JP2009123970A - Support frame for superconductive coil, and superconductive coil unit - Google Patents

Support frame for superconductive coil, and superconductive coil unit Download PDF

Info

Publication number
JP2009123970A
JP2009123970A JP2007297275A JP2007297275A JP2009123970A JP 2009123970 A JP2009123970 A JP 2009123970A JP 2007297275 A JP2007297275 A JP 2007297275A JP 2007297275 A JP2007297275 A JP 2007297275A JP 2009123970 A JP2009123970 A JP 2009123970A
Authority
JP
Japan
Prior art keywords
support frame
superconducting coil
axial direction
cooling container
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007297275A
Other languages
Japanese (ja)
Inventor
Hitoshi Oyama
仁 尾山
Takeshi Niisato
剛 新里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007297275A priority Critical patent/JP2009123970A/en
Publication of JP2009123970A publication Critical patent/JP2009123970A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support frame that can cool a superconductive coil also from the inner peripheral side, in a configuration that axial both end faces of a support frame for a superconductive coil are positioned by abutting them against the inner faces of a cooling container. <P>SOLUTION: A support frame is for a superconductive coil stored in a cooling container filled with a refrigerant. The support frame has a cylindrical shape so as to be arranged on the inner periphery of an annularly-wound superconductive wire while its axial both ends further protrude than axial both ends of the superconductive coil. The axial length of the support frame is set to a length that both axial end faces abut against the opposite inner faces of the cooling container. Cutout are formed on both ends. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超電導コイルの支持枠および超電導コイルユニットに関し、詳しくは、支持枠の形状を改良することにより、該支持枠に超電導線を巻回して形成した超電導コイルを冷却容器内で効率良く冷却するものである。   The present invention relates to a support frame for a superconducting coil and a superconducting coil unit, and more specifically, by improving the shape of the support frame, the superconducting coil formed by winding a superconducting wire around the support frame is efficiently cooled in a cooling vessel. To do.

従来、特開平9−69430号公報(特許文献1)等において、超電導線を巻回して超電導コイルを形成するための巻枠が提供されている。この超電導コイル用巻枠は一般的に円筒状となっており、軸線方向の環状の両端面は平坦面となっている。
前記超電導コイルは極低温の超電導温度に冷却する必要があるため、液体窒素等の冷媒が貯留された冷却容器内に収容されている。
Conventionally, in Japanese Patent Application Laid-Open No. 9-69430 (Patent Document 1) and the like, a winding frame for winding a superconducting wire to form a superconducting coil is provided. The superconducting coil winding frame is generally cylindrical, and both end faces of the ring in the axial direction are flat.
Since the superconducting coil needs to be cooled to a superconducting temperature of extremely low temperature, it is accommodated in a cooling container in which a refrigerant such as liquid nitrogen is stored.

超電導コイルを冷却容器内に位置決め保持して収容するため、図8(A)に示すように、冷却容器1の対向する内面1aに超電導コイルの巻枠2の軸線方向の両端面2aを当接させて超電導コイル3を位置決めしている。あるいは、図8(B)に示すように、円環状筒型の冷却容器1’の内周壁1b’に巻枠2を外嵌して超電導コイル3を位置決めしている。
しかしながら、前記のように、巻枠2の円環状の端面2aを冷却容器の内面に当接させて超電導コイル3を位置決めすると、巻枠2の内周側に冷媒が流入せず、超電導コイル3を内周側から冷却することができないため冷却効率が良くない問題がある。
前記のような超電導線を直接巻回する巻枠に限らず、複数のパンケーキ型の超電導コイルを軸線方向に並設し、これら超電導コイルの巻枠に1つの支持枠を通して一体的に組みつける積層型の超電導コイルにおいても、支持枠で内周側への冷媒の流入が遮断される問題がある。
Since the superconducting coil is positioned and held in the cooling container, both end surfaces 2a in the axial direction of the winding frame 2 of the superconducting coil are brought into contact with the opposing inner surface 1a of the cooling container 1, as shown in FIG. Thus, the superconducting coil 3 is positioned. Alternatively, as shown in FIG. 8B, the superconducting coil 3 is positioned by fitting the winding frame 2 on the inner peripheral wall 1b ′ of the annular cylindrical cooling vessel 1 ′.
However, as described above, when the superconducting coil 3 is positioned by bringing the annular end surface 2a of the winding frame 2 into contact with the inner surface of the cooling container, the refrigerant does not flow into the inner peripheral side of the winding frame 2, and the superconducting coil 3 There is a problem that the cooling efficiency is not good because it cannot be cooled from the inner peripheral side.
The present invention is not limited to a winding frame that directly winds a superconducting wire as described above, but a plurality of pancake-type superconducting coils are arranged side by side in the axial direction, and are integrally assembled to the winding frame of these superconducting coils through one support frame. Even in the laminated superconducting coil, there is a problem that the flow of the refrigerant to the inner peripheral side is blocked by the support frame.

特開平9−69430号公報JP-A-9-69430

本発明は前記問題に鑑みてなされたものであり、超電導コイルの支持枠の軸線方向両端面を冷却容器の内面に当接させて位置決めする構成において、超電導コイルを内周側からも冷却可能とする支持枠を提供することを課題としている。   The present invention has been made in view of the above problems, and in the configuration in which both end surfaces in the axial direction of the support frame of the superconducting coil are in contact with the inner surface of the cooling container, the superconducting coil can be cooled from the inner peripheral side. The problem is to provide a supporting frame.

前記課題を解決するため、本発明は、冷媒が充填される冷却容器内に収容される超電導コイルの支持枠であって、
前記支持枠は、円環状に巻回された超電導線の内周に配置する円筒形状で且つ前記超電導コイルの軸線方向の両端より突出しており、
該支持枠の軸線方向の長さは、該軸線方向の両端面が前記冷却容器の対向する内面と当接する長さに設定し、かつ、該両端に切欠を設けていることを特徴とする超電導コイルの支持枠を提供している。
In order to solve the above problems, the present invention is a support frame for a superconducting coil housed in a cooling container filled with a refrigerant,
The support frame has a cylindrical shape arranged on the inner periphery of a superconducting wire wound in an annular shape, and protrudes from both ends in the axial direction of the superconducting coil,
The length of the support frame in the axial direction is set to a length in which both end surfaces in the axial direction are in contact with the opposing inner surfaces of the cooling vessel, and a notch is provided in both ends. A coil support frame is provided.

