JP2009170724A - Cooling vessel of superconductive coil - Google Patents

Cooling vessel of superconductive coil Download PDF

Info

Publication number
JP2009170724A
JP2009170724A JP2008008408A JP2008008408A JP2009170724A JP 2009170724 A JP2009170724 A JP 2009170724A JP 2008008408 A JP2008008408 A JP 2008008408A JP 2008008408 A JP2008008408 A JP 2008008408A JP 2009170724 A JP2009170724 A JP 2009170724A
Authority
JP
Japan
Prior art keywords
peripheral wall
superconducting coil
inner peripheral
outer peripheral
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008008408A
Other languages
Japanese (ja)
Inventor
Takeshi Niisato
剛 新里
Hitoshi Oyama
仁 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008008408A priority Critical patent/JP2009170724A/en
Publication of JP2009170724A publication Critical patent/JP2009170724A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently cool a superconductive coil housed in a ring-like cooling vessel from the inner peripheral side also. <P>SOLUTION: This cooling vessel wherein a superconductive coil formed by winding a superconductive wire is housed, and the superconductive coil is cooled to a superconductive temperature by an introduced cooling medium, is provided with an outer wall constituted of: a cylindrical inner peripheral wall arranged on the inner peripheral side of the superconductive coil; a cylindrical outer peripheral wall arranged on the outer peripheral side of the superconductive coil; and both annular end sidewalls continuing to both axial edges of the inner peripheral wall and the outer peripheral wall and arranged on both axial end surface sides of the superconductive coil. The outer wall is formed of a material having low thermal conductivity, and a thermally-conducting member formed of a material having thermal conductivity higher than those of the inner peripheral wall, the outer peripheral wall and both the end sidewalls is interposed between the inner peripheral wall and the superconductive coil. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超電導コイルを超電導温度に冷却する冷却容器に関し、特に、超電導コイルの冷却されにくい内周側を効率良く冷却するものである。   The present invention relates to a cooling container that cools a superconducting coil to a superconducting temperature, and in particular, efficiently cools the inner peripheral side of the superconducting coil that is difficult to cool.

従来、超電導コイルを極低温に冷却するための冷却容器が多数提供されている。
例えば、特開平6−283328号公報(特許文献1)に開示された冷却容器1は、図8に示すように、超電導コイル2の内周側に配置される円筒状の内周壁1aと、超電導コイル2の外周側に配置される円筒状の外周壁1bと、内周壁1aと外周壁1bの軸線方向両端縁を連結すると共に超電導コイル1の軸線方向の両側にそれぞれ配置される円環状の両端側壁1cからなるリング状としている。該冷却容器1の内周壁1aに超電導コイル2を外嵌して、冷却容器1内に超電導コイル2を収容し、冷却容器1内に貯留した液体ヘリウムからなる冷媒3で超電導コイル2を冷却する構成としている。
Conventionally, many cooling containers for cooling superconducting coils to cryogenic temperatures have been provided.
For example, as shown in FIG. 8, a cooling container 1 disclosed in Japanese Patent Laid-Open No. 6-283328 (Patent Document 1) includes a cylindrical inner peripheral wall 1a disposed on the inner peripheral side of a superconducting coil 2, and a superconducting Cylindrical outer peripheral wall 1b disposed on the outer peripheral side of coil 2 and both ends of the inner peripheral wall 1a and the outer peripheral wall 1b in the axial direction are connected to both ends of the superconducting coil 1 in the axial direction. It is made into the ring shape which consists of the side wall 1c. The superconducting coil 2 is fitted on the inner peripheral wall 1a of the cooling container 1, the superconducting coil 2 is accommodated in the cooling container 1, and the superconducting coil 2 is cooled by the refrigerant 3 made of liquid helium stored in the cooling container 1. It is configured.

特開平6−283328号公報JP-A-6-283328

特許文献1の円環状の筒体からなる冷却容器をモータの固定子として用いる場合、ロータ側となる内周壁1a側から冷媒を冷却容器内に供給すること困難であるため、外周壁に連結する配管より冷媒が供給される。
そのため、外周壁側の超電導コイル2の外周側は冷媒3により効率良く冷却されるが、コイル内周側まで冷媒3の冷熱が伝わりにくく、コイル内周側が冷却されにくい問題がある。
When using the cooling container which consists of the cylindrical cylinder of patent document 1 as a stator of a motor, since it is difficult to supply a refrigerant | coolant in the cooling container from the inner peripheral wall 1a side used as the rotor side, it connects with an outer peripheral wall. Refrigerant is supplied from the piping.
Therefore, although the outer peripheral side of the superconducting coil 2 on the outer peripheral wall side is efficiently cooled by the refrigerant 3, the cold heat of the refrigerant 3 is hardly transmitted to the inner peripheral side of the coil, and there is a problem that the inner peripheral side of the coil is difficult to be cooled.

また、冷却容器は外部からの熱の進入を低減して冷媒温度の上昇を低減するため、冷却容器の形成材料は、熱伝導率が低いステンレスや繊維強化樹脂(FRP)等が用いられている。よって、冷媒と接触して冷却される外周壁や両側端壁の冷熱が内周壁へ伝わりにくく、この点からも、内周壁1aが外周壁や両側端壁より温度低下されず、超電導コイル2の内周側の冷却効率が悪い問題がある。   In addition, the cooling container reduces the ingress of heat from the outside and reduces the rise in refrigerant temperature, so the cooling container is made of stainless steel, fiber reinforced resin (FRP), or the like having a low thermal conductivity. . Therefore, the cooling heat of the outer peripheral wall and both end walls cooled in contact with the refrigerant is not easily transmitted to the inner peripheral wall. Also from this point, the temperature of the inner peripheral wall 1a is not lowered than that of the outer peripheral wall and both end walls. There is a problem of poor cooling efficiency on the inner circumference side.

本発明は前記問題に鑑みてなされたものであり、リング状の冷却容器に収容した超電導コイルを内周側からも効率良く冷却できるようにすることを課題としている。   This invention is made | formed in view of the said problem, and makes it the subject to make it possible to cool efficiently the superconducting coil accommodated in the ring-shaped cooling container also from the inner peripheral side.

前記課題を解決するため、本発明は、第1の発明として、超電導線が巻回されて形成された超電導コイルを収容し、導入した冷媒で前記超電導コイルを超電導温度に冷却する冷却容器であって、
前記超電導コイルの内周側に配置する円筒状の内周壁と、前記超電導コイルの外周側に配置する円筒状の外周壁と、前記内周壁と外周壁の軸線方向両端縁と連続して前記超電導コイルの軸線方向の両端面側に配置する円環状の両端側壁とからなる外壁を備え、
前記外壁は熱伝導率が低い材料で形成する一方、
前記内周壁と超電導コイルの間に、前記内周壁、外周壁および両端側壁よりも熱伝導率の高い材料で形成した熱伝導部材を介在させていることを特徴とする超電導コイルの冷却容器を提供している。
In order to solve the above-mentioned problems, the present invention provides, as a first invention, a cooling container that contains a superconducting coil formed by winding a superconducting wire and cools the superconducting coil to a superconducting temperature with the introduced refrigerant. And
A cylindrical inner peripheral wall disposed on the inner peripheral side of the superconducting coil, a cylindrical outer peripheral wall disposed on the outer peripheral side of the superconducting coil, and the axial ends of the inner peripheral wall and the outer peripheral wall in succession to the superconducting coil. An outer wall composed of annular both end side walls disposed on both end surface sides in the axial direction of the coil;
While the outer wall is formed of a material having low thermal conductivity,
A cooling container for a superconducting coil is provided, wherein a heat conducting member made of a material having a higher thermal conductivity than the inner peripheral wall, the outer peripheral wall, and both end side walls is interposed between the inner peripheral wall and the superconducting coil. is doing.

