JP2007089345A - Cooling structure of superconducting motor - Google Patents

Cooling structure of superconducting motor Download PDF

Info

Publication number
JP2007089345A
JP2007089345A JP2005276843A JP2005276843A JP2007089345A JP 2007089345 A JP2007089345 A JP 2007089345A JP 2005276843 A JP2005276843 A JP 2005276843A JP 2005276843 A JP2005276843 A JP 2005276843A JP 2007089345 A JP2007089345 A JP 2007089345A
Authority
JP
Japan
Prior art keywords
coil
superconducting
motor
superconducting motor
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005276843A
Other languages
Japanese (ja)
Inventor
Toru Okazaki
徹 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005276843A priority Critical patent/JP2007089345A/en
Publication of JP2007089345A publication Critical patent/JP2007089345A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small/lightweight cooling structure of a superconducting motor which can be manufactured easily and maintained easily. <P>SOLUTION: The cooling structure of a superconducting motor comprising a rotor rotating about a shaft and a stator in which a superconducting coil generating a magnetic field for rotating the rotor is arranged comprises a mechanism 2 for conduction cooling the superconducting coil 3 wherein the superconducting coil 3 arranged in the stator is at least one of a field coil and an armature coil. The conduction cooling mechanism 3 has a refrigerating machine 20, and a conduction cooling terminal 21 connected with the refrigerating machine 20 and the superconducting coil 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超電導モータの冷却構造に関する。特に、本発明は、冷却構造に伝導冷却を適用した超電導モータの冷却構造に関する。   The present invention relates to a cooling structure for a superconducting motor. In particular, the present invention relates to a cooling structure for a superconducting motor in which conduction cooling is applied to the cooling structure.

最近、モータの構成部材である界磁コイルや電機子コイルに超電導コイルを用いることが提案されている。モータに超電導コイルを適用すると、電気抵抗によるエネルギー損などの常電導材料の有する欠点を補うことができる。また、超電導コイルを構成する導線は、単位断面積あたりの送電量が常電導材料でできた導線に比較して格段に大きいため、モータの高出力化を実現することができる。   Recently, it has been proposed to use a superconducting coil for a field coil or an armature coil which is a constituent member of a motor. When the superconducting coil is applied to the motor, it is possible to compensate for the drawbacks of the normal conducting material such as energy loss due to electric resistance. Moreover, since the conducting wire which comprises a superconducting coil has remarkably large electric power transmission per unit cross-sectional area compared with the conducting wire made from the normal conducting material, the high output of a motor is realizable.

上述のように超電導コイルを適用した従来の超電導モータとして、例えば、特許文献1に記載のものが挙げられる。従来の超電導モータは、固定子(ステータ)に配置するコイルに超電導材料を使用しており、この固定子内に極低温の冷媒(例えば、液体窒素や液体水素など)を流通させて超電導コイルを冷却する冷却構造を有している。また、最近では、回転子(ロータ)にも超電導コイルを配置し、回転子内に冷媒を流通させ、超電導コイルを冷却する冷却構造が提案されている。冷媒を流通させる冷却構造では、この冷媒を保持する冷媒保持区画と、この冷媒保持区画の外周を覆って真空を保持し、冷媒の温度上昇を抑制する真空保持区画の二重の区画がなければならない。   As a conventional superconducting motor to which a superconducting coil is applied as described above, for example, the one described in Patent Document 1 can be cited. A conventional superconducting motor uses a superconducting material for a coil disposed on a stator (stator), and a cryogenic refrigerant (for example, liquid nitrogen, liquid hydrogen, etc.) is circulated in the stator so that the superconducting coil is used. A cooling structure for cooling is provided. Recently, a cooling structure has been proposed in which a superconducting coil is disposed also in a rotor (rotor), a refrigerant is circulated in the rotor, and the superconducting coil is cooled. In the cooling structure that circulates the refrigerant, there is no refrigerant holding section that holds the refrigerant and a double section of a vacuum holding section that covers the outer periphery of the refrigerant holding section and holds a vacuum and suppresses the temperature rise of the refrigerant. Don't be.

ここで、冷媒保持区画の密閉が破られた場合、冷媒保持区画から冷媒が漏れて、比較的短時間で超電導状態を維持できなくなる可能性がある。一方、真空保持区画の密閉が破られた場合、両区画間の断熱性能が急激に低下して、冷媒保持区画の密閉が破られた場合と同様に超電導状態を維持できなくなる可能性がある。従って、これら冷媒保持区画と真空保持区画は、高い気密性を有するような密閉構造で構成される。   Here, when the sealing of the refrigerant holding section is broken, the refrigerant leaks from the refrigerant holding section, and there is a possibility that the superconducting state cannot be maintained in a relatively short time. On the other hand, when the sealing of the vacuum holding section is broken, the heat insulation performance between the two sections is rapidly lowered, and there is a possibility that the superconducting state cannot be maintained as in the case where the sealing of the refrigerant holding section is broken. Therefore, these refrigerant | coolant holding | maintenance division and vacuum holding | maintenance division are comprised by the sealed structure which has high airtightness.

特開2005−57935号公報JP-A-2005-57935

しかし、上記のような超電導モータの冷却構造では、超電導コイルに電力を供給する電力線などの超電導モータと外部との接続線の引き出し口を冷媒保持区画と真空保持区画の両方に設けなければならないため、超電導モータの冷却構造が複雑になり、製造に手間がかかる。しかも、このような冷却構造は、超電導モータ内に冷媒保持区画を設けることに加えて、超電導モータの外部に冷媒を貯留するためのタンクや冷媒を流通させるためのポンプを設けなければならず、これら冷却構造を含めた超電導モータの小型・軽量化が難しい。そして、冷凍機やタンク、ポンプの分だけメンテナンスの機会も多くなり、また、モータの補修の際には、モータの冷媒保持区画から冷媒を抜き取らなければならず、非常に手間がかかる。さらに、モータを運転した際の振動により、前述した接続線の引き出し口において密閉が破れ易く、また、モータの回転に伴う振動により冷媒が振動して冷媒の流通が阻害されるなど、超電導モータを安定して運転することができない場合がある。   However, in the cooling structure of the superconducting motor as described above, the outlet of the connecting wire between the superconducting motor such as a power line for supplying power to the superconducting coil and the outside must be provided in both the refrigerant holding section and the vacuum holding section. In addition, the cooling structure of the superconducting motor becomes complicated and takes time to manufacture. Moreover, in addition to providing the refrigerant holding section in the superconducting motor, such a cooling structure must be provided with a tank for storing the refrigerant outside the superconducting motor and a pump for circulating the refrigerant, It is difficult to reduce the size and weight of superconducting motors including these cooling structures. Further, the maintenance opportunity increases by the amount of the refrigerator, tank, and pump, and when the motor is repaired, the refrigerant must be extracted from the refrigerant holding section of the motor, which is very laborious. Further, the superconducting motor is not easily broken due to vibration when the motor is operated, such as the sealing at the outlet of the connecting wire described above is easily broken, and the refrigerant is vibrated by the vibration accompanying the rotation of the motor and the circulation of the refrigerant is hindered. It may not be possible to drive stably.