前記構成からなる超電導コイルの支持枠によれば、該支持枠の軸線方向の両端面を冷却容器の対向する内面に当接して超電導コイルを冷却容器内で位置決めした状態で、支持枠の軸線方向両端縁に設けた切欠により支持枠の軸線方向両端縁と冷却容器の内面との間に冷媒を通すことのできる隙間を設けることができる。
これにより、前記従来例で示した円環状筒型の冷却容器に超電導コイルを収容する場合には、前記冷媒流通用の切欠を通して支持枠の内周側に配置された冷却容器の内周壁に冷媒を接触させることができ、該内周壁による熱伝導により超電導コイルを内周側からも冷却することができる。
また、前記従来例で示したボックス状の冷却容器に超電導コイルを収容する場合には、前記切欠を通して支持枠内部に冷媒を流入させることができ、該冷媒により超電導コイルを内周側からも冷却することができる。
このように、前記支持枠に切欠を設けたことにより、超電導コイルを内周側からも冷却することができ、効率良く超電導コイルを冷却することができる。
According to the support frame of the superconducting coil having the above-described configuration, the axial direction of the support frame with the superconducting coil positioned in the cooling container with both end surfaces in the axial direction of the support frame contacting the opposing inner surfaces of the cooling container A gap through which the coolant can pass can be provided between the both ends in the axial direction of the support frame and the inner surface of the cooling container by the notches provided at both ends.
As a result, when the superconducting coil is accommodated in the annular cylindrical cooling container shown in the conventional example, the refrigerant is placed on the inner peripheral wall of the cooling container disposed on the inner peripheral side of the support frame through the coolant circulation notch. And the superconducting coil can be cooled from the inner peripheral side by heat conduction through the inner peripheral wall.
Further, when the superconducting coil is accommodated in the box-shaped cooling container shown in the conventional example, the refrigerant can be caused to flow into the support frame through the notch, and the superconducting coil is also cooled from the inner peripheral side by the refrigerant. can do.
Thus, by providing a notch in the support frame, the superconducting coil can be cooled from the inner peripheral side, and the superconducting coil can be efficiently cooled.

前記支持枠は、軸線方向に並設した複数のパンケーキコイルの巻枠に内嵌して貫通させ、前記並設したパンケーキコイルの軸線方向の両端より突出させている。
あるいは、1つの超電導コイルの巻枠自体を前記支持枠としている。
The support frame is inserted into and penetrates the winding frames of a plurality of pancake coils arranged side by side in the axial direction, and protrudes from both ends in the axial direction of the arranged pancake coils.
Alternatively, the winding frame itself of one superconducting coil is used as the support frame.

前記両端に設ける切欠は、軸線方向の対向位置に設けていることが好ましい。
即ち、前記切欠を設けない部位を支持枠の軸線方向の対向位置に設けているため、支持枠の両端面のうち軸線方向に対向する部位をそれぞれ冷却容器の内面に当接させることができ、十分な保持力で超電導コイルを位置決め保持することができる。
なお、支持枠の軸線方向両端面を冷却容器の内面に当接することにより超電導コイルの軸線方向の位置決めは確実にすることができるが、超電導コイルの径方向の位置決めが不十分な場合には、別体のスペーサを用いて超電導コイルを位置決めしてもよい。
The notches provided at both ends are preferably provided at opposite positions in the axial direction.
That is, since the part not provided with the notch is provided at the opposing position in the axial direction of the support frame, the part of the support frame that faces in the axial direction can be brought into contact with the inner surface of the cooling container, The superconducting coil can be positioned and held with a sufficient holding force.
In addition, although the axial positioning of the superconducting coil can be ensured by contacting both axial end surfaces of the support frame with the inner surface of the cooling container, if the radial positioning of the superconducting coil is insufficient, The superconducting coil may be positioned using a separate spacer.

前記軸線方向の両端に設ける切欠は、それぞれ周方向に間隔をあけて複数設け、該切欠を設けた領域の周方向の合計長さを全周長さの半分以下としていることが好ましい。
前記構成によれば、切欠を支持枠周方向の1箇所に集中させず分散させて設けているため、支持枠による冷却容器への位置決め保持力が局所的に大幅に低下するのを防止することができる。また、超電導コイルを前記円環状筒型の冷却容器に収容する場合には、支持枠の内周側に配置された冷却容器の内周壁に広い範囲で冷媒を接触させることができ、偏りなく、かつ、より効率良く超電導コイルを冷却することができる。
さらに、切欠を設けた領域の周方向の合計長さを全周長さの半分以下としているため、支持枠による冷却容器への位置決め保持力が大幅に低下することもない。
It is preferable that a plurality of notches provided at both ends in the axial direction are provided at intervals in the circumferential direction, and the total length in the circumferential direction of the region where the notches are provided is equal to or less than half of the total circumferential length.
According to the above configuration, the notches are provided in a dispersed manner without being concentrated at one place in the circumferential direction of the support frame, and therefore, it is possible to prevent the positioning holding force to the cooling container by the support frame from being significantly reduced locally. Can do. Further, when the superconducting coil is accommodated in the annular cylindrical cooling container, the refrigerant can be brought into contact with the inner peripheral wall of the cooling container disposed on the inner peripheral side of the support frame in a wide range without any bias. And a superconducting coil can be cooled more efficiently.
Furthermore, since the total length in the circumferential direction of the region provided with the notches is set to be half or less of the total circumferential length, the positioning and holding force to the cooling container by the support frame is not significantly reduced.

複数の前記切欠を周方向に30〜90度の間隔をあけて設けていることが好ましい。
前記切欠を設ける間隔を30〜90度としているのは、30度より小さくすると、切欠を多数設けることになって加工工数が増えてしまうからであり、90度より大きくすると円環状筒型の冷却容器に超電導コイルを収容する場合、広い範囲で冷却容器の内周壁に冷媒を接触させることができなくなるからである。
It is preferable that a plurality of the notches are provided at intervals of 30 to 90 degrees in the circumferential direction.
The reason why the interval for providing the notches is 30 to 90 degrees is that if the angle is less than 30 degrees, a large number of notches are provided and the number of processing steps increases. This is because when the superconducting coil is accommodated in the container, the refrigerant cannot be brought into contact with the inner peripheral wall of the cooling container in a wide range.

また、各切欠は周方向に30〜90度の範囲に設けられていることが好ましい。
各切欠を設ける範囲を30〜90度としているのは、30度より小さくすると、切欠を多数設けることになって加工工数が増えてしまうからであり、90度より大きくすると支持枠による冷却容器への位置決め保持力が局所的に大幅に低下してしまうからである。
Moreover, it is preferable that each notch is provided in the range of 30 to 90 degrees in the circumferential direction.
The reason why the notch is provided in the range of 30 to 90 degrees is that if the angle is less than 30 degrees, a large number of notches are provided and the number of processing steps increases. This is because the positioning / holding force is greatly reduced locally.