前記構成からなる冷却容器では、外周壁、内周壁および両端側壁を熱伝導率の低い材料で形成しているため、外部からの熱伝導を抑制して、内部の冷媒温度の上昇を抑制できる。一方、超電導コイルの外周側より冷却されにくい内周側に熱伝導率の高い熱伝導部材を内周壁と超電導コイルとの間に介在させ、冷媒により効率よく冷却される熱伝導部材の冷熱を超電導コイルの内周に熱伝導でき、超電導コイルの内周側を外周側と同程度に冷却することができる。
また、冷却容器の外壁を同一材料で形成すると、外壁となる内周壁、外周壁、両端側壁を溶接で固着して組み立てることができる。
In the cooling container having the above-described configuration, the outer peripheral wall, the inner peripheral wall, and both end side walls are formed of a material having low thermal conductivity. Therefore, it is possible to suppress external heat conduction and suppress an increase in internal refrigerant temperature. On the other hand, a heat conductive member having high thermal conductivity is interposed between the inner peripheral wall and the superconducting coil on the inner peripheral side, which is hard to be cooled from the outer peripheral side of the superconducting coil, and superconducting heat from the heat conductive member that is efficiently cooled by the refrigerant is superconducting. Heat can be conducted to the inner circumference of the coil, and the inner circumference side of the superconducting coil can be cooled to the same extent as the outer circumference side.
Further, when the outer wall of the cooling container is formed of the same material, the inner peripheral wall, the outer peripheral wall, and both end side walls, which are the outer walls, can be fixed and assembled by welding.

前記外周壁、内周壁、両端側壁からなる外壁は、例えば、ステンレスで形成している一方、前記熱伝導部材は、例えば銅で形成していることが好ましい。   It is preferable that the outer wall including the outer peripheral wall, the inner peripheral wall, and both end side walls is made of, for example, stainless steel, while the heat conducting member is made of, for example, copper.

また、第2の発明として、超電導線が巻回されて形成された超電導コイルを収容し、導入した冷媒で前記超電導コイルを超電導温度に冷却する冷却容器であって、
前記超電導コイルの内周側に配置する円筒状の内周壁と、
前記超電導コイルの外周側に配置する円筒状の外周壁と、
前記内周壁と外周壁の軸線方向両端縁と連続して前記超電導コイルの軸線方向の両端面側に配置する円環状の両端側壁とを備え、
前記内周壁の形成材料を前記外周壁および両端側壁の形成材料よりも熱伝導率の高い材料とし、かつ、
前記内周壁の厚さを外周壁および両端側壁の厚さよりも大としていることを特徴とする超電導コイルの冷却容器を冷却容器を提供している。
Further, as a second invention, a superconducting coil formed by winding a superconducting wire is housed, and a cooling container for cooling the superconducting coil to a superconducting temperature with an introduced refrigerant,
A cylindrical inner peripheral wall disposed on the inner peripheral side of the superconducting coil;
A cylindrical outer peripheral wall disposed on the outer peripheral side of the superconducting coil;
An annular both end side wall disposed on both end surface sides in the axial direction of the superconducting coil continuously with the both end edges in the axial direction of the inner peripheral wall and the outer peripheral wall;
The material for forming the inner peripheral wall is a material having higher thermal conductivity than the material for forming the outer peripheral wall and both side walls, and
A cooling container is provided as a cooling container for a superconducting coil, wherein the thickness of the inner peripheral wall is larger than the thickness of the outer peripheral wall and the side walls on both ends.

前記第2の発明の冷却容器では、第1の発明の熱伝導部材を用いずに、内周壁を熱伝導率の高い材料から形成している。
このように、内周壁を熱伝導率の良い材料で形成すると、内周壁を冷媒により効率よく冷却でき、かつ、該内周壁の冷熱を超電導コイルの内周側に効率良く伝導でき、超電導コイルの内周側を外周側と同程度に冷却できる。
In the cooling container of the second invention, the inner peripheral wall is formed of a material having a high thermal conductivity without using the heat conducting member of the first invention.
Thus, when the inner peripheral wall is formed of a material having good thermal conductivity, the inner peripheral wall can be efficiently cooled by the refrigerant, and the cold heat of the inner peripheral wall can be efficiently transmitted to the inner peripheral side of the superconducting coil. The inner peripheral side can be cooled to the same extent as the outer peripheral side.

一方、内周壁は外周壁および両側端壁より熱伝導率の良い材料で形成しているため、外部からの熱で温度が上昇しやすくなる。そのため、内周壁の厚さを大として外部温度の影響を低減している。
具体的には、内周壁の厚さを5〜10mmとし、外周壁と両端側壁の厚さを1〜5mmとしていることが好ましい。
On the other hand, since the inner peripheral wall is formed of a material having better thermal conductivity than the outer peripheral wall and both end walls, the temperature easily rises due to heat from the outside. Therefore, the influence of external temperature is reduced by increasing the thickness of the inner peripheral wall.
Specifically, it is preferable that the thickness of the inner peripheral wall is 5 to 10 mm, and the thickness of the outer peripheral wall and both side walls is 1 to 5 mm.

前記構成とした場合、外周壁と両端側壁は例えばステンレスで形成している一方、前記内周壁は例えば銅で形成することが好ましい。
かつ、異なる形成材料からなる前記両端側壁と内周壁とは蝋付けまたは半田付けで固着している。
In the case of the above configuration, it is preferable that the outer peripheral wall and both end side walls are made of stainless steel, for example, while the inner peripheral wall is made of copper, for example.
And the said both end side wall and inner peripheral wall which consist of different forming materials are adhere | attached by brazing or soldering.

前記外周壁に冷媒流通口を設け、該外周壁および前記両端側壁の内面と前記超電導コイルとの間に冷媒通路となる隙間をあけ、前記熱伝導率の高い材料で形成した熱伝導部材または内周壁に冷媒を接触させていることが好ましい。   A refrigerant flow port is provided in the outer peripheral wall, and a gap serving as a refrigerant passage is formed between the outer peripheral wall and the inner surfaces of the both end side walls and the superconducting coil, and the heat conducting member or inner member formed of the material having a high thermal conductivity. It is preferable that the refrigerant is in contact with the peripheral wall.