そこで、本発明の主目的は、流体の冷媒を用いることなく超電導コイルの冷却を行なうことが可能な超電導モータの冷却構造を提供することにある。   Accordingly, a main object of the present invention is to provide a cooling structure for a superconducting motor capable of cooling a superconducting coil without using a fluid refrigerant.

また、本発明の他の目的は、小型・軽量で簡単に製造することができて、メンテナンスの容易な超電導モータの冷却構造を提供することにある。   Another object of the present invention is to provide a cooling structure for a superconducting motor that can be easily manufactured in a small size and light weight and is easy to maintain.

さらに、本発明の別の目的は、モータ自身の振動や外部からの衝撃に強く、安定して超電導モータを運転させることができる超電導モータの冷却構造を提供することにある。   Furthermore, another object of the present invention is to provide a superconducting motor cooling structure that is resistant to vibrations of the motor itself and external shocks and can stably operate the superconducting motor.

本発明は、超電導モータの超電導コイルを流体冷媒を用いることなく伝導冷却し、この超電導コイルを固定子にのみ配置することで上記の目的を達成する。   The present invention achieves the above object by conducting and cooling a superconducting coil of a superconducting motor without using a fluid refrigerant and disposing the superconducting coil only on a stator.

本発明は、軸を中心に回転する回転子と、回転子を回転させるための磁場を発生させる超電導コイルを配置した固定子とを有する超電導モータの冷却構造である。この超電導モータの冷却構造は、超電導コイルを伝導冷却により冷却する伝導冷却機構を備えており、超電導モータの固定子に配置される超電導コイルは、界磁コイルまたは電機子コイルの少なくとも一方であることを特徴とする。   The present invention is a superconducting motor cooling structure having a rotor that rotates about an axis and a stator in which a superconducting coil that generates a magnetic field for rotating the rotor is disposed. The superconducting motor cooling structure includes a conduction cooling mechanism that cools the superconducting coil by conduction cooling, and the superconducting coil disposed in the stator of the superconducting motor is at least one of a field coil or an armature coil. It is characterized by.

以下、本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明超電導モータの冷却構造に使用される超電導モータは、固定子にのみ超電導コイルを使用した超電導モータであれば何でも良く、特に限定されない。このような超電導モータとしては、例えば、固定子に超電導界磁コイルを配置して、回転子には常電導電機子コイルを配置したものでも良いし、後述する実施例において示すように超電導界磁コイルと超電導電機子コイルの両方を固定子に配置して、回転子に誘導子を設けたものでも良い。どのような構造のモータを選択するにしても、超電導材料を用いて構成された超電導コイルを伝導冷却により冷却する。   The superconducting motor used in the cooling structure of the superconducting motor of the present invention is not particularly limited as long as it is a superconducting motor using a superconducting coil only for the stator. As such a superconducting motor, for example, a superconducting field coil may be arranged on the stator and a normal conducting armature coil may be arranged on the rotor, or a superconducting field magnet may be used as will be described later. Both the coil and the superconducting armature coil may be arranged on the stator and the rotor may be provided with an inductor. Whatever structure the motor is selected, a superconducting coil constructed using a superconducting material is cooled by conduction cooling.

伝導冷却を実施するための伝導冷却機構は、冷凍機と、この冷凍機のコールドヘッド(冷凍機の構成のうち、実際に対象を冷却する部分)に接続される伝導冷却端子とを備える。そして、伝導冷却端子は、超電導モータの固定子に配置される超電導コイルにも接続される。このとき、超電導コイル、冷凍機のコールドヘッドおよび伝導冷却端子を一括して真空中に配置することで、超電導モータの構造を簡単にすることができると共に、効率的に真空を保持することが可能になる。   A conduction cooling mechanism for carrying out conduction cooling includes a refrigerator and a conduction cooling terminal connected to a cold head of the refrigerator (a part of the structure of the refrigerator that actually cools the target). The conduction cooling terminal is also connected to a superconducting coil disposed on the stator of the superconducting motor. At this time, by superposing the superconducting coil, the cold head of the refrigerator and the conduction cooling terminal in a vacuum, the structure of the superconducting motor can be simplified and the vacuum can be efficiently maintained. become.

上述の伝導冷却機構のうち、冷凍機は既存のものを使用することができる。冷凍機としては、例えば、GM式冷凍機やスターリング式冷凍機、パルスチューブ式冷凍機などが好適に利用できる。   Among the conductive cooling mechanisms described above, an existing refrigerator can be used. As the refrigerator, for example, a GM refrigerator, a Stirling refrigerator, a pulse tube refrigerator, or the like can be suitably used.

一方、冷凍機に接続される伝導冷却端子は、例えば、アルミ、銅などの熱伝導率の高い材料で構成される。また、伝導冷却端子の形状は、超電導モータ(超電導コイル)と冷凍機との位置関係や配置空間の裕度を考慮に入れて適宜選択すれば良い。もちろん、伝導冷却端子のうち、冷凍機のコールドヘッドに接続する箇所と超電導コイルに接触する箇所を別部材として、形状を異ならせたり、材料を異ならせたりしてもかまわない。   On the other hand, the conduction cooling terminal connected to the refrigerator is made of a material having high thermal conductivity such as aluminum and copper. The shape of the conduction cooling terminal may be appropriately selected in consideration of the positional relationship between the superconducting motor (superconducting coil) and the refrigerator and the margin of the arrangement space. Of course, the conductive cooling terminal may have a different shape or a different material, with the portion connected to the cold head of the refrigerator and the portion contacting the superconducting coil as separate members.