また、本発明は、前記支持枠を備えた超電導コイルを冷却容器内に収容した超電導コイルユニットを提供している。
前記超電導コイルユニットは、前記冷却容器が、前記支持枠の内周に配置する内周壁と、前記支持枠に支持された超電導コイルの外周側に配置する外周壁と、前記内周壁と外周壁の軸線方向の両端縁を連結する両端側壁を備え、
前記支持枠の軸線方向の両端面を前記冷却容器の両端側壁の内面に当接して狭持固定している。
The present invention also provides a superconducting coil unit in which a superconducting coil having the support frame is accommodated in a cooling container.
The superconducting coil unit includes an inner peripheral wall disposed on an inner periphery of the support frame, an outer peripheral wall disposed on an outer peripheral side of the superconducting coil supported by the support frame, and the inner peripheral wall and the outer peripheral wall. It has both end side walls connecting both end edges in the axial direction,
Both end surfaces of the support frame in the axial direction are in contact with inner surfaces of both side walls of the cooling container to be fixed in a sandwiched manner.

前記構成からなる超電導コイルユニットでは、冷却容器の外周側に導入される冷媒を前記冷媒流通用の切欠を通して支持枠の内周側に流入させている。
よって、前記支持枠を冷却容器の内周壁の外面に接触させて外嵌している場合には、支持枠の両端の切欠を通して流入する冷媒を冷却容器の内周壁に接触させて内周壁を冷却し、冷却された内周壁の冷熱を支持枠を介して超電導コイルに内周側に伝導し、超電導コイルの内周側を冷却することができる。
一方、支持枠の両端を冷却容器の対向する両端側壁に突き当てて位置決め保持し、支持枠の内周面を冷却容器の内周壁に接触させずに隙間を設けている場合には、この隙間に前記切欠を通して冷媒を導入できる。支持枠は内周側に導入した冷媒により効率よく冷却でき、該支持枠の冷熱で超電導コイルの内周側を外周側と同程度に冷却することができる。
In the superconducting coil unit having the above-described configuration, the refrigerant introduced to the outer peripheral side of the cooling container is caused to flow into the inner peripheral side of the support frame through the refrigerant circulation cutout.
Therefore, when the support frame is externally fitted in contact with the outer surface of the inner peripheral wall of the cooling container, the refrigerant flowing through the notches at both ends of the support frame is brought into contact with the inner peripheral wall of the cooling container to cool the inner peripheral wall. Then, the cooled cold of the inner peripheral wall can be conducted to the superconducting coil through the support frame to the inner peripheral side, and the inner peripheral side of the superconducting coil can be cooled.
On the other hand, if both ends of the support frame are abutted against and held by the opposite side walls of the cooling container and the inner peripheral surface of the support frame is not in contact with the inner peripheral wall of the cooling container, a gap is provided. The refrigerant can be introduced through the notch. The support frame can be efficiently cooled by the refrigerant introduced to the inner peripheral side, and the inner peripheral side of the superconducting coil can be cooled to the same extent as the outer peripheral side by the cold heat of the support frame.

また、本発明の支持枠を備えた超電導コイルは、内外槽を備えた冷却容器内に収容していることが好ましい。
前記内外槽はいずれも、外周壁、内周壁および両端側壁を備え、内槽に超電導コイルと冷媒とを収容し、該内槽を真空断熱槽を介して外槽で囲む構成としており、該2重槽とすると外部熱が冷媒に伝導するのを抑制でき、前記内槽に配置する超電導コイルの内周側に冷媒を導通させる作用と相俟って、超電導コイルの冷却性能を高めることができる。
Moreover, it is preferable that the superconducting coil provided with the support frame of the present invention is accommodated in a cooling container provided with an inner and outer tank.
Each of the inner and outer tanks includes an outer peripheral wall, an inner peripheral wall, and both end side walls, a superconducting coil and a refrigerant are accommodated in the inner tank, and the inner tank is surrounded by an outer tank via a vacuum heat insulating tank. When the heavy tank is used, it is possible to suppress the conduction of external heat to the refrigerant, and the cooling performance of the superconducting coil can be enhanced in combination with the action of conducting the refrigerant to the inner peripheral side of the superconducting coil disposed in the inner tank. .

また、超電導コイルをパンケーキコイルの積層型とした場合、モータの界磁側固定子として好適に用いられる。
このように、冷却容器に収容する超電導コイルをモータの界磁側固定子とする場合においては、冷却容器に設ける冷媒流通口は配管と接続しやすい外周壁に設けられ、冷却容器内には超電導コイルの外周側に冷媒が供給され、前記のように、超電導コイルの内周側は冷却されにくくなる。
よって、前記冷却容器の両端側壁に当接する超電導コイルの内周枠の軸線方向の端部に切欠等を設けて、冷媒を超電導コイルの内周側に流入させて、内周壁に冷媒を直接接触させて冷却し、あるいは超電導コイルの内周側の支持枠と内周壁との隙間に冷媒を導入すると超電導コイルの内周側を効率良く冷却することができる。
Further, when the superconducting coil is a pancake coil laminated type, it is preferably used as a field side stator of a motor.
As described above, when the superconducting coil housed in the cooling container is used as the field side stator of the motor, the refrigerant flow port provided in the cooling container is provided on the outer peripheral wall that is easily connected to the piping, and the superconducting is provided in the cooling container. The refrigerant is supplied to the outer peripheral side of the coil, and as described above, the inner peripheral side of the superconducting coil is hardly cooled.
Therefore, a notch or the like is provided at the axial end of the inner peripheral frame of the superconducting coil that contacts both side walls of the cooling container, and the refrigerant is allowed to flow into the inner peripheral side of the superconducting coil so that the refrigerant directly contacts the inner peripheral wall. If the refrigerant is introduced into the gap between the support frame on the inner peripheral side of the superconducting coil and the inner peripheral wall, the inner peripheral side of the superconducting coil can be efficiently cooled.