冷却容器に収容する超電導コイルをモータの界磁側固定子とする場合等においては、冷却容器に設ける冷媒流通口は配管と接続しやすい外周壁に設けられる。
また、冷却容器内に収容する超電導コイルは、該超電導コイルの内周枠の長さ方向の両端を冷却容器の対向する両側端壁に突き当てた位置決め保持される。あるいは、超電導コイルの内周枠を内周壁に外嵌して超電導コイルを位置決め保持される。その結果、外周壁に設けた冷媒流通口から冷却容器内部に導入される冷媒は、超電導コイルの内周側の内周壁および前記熱伝導部材に直接接触せず、これらは冷却されにくくなる。
よって、前記冷却容器の両側端壁に当接する超電導コイルの内周枠の長さ方向の端部に切欠等を設けて、冷媒を超電導コイルの内周側に流入させて、前記熱伝導部材あるいは内周壁に冷媒を直接接触させることが好ましい。
あるいは超電導コイルの内周枠の長さを冷却容器の両側端面に突き当てない長さとして内周側への冷媒流路を確保し、前記内周枠を冷却容器の内周壁に外嵌して保持し、あるいは内周壁に前記熱伝導部材を介在させて保持することにより、前記熱伝導部材あるいは内周壁に冷媒を直接接触させることが好ましい。
このように、前記熱伝導部材あるいは内周壁に冷媒を直接接触させると、効率良く冷却でき、超電導コイルの内周側を外周側と同程度に冷却することができる。
In the case where the superconducting coil accommodated in the cooling container is used as the field side stator of the motor, the refrigerant flow port provided in the cooling container is provided on the outer peripheral wall that is easily connected to the piping.
Further, the superconducting coil housed in the cooling container is positioned and held with both ends in the length direction of the inner peripheral frame of the superconducting coil abutting against the opposite side walls of the cooling container. Alternatively, the superconducting coil is positioned and held by fitting the inner peripheral frame of the superconducting coil to the inner peripheral wall. As a result, the refrigerant introduced into the cooling container from the refrigerant circulation port provided in the outer peripheral wall does not directly contact the inner peripheral wall on the inner peripheral side of the superconducting coil and the heat conducting member, and these are hardly cooled.
Therefore, a notch or the like is provided at the end in the length direction of the inner peripheral frame of the superconducting coil in contact with both side walls of the cooling container, and the refrigerant is caused to flow into the inner peripheral side of the superconducting coil, so that the heat conducting member or It is preferable that the refrigerant is brought into direct contact with the inner peripheral wall.
Alternatively, the length of the inner peripheral frame of the superconducting coil is set to a length that does not abut against both end faces of the cooling container, a refrigerant flow path to the inner peripheral side is secured, and the inner peripheral frame is fitted on the inner peripheral wall of the cooling container. It is preferable that the refrigerant is brought into direct contact with the heat conductive member or the inner peripheral wall by holding or holding the heat conductive member on the inner peripheral wall.
As described above, when the refrigerant is brought into direct contact with the heat conducting member or the inner peripheral wall, the cooling can be efficiently performed, and the inner peripheral side of the superconducting coil can be cooled to the same extent as the outer peripheral side.

本発明の冷却容器に収容した超電導コイルは、モータの界磁側固定子として好適に用いることができる。その場合、前記外周壁、内周壁および両端側壁とからなる外壁の内部に前記超電導コイルと冷媒とを収容する容器は内槽とし、該内槽を真空断熱槽を介して囲む外槽を備え、かつ、
前記超電導コイルはパンケーキコイルを軸線方向に複数並設した積層型とし、前記内槽および外槽は前記積層型とした超電導コイルの外形と相似形状の円環状の筒体としていることが好ましい。
The superconducting coil accommodated in the cooling container of the present invention can be suitably used as a field side stator of a motor. In that case, a container that accommodates the superconducting coil and the refrigerant inside the outer wall composed of the outer peripheral wall, the inner peripheral wall, and both side walls is an inner tank, and includes an outer tank that surrounds the inner tank via a vacuum heat insulating tank, And,
The superconducting coil is preferably a laminated type in which a plurality of pancake coils are arranged side by side in the axial direction, and the inner tank and the outer tank are preferably annular cylinders having a shape similar to the outer shape of the superconducting coil as the laminated type.

前述したように、本発明の超電導コイルの冷却容器では、超電導コイルの外周側より冷却されにくい内周側の冷却効率を高めるため、第1の発明では、超電導コイルの内周に熱伝導率の高い熱伝導部材を配置しているため、該熱伝導部材を介して超電導コイルの内周側に冷熱を効率良く伝導するため、超電導コイルの内周側を外周側と同程度に冷却することができる。かつ、冷却容器の内周壁、外周壁および両端側壁は熱伝率の低い材料で形成しているため、外部温度による熱影響を低減でき、冷媒温度の上昇を抑制することができる。   As described above, in the superconducting coil cooling container of the present invention, in order to increase the cooling efficiency on the inner peripheral side that is hard to be cooled from the outer peripheral side of the superconducting coil, in the first invention, the thermal conductivity is provided on the inner periphery of the superconducting coil. Since a high heat conduction member is disposed, the inner circumference side of the superconducting coil can be cooled to the same degree as the outer circumference side in order to efficiently conduct cold heat to the inner circumference side of the superconducting coil through the heat conduction member. it can. And since the inner peripheral wall, outer peripheral wall, and both end side walls of the cooling container are formed of a material having low thermal conductivity, the thermal influence due to the external temperature can be reduced, and the rise in the refrigerant temperature can be suppressed.

第2の発明では、第1の発明の熱伝導部材を用いる代わりに、冷却容器の内周壁自体を熱伝導率の高い材料で形成し、該内周壁の冷却効率を高めているため、内周壁と対向する超電導コイルの内周側を外周側と同程度に冷却することができる。かつ、該熱伝導率を高くした内周壁の厚さを大としているため、外部温度による熱影響を低減することができる。   In the second invention, instead of using the heat conducting member of the first invention, the inner peripheral wall of the cooling vessel itself is formed of a material having high thermal conductivity, and the cooling efficiency of the inner peripheral wall is increased. It is possible to cool the inner peripheral side of the superconducting coil facing the same as the outer peripheral side. And since the thickness of the inner peripheral wall which made this heat conductivity high is enlarged, the thermal influence by external temperature can be reduced.

本発明の実施形態を図面を参照して説明する。
図1乃至図6に、本発明の第1実施形態を示す。
第1実施形態は、冷却容器22に収容した超電導コイル21をモータの固定子の界磁コイルとして用いた超電導モータ10に適用しており、該超電導モータは自動車の駆動モータ等として好適に用いられるものである。
Embodiments of the present invention will be described with reference to the drawings.
1 to 6 show a first embodiment of the present invention.
The first embodiment is applied to the superconducting motor 10 using the superconducting coil 21 accommodated in the cooling container 22 as a field coil of the stator of the motor, and the superconducting motor is suitably used as a driving motor for an automobile or the like. Is.