伝導冷却端子のうち、超電導コイルに接触する箇所の形状は、超電導コイルとの接触面積を大きくすることができる形状が好ましい。例えば、板状や線状、ブロック状に形成することが挙げられる。伝導冷却端子を板状やブロック状にすると、後述するように伝導冷却端子の配置が容易になる。ここで、伝導冷却端子を板状やブロック状に形成すると、固定子に配置されるコイルが電機子コイルであった場合、電機子コイルの発生させる磁場が交流磁場であるため、伝導冷却端子の表面に渦電流が発生し、発熱する。従って、電機子コイルの伝導冷却に使用する伝導冷却端子は、渦電流の電流路を分断する形状、例えば、線状に形成することが好ましい。なお、板状やブロック状に形成した場合でも、例えば、非導電性の材料と導電性の材料を縞状になるように構成するなどして、渦電流の発生を抑制すれば良い。   Of the conduction cooling terminal, the shape of the portion that contacts the superconducting coil is preferably a shape that can increase the contact area with the superconducting coil. For example, it can be formed in a plate shape, a line shape, or a block shape. When the conductive cooling terminal is formed in a plate shape or a block shape, the conductive cooling terminal is easily arranged as will be described later. Here, when the conductive cooling terminal is formed in a plate shape or a block shape, when the coil disposed on the stator is an armature coil, the magnetic field generated by the armature coil is an alternating magnetic field. An eddy current is generated on the surface and heat is generated. Accordingly, the conduction cooling terminal used for conduction cooling of the armature coil is preferably formed in a shape that divides the current path of the eddy current, for example, in a linear shape. Note that, even when formed in a plate shape or a block shape, for example, a non-conductive material and a conductive material may be configured to be striped to suppress the generation of eddy currents.

上述した伝導冷却端子を超電導コイルに接続する方法は、特に限定されない。例えば、超電導コイルの外周を覆うように板状の伝導冷却端子を巻きつけても良いし、コイルの外形に沿った形状のブロック状の伝導冷却端子をコイルの外形に沿って接触させてもかまわない。また、導線を複数層巻回したコイルの層間に板状・線状・ブロック状の伝導冷却端子を挿入するようにすると、コイルと伝導冷却端子との接触面積を大きくすることができて好ましい。コイルの層間に伝導冷却端子を挿入する場合、伝導冷却端子に板状のものを使用するのであれば、コイルのある層の表面を覆うように板状の伝導冷却端子を巻きつけて、この板状の伝導冷却端子の上にコイルの次の層が形成されるようにする。また、伝導冷却端子に線状のものを使用するのであれば、例えば、コイルを形成する導線のピッチと異なるピッチで巻いたり、コイルの巻きつけ軸に平行に線状の伝導冷却端子を配置する。   The method for connecting the above-described conduction cooling terminal to the superconducting coil is not particularly limited. For example, a plate-shaped conduction cooling terminal may be wound so as to cover the outer periphery of the superconducting coil, or a block-shaped conduction cooling terminal having a shape along the outer shape of the coil may be contacted along the outer shape of the coil. Absent. In addition, it is preferable to insert a plate-like, wire-like, or block-like conductive cooling terminal between the layers of the coil around which the conductive wire is wound, so that the contact area between the coil and the conductive cooling terminal can be increased. When inserting a conductive cooling terminal between the coil layers, if using a plate-like conductive cooling terminal, wrap the plate-shaped conductive cooling terminal so as to cover the surface of the layer with the coil. The next layer of the coil is formed on the conductive conduction cooling terminal. Moreover, if a linear thing is used for a conduction cooling terminal, for example, it winds with the pitch different from the pitch of the conducting wire which forms a coil, or arrange | positions a linear conduction cooling terminal in parallel with the coil winding axis | shaft. .

以上のように、超電導コイルに伝導冷却を適用することにより、従来の超電導モータのように、超電導モータの内部に冷媒を流通させる必要がなくなるので、冷媒を流通させる気密性の高い区画を設ける必要がない。従って、本発明超電導モータの冷却構造では、気密性の高い区画としては、断熱のための真空を維持する区画(真空保持区画)が1つあれば良い。   As described above, by applying conduction cooling to the superconducting coil, it is not necessary to circulate the refrigerant inside the superconducting motor as in the conventional superconducting motor, so it is necessary to provide a highly airtight section for circulating the refrigerant. There is no. Therefore, in the cooling structure of the superconducting motor of the present invention, it is sufficient if there is only one section (vacuum holding section) for maintaining a vacuum for heat insulation as the section having high airtightness.

そして、真空保持区画は、この真空保持区画の内部を真空引きしたときに損傷したりしないような強度を有する材料および形状のものであれば良い。真空保持区画の材料としては、例えば、ステンレスなどの合金が挙げられる。   The vacuum holding section only needs to be of a material and shape having such strength that it will not be damaged when the inside of the vacuum holding section is evacuated. Examples of the material for the vacuum holding compartment include alloys such as stainless steel.

また、真空保持区画は、超電導コイルを所望の温度に維持するような断熱性能を発揮できるのであれば、どの位置に設けるかについて限定されない。真空保持区画は、少なくとも超電導コイルの外周を覆うように設ければ良く、例えば、超電導モータの内部に存在する全ての超電導コイルを真空保持区画で覆うことが挙げられる。真空保持区画を設けるときに、どのような構成を選択するにしても、超電導コイルと伝導冷却端子と冷凍機のコールドヘッドが真空中に配置されるようにすることが好ましい。ところで、超電導モータの内部に存在する全ての超電導コイルが真空中に配置されるようにした場合、各超電導コイルに接続される伝導冷却端子を1つに集合させて冷凍機のコールドヘッドに接続することができる。即ち、1つの冷凍機により超電導モータ内の全ての超電導コイルを冷却することができる。また、合金製の真空保持区画を超電導コイルから遠ざけることができるので、渦電流損を軽減することができる。   In addition, the vacuum holding section is not limited as to where it is provided as long as it can exhibit heat insulation performance that maintains the superconducting coil at a desired temperature. The vacuum holding section may be provided so as to cover at least the outer periphery of the superconducting coil. For example, all the superconducting coils existing inside the superconducting motor may be covered with the vacuum holding section. Whatever configuration is selected when providing the vacuum holding section, it is preferable that the superconducting coil, the conductive cooling terminal, and the cold head of the refrigerator be arranged in a vacuum. By the way, when all the superconducting coils existing inside the superconducting motor are arranged in a vacuum, the conductive cooling terminals connected to each superconducting coil are gathered together and connected to the cold head of the refrigerator. be able to. That is, all the superconducting coils in the superconducting motor can be cooled by one refrigerator. Moreover, since the alloy vacuum holding section can be moved away from the superconducting coil, eddy current loss can be reduced.