前述したように、本発明の超電導コイルの支持枠によれば、該支持枠に超電導線を巻回して形成した超電導コイルを冷却容器に収容し、前記支持枠の軸線方向両端面を冷却容器の内面に当接して超電導コイルを冷却容器内で位置決めした状態で、支持枠の軸線方向両端縁に設けた冷媒流通用の切欠により支持枠の軸線方向両端縁と冷却容器の内面との間に冷媒を通すことのできる隙間を設けることができる。
これにより、円環状筒型の冷却容器の場合には、前記切欠を通して冷却容器の内周壁に冷媒を接触させ、該内周壁による熱伝導により超電導コイルを内周側からも冷却することができる。
また、支持枠の軸線方向の両端を冷却容器の両端側壁の内面に突き当てて挟持し、支持壁と冷却容器の内周壁との間に隙間を設けている場合には、前記切欠を通して支持枠内部に冷媒を流入させることができ、該冷媒により超電導コイルを内周側からも冷却することができ、効率良く超電導コイルを冷却することができる。
As described above, according to the superconducting coil support frame of the present invention, the superconducting coil formed by winding the superconducting wire around the support frame is accommodated in the cooling container, and both end surfaces in the axial direction of the supporting frame are connected to the cooling container. With the superconducting coil in contact with the inner surface and positioned in the cooling container, the refrigerant is provided between the axial end edges of the support frame and the inner surface of the cooling container by the coolant circulation notches provided at the axial end edges of the support frame. It is possible to provide a gap through which it can pass.
Thus, in the case of an annular cylindrical cooling vessel, the coolant can be brought into contact with the inner peripheral wall of the cooling vessel through the notch, and the superconducting coil can be cooled also from the inner peripheral side by heat conduction through the inner peripheral wall.
Further, when both ends in the axial direction of the support frame abut against the inner surfaces of both side walls of the cooling container and a gap is provided between the support wall and the inner peripheral wall of the cooling container, the support frame is inserted through the notch. The refrigerant can be introduced into the inside, and the superconducting coil can be cooled from the inner peripheral side by the refrigerant, and the superconducting coil can be efficiently cooled.

本発明の実施形態を図面を参照して説明する。
図1乃至図6に、本発明の第1実施形態を示す。
本実施形態の超電導コイル21の支持枠10(以下、支持枠10と称す)は、ガラス繊維にエポキシ樹脂を含浸させた繊維強化樹脂(FRP)からなる円筒形状の支持枠としている。超電導コイル21は図2に示すように、ダブルパンケーキ型とした複数個(本実施形態では8個)を軸線方向に並設し、各ダブルパンケーキの巻枠25に1本の前記支持枠10を貫通状態に内嵌して積層型としたものであり、支持枠10の軸線方向の両端は超電導コイル21の両端より突出させている。
Embodiments of the present invention will be described with reference to the drawings.
1 to 6 show a first embodiment of the present invention.
The support frame 10 (hereinafter referred to as the support frame 10) of the superconducting coil 21 of the present embodiment is a cylindrical support frame made of fiber reinforced resin (FRP) in which glass fiber is impregnated with epoxy resin. As shown in FIG. 2, the superconducting coil 21 has a plurality of double pancake-types (eight in the present embodiment) arranged in parallel in the axial direction, and one support frame is provided on the winding frame 25 of each double pancake. 10 is inserted into the through state to form a laminated type, and both ends of the support frame 10 in the axial direction protrude from both ends of the superconducting coil 21.

前記支持枠10は図1に示すように、軸線方向Xの両端縁10aには、冷媒流通用の切欠10bを周方向に間隔をあけて設けている。該切欠10bは、図1(A)及び図1(B)に示すように、各端縁10aにそれぞれ3つずつ設けており、図1(A)及び図1(C)に示すように、一端側に設けた切欠10bと他端側に設けた切欠10bとは、それぞれ軸線方向Xに対向する位置に設けている。
本実施形態では、全ての切欠10bを同一形状とし、各切欠10bを周方向に60度の範囲に設け、各切欠10b間に周方向に60度の間隔をあけて、切欠10bを支持枠10の周方向に均等に設け、切欠10bを設けた領域の周方向の合計長さを全周長さの半分としている。
また、支持枠10の軸線方向Xの両端縁のうち、前記切欠10bを設けていない部位の端面10cは、軸線方向Xと直交する平坦面とし、一端側の端面10cを全て同一平面上に設けると共に、他端側の端面10cも全て同一平面上に設けている。
As shown in FIG. 1, the support frame 10 is provided with notches 10 b for circulating refrigerant at circumferential edges in both end edges 10 a in the axial direction X. As shown in FIG. 1 (A) and FIG. 1 (B), the notch 10b is provided in three at each edge 10a, and as shown in FIG. 1 (A) and FIG. 1 (C), The notch 10b provided on one end side and the notch 10b provided on the other end side are provided at positions facing each other in the axial direction X.
In the present embodiment, all the notches 10b have the same shape, the notches 10b are provided in a range of 60 degrees in the circumferential direction, and the notches 10b are spaced from the notches 10b by 60 degrees in the circumferential direction. The total length in the circumferential direction of the region provided with the notches 10b is half of the total circumferential length.
Moreover, the end surface 10c of the site | part which does not provide the said notch 10b among the both ends of the axial direction X of the support frame 10 is made into the flat surface orthogonal to the axial direction X, and all end surfaces 10c of one end side are provided on the same plane. In addition, the end surface 10c on the other end side is also provided on the same plane.

前記超電導コイル21は、帯状のビスマス系酸化物超電導線を円筒状の巻枠に巻回して形成したダブルパンケーキコイルを、前記のように、軸線方向に並設し、隣接するダブルパンケーキの超電導線を順次接続した積層型のコイルとしている。
なお、前記パンケーキコイルはシングルパンケーキコイルとしてもよい。また、支持枠10を巻枠として、支持枠10の外周面に超電導線を直接螺旋状に巻回したソレノイドコイルとしてもよい。
The superconducting coil 21 is a double pancake coil formed by winding a strip-like bismuth-based oxide superconducting wire around a cylindrical winding frame in the axial direction as described above. It is a laminated coil in which superconducting wires are sequentially connected.
The pancake coil may be a single pancake coil. Further, the support frame 10 may be a winding frame, and a solenoid coil in which a superconducting wire is directly spirally wound around the outer peripheral surface of the support frame 10 may be used.

前記超電導コイル21を冷却容器22に収容しており、冷却容器22は円環状筒型としている。該冷却容器22は、超電導コイル21と液体窒素からなる冷媒が収容される内槽28と、該内槽28が真空断熱層Sを介して収容される外槽29を備え、真空断熱層Sにはアルミニウムからなる多層断熱フィルム(図示せず)を収容している。前記内槽28と外槽29は共にステンレスからなる。   The superconducting coil 21 is accommodated in a cooling container 22, and the cooling container 22 has an annular cylindrical shape. The cooling container 22 includes an inner tank 28 in which a superconducting coil 21 and a refrigerant composed of liquid nitrogen are accommodated, and an outer tank 29 in which the inner tank 28 is accommodated via a vacuum heat insulation layer S. Contains a multilayer insulation film (not shown) made of aluminum. Both the inner tank 28 and the outer tank 29 are made of stainless steel.

