側面に保持させている。支持ピン36は、周方向等間隔に複数配置するとよい。本例は、こうした複数の支持ピン36の1つから超伝導ワイヤー12を取り込んでいる(図1参照)。   Since the support pin 36 supports the cooling plate 11 cooled to a low temperature in a non-rotatable manner with respect to the vacuum vessel 3, a material excellent in heat resistance and strength (for example, polybenzimidazole (PBI) resin) is preferable. In addition, the cooling plate 11 is slightly contracted by cooling, and the support pins 36 are moved forward and backward with respect to the side surface of the vacuum vessel 3, so that each support pin 36 is connected to the vacuum vessel 3 through a seal ring having heat insulation and airtightness. It is held on the side. A plurality of support pins 36 may be arranged at equal intervals in the circumferential direction. In this example, the superconducting wire 12 is taken from one of the plurality of support pins 36 (see FIG. 1).

回転子21,22は、固定子1を挟んで上下一対あり、それぞれが直径を挟んで二分された半割領域A(図2中左側)に、回転軸方向の極性が図2中上からS極(各図中ハッチングあり。以下、同じ)−N極(各図中ハッチングなし。以下、同じ)である平面視扇状の永久磁石21a,22aと、残る半活領域B(図2中右側)に、回転軸方向の極性が図2中上からN極−S極である平面視扇状の永久磁石21a,22aとを組み付けて構成される。永久磁石21a,22a及び永久磁石21b,22bは、前述の通り、回転軸方向の極性を揃え、かつ周方向に半活領域A,Bを一致させている。これにより、固定子1を挟んで永久磁石21a,22a及び永久磁石21b,22bの対向するN極及びS極を結ぶ下向きの磁束Bd及び上向きの磁束Buは、固定子1の超伝導ワイヤー12に直交する。   The rotors 21 and 22 have a pair of upper and lower sides with the stator 1 sandwiched therebetween, and the polarities in the direction of the rotational axis from the top in FIG. Planar fan-shaped permanent magnets 21a, 22a that are poles (hatched in each figure; the same applies hereinafter) -N poles (not hatched in the figures; the same applies hereinafter) and the remaining semi-active region B (right side in FIG. 2) In addition, the fan-shaped permanent magnets 21a and 22a having a polarity in the direction of the rotation axis from the top in FIG. As described above, the permanent magnets 21a and 22a and the permanent magnets 21b and 22b have the same polarity in the rotation axis direction and the semi-active regions A and B are aligned in the circumferential direction. As a result, the downward magnetic flux Bd and the upward magnetic flux Bu connecting the N and S poles of the permanent magnets 21a and 22a and the permanent magnets 21b and 22b across the stator 1 are applied to the superconducting wire 12 of the stator 1. Orthogonal.

回転子21,22は、それぞれを構成する永久磁石21a,22a及び永久磁石21b,22bを構造材として直接回転軸2に取り付けることが難しく、前記永久磁石21a,22a及び永久磁石21b,22bを取り付ける構造材を別途回転軸2に設けることが好ましい。例えば回転軸2に一対の鉄製の円板を取り付け、前記円板の対向面それぞれに永久磁石21a,22a及び永久磁石21b,22bを取り付ける、つまり、図1中永久磁石21a,22aの上面と永久磁石21b,22bの下面に鉄製の円板を接面させた構成にするとよい。鉄製の円板は、磁気シールドの働きも有する。   It is difficult for the rotors 21 and 22 to be directly attached to the rotary shaft 2 using the permanent magnets 21a and 22a and the permanent magnets 21b and 22b constituting the rotors as structural materials, and the permanent magnets 21a and 22a and the permanent magnets 21b and 22b are attached. It is preferable to provide a structural material on the rotating shaft 2 separately. For example, a pair of iron discs are attached to the rotating shaft 2 and permanent magnets 21a, 22a and permanent magnets 21b, 22b are attached to the opposing surfaces of the discs. That is, the permanent magnets 21a, 22a in FIG. A configuration in which an iron disk is in contact with the lower surfaces of the magnets 21b and 22b is preferable. The iron disk also functions as a magnetic shield.

本例における回転子21,22の回転を説明する。固定子1は、周方向180度間隔で2条の超伝導ワイヤー12a,12bを有し、図3に見られるように、回転子21,22の1回転と周期が一致する交流iを通電する。しかし、超伝導ワイヤー12a,12bは、一筆書きで延びる超伝導ワイヤー12の一部分であるから、位相が同じ交流の電流iを通電しても、超伝導ワイヤー12aに内周から外周に向けての電流iaが流れているとき、超伝導ワイヤー12bに内周から外周に向けて電流ibが流れることになる(図4参照)。すなわち、超伝導ワイヤー12aに流れる電流iaと超伝導ワイヤー12bに流れる電流ibとは、半径方向で見た場合、流れる方向が内外逆の関係にある。   The rotation of the rotors 21 and 22 in this example will be described. The stator 1 has two superconducting wires 12a and 12b at intervals of 180 degrees in the circumferential direction, and as shown in FIG. 3, energizes an alternating current i having the same period as one rotation of the rotors 21 and 22. . However, since the superconducting wires 12a and 12b are a part of the superconducting wire 12 extending with a single stroke, even if an alternating current i having the same phase is applied, the superconducting wire 12a is directed from the inner periphery toward the outer periphery. When the current ia is flowing, the current ib flows through the superconducting wire 12b from the inner periphery toward the outer periphery (see FIG. 4). That is, the current ia flowing through the superconducting wire 12a and the current ib flowing through the superconducting wire 12b have a relationship in which the flowing direction is reversed when viewed in the radial direction.