その他、真空保持区画の内部に輻射線を反射するための断熱部材(スーパーインシュレーション)を配置することが好ましい。ここで、気密性の高い区画を二重に設ける必要がないことはすでに述べたが、真空保持区画の内部形状に沿って上述した断熱材を保持する断熱材保持区画を設けてもかまわない。この断熱材保持区画は、断熱材を保持するために設けられるものであるので、気密である必要はなく、従って、従来の冷媒保持区画に相当するものではない。   In addition, it is preferable to arrange a heat insulating member (super insulation) for reflecting radiation rays inside the vacuum holding section. Here, although it has already been described that it is not necessary to provide double airtight compartments, a heat insulating material holding compartment for holding the above-described heat insulating material may be provided along the internal shape of the vacuum holding compartment. Since this heat insulating material holding section is provided to hold the heat insulating material, it does not need to be airtight and therefore does not correspond to a conventional refrigerant holding section.

本発明の構成となすことにより、超電導コイルを冷却するための冷媒を使用する必要がなく、真空を保持するための高い気密性を有する区画を1つ設けるだけで良い。従って、以下に示す効果を有する。
[1] 断熱構造を含めた超電導モータの構造が簡単になるので、超電導モータの製造が容易になる。
[2] 冷媒を貯留するタンクや冷媒を流通させるためのポンプを設けなくても良く、冷却構造を含めた超電導モータの小型化・軽量化を図ることができる。
[3] 従来の冷却構造に比べて構成が少ないので、メンテナンスの機会を減らすことができ、また、メンテナンスが容易になる。
[4] 気密性を保持する箇所が少なくなるので、密閉が破れる可能性を減らすことができる。
[5] 超電導モータを運転した際の振動により、冷媒が振動することがなく、冷媒の流通量が減るなどの問題が生じない。
By employing the configuration of the present invention, it is not necessary to use a refrigerant for cooling the superconducting coil, and it is only necessary to provide one highly airtight section for maintaining a vacuum. Accordingly, the following effects are obtained.
[1] Since the structure of the superconducting motor including the heat insulating structure becomes simple, the superconducting motor can be easily manufactured.
[2] A tank for storing the refrigerant and a pump for circulating the refrigerant need not be provided, and the superconducting motor including the cooling structure can be reduced in size and weight.
[3] Since the structure is less than that of the conventional cooling structure, maintenance opportunities can be reduced and maintenance is facilitated.
[4] Since there are fewer places to maintain airtightness, the possibility of breaking the seal can be reduced.
[5] Due to vibration when the superconducting motor is operated, the refrigerant does not vibrate, and problems such as a decrease in the circulation amount of the refrigerant do not occur.

<実施例>
以下、界磁コイルおよび電機子コイルの両方を超電導コイルとして固定子に配置し、回転子に誘導子を配置した超電導モータの冷却構造を例に挙げて本発明の実施例を説明する。まず初めに、超電導モータの冷却構造の概略と、この冷却構造に使用する伝導冷却機構と超電導モータとの接続関係を中心に説明し、次に、伝導冷却機構を接続した超電導コイルを使用した超電導モータに関して説明する。
<Example>
Hereinafter, an embodiment of the present invention will be described by taking as an example a cooling structure of a superconducting motor in which both a field coil and an armature coil are disposed as superconducting coils in a stator and an inductor is disposed in a rotor. First, an outline of the cooling structure of the superconducting motor and the connection relationship between the conduction cooling mechanism used in this cooling structure and the superconducting motor will be described. Next, superconductivity using a superconducting coil connected to the conduction cooling mechanism The motor will be described.

図1は、本実施例の超電導モータの冷却構造を示す概略説明図である。本例の超電導モータの冷却構造は、超電導モータ1と伝導冷却機構2(冷凍機20と伝導冷却端子21)とを備えている。この伝導冷却機構2のうち、伝導冷却端子21の一端を冷凍機20のコールドヘッド20cに、他端を超電導コイル3に接続した。超電導コイル3には、後述するように界磁コイルと電機子コイルとがあり、それぞれ、超電導モータ1の内部に固定・配置されている。また、超電導コイル3、電導冷却端子21および冷凍機20のコールドヘッド20cを内部に含むように真空保持区画4を形成し、この区画4の内部を真空引きした。   FIG. 1 is a schematic explanatory view showing the cooling structure of the superconducting motor of this embodiment. The cooling structure of the superconducting motor of this example includes a superconducting motor 1 and a conduction cooling mechanism 2 (a refrigerator 20 and a conduction cooling terminal 21). In this conduction cooling mechanism 2, one end of the conduction cooling terminal 21 was connected to the cold head 20c of the refrigerator 20, and the other end was connected to the superconducting coil 3. As will be described later, the superconducting coil 3 includes a field coil and an armature coil, which are respectively fixed and arranged inside the superconducting motor 1. Further, the vacuum holding section 4 was formed so as to include the superconducting coil 3, the conductive cooling terminal 21, and the cold head 20c of the refrigerator 20, and the inside of the section 4 was evacuated.

本例では、伝導冷却端子21として、素線絶縁された平編組線を複数集合したものを使用した。この集合した平編組線の一端側を冷凍機のコールドヘッドに接続し、他端側を分枝して、各超電導コイルに接続した。平編組線は、可撓性があり、配線の自由度が高い。また、この平編組線は、渦電流の発生を抑制する効果もあるので、交流磁場の発生箇所(具体的には、電機子コイル)の近傍にあっても、超電導モータの性能を低下させ難い。従って、伝導冷却端子21に平編組線を使用することにより、図1に示す真空保持区画4の内部において、超電導モータ1の運転の障害とならないように、伝導冷却端子21を超電導コイル3に接続することができる。   In this example, the conductive cooling terminal 21 is a set of a plurality of flat braided wires insulated from each other. One end side of the assembled flat braided wire was connected to the cold head of the refrigerator, and the other end side was branched and connected to each superconducting coil. The flat braided wire is flexible and has a high degree of freedom in wiring. Further, since this flat braided wire also has the effect of suppressing the generation of eddy currents, it is difficult to degrade the performance of the superconducting motor even in the vicinity of the location where the AC magnetic field is generated (specifically, the armature coil). . Therefore, by using a flat braided wire for the conduction cooling terminal 21, the conduction cooling terminal 21 is connected to the superconducting coil 3 so as not to obstruct the operation of the superconducting motor 1 inside the vacuum holding section 4 shown in FIG. can do.