前記内槽28は、図2に示すように、支持枠10に内嵌する円筒状の内周壁28aと、超電導コイル21の外周側に配置する円筒状の外周壁28bと、内周壁28aと外周壁28bの軸線方向両端縁を連結すると共に超電導コイル21の軸線方向の両側にそれぞれ配置する円環平板状の両端側壁28cからなり、それぞれ縁部を溶接により接続している。
前記支持枠10の軸線方向Xの長さを、該軸線方向の両端面10cが両端側壁28aの対向する内面と当接する長さに設定している。よって、前記支持枠10を内周壁28aに外嵌すると共に軸線方向Xの両端面10cを内槽28の両端側壁28cの内面に当接させて、超電導コイル21を冷却容器22内に位置決めしており、支持枠10に設けた冷媒流通用の切欠10bにより内槽28の両端側壁28cと支持枠10との間に隙間Gを設けている。この隙間Gを通して内槽28の内周壁28aを内槽28の内部に露出させており、冷媒が内周壁28aに直接接触するようにしている。
As shown in FIG. 2, the inner tank 28 includes a cylindrical inner peripheral wall 28 a fitted inside the support frame 10, a cylindrical outer peripheral wall 28 b disposed on the outer peripheral side of the superconducting coil 21, an inner peripheral wall 28 a and an outer periphery. Both end edges in the axial direction of the wall 28b are connected to each other, and both end walls 28c are formed in annular flat plate shapes disposed on both sides in the axial direction of the superconducting coil 21, and the edges are connected by welding.
The length of the support frame 10 in the axial direction X is set to a length where both end surfaces 10c in the axial direction are in contact with the opposing inner surfaces of the both end side walls 28a. Therefore, the superconducting coil 21 is positioned in the cooling vessel 22 by fitting the support frame 10 to the inner peripheral wall 28 a and bringing both end faces 10 c in the axial direction X into contact with the inner faces of the both end side walls 28 c of the inner tank 28. In addition, a gap G is provided between the side walls 28 c of the inner tank 28 and the support frame 10 by a coolant circulation notch 10 b provided in the support frame 10. Through this gap G, the inner peripheral wall 28a of the inner tank 28 is exposed to the inside of the inner tank 28 so that the refrigerant directly contacts the inner peripheral wall 28a.

また、超電導コイル21の軸線方向両端面と内槽28の両端側壁28cの内面との間に銅からなる円柱状の柱状スペーサ30を配置している。柱状スペーサ30は周方向に120度の間隔をあけて支持枠10の切欠10bと対向する位置に配置しており、該柱状スペーサ30により超電導コイル21の位置決めを補強している。   Further, columnar columnar spacers 30 made of copper are disposed between both axial end surfaces of the superconducting coil 21 and inner surfaces of both end side walls 28 c of the inner tank 28. The columnar spacers 30 are arranged at positions facing the notches 10b of the support frame 10 with an interval of 120 degrees in the circumferential direction, and the positioning of the superconducting coil 21 is reinforced by the columnar spacers 30.

一方、外槽29は、図2に示すように、内槽28の内周壁28aの内周側に隙間をあけて配置する円筒状の内周壁29aと、内槽28の外周壁29aの外周側に隙間をあけて配置される円筒状の外周壁29bと、内周壁29aと外周壁29bの軸線方向両端縁を連結すると共に内槽28の両端側壁28cと隙間をあけてそれぞれ配置される円環平板状の両側壁29cからなり、それぞれ溶接により接続している。
また、図2に示すように、内槽28と外槽29の間にスペーサ31を配置して、内槽28を外槽29内に位置決め保持している。
On the other hand, as shown in FIG. 2, the outer tub 29 includes a cylindrical inner peripheral wall 29 a disposed with a gap on the inner peripheral side of the inner peripheral wall 28 a of the inner tub 28, and an outer peripheral side of the outer peripheral wall 29 a of the inner tub 28. A cylindrical outer peripheral wall 29b disposed with a gap between the inner peripheral wall 29a and the outer peripheral wall 29b in the axial direction both ends, and an annular ring disposed with a gap between the both end side walls 28c of the inner tank 28. It consists of flat side walls 29c and is connected by welding.
Further, as shown in FIG. 2, a spacer 31 is disposed between the inner tank 28 and the outer tank 29, and the inner tank 28 is positioned and held in the outer tank 29.

前記冷却容器22の外周壁28b、29bに配管60の内管61と外管62の一端側を接続し、他端側を冷媒を貯留する冷媒タンク50(図3、図4に示す)と接続し、内槽28内に超電導コイル21の外周側に冷媒を供給している。   One end side of the inner pipe 61 and the outer pipe 62 of the pipe 60 is connected to the outer peripheral walls 28b and 29b of the cooling container 22, and the other end side is connected to a refrigerant tank 50 (shown in FIGS. 3 and 4) for storing refrigerant. The refrigerant is supplied to the outer peripheral side of the superconducting coil 21 in the inner tank 28.

前記のように冷却容器22の内槽28内に、支持枠10に外嵌した界磁コイル(超電導コイル)21を収容し、支持枠10の軸線方向両端面10cを冷却容器22の内槽28の両端側壁28cの内面に当接して超電導コイル21を冷却容器22内で位置決めしている。該状態で、内槽28の外周壁28bに取り付けた配管60より流入した冷媒は、支持枠10の両端の切欠10bを通して支持枠10の内周側に流入する。よって、支持枠10の内周に配置された冷却容器22の内周壁28aに冷媒を接触させることができ、該内周壁28aによる熱伝導により超電導コイル21を内周側からも冷却することができる。   As described above, the field coil (superconducting coil) 21 fitted on the support frame 10 is accommodated in the inner tank 28 of the cooling container 22, and both axial end faces 10 c of the support frame 10 are connected to the inner tank 28 of the cooling container 22. The superconducting coil 21 is positioned in the cooling container 22 in contact with the inner surfaces of both end side walls 28c. In this state, the refrigerant flowing from the pipe 60 attached to the outer peripheral wall 28b of the inner tank 28 flows into the inner peripheral side of the support frame 10 through the notches 10b at both ends of the support frame 10. Therefore, the refrigerant can be brought into contact with the inner peripheral wall 28a of the cooling container 22 disposed on the inner periphery of the support frame 10, and the superconducting coil 21 can be cooled from the inner peripheral side by heat conduction through the inner peripheral wall 28a. .

また、支持枠10の切欠10bを支持枠10の周方向に均等に設けているため、冷却容器22の内周壁28aに周方向に均等に冷媒を接触させることができ、かつ、切欠10bを巻枠の強度が低下しない範囲で設けているため、超電導コイル21を十分な保持力で冷却容器22内に位置決めすることができる。   Further, since the notches 10b of the support frame 10 are provided uniformly in the circumferential direction of the support frame 10, the coolant can be evenly contacted with the inner peripheral wall 28a of the cooling container 22 in the circumferential direction, and the notch 10b is wound. Since it is provided in a range where the strength of the frame does not decrease, the superconducting coil 21 can be positioned in the cooling container 22 with a sufficient holding force.