図4は、回転子21,22が0度の位置(図2参照)から右回転の方向に固定子1及び回転子21,22を展開して直線状に並べ、回転子21,22の回転角度を前記0度から45度刻みに右回転(図2中回転子21に付した円弧矢印の回転)させた場合の各回転角度における永久磁石21a,21b,22a,22bと超伝導ワイヤー12a,12bに流す電流ia,ibとの対応を表している。図示の便宜上、冷却板11は省略してある。超伝導ワイヤー12a,12bも図示を省略し、前記超伝導ワイヤー12a,12bに流す電流ia,ibで代表している。永久磁石21a,21b,22a,22bは、固定子1に対向するN極(ハッチングなし、永久磁石21a及び永久磁石21b)とS極(ハッチングあり、永久磁石21b及び永久磁石21a)のみを図示している。   FIG. 4 shows that the rotors 21 and 22 are arranged in a straight line by developing the stator 1 and the rotors 21 and 22 in the right rotation direction from the position where the rotors 21 and 22 are 0 degrees (see FIG. 2). Permanent magnets 21a, 21b, 22a, 22b and superconducting wires 12a at each rotation angle when the angle is rotated clockwise from 0 degree to 45 degrees (rotation of the circular arrow attached to the rotor 21 in FIG. 2). The correspondence with currents ia and ib flowing through 12b is shown. For convenience of illustration, the cooling plate 11 is omitted. The superconducting wires 12a and 12b are also not shown, and are represented by currents ia and ib flowing through the superconducting wires 12a and 12b. Permanent magnets 21a, 21b, 22a, 22b show only the N pole (no hatching, permanent magnet 21a and permanent magnet 21b) and the S pole (with hatching, permanent magnet 21b and permanent magnet 21a) facing the stator 1. ing.

固定子1及び回転子21,22がそれぞれの半割領域A,Bを一致させた状態(図2参照)で、通電する交流の極性が負(図3中、回転子の回転角度0度)とすれば、超伝導ワイヤー12aに内周から外周に向けて電流iaが流れ、超伝導ワイヤー12bに外周から内周に向けて電流ibが流れる。これから、下向きの磁束Bd中にある超伝導ワイヤー12aは、図4に見られるように、左回転(図2中回転子21に付した円弧矢印と逆の回転)のローレンツ力L(図4中電流iaの記号直下の破線矢印参照)を受け、その反作用で回転子21,22を右回転させる。同様に、上向きの磁束Bu中にある超伝導ワイヤー12bは、左回転のローレンツ力Lを受け、その反作用で回転子21,22を右回転させる。   In the state where the stator 1 and the rotors 21 and 22 match the halved areas A and B (see FIG. 2), the polarity of the alternating current to be supplied is negative (rotation angle of the rotor is 0 degree in FIG. 3) Then, the current ia flows through the superconducting wire 12a from the inner periphery toward the outer periphery, and the current ib flows through the superconducting wire 12b from the outer periphery toward the inner periphery. As shown in FIG. 4, the superconducting wire 12a in the downward magnetic flux Bd has a Lorentz force L (rotation opposite to the circular arrow attached to the rotor 21 in FIG. 2) as shown in FIG. The rotors 21 and 22 are rotated to the right by the reaction. Similarly, the superconducting wire 12b in the upward magnetic flux Bu receives the left-rotating Lorentz force L, and rotates the rotors 21 and 22 to the right by the reaction.

このとき、超伝導ワイヤー12の半径方向に延びる部分以外にも電流iが流れ、磁束Bd又は磁束Buによるローレンツ力Lを発生させる。しかし、本例の超伝導モーターは、前記半径方向に延びる部分以外の超伝導ワイヤー12がいずれも周方向に沿って円弧状に延びているため、前記半径方向に延びる部分以外の超伝導ワイヤー12に発生するローレンツ力は半径方向を向き、回転子21,22の回転を阻害しない。また、半径方向に延びる部分以外の超伝導ワイヤー12は、従来の導線が有する抵抗損失がないため、前記半径方向に延びる部分以外があっても、無駄に電力を消費しない。   At this time, the current i flows in addition to the portion extending in the radial direction of the superconducting wire 12, and the Lorentz force L is generated by the magnetic flux Bd or the magnetic flux Bu. However, in the superconducting motor of this example, since the superconducting wires 12 other than the portion extending in the radial direction all extend in an arc shape along the circumferential direction, the superconducting wires 12 other than the portion extending in the radial direction are included. The Lorentz force generated in the direction is directed in the radial direction and does not hinder the rotation of the rotors 21 and 22. Further, since the superconducting wire 12 other than the portion extending in the radial direction does not have the resistance loss of the conventional conductive wire, even if there is a portion other than the portion extending in the radial direction, power is not wasted.

本例の超伝導モーターは、回転子21,22の回転数と超伝導ワイヤー12に通電する交流の周波数とが一致していることから、回転子21,22の回転が進むと、超伝導ワイヤー12a,12bを永久磁石21a,21b及び永久磁石22a,22bの境界が通過するタイミング(図4中回転角度90度ほか)で、流れる電流ia,ibの極性を切り換える(図3参照)。極性が切り換わると、超伝導ワイヤー12aに外周から外周に向けて電流iaが流れ、超伝導ワイヤー12bに内周から外周に向けて電流ibを流れるので、やはり超伝導ワイヤー12aは左回転のローレンツ力Lを受け、その反作用で回転子21,22を右回転させ、超伝導ワイヤー12bは左回転のローレンツ力Lを受け、その反作用で回転子21,22を右回転させる。   In the superconducting motor of this example, the number of rotations of the rotors 21 and 22 and the frequency of the alternating current applied to the superconducting wire 12 are the same, so when the rotation of the rotors 21 and 22 proceeds, the superconducting wire The polarities of the flowing currents ia and ib are switched at the timing when the boundaries between the permanent magnets 21a and 21b and the permanent magnets 22a and 22b pass through 12a and 12b (rotation angle of 90 degrees in FIG. 4, etc.) (see FIG. 3). When the polarity is switched, the current ia flows from the outer periphery to the outer periphery of the superconducting wire 12a, and the current ib flows from the inner periphery to the outer periphery of the superconducting wire 12b. Under the force L, the rotors 21 and 22 are rotated to the right by the reaction, and the superconducting wire 12b receives the Lorentz force L of the left rotation, and to the right by the reaction.