平編組線とした伝導冷却端子21と超電導コイル3との接続は、この平編組線を超電導コイル3の導線間、即ち、複数層になるように巻回した導線の隣接する層間に挿入することにより行なった。以下に、具体例として、電機子コイルの構造および形成工程のみを説明するが、界磁コイルにおいても、伝導冷却端子として平編組線を使用すること、この平編組線をコイルの層間に挿入する事に関しては、電機子コイルと同様である。   The connection between the conduction cooling terminal 21 in the form of a flat braided wire and the superconducting coil 3 is made by inserting this flat braided wire between the conductors of the superconducting coil 3, that is, between adjacent layers of the conductors wound in multiple layers. Performed. In the following, only the structure and forming process of the armature coil will be described as a specific example, but also in the field coil, the use of a flat braided wire as a conduction cooling terminal, and this flat braided wire is inserted between the layers of the coil. The thing is the same as the armature coil.

図2は、超電導コイル3(後述する電機子コイル)に伝導冷却端子(平編組線210)を配置する過程を示す図である。まず始めに、コイル巻胴に導線100を巻回し、コイルの第1層c1を形成した。次に、冷凍機のコールドヘッドから伸びる平編組線の集合体を分枝して、第1層c1の上に、この分枝した平編組線210をコイル巻胴の軸方向に対してほぼ平行に複数配置した。平編組線210は、周方向に間隔を空けて均等に配置し、コイルの第1層c1全体を覆うように配置した。図2においては、各平編組線210は一定長で現されるが、実際には、図示される平編組線210の端部から連続して伸びており、最終的には、冷凍機のコールドヘッドに接続されている。上記のように平編組線210を配置した後、この平編組線210の上に導線100を巻回し、コイルの第2層c2を形成した。第3層以降も、上記のようにコイルの層間に平編組線210(伝導冷却端子)が挿入されるように形成した。もちろん、全層間に平編組線210を挿入しなくても、十分な冷却効果が得られるので、平編組線210を挿入していない層も存在しても良い。なお、図2においては図示していないが、実際には、筒状のコイル巻胴の内部にはコイルにより磁化される磁性体が存在する。   FIG. 2 is a diagram showing a process of disposing a conductive cooling terminal (flat braided wire 210) on the superconducting coil 3 (an armature coil described later). First, the conductive wire 100 was wound around the coil winding drum to form the first layer c1 of the coil. Next, an assembly of flat braided wires extending from the cold head of the refrigerator is branched, and this branched flat braided wire 210 is substantially parallel to the axial direction of the coil winding drum on the first layer c1. Placed in multiple. The flat braided wires 210 were arranged uniformly at intervals in the circumferential direction so as to cover the entire first layer c1 of the coil. In FIG. 2, each flat braided wire 210 is shown with a constant length, but actually it extends continuously from the end of the flat braided wire 210 shown in the figure, and finally the cold braid of the refrigerator. Connected to the head. After arranging the flat braided wire 210 as described above, the conductive wire 100 was wound on the flat braided wire 210 to form the second layer c2 of the coil. The third and subsequent layers were also formed so that the flat braided wire 210 (conductive cooling terminal) was inserted between the coil layers as described above. Of course, a sufficient cooling effect can be obtained without inserting the flat braided wire 210 between all the layers, and there may be a layer in which the flat braided wire 210 is not inserted. Although not shown in FIG. 2, there is actually a magnetic body magnetized by the coil inside the cylindrical coil winding drum.

上記のようにして伝導冷却端子を接続した超電導コイルを用いて、超電導モータを作成した。以下に、超電導モータの構造を説明する。   A superconducting motor was created using the superconducting coil to which the conductive cooling terminal was connected as described above. The structure of the superconducting motor will be described below.

図3は、本例に使用する超電導モータを示す概略構成図である。この超電導モータの主要部は、界磁側固定子11・回転子12・電機子側固定子13・回転子14・界磁側固定子15をシャフト16の回転軸方向に配置して構成した。主要部のうち、界磁側固定子11,15には、界磁110,150を1つずつ設け、電機子側固定子13には、6つの電機子130を設けた。また、回転子12,14には、それぞれ、8つの誘導子120,140を配置した。そして、界磁110,150および電機子130の発生させる磁場の作用により誘導子120,140を吸引・反発させて回転子12,14を回転させる。この回転子12,14の回転により、回転子12,14に固定されるシャフト16を通じて回転動力を外部に伝達する。ここで、界磁側固定子11と15は同一部材であり、対向配置したものである。また、回転子12と14も同一部材であり、図示する誘導子120と140の配置が異なるのは、同一部材を別の面から見ているからである。   FIG. 3 is a schematic configuration diagram showing a superconducting motor used in this example. The main part of this superconducting motor is configured by arranging the field side stator 11, the rotor 12, the armature side stator 13, the rotor 14, and the field side stator 15 in the rotation axis direction of the shaft 16. Of the main parts, the field side stators 11 and 15 are provided with one field 110 and 150, respectively, and the armature side stator 13 is provided with six armatures 130. In addition, eight inductors 120 and 140 are arranged on the rotors 12 and 14, respectively. The inductors 120 and 140 are attracted and repelled by the action of the magnetic fields generated by the field magnets 110 and 150 and the armature 130 to rotate the rotors 12 and 14. As the rotors 12 and 14 rotate, the rotational power is transmitted to the outside through the shaft 16 fixed to the rotors 12 and 14. Here, the field side stators 11 and 15 are the same member and are arranged to face each other. The rotors 12 and 14 are also the same member, and the arrangement of the inductors 120 and 140 shown in the drawing is different because the same member is viewed from another surface.

次に、図4を参照して、界磁110、電機子130、誘導子120の構造と位置関係を説明する。なお、図4では、誘導子120と電機子130の一部を省略した。   Next, the structure and positional relationship of the field 110, the armature 130, and the inductor 120 will be described with reference to FIG. In FIG. 4, a part of the inductor 120 and the armature 130 is omitted.