前記支持枠10で支持した超電導コイル21を冷却容器22内に収容した超電導コイルユニット26は、図3〜図6に示すように超電導モータ100の界磁側固定子として用いている。
超電導モータ100は、超電導コイル21を備えた界磁側固定子(以下、固定子と称する)20の中空部に電機子側回転子(以下、回転子と称する)40を回転自在に貫通し、前記固定子20に誘導子を設けたクローポール型のモータとしている。
The superconducting coil unit 26 in which the superconducting coil 21 supported by the support frame 10 is accommodated in the cooling container 22 is used as a field side stator of the superconducting motor 100 as shown in FIGS.
The superconducting motor 100 passes through an armature-side rotor (hereinafter referred to as a rotor) 40 rotatably in a hollow portion of a field-side stator (hereinafter referred to as a stator) 20 provided with a superconducting coil 21, The stator 20 is a claw pole type motor in which an inductor is provided.

前記固定子20は、前記超電導コイルユニット26と、該超電導コイルユニット26の軸線方向Xの両端にそれぞれ配置される第1ヨーク23と第2ヨーク24とを組み合わせて形成している。
前記各第1、第2ヨーク23、24の内周側に磁極を形成する誘導子23c、24cを突設すると共に、該誘導子23c、24cで囲まれる中空部に隙間をあけて回転子40を回転自在に貫通し、該回転子40の外周に周方向に等間隔をあけて誘導子23cと24cとを交互に配置している。
本実施形態では、前記回転子20を軸線方向Xに2個並設し、円筒体からなる外周ハウジング43に内嵌して支持している。
The stator 20 is formed by combining the superconducting coil unit 26 and a first yoke 23 and a second yoke 24 respectively disposed at both ends in the axial direction X of the superconducting coil unit 26.
Inductors 23c and 24c for forming magnetic poles are provided on the inner peripheral sides of the first and second yokes 23 and 24, and the rotor 40 is provided with a gap in a hollow portion surrounded by the inductors 23c and 24c. The inductors 23c and 24c are alternately arranged on the outer periphery of the rotor 40 at equal intervals in the circumferential direction.
In the present embodiment, two rotors 20 are arranged side by side in the axial direction X, and are fitted into and supported by an outer peripheral housing 43 made of a cylindrical body.

超電導コイルユニット26の冷却容器22は、前記のように配管60を介して冷媒タンク50と接続している。
前記冷媒タンク50は冷媒が貯蔵される内槽51と、該内槽51が真空断熱層Sを介して収容される外槽52を備え、内槽51と外槽52は上端位置で溶接により連結し、内装51の上面開口には蓋53を被せて取り付けている。
The cooling container 22 of the superconducting coil unit 26 is connected to the refrigerant tank 50 via the pipe 60 as described above.
The refrigerant tank 50 includes an inner tank 51 in which refrigerant is stored, and an outer tank 52 in which the inner tank 51 is accommodated via a vacuum heat insulating layer S. The inner tank 51 and the outer tank 52 are connected by welding at the upper end position. The upper surface opening of the interior 51 is attached with a lid 53.

前記配管60は冷却容器22の内槽28と冷媒タンク50の内槽51を連結する内管61と、冷却容器22の外槽29と冷媒タンク50の外槽52を連結すると共に内管61を真空断熱層Sを介して囲む外管62を備え、これら内管61と外管62に蛇腹形状部61a、62aを設けて弾性を付与している。
前記冷媒タンク50の真空断熱層Sおよび配管60の真空断熱層Sにもアルミニウムと樹脂からなる多層断熱シートを収容している。
The piping 60 connects the inner tank 61 of the cooling container 22 and the inner tank 51 of the refrigerant tank 50, connects the outer tank 29 of the cooling container 22 and the outer tank 52 of the refrigerant tank 50, and connects the inner pipe 61. An outer tube 62 is provided that surrounds the vacuum heat insulating layer S, and the inner tube 61 and the outer tube 62 are provided with bellows-shaped portions 61a and 62a to give elasticity.
The vacuum heat insulating layer S of the refrigerant tank 50 and the vacuum heat insulating layer S of the pipe 60 also contain a multilayer heat insulating sheet made of aluminum and resin.

前記配管60には、さらに強度保持用のタンク保持筒63を外嵌しており、該タンク保持筒63の筒部63aの上端に設けたフランジ63bを冷媒タンク50の外槽52の底壁部にボルト締め固定すると共に、下端に設けたフランジ63cを界磁側固定子20に外嵌した外周ハウジング43の上面側にボルト締め固定している。該タンク保持筒63を介して冷媒タンク50をモータ本体の上方に位置決め保持している。
また、超電導コイル21に接続した端子材27を配管60を通して冷媒タンク50内に突出させており、冷媒タンク50の蓋53に設けた貫通穴(図示せず)を介して冷媒タンク50内に引き込んだリード線(図示せず)を端子材27に接続している。
Further, a strength holding tank holding tube 63 is fitted on the pipe 60, and a flange 63 b provided at the upper end of the tube portion 63 a of the tank holding tube 63 is provided at the bottom wall portion of the outer tank 52 of the refrigerant tank 50. The flange 63c provided at the lower end is bolted to the upper surface side of the outer peripheral housing 43 fitted on the field side stator 20. The refrigerant tank 50 is positioned and held above the motor body via the tank holding cylinder 63.
Further, the terminal material 27 connected to the superconducting coil 21 protrudes into the refrigerant tank 50 through the pipe 60 and is drawn into the refrigerant tank 50 through a through hole (not shown) provided in the lid 53 of the refrigerant tank 50. A lead wire (not shown) is connected to the terminal member 27.