こうして、回転子21,22が回転を続けると、下向きの磁束Bd及び上向きの磁束Buを回転方向に移動させていくが、超伝導ワイヤー12a,12bに流れる電流ia,ibは前記回転子21,22の回転に同期して流れる向きを切り換えていくので、前記超伝導ワイヤー12a,12bそれぞれに発生させるローレンツ力は常に左回転となり、前記ローレンツ力の反作用は回転子21,22に右回転の回転力を与え続けることができる。そして、回転子21,22の回転数と超伝導ワイヤー12に通電する交流の周波数とを一致させているので、従来の伝導モーターや他の超伝導モーターと同じ回転数を得る場合でも、超伝導ワイヤー12に発生するヒステリシス損失を抑制できる。   Thus, when the rotors 21 and 22 continue to rotate, the downward magnetic flux Bd and the upward magnetic flux Bu are moved in the rotational direction, but the currents ia and ib flowing through the superconducting wires 12a and 12b are the rotor 21 and Since the direction of flow is switched in synchronization with the rotation of 22, the Lorentz force generated in each of the superconducting wires 12 a, 12 b is always left-rotated, and the reaction of the Lorentz force is the rotation of the rotor 21, 22 to the right rotation You can continue to give power. And since the rotation speed of the rotors 21 and 22 is matched with the frequency of the alternating current supplied to the superconducting wire 12, even when obtaining the same rotation speed as a conventional conduction motor or other superconducting motors, superconductivity Hysteresis loss occurring in the wire 12 can be suppressed.

本発明の超伝導モーターは、図5に見られるように、固定子1が周方向等間隔に複数条の超伝導ワイヤー14,15,16,17を有すると、前記の超伝導ワイヤー14,15,16,17それぞれに発生するローレンツ力の反作用である回転子21,22の回転力を周方向均等に得ることができる。別例の超伝導モーターは、固定子1以外が上記例示(図1参照)と同じであるため、上記例示と相違する固定子1についてのみ構成を説明する。別例の固定子1は、図6に見られるように、窒化アルミ製の円板である単位冷却板13を4枚積層して構成され、上記例示(図1参照)同様、周方向等間隔の支持ピン36を介して真空容器3に位置固定される。単位冷却板13相互は熱的に接続されており、例えば4層目の単位冷却板13にクライオクーラー32(図1参照)の低温ヘッド321が接続されれば、固定子1全体が冷却される。   As shown in FIG. 5, when the stator 1 has a plurality of superconducting wires 14, 15, 16, and 17 at equal intervals in the circumferential direction, as shown in FIG. , 16, and 17, the rotational force of the rotors 21 and 22, which is the reaction of the Lorentz force generated respectively, can be obtained evenly in the circumferential direction. Since the superconducting motor of another example is the same as the above example (see FIG. 1) except for the stator 1, only the configuration of the stator 1 different from the above example will be described. As shown in FIG. 6, the stator 1 of another example is configured by laminating four unit cooling plates 13 which are aluminum nitride discs, and is equally spaced in the circumferential direction as in the above example (see FIG. 1). The position is fixed to the vacuum vessel 3 through the support pins 36. The unit cooling plates 13 are thermally connected to each other. For example, if the low-temperature head 321 of the cryocooler 32 (see FIG. 1) is connected to the unit cooling plate 13 in the fourth layer, the entire stator 1 is cooled. .

各単位冷却板13は、平面視扇状に延びる嵌合溝131を設けて、真空容器3の底面から支持ピン36まで延びる超伝導リード線33(図1参照)に接続される超伝導ワイヤー14,15,16,17を前記嵌合溝131に掛け回して嵌め込み、窒化アルミ粉末又は前記窒化アルミ粉末を含む合成樹脂で塞いで前記超伝導ワイヤー14,15,16,17を埋め込んでいる。嵌合溝131は、上記例示における凸部111(図2参照)の径方向壁面、内周面及び外周面に倣った平面視経路を有する。これにより、超伝導ワイヤー14,15,16,17は、断面3方向又は断面4方向で窒化アルミに接触することになり、クライオクーラー32により冷却される単位冷却板13により、安定した超伝導現象を発現するに十分な低温状態を得ることができる。   Each unit cooling plate 13 is provided with a fitting groove 131 extending in a fan shape in plan view, and connected to a superconducting lead wire 33 (see FIG. 1) extending from the bottom surface of the vacuum vessel 3 to the support pin 36, 15, 16 and 17 are fitted around the fitting groove 131, and are filled with aluminum nitride powder or synthetic resin containing the aluminum nitride powder to embed the superconducting wires 14, 15, 16, and 17. The fitting groove 131 has a plan view path following the radial wall surface, the inner peripheral surface, and the outer peripheral surface of the convex portion 111 (see FIG. 2) in the above example. As a result, the superconducting wires 14, 15, 16, 17 come into contact with the aluminum nitride in the cross section 3 direction or the cross section 4 direction, and the unit cooling plate 13 cooled by the cryocooler 32 stabilizes the superconducting phenomenon. It is possible to obtain a low-temperature state sufficient to develop