界磁110は、その表面に定常な磁場を発生させる磁極面(S極面111、N極面119)が形成されるように構成した円筒状部材である。円筒の中心には、超電導モータの回転軸になるシャフト16を貫通させることができる回転軸孔110hを設けた。また、界磁110には回転軸と同軸状の円環溝を形成し、その円状溝に界磁コイル110cを配置した。この界磁コイル110cに直流電流を印加すると、界磁コイル110cが露出する面において、界磁コイル110cよりも径方向内方側(回転軸孔110hのある部分)にS極面111が、界磁コイル110cよりも径方向外方にN極面119が形成される。   The field 110 is a cylindrical member configured such that a magnetic pole face (S pole face 111, N pole face 119) that generates a steady magnetic field is formed on the surface thereof. At the center of the cylinder, a rotation shaft hole 110h through which the shaft 16 serving as the rotation shaft of the superconducting motor can be passed is provided. Further, an annular groove coaxial with the rotation axis was formed in the field 110, and a field coil 110c was disposed in the circular groove. When a direct current is applied to the field coil 110c, the S pole surface 111 is formed on the surface where the field coil 110c is exposed on the radially inner side of the field coil 110c (the portion having the rotation shaft hole 110h). An N pole surface 119 is formed radially outward from the magnetic coil 110c.

電機子130は、回転子12に配置される誘導子120を吸引・反発して回転させるための交流磁界を発生させるように電機子側固定子13に配置された部材である。具体的には、電機子側固定子13において、超電導モータの回転軸と同心状の円周上に均等な間隔で電機子130を6つ(図4においては省略して4つを示す)配置し、電機子側固定子13の端面(回転子12の端面に対向する面)に交流磁界が発生するようにした。電機子130は、円柱状の鉄心と、この鉄心の側壁中央部に導線を巻きつけて形成したコイル(電機子コイル130c)とを備えたもので、導線に流れる電流の向きによって鉄心の両端における磁極が変化する。即ち、この電機子コイル130cに交流電流を印加することで、電機子側固定子13の端面に交流磁界を発生させることができる。これら電機子コイル130cは常に通電されているわけではなく、後述する回転子12を回転させることができるように適宜通電したり、電流の方向を変化させたりしている。具体的には、電機子コイル130cに流れる電流を制御して、後述する誘導子120を有する回転子12が一方向に回転するように、電機子130の鉄心の端面にN極部139やS極部131が形成されるようにする。また、電機子側固定子13には、界磁110と同様に超電導モータの回転軸となるシャフト16を貫通させる回転軸孔が設けられている(図示せず)。   The armature 130 is a member disposed on the armature side stator 13 so as to generate an alternating magnetic field for attracting and repelling and rotating the inductor 120 disposed on the rotor 12. Specifically, in the armature-side stator 13, six armatures 130 (4 are omitted in FIG. 4) are arranged at equal intervals on the circumference concentric with the rotation shaft of the superconducting motor. An AC magnetic field is generated on the end face of the armature-side stator 13 (the face facing the end face of the rotor 12). The armature 130 is provided with a cylindrical iron core and a coil (armature coil 130c) formed by winding a conducting wire around the central portion of the side wall of the iron core. The magnetic pole changes. That is, an AC magnetic field can be generated on the end face of the armature side stator 13 by applying an AC current to the armature coil 130c. These armature coils 130c are not always energized, and are appropriately energized or the direction of current is changed so that the rotor 12 described later can be rotated. Specifically, the current flowing through the armature coil 130c is controlled so that the rotor 12 having the inductor 120, which will be described later, rotates in one direction. The pole portion 131 is formed. Further, the armature side stator 13 is provided with a rotation shaft hole (not shown) through which the shaft 16 which is the rotation shaft of the superconducting motor is penetrated similarly to the field 110.

回転子12は、円板状の絶縁部材中に8つ(図4においては省略して4つを示す)の鉄棒(誘導子120)を貫通させるように埋め込んで構成した。このとき、絶縁部材の両端面に誘導子が露出するようにした。誘導子120は、前述の界磁110のS極面111およびN極面119により磁化されており、一定の磁界を有する。そして、この誘導子120は、前述の電機子コイル130が発生させる交流磁界に吸引および反発される。この誘導子120は、回転子12の絶縁部材に固定・配置されているので、誘導子120が吸引・反発される結果、回転子12が回転する。ここで、誘導子120は、回転軸に対して傾くように配置して、回転子12の表面に露出する誘導子120の配置が、界磁110に対向する面と電機子130に対向する面とで異なるようにした。具体的には、電機子130に対向する各誘導子120の端面は、電機子130が配置される円周上に一致するように配置した。一方、界磁110に対向する誘導子120の端面は、交互に界磁110のN極面119とS極面111に一致するように配置した。このようになすことにより、誘導子120は、界磁110により磁化されて、円周方向にN極誘導子129とS極誘導子121とが交互に配置されることになる。その結果、誘導子120が、誘導子120に隣接する電機子130のN極部139とS極部131に吸引・反発されるので、この誘導子120が配置される回転子12がシャフト16を中心に回転する。   The rotor 12 was configured by embedding eight (not shown in FIG. 4, four are shown) iron bars (inductors 120) in a disc-shaped insulating member. At this time, the inductor was exposed at both end faces of the insulating member. The inductor 120 is magnetized by the S-pole surface 111 and the N-pole surface 119 of the field 110 described above, and has a constant magnetic field. The inductor 120 is attracted and repelled by the alternating magnetic field generated by the armature coil 130 described above. Since the inductor 120 is fixed and arranged on the insulating member of the rotor 12, the rotor 12 rotates as a result of the suction and repulsion of the inductor 120. Here, the inductor 120 is arranged so as to be inclined with respect to the rotation axis, and the arrangement of the inductor 120 exposed on the surface of the rotor 12 is a surface facing the field 110 and a surface facing the armature 130. And made it different. Specifically, the end face of each inductor 120 facing the armature 130 is disposed so as to coincide with the circumference where the armature 130 is disposed. On the other hand, the end faces of the inductor 120 facing the field 110 are alternately arranged so as to coincide with the N pole face 119 and the S pole face 111 of the field 110. By doing so, the inductor 120 is magnetized by the field 110, and the N-pole inductor 129 and the S-pole inductor 121 are alternately arranged in the circumferential direction. As a result, the inductor 120 is attracted and repelled by the N pole portion 139 and the S pole portion 131 of the armature 130 adjacent to the inductor 120, so that the rotor 12 in which the inductor 120 is disposed has the shaft 16 Rotate to center.