まず、図4〜図6に示す超電導モータ10の構成を説明すると、界磁側固定子(以下、固定子と略称する)20の中空部に電機子側回転子(以下、回転子と略称する)40を回転自在に貫通している。
前記固定子20は、冷却容器22に収容したダブルパンケーキコイルからなる超電導コイル21と、該超電導コイル21の軸線方向の両端側に第1ヨーク23と第2ヨーク24とを配置し、これら第1、第2ヨーク23、24の内周に誘導子23c、24cを設けて、クローポール型のモータとしている。本実施形態では、前記固定子20を軸線方向に2つ並設している。
First, the configuration of the superconducting motor 10 shown in FIGS. 4 to 6 will be described. An armature side rotor (hereinafter abbreviated as a rotor) is formed in a hollow portion of a field side stator (hereinafter abbreviated as a stator) 20. ) 40 penetrates freely.
The stator 20 includes a superconducting coil 21 made of a double pancake coil housed in a cooling container 22, and a first yoke 23 and a second yoke 24 arranged at both ends in the axial direction of the superconducting coil 21. 1. Inductors 23c and 24c are provided on the inner periphery of the second yokes 23 and 24 to form a claw pole type motor. In the present embodiment, two stators 20 are arranged side by side in the axial direction.

前記固定子20の界磁コイルとする超電導コイル21は、帯状のビスマス系酸化物超電導線を円筒状に巻回したダブルパンケーキを円筒状の支持枠26に複数個軸線方向に並列して積層し、軸線方向に長い円環形状(即ち、円筒形状)としている。本実施形態では8個のダブルパンケーキコイルを軸線方向に並設し、隣接するダブルパンケーキの超電導線を順次接続した積層型のコイルとしている。前記連続させた超電導線の両側端末にはリード線と接続するための端子27(第一端子27A、第二端子27B)をそれぞれ半田を介して接続しており、これらの端子27は積層した超電導コイル21の軸線方向の両端に配置されている。   The superconducting coil 21 as the field coil of the stator 20 is formed by laminating a plurality of double pancakes obtained by winding a strip-shaped bismuth oxide superconducting wire in a cylindrical shape on a cylindrical support frame 26 in parallel in the axial direction. In addition, it has an annular shape (that is, a cylindrical shape) that is long in the axial direction. In the present embodiment, eight double pancake coils are arranged side by side in the axial direction, and adjacent double pancake superconducting wires are sequentially connected to form a laminated coil. Terminals 27 (first terminal 27A and second terminal 27B) for connecting to the lead wires are connected to both ends of the continuous superconducting wire via solder, and these terminals 27 are laminated superconducting members. The coils 21 are disposed at both ends in the axial direction.

前記超電導コイル21は冷却容器22に収容し、該冷却容器22に収容した超電導コイル21の軸線方向の両端側に配置する第1ヨーク23、第2ヨーク24は内周側に磁極を形成する誘導子23c、24cをそれぞれ直径方向に対向して一対突設している。これら誘導子23c、24cで囲まれる中空部に隙間をあけて前記回転子40を回転自在に貫通し、該回転子40の外周に周方向に90度間隔をあけてN極となる誘導子23cとS極となる誘導子24cとを交互に配置している。   The superconducting coil 21 is housed in a cooling container 22, and the first yoke 23 and the second yoke 24 disposed on both ends in the axial direction of the superconducting coil 21 housed in the cooling container 22 form a magnetic pole on the inner peripheral side. A pair of children 23c, 24c are provided so as to face each other in the diameter direction. An inductor 23c that passes through the rotor 40 rotatably with a gap in the hollow portion surrounded by the inductors 23c and 24c, and forms an N pole at an interval of 90 degrees in the circumferential direction on the outer periphery of the rotor 40. And inductors 24c serving as S poles are alternately arranged.

以下に、超電導コイル21を冷却するための冷却容器22を図1〜図3に基づいて説明する。
冷却容器22は図2に示すようにリング状とし、内槽28と外槽29の2重槽としている。内槽28には超電導コイル21と液体窒素からなる冷媒Rが収容している。該内槽28を真空断熱層Sを介して外槽29で囲み、真空断熱層Sにはアルミニウムからなる多層断熱フィルム(図示せず)を収容している。
Below, the cooling container 22 for cooling the superconducting coil 21 is demonstrated based on FIGS. 1-3.
The cooling container 22 is formed in a ring shape as shown in FIG. 2 and is a double tank composed of an inner tank 28 and an outer tank 29. The inner tank 28 contains a superconducting coil 21 and a refrigerant R made of liquid nitrogen. The inner tank 28 is surrounded by an outer tank 29 through a vacuum heat insulating layer S, and the vacuum heat insulating layer S contains a multilayer heat insulating film (not shown) made of aluminum.

前記内槽28は、図1及び図3に示すように、超電導コイル21の内周側に配置する円筒状の内周壁28aと、超電導コイル21の外周側に配置する円筒状の外周壁28bと、内周壁28aと外周壁28bの軸線方向両端縁を連結すると共に超電導コイル21の軸線方向の両側にそれぞれ配置する円環平板状の両端側壁28cとで外壁を構成している。   As shown in FIGS. 1 and 3, the inner tank 28 includes a cylindrical inner peripheral wall 28 a disposed on the inner peripheral side of the superconducting coil 21, and a cylindrical outer peripheral wall 28 b disposed on the outer peripheral side of the superconducting coil 21. The outer peripheral wall is composed of annular both end side walls 28c that connect both ends in the axial direction of the inner peripheral wall 28a and the outer peripheral wall 28b and are respectively disposed on both sides in the axial direction of the superconducting coil 21.

前記超電導コイル21を外嵌する前記支持枠26と内周壁28aとの間に熱伝導率が高い銅からなる円筒形状とした熱伝導部材70を介在させている。該熱伝導部材70の外周面は支持枠26の内周面と接触し、熱伝導部材70は内周壁28aに外嵌している。即ち、超電導コイル21の支持枠26を熱伝導部材70を介在させて内周壁28aに外嵌して位置決め固定している。   A cylindrical heat conduction member 70 made of copper having a high thermal conductivity is interposed between the support frame 26 that externally fits the superconducting coil 21 and the inner peripheral wall 28a. The outer peripheral surface of the heat conductive member 70 is in contact with the inner peripheral surface of the support frame 26, and the heat conductive member 70 is fitted on the inner peripheral wall 28a. That is, the support frame 26 of the superconducting coil 21 is positioned and fixed by being externally fitted to the inner peripheral wall 28a with the heat conducting member 70 interposed.

前記熱伝導部材70の軸線方向の長さは超電導コイル21の支持枠26の長さよりも大とし、その軸線方向の両端を両端側壁28の内面に当接させ、よって、超電導コイル21および支持枠26の長さ方向の両端と両端側壁28cの内面との間に冷媒流路となる隙間Cを設け、熱伝導部材70に冷媒が直接接触するようにしている。   The length of the heat conducting member 70 in the axial direction is larger than the length of the support frame 26 of the superconducting coil 21, and both ends in the axial direction are brought into contact with the inner surfaces of both side walls 28. A gap C serving as a refrigerant flow path is provided between both ends in the longitudinal direction of 26 and the inner surfaces of both end side walls 28 c so that the refrigerant directly contacts the heat conducting member 70.