別例の固定子1は、1層目の単位冷却板13と2層目の単位冷却板13とは、超伝導ワイヤー14と超伝導ワイヤー15とを周方向90度ずらして積層している。3層目の単位冷却板13と4層目の単位冷却板13とは、超伝導ワイヤー16と超伝導ワイヤー17とを周方向90度ずらし、かつ超伝導ワイヤー16と超伝導ワイヤー14とを周方向90度ずらして積層している。これにより、図7に見られるように、超伝導ワイヤー17、超伝導ワイヤー14、超伝導ワイヤー16、そして超伝導ワイヤー17の順に、互いに45度の位相差のある電流i4、電流i1、電流i3、電流i2を流す(4相交流)。各電流i1,i2,i3,i4は、回転子21,22の1回転と周期が一致する交流である。   In another example of the stator 1, the first unit cooling plate 13 and the second unit cooling plate 13 are laminated with the superconducting wire 14 and the superconducting wire 15 being shifted by 90 degrees in the circumferential direction. The unit cooling plate 13 in the third layer and the unit cooling plate 13 in the fourth layer shift the superconducting wire 16 and the superconducting wire 17 by 90 degrees in the circumferential direction and surround the superconducting wire 16 and the superconducting wire 14 with each other. Laminated by 90 degrees in the direction. Accordingly, as shown in FIG. 7, the current i4, the current i1, and the current i3 having a phase difference of 45 degrees from each other in the order of the superconducting wire 17, the superconducting wire 14, the superconducting wire 16, and the superconducting wire 17. Then, the current i2 is supplied (four-phase alternating current). Each current i1, i2, i3, i4 is an alternating current whose cycle coincides with one rotation of the rotors 21,22.

説明の便宜上、1層目の単位冷却板13に埋め込んだ超伝導ワイヤー14に直交する直径を境界とし、図5又は図6中左側を半割領域A、同右側を半割領域Bと定義する。これから、超伝導ワイヤー14は半割領域Aの超伝導ワイヤー14a、半割領域Bの超伝導ワイヤー14bに分けられ、超伝導ワイヤー12に流れる電流i1も超伝導ワイヤー14aの電流i1a、超伝導ワイヤー14bの電流i1bと区別する。同様に、2層目の単位冷却板13に埋め込んだ超伝導ワイヤー15も超伝導ワイヤー15a、超伝導ワイヤー15bに分けられ、超伝導ワイヤー15に流れる電流i2も電流i2a、電流i2bと区別し、3層目の単位冷却板13に埋め込んだ超伝導ワイヤー16も超伝導ワイヤー16a、超伝導ワイヤー16bに分けられ、超伝導ワイヤー16に流れる電流i3も電流i3a、電流i3bと区別し、そして4層目の単位冷却板13に埋め込んだ超伝導ワイヤー17も超伝導ワイヤー17a、超伝導ワイヤー17bに分けられ、超伝導ワイヤー17に流れる電流i4も電流i4a、電流i4bと区別する。   For convenience of explanation, the diameter perpendicular to the superconducting wire 14 embedded in the first unit cooling plate 13 is defined as a boundary, and the left side in FIG. 5 or 6 is defined as a half area A and the right side is defined as a half area B. . From now on, the superconducting wire 14 is divided into a superconducting wire 14a in the half region A and a superconducting wire 14b in the half region B, and the current i1 flowing in the superconducting wire 12 is also the current i1a in the superconducting wire 14a. Distinguish from the current i1b of 14b. Similarly, the superconducting wire 15 embedded in the unit cooling plate 13 in the second layer is also divided into a superconducting wire 15a and a superconducting wire 15b, and the current i2 flowing through the superconducting wire 15 is also distinguished from the current i2a and current i2b. The superconducting wire 16 embedded in the unit cooling plate 13 in the third layer is also divided into a superconducting wire 16a and a superconducting wire 16b. The current i3 flowing through the superconducting wire 16 is also distinguished from the current i3a and current i3b. The superconducting wire 17 embedded in the unit cooling plate 13 of the eye is also divided into a superconducting wire 17a and a superconducting wire 17b, and the current i4 flowing through the superconducting wire 17 is also distinguished from the current i4a and the current i4b.

別例における回転子21,22の回転を説明する。回転子21,22は、上記例示(図1参照)と同じである。固定子1は、既述したように、各層の超伝導ワイヤー14,15,16,17に、互いに45度の位相差を有しながら、回転子21,22の1回転と周期が一致する交流iを通電する。例えば超伝導ワイヤー14は、超伝導ワイヤー14aに内周から外周に向けての電流i1aが流れ、超伝導ワイヤー14bに内周から外周に向けて電流i1bが流れる(図6参照)。同様に、超伝導ワイヤー15aに内周から外周に向けての電流i2aが流れ、超伝導ワイヤー15bに内周から外周に向けて電流i2bが流れ、超伝導ワイヤー16aに内周から外周に向けての電流i3aが流れ、超伝導ワイヤー16bに内周から外周に向けて電流i3bが流れ、そして超伝導ワイヤー17aに内周から外周に向けての電流i4aが流れ、超伝導ワイヤー17bに内周から外周に向けて電流i4bが流れる。   The rotation of the rotors 21 and 22 in another example will be described. The rotors 21 and 22 are the same as in the above example (see FIG. 1). As described above, the stator 1 has a phase difference of 45 degrees between the superconducting wires 14, 15, 16, and 17 of each layer, and an alternating current whose cycle matches that of one rotation of the rotors 21 and 22. i is energized. For example, in the superconducting wire 14, a current i1a flows from the inner periphery to the outer periphery through the superconducting wire 14a, and a current i1b flows from the inner periphery to the outer periphery through the superconducting wire 14b (see FIG. 6). Similarly, a current i2a flows from the inner periphery to the outer periphery in the superconducting wire 15a, a current i2b flows from the inner periphery to the outer periphery in the superconducting wire 15b, and from the inner periphery to the outer periphery in the superconducting wire 16a. Current i3a flows, the current i3b flows from the inner periphery to the outer periphery in the superconducting wire 16b, and the current i4a flows from the inner periphery to the outer periphery in the superconducting wire 17a. A current i4b flows toward the outer periphery.