なお、図3に示す超電導モータの構成のうち、界磁側固定子11・回転子12・電機子側固定子13の3つがあれば、モータとしての機能を果たす。しかし、本例に示すように、回転子14・界磁側固定子15を追加することで、モータの出力を大きくすることができる。もちろん、シャフト16の軸方向に界磁側固定子・回転子・電機子側固定子をさらに追加しても良い。   Of the superconducting motor configuration shown in FIG. 3, if there are three of the field side stator 11, the rotor 12, and the armature side stator 13, the motor functions. However, as shown in this example, the motor output can be increased by adding the rotor 14 and the field-side stator 15. Of course, a field side stator / rotor / armature side stator may be further added in the axial direction of the shaft 16.

以上、説明したように超電導コイルに伝導冷却機構を適用することにより、小型・軽量の超電導モータを製造することができた。なお、界磁コイルまたは電機子コイルのいずれか一方を固定子に配置した超電導モータにおいても本発明の伝導冷却機構を適用することができる。   As described above, by applying the conduction cooling mechanism to the superconducting coil, a small and light superconducting motor could be manufactured. Note that the conduction cooling mechanism of the present invention can also be applied to a superconducting motor in which either a field coil or an armature coil is disposed on a stator.

本発明は、小型・軽量化の必要がある超電導モータに好適に利用することができる。特に、小型・軽量且つメンテナンスの容易さが要求される電気自動車や船舶のスクリューなどに好適に利用することができる。   The present invention can be suitably used for a superconducting motor that needs to be reduced in size and weight. In particular, the present invention can be suitably used for electric vehicles, ship screws, and the like that are required to be small and light and easy to maintain.

図1は、実施例に記載の超電導モータと伝導冷却機構との位置関係を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a positional relationship between the superconducting motor and the conduction cooling mechanism described in the embodiment. 図2は、実施例に記載の電機子コイルと伝導冷却端子との位置関係を示す図である。FIG. 2 is a diagram illustrating a positional relationship between the armature coil and the conduction cooling terminal described in the embodiment. 図3は、実施例に記載の超電導モータの概略構成図である。FIG. 3 is a schematic configuration diagram of the superconducting motor described in the embodiment. 図4は、実施例に記載の超電導モータの界磁、電機子、誘導子の関係を示す概略構成図である。FIG. 4 is a schematic configuration diagram illustrating a relationship among a field, an armature, and an inductor of the superconducting motor described in the embodiment.

符号の説明Explanation of symbols

1 超電導モータ 2 伝導冷却機構 3 超電導コイル
4 真空保持区画 16 シャフト
100 導線 c1 コイルの第1層 c2 コイルの第2層
210 平編組線(伝導冷却端子)
20 冷凍機 20c コールドヘッド 21 伝導冷却端子
11,15 界磁側固定子 13 電機子側固定子
12,14 回転子 120,140 誘導子
110,150 界磁 110c 界磁コイル 111 S極面 119 N極面
121 S極誘導子 129 N極誘導子 110h 回転軸孔
130 電機子 130c 電機子コイル 131 S極部 139 N極部
1 Superconducting motor 2 Conductive cooling mechanism 3 Superconducting coil
4 Vacuum holding compartment 16 Shaft
100 Lead wire c1 Coil first layer c2 Coil second layer
210 Flat braided wire (conduction cooling terminal)
20 Refrigerator 20c Cold head 21 Conduction cooling terminal
11,15 Field side stator 13 Armature side stator
12,14 Rotor 120,140 Inductor
110,150 Field 110c Field coil 111 S pole face 119 N pole face
121 S pole inductor 129 N pole inductor 110h Rotating shaft hole
130 Armature 130c Armature coil 131 S pole 139 N pole

Claims (6)

回転軸を中心に回転する回転子と、回転子を回転させるための磁場を発生させる超電導コイルを配置した固定子とを有する超電導モータの冷却構造であって、
超電導コイルを伝導冷却により冷却する伝導冷却機構を備え、
超電導コイルは、界磁コイルまたは電機子コイルの少なくとも一方であることを特徴とする超電導モータの冷却構造。
A superconducting motor cooling structure having a rotor that rotates about a rotation axis and a stator in which a superconducting coil that generates a magnetic field for rotating the rotor is disposed,
With a conduction cooling mechanism that cools the superconducting coil by conduction cooling,
A superconducting motor cooling structure, wherein the superconducting coil is at least one of a field coil and an armature coil.
伝導冷却機構は、コールドヘッドを有する冷凍機と、コールドヘッドに接続されて超電導コイルを伝導冷却する伝導冷却端子とを備えることを特徴とする請求項1に記載の超電導モータの冷却構造。   The superconducting motor cooling structure according to claim 1, wherein the conduction cooling mechanism includes a refrigerator having a cold head and a conduction cooling terminal connected to the cold head to conduct and cool the superconducting coil. 少なくとも超電導コイルと伝導冷却端子とコールドヘッドが真空中に保持されていることを特徴とする請求項2に記載の超電導モータの冷却構造。   3. The superconducting motor cooling structure according to claim 2, wherein at least the superconducting coil, the conduction cooling terminal, and the cold head are held in a vacuum. 伝導冷却端子の一部が超電導コイルの導線間に挿入されてなることを特徴とする請求項2または3に記載の超電導モータの冷却構造。   4. The superconducting motor cooling structure according to claim 2, wherein a part of the conduction cooling terminal is inserted between the conductors of the superconducting coil. 伝導冷却端子の少なくとも一部は、編組線であることを特徴とする請求項2〜4のいずれかに記載の超電導モータの冷却構造。   The cooling structure for a superconducting motor according to claim 2, wherein at least a part of the conduction cooling terminal is a braided wire. 固定子に界磁コイルおよび電機子コイルを配置して、回転子に誘導子を配置したことを特徴とする請求項1〜5のいずれかに記載の超電導モータの冷却構造。   6. The superconducting motor cooling structure according to claim 1, wherein a field coil and an armature coil are disposed on the stator, and an inductor is disposed on the rotor.
JP2005276843A 2005-09-22 2005-09-22 Cooling structure of superconducting motor Pending JP2007089345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276843A JP2007089345A (en) 2005-09-22 2005-09-22 Cooling structure of superconducting motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276843A JP2007089345A (en) 2005-09-22 2005-09-22 Cooling structure of superconducting motor