前記外壁を構成する内周壁28a、外周壁28bおよび両端側壁28cは、銅より熱伝導率が低いステンレスで形成し、かつ、同一厚さとし、1〜5mmとしている。前記熱伝導部材70の厚さは5〜10mmとし、内周壁38aの厚さよりも大としている。
これら、内周壁28a、外周壁28b、両端側壁28cは溶接により接続して組み立ている。
The inner peripheral wall 28a, the outer peripheral wall 28b, and the both end side walls 28c constituting the outer wall are made of stainless steel having a lower thermal conductivity than copper and have the same thickness, and are 1 to 5 mm. The thickness of the heat conducting member 70 is 5 to 10 mm, which is larger than the thickness of the inner peripheral wall 38a.
These inner peripheral wall 28a, outer peripheral wall 28b, and both end side walls 28c are connected and assembled by welding.

前記外周壁28bの上端位置に軸線方向の一端から他端にかけて延在するスリット28dを設け、該スリット28dの縁部に後述する配管60の内管61の下端縁に設けた基壁部28eを溶接により取り付けている。これにより、基壁部28eが外周壁28bの一部を構成すると共に外周壁28bの上端から内管61を上方に向けて突出させており、該内管61に界磁コイル21に接続した端子材27を挿通させている。   A slit 28d extending from one end to the other end in the axial direction is provided at the upper end position of the outer peripheral wall 28b, and a base wall portion 28e provided at the lower end edge of the inner tube 61 of the pipe 60 described later is provided at the edge portion of the slit 28d. It is attached by welding. As a result, the base wall portion 28e constitutes a part of the outer peripheral wall 28b, and the inner tube 61 protrudes upward from the upper end of the outer peripheral wall 28b, and the terminal connected to the field coil 21 on the inner tube 61 The material 27 is inserted.

一方、外槽29は、内槽28の内周壁28aの内周側に隙間をあけて配置する円筒状の内周壁29aと、内槽28の外周壁28bの外周側に隙間をあけて配置する円筒状の外周壁29bと、内周壁29aと外周壁29bの軸線方向両端縁を連結すると共に内槽28の両端側壁28cと隙間をあけてそれぞれ配置する円環平板状の両端側壁29cからなる。外槽29は全てステンレスからなり、それぞれ縁部を溶接により接続している。   On the other hand, the outer tub 29 is disposed with a gap on the outer peripheral side of the outer peripheral wall 28b of the cylindrical inner peripheral wall 29a and the outer peripheral wall 28b of the inner tub 28 which are disposed with a gap on the inner peripheral side of the inner peripheral wall 28a of the inner tub 28. It consists of a cylindrical outer peripheral wall 29b and annular flat-plate-shaped end side walls 29c that connect both end edges in the axial direction of the inner peripheral wall 29a and the outer peripheral wall 29b and that are respectively disposed with a gap from the both end side walls 28c of the inner tank 28. All the outer tubs 29 are made of stainless steel, and the edges are connected by welding.

外周壁29bの上端位置に軸線方向の一端から他端にかけて延在するスリット29dを設けており、該スリット29dの縁部に後述する配管60の外管62の下端縁に設けた基壁部29eを溶接により取り付けている。これにより、基壁部29eが外周壁29bの一部を構成すると共に外周壁29bの上端から外管62を上方に向けて突出させており、該外管62に内管61を隙間をあけて挿通させている。
また、内槽28と外槽29の間に環状のスペーサ31を配置して、内槽28を外槽29内に位置決め保持している。
A slit 29d extending from one end to the other end in the axial direction is provided at the upper end position of the outer peripheral wall 29b, and a base wall portion 29e provided at the lower end edge of the outer tube 62 of the pipe 60 described later at the edge portion of the slit 29d. Are attached by welding. As a result, the base wall portion 29e forms a part of the outer peripheral wall 29b, and the outer tube 62 protrudes upward from the upper end of the outer peripheral wall 29b, and the inner tube 61 is spaced from the outer tube 62 by a gap. It is inserted.
An annular spacer 31 is disposed between the inner tank 28 and the outer tank 29, and the inner tank 28 is positioned and held in the outer tank 29.

図4及び図5に示すように、冷却容器22に配管60を介して冷却容器22に供給する冷媒Rを貯留する冷媒タンク50を接続している。
冷媒タンク50は、冷媒が貯蔵される内槽51と、該内槽51が真空断熱層Sを介して収容される外槽52を備え、内槽51と外槽52は上端位置で溶接により連結し、内装51の上面開口には蓋53を被せて取り付けている。
As shown in FIGS. 4 and 5, a refrigerant tank 50 that stores the refrigerant R supplied to the cooling container 22 via a pipe 60 is connected to the cooling container 22.
The refrigerant tank 50 includes an inner tank 51 in which refrigerant is stored, and an outer tank 52 in which the inner tank 51 is accommodated via the vacuum heat insulating layer S. The inner tank 51 and the outer tank 52 are connected by welding at the upper end position. The upper surface opening of the interior 51 is attached with a lid 53.

前記配管60は冷却容器22の内槽28と冷媒タンク50の内槽51を連結する内管61と、冷却容器22の外槽29と冷媒タンク50の外槽52を連結すると共に内管61を真空断熱層を介して囲む外管62を備え、これら内管61と外管62に蛇腹形状部61a、62aを設けて弾性を付与している。
前記冷媒タンク50の真空断熱層Sおよび配管60の真空断熱層にもアルミニウムからなる多層断熱シート(図示せず)を収容している。
The piping 60 connects the inner tank 61 of the cooling container 22 and the inner tank 51 of the refrigerant tank 50, connects the outer tank 29 of the cooling container 22 and the outer tank 52 of the refrigerant tank 50, and connects the inner pipe 61. An outer tube 62 is provided that is surrounded by a vacuum heat insulating layer, and the inner tube 61 and the outer tube 62 are provided with bellows-shaped portions 61a and 62a to give elasticity.
A multilayer heat insulating sheet (not shown) made of aluminum is also accommodated in the vacuum heat insulating layer S of the refrigerant tank 50 and the vacuum heat insulating layer of the pipe 60.

前記配管60には、さらに強度保持用のタンク保持筒63を外嵌し、該タンク保持筒63の筒部63aの上端に設けたフランジ63bを冷媒タンク50の外槽52の底壁部にボルト締め固定すると共に、下端に設けたフランジ63cを界磁側固定子20に外嵌した外周ハウジング43の上面側にボルト締め固定している。該タンク保持筒63を介して冷媒タンク50をモータ本体の上方に位置決め保持している。   Further, a strength holding tank holding cylinder 63 is fitted on the pipe 60, and a flange 63 b provided at the upper end of the cylinder portion 63 a of the tank holding cylinder 63 is bolted to the bottom wall portion of the outer tank 52 of the refrigerant tank 50. At the same time, the flange 63c provided at the lower end is bolted and fixed to the upper surface side of the outer peripheral housing 43 fitted on the field side stator 20. The refrigerant tank 50 is positioned and held above the motor body via the tank holding cylinder 63.