図8は、回転子21,22が0度の位置(図2参照)から右回転の方向に固定子1及び回転子21,22を展開して直線状に並べ、回転子21,22の回転角度を前記0度から45度刻みに右回転(図2中回転子21に付した円弧矢印の回転)させた場合の各回転角度における永久磁石21a,21b,22a,22bと超伝導ワイヤー14a,14b,15a,15b,16a,16b,17a,17bに流す電流i1a,i1b,i2a,i2b,i3a,i3b,i4a,i4bとの対応を表している。図示の便宜上、冷却板13は省略してある。超伝導ワイヤー14a,14b,15a,15b,16a,16b,17a,17bも図示を省略し、電流i1a,i1b,i2a,i2b,i3a,i3b,i4a,i4bで代表している。永久磁石21a,21b,22a,22bは、固定子1に対向するN極(ハッチングなし、永久磁石21a及び永久磁石21b)とS極(ハッチングあり、永久磁石21b及び永久磁石21a)のみを図示している。   FIG. 8 shows the rotation of the rotors 21 and 22 in a straight line by developing the stator 1 and the rotors 21 and 22 in the clockwise direction from the position where the rotors 21 and 22 are 0 degrees (see FIG. 2). The permanent magnets 21a, 21b, 22a, 22b and the superconducting wire 14a at each rotation angle when the angle is rotated clockwise from 0 degree to 45 degrees (rotation of the circular arrow attached to the rotor 21 in FIG. 2). 14b, 15a, 15b, 16a, 16b, 17a, 17b, the currents i1a, i1b, i2a, i2b, i3a, i3b, i4a, i4b are shown. For convenience of illustration, the cooling plate 13 is omitted. The superconducting wires 14a, 14b, 15a, 15b, 16a, 16b, 17a, and 17b are also omitted from the drawing and are represented by currents i1a, i1b, i2a, i2b, i3a, i3b, i4a, and i4b. Permanent magnets 21a, 21b, 22a, 22b show only the N pole (no hatching, permanent magnet 21a and permanent magnet 21b) and the S pole (with hatching, permanent magnet 21b and permanent magnet 21a) facing the stator 1. ing.

固定子1及び回転子21,22がそれぞれの半割領域A,Bを一致させた状態(図5参照)で、永久磁石21a,21b,22a,22bの境界に位置する超伝導ワイヤー15以外に通電する交流の極性が負(図7中、回転子の回転角度0度)とすれば、超伝導ワイヤー14a,16a,17aそれぞれに内周から外周に向けて電流i1a,i3a,i4aが流れ、超伝導ワイヤー14b,16b,17bそれぞれに外周から内周に向けて電流i1b,i3b,i4bが流れる。これから、下向きの磁束Bd(図4参照)中にある超伝導ワイヤー14a,16a,17aは、左回転のローレンツ力Lを受け、その反作用で回転子21,22を右回転させる。同様に、上向きの磁束Bu(図4参照)中にある超伝導ワイヤー14b,16b,16bは、左回転のローレンツ力Lを受け、その反作用で回転子21,22を右回転させる。   In addition to the superconducting wire 15 located at the boundary of the permanent magnets 21a, 21b, 22a, 22b in a state where the stator 1 and the rotors 21, 22 are aligned with the respective half regions A, B (see FIG. 5). If the polarity of the alternating current to be energized is negative (rotation angle 0 degree in FIG. 7), the currents i1a, i3a, i4a flow from the inner circumference to the outer circumference in the superconducting wires 14a, 16a, 17a, Currents i1b, i3b, i4b flow through the superconducting wires 14b, 16b, 17b from the outer periphery toward the inner periphery. From this, the superconducting wires 14a, 16a, and 17a in the downward magnetic flux Bd (see FIG. 4) receive the left-rotating Lorentz force L and rotate the rotors 21 and 22 to the right by the reaction. Similarly, the superconducting wires 14b, 16b, and 16b in the upward magnetic flux Bu (see FIG. 4) receive the left-rotating Lorentz force L, and rotate the rotors 21 and 22 to the right by the reaction.

このとき、超伝導ワイヤー14,16,17の半径方向に延びる部分以外にも電流i1,i3,i4が流れ、磁束Bd又は磁束Buによるローレンツ力Lを発生させる。しかし、別例の超伝導モーターは、前記半径方向に延びる部分以外の超伝導ワイヤー14,16,17がいずれも周方向に沿って円弧状に延びているため、前記半径方向に延びる部分以外の超伝導ワイヤー14,16,17に発生するローレンツ力は半径方向を向き、回転子21,22の回転を阻害しない。また、半径方向に延びる部分以外の超伝導ワイヤー14,16,17は、従来の導線が有する抵抗損失がないため、前記半径方向に延びる部分以外があっても、無駄に電力を消費しない。   At this time, the currents i1, i3, i4 flow other than the portions of the superconducting wires 14, 16, 17 extending in the radial direction, and the Lorentz force L is generated by the magnetic flux Bd or the magnetic flux Bu. However, in the superconducting motor of another example, since the superconducting wires 14, 16, 17 other than the portion extending in the radial direction all extend in an arc shape along the circumferential direction, the portion other than the portion extending in the radial direction is used. Lorentz force generated in the superconducting wires 14, 16, and 17 is directed in the radial direction and does not hinder the rotation of the rotors 21 and 22. Further, since the superconducting wires 14, 16, and 17 other than the portion extending in the radial direction do not have the resistance loss of the conventional conducting wire, even if there is a portion other than the portion extending in the radial direction, power is not consumed wastefully.