Publications (1)

Publication Number Publication Date
JP2007089345A true JP2007089345A (en) 2007-04-05

Family

ID=37975743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276843A Pending JP2007089345A (en) 2005-09-22 2005-09-22 Cooling structure of superconducting motor

Country Status (1)

Country Link
JP (1) JP2007089345A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009054791A1 (en) 2008-12-17 2010-07-01 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Superconducting device
JP2010147137A (en) * 2008-12-17 2010-07-01 Aisin Seiki Co Ltd Vacuum container for superconducting apparatus, and superconducting apparatus
DE102010001378A1 (en) 2009-01-30 2010-08-05 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Superconductive motor device i.e. magnetic field generator, for use in e.g. vehicle, has low temperature section for cooling conductive section and yoke when conductive section stands in thermal contact with peripheral section of yoke
JP2010279189A (en) * 2009-05-29 2010-12-09 Aisin Seiki Co Ltd Superconduction device
CN102244457A (en) * 2010-05-14 2011-11-16 丰田自动车株式会社 Superconducting motor
JP2011239596A (en) * 2010-05-11 2011-11-24 Kake Educational Institute Superconducting motor or superconducting generator
JP2011250503A (en) * 2010-05-24 2011-12-08 Kobe Steel Ltd Superconducting motor
US20120161556A1 (en) * 2010-12-28 2012-06-28 Toyota Jidosha Kabushiki Kaisha Superconducting electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102413A (en) * 1995-10-06 1997-04-15 Furukawa Electric Co Ltd:The Superconductive magnetic device
JP2004023921A (en) * 2002-06-18 2004-01-22 Central Japan Railway Co Motive power or electric power generator
JP2004233047A (en) * 2004-02-09 2004-08-19 Mitsubishi Electric Corp Superconductive magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102413A (en) * 1995-10-06 1997-04-15 Furukawa Electric Co Ltd:The Superconductive magnetic device
JP2004023921A (en) * 2002-06-18 2004-01-22 Central Japan Railway Co Motive power or electric power generator
JP2004233047A (en) * 2004-02-09 2004-08-19 Mitsubishi Electric Corp Superconductive magnet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283816B2 (en) 2008-12-17 2012-10-09 Aisin Seiki Kabushiki Kaisha Superconducting apparatus and vacuum container for the same
JP2010147137A (en) * 2008-12-17 2010-07-01 Aisin Seiki Co Ltd Vacuum container for superconducting apparatus, and superconducting apparatus
DE102009054790A1 (en) 2008-12-17 2010-07-01 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Superconducting device and associated vacuum container
JP2010148202A (en) * 2008-12-17 2010-07-01 Aisin Seiki Co Ltd Superconducting apparatus
JP4598855B2 (en) * 2008-12-17 2010-12-15 アイシン精機株式会社 Superconducting device
DE102009054791A1 (en) 2008-12-17 2010-07-01 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Superconducting device
US8283821B2 (en) 2008-12-17 2012-10-09 Aisin Seiki Kabushiki Kaisha Superconducting apparatus
DE102010001378A1 (en) 2009-01-30 2010-08-05 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Superconductive motor device i.e. magnetic field generator, for use in e.g. vehicle, has low temperature section for cooling conductive section and yoke when conductive section stands in thermal contact with peripheral section of yoke
US8362860B2 (en) 2009-01-30 2013-01-29 Aisin Seiki Kabushiki Kaisha Superconducting apparatus
JP2010279189A (en) * 2009-05-29 2010-12-09 Aisin Seiki Co Ltd Superconduction device
JP2011239596A (en) * 2010-05-11 2011-11-24 Kake Educational Institute Superconducting motor or superconducting generator
US20110277953A1 (en) * 2010-05-14 2011-11-17 Aisin Seiki Kabushiki Kaisha Superconducting motor
JP2011244529A (en) * 2010-05-14 2011-12-01 Toyota Motor Corp Superconducting motor
CN102244457A (en) * 2010-05-14 2011-11-16 丰田自动车株式会社 Superconducting motor
JP2011250503A (en) * 2010-05-24 2011-12-08 Kobe Steel Ltd Superconducting motor
US20120161556A1 (en) * 2010-12-28 2012-06-28 Toyota Jidosha Kabushiki Kaisha Superconducting electric motor

Similar Documents

Publication Publication Date Title
JP2007089345A (en) Cooling structure of superconducting motor
US4908347A (en) Dynamoelectric machine with diamagnetic flux shield
RU2649972C2 (en) Pole shoe cooling gap for axial motor
JP4890119B2 (en) Superconducting coil device and inductor type synchronous machine
US7750515B1 (en) Industrial air core motor-generator
WO2004102769A2 (en) Homopolar machine with shaft axial thrust compensation for reduced thrust bearing wear and noise
US20200251971A1 (en) Radial-Gap Type Superconducting Synchronous Machine, Magnetizing Apparatus, and Magnetizing Method
JP5043955B2 (en) Superconducting synchronous motor
EP2611007A2 (en) A superconductive synchronous motor generator
US6700297B2 (en) Superconducting PM undiffused machines with stationary superconducting coils
WO2020218525A1 (en) Superconducting induction rotating machine, and superconducting drive force generating system using said superconducting induction rotating machine
US20210344256A1 (en) Rotor and machine having superconducting permanent magnets
JP3936340B2 (en) Superconducting synchronous machine
CN112510964B (en) Superconducting DC motor without commutation device
US20200350800A1 (en) System and method for cooling an electric machine
US7791246B2 (en) Axial motor
US20110277953A1 (en) Superconducting motor
CN111247724A (en) Electric machine with cooling device comprising partially subdivided channels
JP2011244536A (en) Superconducting motor
US20230006534A1 (en) Flux barrier electric machine with superconducting induced element and inductor
JP6254926B2 (en) Axial gap type brushless motor
JP2011250503A (en) Superconducting motor
JP6086224B2 (en) Superconducting rotating machine
JP2009170724A (en) Cooling vessel of superconductive coil
JP5669059B2 (en) Superconducting motor or superconducting generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110822