前記冷却容器22に外嵌される第1ヨーク23と第2ヨーク24は鉄からなる。
これら第1、第2ヨーク23、24は、図6に示すように、超電導コイル21の軸線方向の両端面と対向する位置に配置される円環平板状の側端壁部23a、24aと、該側端壁部23a、24aの外周縁より突出すると共に超電導コイル21の外周側を囲む外周壁部23b、24bと、前記側端壁部23a、24aの内周縁より突出する爪状の誘導子23c、24cを備えている。
誘導子23c、24cは先端から基端にかけて幅を大きくした台形形状とし、周方向に湾曲させて超電導コイル21の内周面と回転子40の外周面の間に配置し、回転子40の外周面に隙間をあけて沿う形状としている。
第1ヨーク23の誘導子23cは左右対向位置に2つ突設する一方、第2ヨーク24の誘導子24cは上下対向位置に2つ突設して、第1、第2ヨーク23、24を冷却容器22に軸線方向両側から外嵌したときに、図4(B)に示すように、第1ヨーク23の誘導子23cと第2ヨーク24の誘導子24cが周方向に90度間隔をあけて交互に配置されるようにしている。
The first yoke 23 and the second yoke 24 that are externally fitted to the cooling container 22 are made of iron.
As shown in FIG. 6, the first and second yokes 23 and 24 are annular flat plate-shaped side end wall portions 23 a and 24 a disposed at positions facing both end surfaces of the superconducting coil 21 in the axial direction. The outer peripheral wall portions 23b and 24b projecting from the outer peripheral edge of the side end wall portions 23a and 24a and surrounding the outer peripheral side of the superconducting coil 21, and the claw-shaped inductor protruding from the inner peripheral edge of the side end wall portions 23a and 24a 23c and 24c.
The inductors 23c and 24c are trapezoidal in shape with a width increasing from the front end to the base end, curved in the circumferential direction and disposed between the inner peripheral surface of the superconducting coil 21 and the outer peripheral surface of the rotor 40. The shape follows the surface with a gap.
Two inductors 23c of the first yoke 23 project from the left and right opposing positions, while two inductors 24c of the second yoke 24 project from the upper and lower opposing positions to connect the first and second yokes 23 and 24 to each other. When externally fitted to the cooling container 22 from both sides in the axial direction, as shown in FIG. 4B, the inductor 23c of the first yoke 23 and the inductor 24c of the second yoke 24 are spaced by 90 degrees in the circumferential direction. Are arranged alternately.

第1、第2ヨーク23、24の外周壁部23b、24bには、第2ヨーク24の誘導子24cと対向する上端位置に配管60を貫通させるための半円形状の切欠23d、24dを設けている。
また、第1ヨーク23の誘導子23cと対向する側方位置に連結固定用のボルト穴23e、24eを有する軸線方向の挿通溝23f、24fを凹設している。
第1ヨーク23と第2ヨーク24とは、冷却容器22を軸線方向の両側から挟み込んで外嵌した状態で互いの外周壁部23b、24bの先端面を付き合わせ、挿通溝23f、24fに締結片32を嵌め込んでボルト締めにより連結固定している。
なお、第1、第2ヨーク23、24は磁性を有するステンレスにより形成してもよい。
Semicircular cutouts 23d and 24d for penetrating the pipe 60 are provided on the outer peripheral wall portions 23b and 24b of the first and second yokes 23 and 24 at the upper end position facing the inductor 24c of the second yoke 24. ing.
Further, axial insertion grooves 23f and 24f having bolt holes 23e and 24e for connecting and fixing are provided in the side positions of the first yoke 23 facing the inductor 23c.
The first yoke 23 and the second yoke 24 are attached to the insertion grooves 23f and 24f with the front end surfaces of the outer peripheral wall portions 23b and 24b attached to each other with the cooling container 22 sandwiched from both sides in the axial direction. The piece 32 is fitted and fixed by bolting.
The first and second yokes 23 and 24 may be formed of magnetic stainless steel.

前記並設した固定子20A、20Bを外周ハウジング43で内嵌支持し、該外周ハウジング43の軸線方向の両端に両側支持材41を組みつけている。該両側支持材41は円筒状の周壁部41aと、該周壁部41aの軸線方向Xの外端面を閉鎖する円形状の側壁部41bからなる。両側の側壁部41bの中心に設けた貫通穴41cに軸受42を介して回転子40の軸線方向両側の軸部40aを回転自在に支持している。
また、回転子40の軸部40aに冷却ファンを構成する羽根部40bを突設し、該羽根部40bを超電導モータ10内に配置している。
前記回転子40には銅線からなる電機子コイル(図示せず)を設けると共に、支持材41にブラシ(図示せず)を固定し、回転子40の軸部に固定した整流子(図示せず)が接触して、回転子40の電機子コイルに電流が流れる構成としている。
The stators 20 </ b> A and 20 </ b> B arranged side by side are fitted and supported by the outer peripheral housing 43, and both side support members 41 are assembled to both ends of the outer peripheral housing 43 in the axial direction. The both-side support member 41 includes a cylindrical peripheral wall portion 41a and a circular side wall portion 41b that closes the outer end surface of the peripheral wall portion 41a in the axial direction X. The shaft portions 40a on both sides in the axial direction of the rotor 40 are rotatably supported via bearings 42 in through holes 41c provided at the centers of the side wall portions 41b on both sides.
Further, a blade portion 40 b constituting a cooling fan is projected from the shaft portion 40 a of the rotor 40, and the blade portion 40 b is disposed in the superconducting motor 10.
The rotor 40 is provided with an armature coil (not shown) made of copper wire, a brush (not shown) is fixed to the support member 41, and a commutator (not shown) is fixed to the shaft portion of the rotor 40. 2) in contact with each other, and a current flows through the armature coil of the rotor 40.

前記構成からなる超電導モータ100において、界磁コイルに直流電流を流すと、界磁コイルの軸線方向一端に配置した第1ヨーク23が例えばN極に磁化され、第1ヨーク23の誘導子23cによりN極の磁極が形成される。一方、他端に配置した第2ヨーク24がS極に磁化され、第2ヨーク24の誘導子24cによりS極の磁極が形成される。これにより、N極の磁極とS極の磁極が周方向に交互に配置された界磁側の磁極が形成される。   In the superconducting motor 100 having the above-described configuration, when a direct current is passed through the field coil, the first yoke 23 disposed at one end in the axial direction of the field coil is magnetized to, for example, the N pole, and is induced by the inductor 23c of the first yoke 23. N poles are formed. On the other hand, the second yoke 24 arranged at the other end is magnetized to the south pole, and the south pole magnetic pole is formed by the inductor 24 c of the second yoke 24. As a result, a field-side magnetic pole is formed in which N-pole magnetic poles and S-pole magnetic poles are alternately arranged in the circumferential direction.

前記回転子40に直流電流を供給すると、N極である第1ヨーク23の誘導子23cと対向する電機子コイルにN極が形成されると共に、S極である第2ヨーク24の誘導子24cと対向する電機子コイルにS極が形成されることにより、回転子40に回転力が発生して、該回転子40が回転する。
回転子40が回転すると、軸部40aに設けた羽根部40bも回転し、超電導モータ10を駆動させることにより発生した熱を効率良く外部へ放熱することができる。
なお、本実施形態では、銅線(常電導線)で電機子コイルを形成しているが、電機子コイルも超電導線により形成してもよい。
When a direct current is supplied to the rotor 40, an N pole is formed in the armature coil facing the inductor 23c of the first yoke 23, which is the N pole, and an inductor 24c of the second yoke 24, which is the S pole. The S pole is formed in the armature coil that is opposed to the rotor arm 40, so that a rotational force is generated in the rotor 40 and the rotor 40 rotates.
When the rotor 40 rotates, the blade portion 40b provided on the shaft portion 40a also rotates, and heat generated by driving the superconducting motor 10 can be efficiently radiated to the outside.
In this embodiment, the armature coil is formed of a copper wire (normal conducting wire), but the armature coil may be formed of a superconducting wire.