別例の超伝導モーターは、回転子21,22の回転数と例えば超伝導ワイヤー14に通電する交流の周波数とが一致していることから、回転子21,22の回転が進むと、超伝導ワイヤー14a,14bを永久磁石21a,21b及び永久磁石22a,22bの境界が通過するタイミング(図8中回転角度90度ほか)で、流れる電流i1a,i1bの極性を切り換える(図7参照)。しかし、別例の超伝導モーターは、流れる電流i1a,i1bの極性を切り換わるタイミングにおいても超伝導ワイヤー15,16,17にそのまま電流i2,i3,i4が流れ続け、超伝導ワイヤー15a,15b,16a,16b,17a,17bに発生する左回転のローレンツ力Lの反作用により、回転子21,22を右回転させることができる。このように、別例の超伝導モーターでは、超伝導ワイヤー14,15,16,17のうち1相が切り換わるタイミングでも、残る3相がローレンツ力を発生させて回転子21,22を回転させるので、回転子21,22の回転が安定する。   In another superconducting motor, the rotational speed of the rotors 21 and 22 and the frequency of the alternating current applied to the superconducting wire 14, for example, coincide with each other. The polarity of the flowing currents i1a and i1b is switched at the timing when the boundaries between the permanent magnets 21a and 21b and the permanent magnets 22a and 22b pass through the wires 14a and 14b (rotation angle of 90 degrees in FIG. 8, etc.) (see FIG. 7). However, in another superconducting motor, even when the polarity of the flowing currents i1a, i1b is switched, the currents i2, i3, i4 continue to flow through the superconducting wires 15, 16, 17, and the superconducting wires 15a, 15b, The rotors 21 and 22 can be rotated to the right by the reaction of the left-rotating Lorentz force L generated at 16a, 16b, 17a and 17b. Thus, in another example of the superconducting motor, the remaining three phases generate Lorentz force to rotate the rotors 21 and 22 even when one of the superconducting wires 14, 15, 16, and 17 is switched. Therefore, the rotation of the rotors 21 and 22 is stabilized.

また、別例の超伝導モーターは、上記例示の超伝導モーターに比べ、周方向に並ぶ超伝導ワイヤー14,15,16,17が増えており、永久磁石21a,21b,22,a,22bとの結合損失を低減する効果を有する。例えば図8に見られるように、回転子21,22の回転角度0度において、内周から外周に向けて電流i1a,i3aを流す超伝導ワイヤー14aと超伝導ワイヤー16aとは、周方向に隣り合い、いずれも右回り(図8中紙面奥に向かって右回り)の磁束Hpを形成することから、超伝導ワイヤー14aと超伝導ワイヤー16aとの中間で、電流i1aが形成する磁束Hpの下向き成分と、電流i3aが形成する磁束Hpの上向き成分とが打ち消し合い、永久磁石21a,21bとの結合損失を低減する(図8中クロスハッチング部分)。   In addition, the superconducting motor of another example has more superconducting wires 14, 15, 16, 17 arranged in the circumferential direction than the superconducting motor illustrated above, and permanent magnets 21a, 21b, 22, a, 22b and This has the effect of reducing the coupling loss. For example, as shown in FIG. 8, the superconducting wire 14a and the superconducting wire 16a that flow currents i1a and i3a from the inner circumference toward the outer circumference at the rotation angle of the rotors 21 and 22 are adjacent to each other in the circumferential direction. Since both forms a clockwise magnetic flux Hp (clockwise toward the back of the page in FIG. 8), the magnetic flux Hp formed by the current i1a is downward between the superconducting wire 14a and the superconducting wire 16a. The component and the upward component of the magnetic flux Hp formed by the current i3a cancel each other, and the coupling loss with the permanent magnets 21a and 21b is reduced (cross-hatched portion in FIG. 8).

同様に、回転子21,22の回転角度0度において、外周から内周に向けて電流i1b,i3bを流す超伝導ワイヤー14bと超伝導ワイヤー16bとは、周方向に隣り合い、いずれも右回り(図8中紙面奥に向かって左回り)の磁束Hmを形成することから、超伝導ワイヤー14bと超伝導ワイヤー16bとの中間で、電流i1bが形成する磁束Hmの下向き成分と、電流i3bが形成する磁束Hpの上向き成分とが打ち消し合い、永久磁石21a,21bとの結合損失を低減する。このように、超伝導ワイヤー14,15,16,17が形成する磁束Hp,Hmが互いを打ち消し合うのは、極性の切り換わり時以外、隣り合う超伝導ワイヤー14,15,16,17に同じ向きの電流を流すことによる効果である。こうして、本発明の超伝導モーターは、半径方向に延びる超伝導ワイヤーの本数を増やす程、結合損失を低減できる。   Similarly, the superconducting wire 14b and the superconducting wire 16b that pass the currents i1b and i3b from the outer circumference toward the inner circumference at the rotation angle of 0 degrees of the rotors 21 and 22 are adjacent to each other in the circumferential direction, both of which are clockwise. Since the magnetic flux Hm (counterclockwise toward the back of the page in FIG. 8) is formed, the downward component of the magnetic flux Hm formed by the current i1b and the current i3b are intermediate between the superconducting wire 14b and the superconducting wire 16b. The upward component of the magnetic flux Hp to be formed cancels out, and the coupling loss with the permanent magnets 21a and 21b is reduced. As described above, the magnetic fluxes Hp and Hm formed by the superconducting wires 14, 15, 16, and 17 cancel each other out in the same manner as the adjacent superconducting wires 14, 15, 16, and 17 except when the polarity is switched. This is the effect of flowing a current in the direction. Thus, the superconducting motor of the present invention can reduce the coupling loss as the number of superconducting wires extending in the radial direction is increased.