また、超電導コイル21に超電導線の両端末に接続した第一、第二端子材27A、27Bを配管60内を挿通させて冷媒タンク50内に突出させ、冷媒タンク50の蓋53に設けた貫通穴(図示せず)を介して冷媒タンク50内に引き込んだリード線(図示せず)を端子材27に接続している。   In addition, the first and second terminal members 27A and 27B connected to the superconducting coil 21 at both ends of the superconducting wire are inserted into the pipe 60 and protruded into the refrigerant tank 50, and the through holes provided in the lid 53 of the refrigerant tank 50 are provided. A lead wire (not shown) drawn into the refrigerant tank 50 is connected to the terminal member 27 through a hole (not shown).

図2に示すように、冷却容器22に収容した超電導コイル21の軸線方向の両端側には、前記したように、第1、第2ヨーク23、24を配置し、その側端面部23a、24aの外周縁より突設した外周壁部23b、24bを突き合わせて、冷却容器22を囲んでいる。該第1、第2ヨーク23、24の外周壁部23b、24bには、第2ヨーク24の誘導子24cと対向する上端位置に配管60を貫通させるための半円形状の切欠23d、24dを設けている。   As shown in FIG. 2, as described above, the first and second yokes 23 and 24 are arranged on both end sides in the axial direction of the superconducting coil 21 accommodated in the cooling vessel 22, and the side end face portions 23a and 24a thereof are arranged. The outer peripheral wall portions 23b and 24b projecting from the outer peripheral edge of each other are abutted to surround the cooling container 22. Semi-circular cutouts 23d and 24d for penetrating the pipe 60 to the upper end positions of the first and second yokes 23 and 24 facing the inductor 24c of the second yoke 24 are provided on the outer peripheral wall portions 23b and 24b. Provided.

また、第1ヨーク23の誘導子23cと対向する側方位置に連結固定用のボルト穴23e、24eを有する軸線方向の挿通溝23f、24fを凹設している。
第1ヨーク23と第2ヨーク24とは、冷却容器22を軸線方向の両側から挟み込んで外嵌した状態で互いの外周壁部23b、24bの先端面を付き合わせ、挿通溝23f、24fに締結片32を嵌め込んでボルト締めにより連結固定している。
なお、第1、第2ヨーク23、24は磁性を有するステンレスにより形成してもよい。
Further, axial insertion grooves 23f and 24f having bolt holes 23e and 24e for connecting and fixing are provided in the side positions of the first yoke 23 facing the inductor 23c.
The first yoke 23 and the second yoke 24 are attached to the insertion grooves 23f and 24f with the front end surfaces of the outer peripheral wall portions 23b and 24b attached to each other with the cooling container 22 sandwiched from both sides in the axial direction. The piece 32 is fitted and fixed by bolting.
The first and second yokes 23 and 24 may be formed of magnetic stainless steel.

図4〜6に示すように、前記並設した固定子20A、20Bを外周ハウジング43で内嵌支持し、該外周ハウジング43の軸線方向の両端に両側支持材41を組みつけている。該両側支持材41は円筒状の周壁部41aと、該周壁部41aの軸線方向Xの外端面を閉鎖する円形状の側壁部41bからなる。両側の側壁部41bの中心に設けた貫通穴41cに軸受42を介して回転子40の軸線方向両側の軸部40aを回転自在に支持している。
また、回転子40の軸部40aに冷却ファンを構成する羽根部40bを突設し、該羽根部40bを超電導モータ10内に配置している。
前記回転子40には銅線からなる電機子コイル(図示せず)を設けると共に、支持材41にブラシ(図示せず)を固定し、回転子40の軸部に固定した整流子(図示せず)が接触して、回転子40の電機子コイルに電流が流れる構成としている。
As shown in FIGS. 4 to 6, the stators 20 </ b> A and 20 </ b> B arranged side by side are fitted and supported by an outer peripheral housing 43, and both side support members 41 are assembled to both ends of the outer peripheral housing 43 in the axial direction. The both-side support member 41 includes a cylindrical peripheral wall portion 41a and a circular side wall portion 41b that closes the outer end surface of the peripheral wall portion 41a in the axial direction X. The shaft portions 40a on both sides in the axial direction of the rotor 40 are rotatably supported via bearings 42 in through holes 41c provided at the centers of the side wall portions 41b on both sides.
Further, a blade portion 40 b constituting a cooling fan is projected from the shaft portion 40 a of the rotor 40, and the blade portion 40 b is disposed in the superconducting motor 10.
The rotor 40 is provided with an armature coil (not shown) made of copper wire, a brush (not shown) is fixed to the support member 41, and a commutator (not shown) is fixed to the shaft portion of the rotor 40. 2) in contact with each other, and a current flows through the armature coil of the rotor 40.

冷却容器22に収容した超電導コイル21を界磁側固定子として用いた超電導モータ10においては、超電導コイル21からなる界磁コイルに直流電流を流すと、超電導コイル21の軸線方向一端に配置した第1ヨーク23がN極に磁化され、第1ヨーク23の誘導子23cによりN極の磁極が形成される。他端に配置した第2ヨーク24はS極に磁化され、第2ヨーク24の誘導子24cによりS極の磁極が形成される。これにより、N極の磁極とS極の磁極が周方向に交互に配置された界磁側のクローポール型の磁路が形成される。   In the superconducting motor 10 using the superconducting coil 21 housed in the cooling container 22 as a field side stator, when a direct current is passed through the field coil composed of the superconducting coil 21, the superconducting coil 21 is arranged at one end in the axial direction. One yoke 23 is magnetized to the N pole, and an N pole magnetic pole is formed by the inductor 23 c of the first yoke 23. The second yoke 24 disposed at the other end is magnetized to the south pole, and the south pole magnetic pole is formed by the inductor 24 c of the second yoke 24. As a result, a field-side claw pole type magnetic path in which N-pole magnetic poles and S-pole magnetic poles are alternately arranged in the circumferential direction is formed.

前記回転子40に直流電流を供給すると、N極である第1ヨーク23の誘導子23cと対向する電機子コイルにN極が形成されると共に、S極である第2ヨーク24の誘導子24cと対向する電機子コイルにS極が形成されることにより、回転子40に回転力が発生して、該電機子側回転子40が回転する。
なお、本実施形態では、銅線(常電導線)で電機子コイルを形成しているが、電機子コイルも超電導線により形成してもよい。
When a direct current is supplied to the rotor 40, an N pole is formed in the armature coil facing the inductor 23c of the first yoke 23, which is the N pole, and an inductor 24c of the second yoke 24, which is the S pole. The S pole is formed in the armature coil opposed to the rotor arm 40, so that a rotational force is generated in the rotor 40 and the armature side rotor 40 rotates.
In this embodiment, the armature coil is formed of a copper wire (normal conducting wire), but the armature coil may be formed of a superconducting wire.