1 固定子
11 冷却板(窒化アルミ板)
12 超伝導ワイヤー
13 単位冷却板
14 単位冷却板1層目の超伝導ワイヤー
15 単位冷却板2層目の超伝導ワイヤー
16 単位冷却板3層目の超伝導ワイヤー
17 単位冷却板4層目の超伝導ワイヤー
2 回転軸
21 上段の回転子
22 下段の回転子
3 真空容器
31 熱伝導ピン
32 クライオクーラー
33 超伝導リード線
34 外部電力線
35 排気パイプ
36 支持ピン
37 磁性流体軸受け
A 直径を挟んだ半活領域(各図中左側がA)
B 直径を挟んだ半活領域(各図中右側がB)
Bd 下向きの磁束
Bu 上向きの磁束
L ローレンツ力
Hp 右ネジの法則に従って形成される図中右回りの磁束
Hm 右ネジの法則に従って形成される図中左回りの磁束
i 超伝導ワイヤーに流れる電流
i1 単位冷却板1層目の超伝導ワイヤーに流れる電流
i2 単位冷却板2層目の超伝導ワイヤーに流れる電流
i3 単位冷却板3層目の超伝導ワイヤーに流れる電流
i4 単位冷却板4層目の超伝導ワイヤーに流れる電流
1 Stator
11 Cooling plate (aluminum nitride plate)
12 Superconducting wire
13 Unit cooling plate
14 Unit cooling plate 1st layer superconducting wire
15 Unit cooling plate 2nd layer superconducting wire
16 Unit cooling plate 3rd layer superconducting wire
17 Unit cooling plate 4th layer superconducting wire 2 Rotating axis
21 Upper rotor
22 Lower rotor 3 Vacuum container
31 Heat conduction pin
32 Cryocooler
33 Superconducting lead
34 External power line
35 Exhaust pipe
36 Support pin
37 Magnetic fluid bearing A A semi-active region across the diameter (A on the left side of each figure)
B Semi-active region across the diameter (B on the right in each figure)
Bd Downward magnetic flux Bu Upward magnetic flux L Lorentz force Hp Right-handed magnetic flux formed according to right-handed screw rule Hm Left-handed magnetic flux formed according to right-handed screw rule i Current flowing in superconducting wire i1 unit Current flowing in the superconducting wire on the first layer of the cooling plate i2 Current flowing in the superconducting wire on the second layer of the unit cooling plate i3 Current flowing in the superconducting wire on the third layer of the unit cooling plate i4 Unit Superconducting on the fourth layer of the cooling plate Current flowing in the wire

Claims (5)

回転軸を回転自在に貫通させた固定子の前記回転軸に直交する平面内の超伝導ワイヤーと、前記回転軸と共に回転する回転子の前記回転軸に直交する平面内の永久磁石とを対向させるアキシャルギャップ型の超伝導モーターにおいて、
固定子は、回転軸を中心とする半径方向に延びる超伝導ワイヤーを点対称な位置関係に2本一組で有し、
回転子は、回転軸を中心とする直径を挟んで二分された半割領域それぞれに、回転軸方向の極性が互いに逆である一対の永久磁石を割り当てて構成され、
点対称な位置関係にある超伝導ワイヤーの一方に内周から外周に向けて交流を通電し、前記超伝導ワイヤーの他方に外周から内周に向けて同位相の交流を通電することを特徴とする超伝導モーター。
A superconducting wire in a plane orthogonal to the rotation axis of the stator having a rotation shaft rotatably passing therethrough is opposed to a permanent magnet in a plane orthogonal to the rotation axis of the rotor rotating together with the rotation axis. In the axial gap type superconducting motor,
The stator has a pair of superconducting wires extending in the radial direction around the rotation axis in a point-symmetrical positional relationship.
The rotor is configured by allocating a pair of permanent magnets whose polarities in the rotation axis direction are opposite to each other in each of the halved regions that are bisected across the diameter around the rotation axis,
One of the superconducting wires in a point-symmetrical positional relationship is energized with an alternating current from the inner periphery toward the outer periphery, and the other phase of the superconducting wire is energized with an in-phase alternating current from the outer periphery toward the inner periphery. Superconducting motor.
固定子は、周方向等間隔にある2n条(nは2以上の自然数)の超伝導ワイヤーを有し、
回転軸を中心とする直径を挟んで二分された半割領域の一方に割り当てられたn条の超伝導ワイヤーに、回転子の回転上流から回転下流に向けて基準位相からπ/nずつ遅れ位相をつけた交流を内周から外周に向けて通電し、
前記二分された半割領域の他方に割り当てられたn条の超伝導ワイヤーに、回転子の回転上流から回転下流に向けて基準位相からπ/nずつ遅れ位相をつけた交流を外周から内周に向けて通電する請求項1記載の超伝導モーター。
The stator has 2n strips (n is a natural number of 2 or more) that are equidistant in the circumferential direction,
The n-layer superconducting wire assigned to one of the halved regions with the diameter centered on the rotation axis is delayed by π / n from the reference phase from the upstream to the downstream of the rotor. Energized from the inner circumference to the outer circumference,
An alternating current with a phase delayed by π / n from the reference phase from the upstream to the downstream of the rotor is applied to the n superconducting wires assigned to the other of the halved regions. The superconducting motor according to claim 1, which is energized toward.
固定子は、半径方向に延びる部分以外の超伝導ワイヤーを周方向に沿って円弧状に延ばしている請求項1又は2いずれか記載の超伝導モーター。   The superconducting motor according to claim 1, wherein the stator extends a superconducting wire other than a portion extending in the radial direction in an arc shape along the circumferential direction. 固定子は、一対の回転子に挟まれ、
前記回転子は、回転軸を中心とする直径を挟んで二分された半割領域それぞれに、回転軸方向の極性の向きが逆である永久磁石を、回転軸方向の極性を揃え、かつ半割領域を周方向に一致させてそれぞれ割り当てた請求項1〜3いずれか記載の超伝導モーター。
The stator is sandwiched between a pair of rotors,
In the rotor, permanent magnets having opposite polarities in the direction of the rotation axis are aligned in the halves of the halves and divided in half with respect to the diameter around the rotation axis. The superconducting motor according to any one of claims 1 to 3, wherein the regions are respectively assigned in the circumferential direction.
固定子は、非磁性、電気絶縁性及び熱伝導性を備えた材料により形成される冷却板に超伝導ワイヤーを密着させて構成され、回転子と共に単一の真空容器に内蔵され、断熱性を備えた支持体により前記冷却板が真空容器に固定され、真空容器の外から内へ貫通させた熱伝導体により前記冷却板と冷凍機とが接続され、同じく真空容器の外から内へ貫通させた電気伝導体により外部電力線と超伝導ワイヤーとが接続された請求項1〜4いずれか記載の超伝導モーター。 The stator is constructed by adhering a superconducting wire to a cooling plate made of a material having non-magnetic properties, electrical insulation and thermal conductivity, and is built in a single vacuum vessel together with the rotor to provide heat insulation. The cooling plate is fixed to the vacuum vessel by the support provided, and the cooling plate and the refrigerator are connected by a heat conductor that penetrates from the outside of the vacuum vessel to the inside of the vacuum vessel. The superconducting motor according to any one of claims 1 to 4, wherein an external power line and a superconducting wire are connected by an electric conductor.
JP2011168061A 2011-08-01 2011-08-01 Superconducting motor Active JP5700445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011168061A JP5700445B2 (en) 2011-08-01 2011-08-01 Superconducting motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011168061A JP5700445B2 (en) 2011-08-01 2011-08-01 Superconducting motor

Publications (2)

Publication Number Publication Date
JP2013034277A true JP2013034277A (en) 2013-02-14
JP5700445B2 JP5700445B2 (en) 2015-04-15

Family

ID=47789695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011168061A Active JP5700445B2 (en) 2011-08-01 2011-08-01 Superconducting motor

Country Status (1)

Country Link
JP (1) JP5700445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226138A (en) * 2015-05-29 2016-12-28 学校法人加計学園 Superconducting motor and superconducting generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1947269A (en) * 1932-12-29 1934-02-13 Gen Electric Magneto-electric machine
US3320454A (en) * 1966-02-10 1967-05-16 Garrett Corp Alternating current generator
JP2004023921A (en) * 2002-06-18 2004-01-22 Central Japan Railway Co Motive power or electric power generator
JP2008202455A (en) * 2007-02-19 2008-09-04 Daikin Ind Ltd Compressor
JP2009153358A (en) * 2007-12-21 2009-07-09 Koji Tanagawa Flat motor
JP2010093886A (en) * 2008-10-06 2010-04-22 Niigata Univ Superconducting rotating machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1947269A (en) * 1932-12-29 1934-02-13 Gen Electric Magneto-electric machine
US3320454A (en) * 1966-02-10 1967-05-16 Garrett Corp Alternating current generator
JP2004023921A (en) * 2002-06-18 2004-01-22 Central Japan Railway Co Motive power or electric power generator
JP2008202455A (en) * 2007-02-19 2008-09-04 Daikin Ind Ltd Compressor
JP2009153358A (en) * 2007-12-21 2009-07-09 Koji Tanagawa Flat motor
JP2010093886A (en) * 2008-10-06 2010-04-22 Niigata Univ Superconducting rotating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226138A (en) * 2015-05-29 2016-12-28 学校法人加計学園 Superconducting motor and superconducting generator

Also Published As

Publication number Publication date
JP5700445B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP4890119B2 (en) Superconducting coil device and inductor type synchronous machine
US7315103B2 (en) Superconducting rotating machines with stationary field coils
KR101104499B1 (en) Inductor-type synchronous machine
JP2009072009A (en) Permanent magnet rotating machine
JP6296116B2 (en) Rotating electric machine
JP2017518730A (en) Electromagnetic device
JP5602482B2 (en) Magnetic refrigeration equipment
US7049724B2 (en) Superconducting rotating machines with stationary field coils and axial airgap flux
JP2012165620A (en) Rotating machine
JP2007089345A (en) Cooling structure of superconducting motor
JP4920322B2 (en) Inductor type synchronous machine
JP5700445B2 (en) Superconducting motor
JP5471806B2 (en) Superconducting motor
JP4680708B2 (en) Axial type motor
JP6462490B2 (en) Superconducting motor and superconducting generator
JP5151183B2 (en) Axial gap type rotating electric machine and compressor
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP5669059B2 (en) Superconducting motor or superconducting generator
JP2015039297A (en) Rotary machine
JP2008220128A (en) Axial gap type rotary electric machine and compressor
JP2013099007A (en) Power generator
JP6455259B2 (en) Superconducting rotating electrical machine
Salon et al. Design and construction of a low-vibration low-leakage field motor
JP2012143043A (en) Superconducting motor
JP2011211881A (en) Reluctance motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140618

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140618

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R150 Certificate of patent or registration of utility model

Ref document number: 5700445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250