前記した冷却容器22に超電導コイル21を収容した構成とすると、超電導コイル21の内周側の支持枠26を熱伝導部材70と接触させているため、冷媒により冷却された熱伝導部材70の冷熱を支持枠26を介して超電導コイル21の内周側に効率よく伝導することができる。
一方、冷却容器22の内槽28の内周壁28a、外周壁28b及び両端側壁28cは熱伝導率の低いステンレスで形成しているため、内部の冷媒への外部温度の熱伝導を抑制することができる。
さらに、冷却容器22を2重槽として、外槽29と内槽28との間に真空断熱層を設けると共に、外槽29も熱伝導率が低いステンレスで形成しているため、内槽28の内部には外部温度が伝導されにくく、冷媒の温度上昇を抑え、超電導温度に保持することができる。
When the superconducting coil 21 is housed in the cooling container 22 described above, the support frame 26 on the inner peripheral side of the superconducting coil 21 is in contact with the heat conducting member 70, so that the heat conducting member 70 cooled by the refrigerant is cooled. Can be efficiently conducted to the inner peripheral side of the superconducting coil 21 through the support frame 26.
On the other hand, since the inner peripheral wall 28a, outer peripheral wall 28b, and both end side walls 28c of the inner tank 28 of the cooling container 22 are formed of stainless steel having low thermal conductivity, it is possible to suppress heat conduction at the external temperature to the internal refrigerant. it can.
Furthermore, since the cooling container 22 is a double tank, a vacuum heat insulating layer is provided between the outer tank 29 and the inner tank 28, and the outer tank 29 is also formed of stainless steel having a low thermal conductivity. The outside temperature is not easily conducted inside, and the temperature rise of the refrigerant can be suppressed and kept at the superconducting temperature.

図7に、本発明の第2実施形態を示す。
第2実施形態では、第1実施形態の熱伝導部材70を用いず、冷却容器22の内槽28の内周壁28aを熱伝導率の高い銅で形成すると共に、該内周壁28aの厚さを熱伝導率が低いステンレスで形成した外周壁28bおよび両端側壁28cよりも厚くしている。
具体的には、内周壁28aの厚さは5〜10mmとし、外周壁28b及び両端側壁28cの厚さは1〜5mmとしている。
また、内周壁28aと連結する両端側壁28cとは材質を相違させているため、蝋付けあるいは半田で接続している。
FIG. 7 shows a second embodiment of the present invention.
In the second embodiment, without using the heat conduction member 70 of the first embodiment, the inner peripheral wall 28a of the inner tub 28 of the cooling vessel 22 is formed of copper having a high thermal conductivity, and the thickness of the inner peripheral wall 28a is changed. It is thicker than the outer peripheral wall 28b and both end side walls 28c formed of stainless steel having low thermal conductivity.
Specifically, the thickness of the inner peripheral wall 28a is 5 to 10 mm, and the thickness of the outer peripheral wall 28b and both end side walls 28c is 1 to 5 mm.
In addition, since both end side walls 28c connected to the inner peripheral wall 28a are made of different materials, they are connected by brazing or soldering.

超電導コイル21の内周の支持枠26は前記内周壁28aに外嵌して保持し、電導コイル21および支持枠26の軸線方向の両端と両端側壁28cとの内面には冷媒が流通する隙間Cを設け、内周壁28aに冷媒が直接接触するようにしている。
他の構成は、第1実施形態と同様であるため、同一符号を付して説明を省略する。
The support frame 26 on the inner periphery of the superconducting coil 21 is externally fitted and held on the inner peripheral wall 28a, and a gap C through which refrigerant flows on the inner surfaces of both ends of the conductive coil 21 and the support frame 26 in the axial direction and both side walls 28c. The refrigerant is in direct contact with the inner peripheral wall 28a.
Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.

前記構成とした冷却容器22においても、内周壁28aが冷媒により冷却されると、その冷熱を支持枠26を介して超電導コイル21の内周へと効率よく伝導することができ、超電導コイル21の内周側を外周側と同程度に冷却することができる。
また、内周壁28aの厚さを大とすることで外部温度の熱影響を低減することができる。
Also in the cooling container 22 configured as described above, when the inner peripheral wall 28a is cooled by the refrigerant, the cold heat can be efficiently conducted to the inner periphery of the superconducting coil 21 via the support frame 26. The inner peripheral side can be cooled to the same extent as the outer peripheral side.
Moreover, the thermal influence of external temperature can be reduced by making the thickness of the inner peripheral wall 28a large.

前記実施の形態はすべての点で例示であって、これら実施形態に限定されず、本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の範囲内でのすべての変更が含まれる。   The above-described embodiments are exemplifications in all points, and are not limited to these embodiments. The scope of the present invention is indicated by the scope of claims, and all modifications within the scope equivalent to the scope of claims are made. Is included.

本発明の冷却容器は、自動車等の駆動用モータや、その他発電機、変圧器、超電導電力貯蔵装置(SMES)等の超電導機器に用いる超電導コイルを冷却する容器として好適に用いられるものである。   The cooling container of the present invention is suitably used as a container for cooling a superconducting coil used in a motor for driving a motor vehicle, other superconducting equipment such as a generator, a transformer, and a superconducting power storage device (SMES).

本発明の第1実施形態の冷却容器の断面図である。It is sectional drawing of the cooling container of 1st Embodiment of this invention. 界磁側固定子の分解斜視図である。It is a disassembled perspective view of a field side stator. 界磁コイルと冷却容器の分解斜視図である。It is a disassembled perspective view of a field coil and a cooling vessel. 超電導モータの断面斜視図である。It is a cross-sectional perspective view of a superconducting motor. 超電導モータの断面図である。It is sectional drawing of a superconducting motor. 界磁側固定子の断面斜視図である。It is a cross-sectional perspective view of a field side stator. 第2実施形態の冷却容器の断面図である。It is sectional drawing of the cooling container of 2nd Embodiment. 従来例を示す図面である。It is drawing which shows a prior art example.

符号の説明Explanation of symbols

10 超電導モータ
20 界磁側固定子
21 超電導コイル(界磁コイル)
22 冷却容器
26 支持枠
28 内槽
28a 内周壁
29 外槽
40 電機子側回転子
50 冷媒タンク
60 配管
70 熱伝導部材
10 Superconducting motor 20 Field side stator 21 Superconducting coil (field coil)
22 Cooling container 26 Support frame 28 Inner tank 28a Inner peripheral wall 29 Outer tank 40 Armature side rotor 50 Refrigerant tank 60 Pipe 70 Heat conduction member

Claims (4)

超電導線が巻回されて形成された超電導コイルを収容し、導入した冷媒で前記超電導コイルを超電導温度に冷却する冷却容器であって、
前記超電導コイルの内周側に配置する円筒状の内周壁と、前記超電導コイルの外周側に配置する円筒状の外周壁と、前記内周壁と外周壁の軸線方向両端縁と連続して前記超電導コイルの軸線方向の両端面側に配置する円環状の両端側壁とからなる外壁を備え、
前記外壁は熱伝導率が低い材料で形成する一方、
前記内周壁と超電導コイルの間に、前記内周壁、外周壁および両端側壁よりも熱伝導率の高い材料で形成した熱伝導部材を介在させていることを特徴とする超電導コイルの冷却容器。
A cooling container that accommodates a superconducting coil formed by winding a superconducting wire and cools the superconducting coil to a superconducting temperature with an introduced refrigerant,
A cylindrical inner peripheral wall disposed on the inner peripheral side of the superconducting coil, a cylindrical outer peripheral wall disposed on the outer peripheral side of the superconducting coil, and both axial edges of the inner peripheral wall and the outer peripheral wall in succession to the superconducting coil. An outer wall composed of annular both end side walls disposed on both end surface sides in the axial direction of the coil;
While the outer wall is formed of a material having low thermal conductivity,
A cooling container for a superconducting coil, wherein a heat conducting member made of a material having a higher thermal conductivity than the inner peripheral wall, the outer peripheral wall, and both end side walls is interposed between the inner peripheral wall and the superconducting coil.
超電導線が巻回されて形成された超電導コイルを収容し、導入した冷媒で前記超電導コイルを超電導温度に冷却する冷却容器であって、
前記超電導コイルの内周側に配置する円筒状の内周壁と、前記超電導コイルの外周側に配置する円筒状の外周壁と、前記内周壁と外周壁の軸線方向両端縁と連続して前記超電導コイルの軸線方向の両端面側に配置する円環状の両端側壁とからなる外壁を備え、
前記内周壁の形成材料を前記外周壁および両端側壁の形成材料よりも熱伝導率の高い材料とし、かつ、
前記内周壁の厚さを外周壁および両端側壁の厚さよりも大としていることを特徴とする超電導コイルの冷却容器。
A cooling container that accommodates a superconducting coil formed by winding a superconducting wire and cools the superconducting coil to a superconducting temperature with an introduced refrigerant,
A cylindrical inner peripheral wall disposed on the inner peripheral side of the superconducting coil, a cylindrical outer peripheral wall disposed on the outer peripheral side of the superconducting coil, and both axial edges of the inner peripheral wall and the outer peripheral wall in succession to the superconducting coil. An outer wall composed of annular both end side walls disposed on both end surface sides in the axial direction of the coil;
The material for forming the inner peripheral wall is a material having higher thermal conductivity than the material for forming the outer peripheral wall and both side walls, and
A cooling container for a superconducting coil, wherein the inner peripheral wall is thicker than the outer peripheral wall and both end side walls.
前記外周壁に冷媒流通口を設け、該外周壁および前記両端側壁の内面と前記超電導コイルとの間に冷媒通路となる隙間をあけ、前記熱伝導率の高い材料で形成した熱伝導部材または内周壁に冷媒を接触させている請求項1または請求項2に記載の超電導コイルの冷却容器。   A refrigerant flow port is provided in the outer peripheral wall, and a gap serving as a refrigerant passage is formed between the outer peripheral wall and the inner surfaces of the both end side walls and the superconducting coil, and the heat conducting member or inner member formed of the material having a high thermal conductivity. The cooling container for a superconducting coil according to claim 1 or 2, wherein a refrigerant is brought into contact with the peripheral wall. 前記超電導コイルはモータの界磁側固定子として用いられ、
前記外周壁、内周壁および両端側壁とからなる外壁の内部に前記超電導コイルと冷媒とを収容する容器は内槽とし、該内槽を真空断熱槽を介して囲む外槽を備え、かつ、
前記超電導コイルはパンケーキコイルを軸線方向に複数並設した積層型とし、前記内槽および外槽は前記積層型とした超電導コイルの外形と相似形状の円環状の筒体としている請求項1乃至請求項3のいずれか1項に記載の超電導コイルの冷却容器。
The superconducting coil is used as a field side stator of a motor,
A container that contains the superconducting coil and the refrigerant inside the outer wall composed of the outer peripheral wall, the inner peripheral wall, and both side walls is an inner tank, and includes an outer tank that surrounds the inner tank via a vacuum heat insulating tank, and
The superconducting coil is a laminated type in which a plurality of pancake coils are arranged in the axial direction, and the inner tank and the outer tank are annular cylinders having a shape similar to the outer shape of the superconducting coil as the laminated type. The superconducting coil cooling container according to claim 3.
JP2008008408A 2008-01-17 2008-01-17 Cooling vessel of superconductive coil Withdrawn JP2009170724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008408A JP2009170724A (en) 2008-01-17 2008-01-17 Cooling vessel of superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008408A JP2009170724A (en) 2008-01-17 2008-01-17 Cooling vessel of superconductive coil

Publications (1)

Publication Number Publication Date
JP2009170724A true JP2009170724A (en) 2009-07-30

Family

ID=40971567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008408A Withdrawn JP2009170724A (en) 2008-01-17 2008-01-17 Cooling vessel of superconductive coil

Country Status (1)

Country Link
JP (1) JP2009170724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120053060A1 (en) * 2010-01-08 2012-03-01 Sumitomo Electric Industries, Ltd. Superconducting coil apparatus, superconducting apparatus, and method of making superconducting coil apparatus
JP2015012199A (en) * 2013-06-28 2015-01-19 株式会社東芝 Superconducting coil device
WO2022196193A1 (en) * 2021-03-18 2022-09-22 古河電気工業株式会社 Superconducting motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120053060A1 (en) * 2010-01-08 2012-03-01 Sumitomo Electric Industries, Ltd. Superconducting coil apparatus, superconducting apparatus, and method of making superconducting coil apparatus
US8787998B2 (en) * 2010-01-08 2014-07-22 Sumitomo Electric Industries, Ltd. Superconducting coil apparatus, superconducting appatatus, and method of making superconducting coil apparatus
JP2015012199A (en) * 2013-06-28 2015-01-19 株式会社東芝 Superconducting coil device
WO2022196193A1 (en) * 2021-03-18 2022-09-22 古河電気工業株式会社 Superconducting motor

Similar Documents

Publication Publication Date Title
US7821169B2 (en) Axial gap type motor
US7667358B2 (en) Cooling structure of superconducting motor
JP4593963B2 (en) Superconducting multipolar electrical machine
US8022797B2 (en) Superconducting coil apparatus and inductor-type synchronous machine
JP4701294B2 (en) Superconducting device
US20140117793A1 (en) Transverse flux motor
JP4983561B2 (en) Superconducting motor
JP2007089345A (en) Cooling structure of superconducting motor
JP3936340B2 (en) Superconducting synchronous machine
JP2009170724A (en) Cooling vessel of superconductive coil
WO2013128813A1 (en) Field rotor of superconducting rotating machine
JP2009170716A (en) Cooling vessel of superconducting coil
JP2007060747A (en) Superconducting motor and vehicle equipped with that motor
WO2022196193A1 (en) Superconducting motor
JP2010028904A (en) Superconducting motor
JP2021052492A (en) Bus-bar unit and motor
JP2011244529A (en) Superconducting motor
JP2012139099A (en) Superconducting motor
KR101493288B1 (en) Stator and superconducting rotating machine having the same
JP5337179B2 (en) Superconducting device
JP2009123970A (en) Support frame for superconductive coil, and superconductive coil unit
JP2009170715A (en) Superconducting coil, and cooling device of superconducting coil
JP2008001280A (en) Marine propulsion apparatus
JP2005237159A (en) Brushless motor
JP2012139099A5 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405