前記した超電導モータでは、界磁コイルとする超電導コイル21の支持枠10の両端に切欠を設け、超電導コイル21の内周側に冷媒を流通させ、冷却容器22の内周壁28aに冷媒を接触させているため、超電導コイル21の内周側を効率よく冷却でき、超電導コイル21の性能を高めることができる。   In the above-described superconducting motor, notches are provided at both ends of the support frame 10 of the superconducting coil 21 serving as a field coil, the refrigerant is circulated on the inner peripheral side of the superconducting coil 21, and the refrigerant is brought into contact with the inner peripheral wall 28a of the cooling container 22. Therefore, the inner peripheral side of the superconducting coil 21 can be efficiently cooled, and the performance of the superconducting coil 21 can be improved.

図7に、本発明の第2実施形態を示す。
本実施形態では、第1実施形態と同様の支持枠10に超電導線を巻回して形成した超電導コイル21’をボックス状の冷却容器22’に収容した超電導コイルユニット26’としている。
本実施形態では、支持枠10を巻枠としており、支持枠10の外周面に超電導線を螺旋状に直線巻回したソレノイドコイルとしている。
FIG. 7 shows a second embodiment of the present invention.
In the present embodiment, a superconducting coil 21 ′ formed by winding a superconducting wire around a support frame 10 similar to the first embodiment is a superconducting coil unit 26 ′ accommodated in a box-shaped cooling vessel 22 ′.
In the present embodiment, the support frame 10 is used as a winding frame, and a solenoid coil is formed by spirally winding a superconducting wire around the outer peripheral surface of the support frame 10.

冷却容器22’は、超電導コイル21’と液体窒素からなる冷媒が収容されるボックス状の内槽28’と、該内槽28’が真空断熱層Sを介して収容されるボックス状の外槽29’を備え、真空断熱層Sにはアルミニウムからなる多層断熱フィルム(図示せず)を収容している。前記内槽28’と外槽29’は共にステンレスからなる。また、内槽28’と外槽29’の間にスペーサ31’を配置して、内槽28’を外槽29’内に位置決めしている。また、内槽28’に内管61’を接続する一方、外槽29’に内管61’を隙間をあけて囲む外管62’を接続しており、該内管61’と外管62’からなる配管60’を介して冷却容器22’に冷媒タンク(図示せず)を接続している。   The cooling vessel 22 ′ includes a box-shaped inner tank 28 ′ in which a superconducting coil 21 ′ and a refrigerant composed of liquid nitrogen are accommodated, and a box-shaped outer tank in which the inner tub 28 ′ is accommodated via a vacuum heat insulating layer S. 29 ', and the vacuum heat insulating layer S accommodates a multilayer heat insulating film (not shown) made of aluminum. Both the inner tub 28 'and the outer tub 29' are made of stainless steel. Further, a spacer 31 ′ is disposed between the inner tank 28 ′ and the outer tank 29 ′ so that the inner tank 28 ′ is positioned in the outer tank 29 ′. In addition, an inner pipe 61 ′ is connected to the inner tank 28 ′, while an outer pipe 62 ′ surrounding the inner pipe 61 ′ with a gap is connected to the outer tank 29 ′. The inner pipe 61 ′ and the outer pipe 62 are connected to each other. A refrigerant tank (not shown) is connected to the cooling container 22 ′ through a pipe 60 made of “.

前記支持枠10の軸線方向Xの両端面10cを内槽28’の両側壁28c’の内面に当接させて、超電導コイル21’を冷却容器22’内で軸線方向Xに位置決めしており、支持枠10に設けた冷媒流通用の切欠10bを通して支持枠10内に冷媒を流入させている。
また、冷却容器22’の内槽28’の底壁28d’と支持枠10の間にもスペーサ33を配置して超電導コイル21’を径方向にも位置決めしている。
Both end surfaces 10c in the axial direction X of the support frame 10 are brought into contact with the inner surfaces of both side walls 28c ′ of the inner tank 28 ′, and the superconducting coil 21 ′ is positioned in the axial direction X within the cooling vessel 22 ′. The coolant is caused to flow into the support frame 10 through the coolant circulation notch 10 b provided in the support frame 10.
Further, a spacer 33 is also disposed between the bottom wall 28d ′ of the inner tank 28 ′ of the cooling container 22 ′ and the support frame 10 to position the superconducting coil 21 ′ in the radial direction.

前記構成によれば、支持枠10に設けた冷媒流通用の切欠10bを通して支持枠10内部に冷媒を流入させることができ、該冷媒により超電導コイル21’を内周側からも冷却することができる。
なお、他の構成及び作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
According to the said structure, a refrigerant | coolant can be poured in into the support frame 10 through the notch 10b for refrigerant | coolant distribution | circulation provided in the support frame 10, and superconducting coil 21 'can be cooled also from an inner peripheral side with this refrigerant | coolant. .
In addition, since another structure and an effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

前記実施の形態はすべての点で例示であって、これら実施形態に限定されず、本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の範囲内でのすべての変更が含まれる。   The above-described embodiments are exemplifications in all points, and are not limited to these embodiments. The scope of the present invention is indicated by the scope of claims, and all modifications within the scope equivalent to the scope of claims are made. Is included.

本発明の巻枠に超電導線を巻回して形成した超電導コイルは、自動車等の駆動用モータや、その他発電機、変圧器、超電導電力貯蔵装置(SMES)等の超電導機器に用いられるものである。   A superconducting coil formed by winding a superconducting wire around a winding frame of the present invention is used for a superconducting device such as a driving motor for automobiles, other generators, transformers, superconducting power storage devices (SMES), and the like. .

本発明の第1実施形態の巻枠を示し、(A)は斜視図、(B)は平面図、(C)は正面図である。The winding frame of 1st Embodiment of this invention is shown, (A) is a perspective view, (B) is a top view, (C) is a front view. 超電導コイルを冷却容器に収容した状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the state which accommodated the superconducting coil in the cooling container. 超電導モータの断面斜視図である。It is a cross-sectional perspective view of a superconducting motor. (A)は超電導モータの軸線方向の断面図、(B)は超電導モータの径方向の概略断面図である。(A) is sectional drawing of the axial direction of a superconducting motor, (B) is a schematic sectional drawing of the radial direction of a superconducting motor. 界磁側固定子の断面斜視図である。It is a cross-sectional perspective view of a field side stator. 界磁側固定子の分解斜視図である。It is a disassembled perspective view of a field side stator. 第2実施形態を示す図面である。It is drawing which shows 2nd Embodiment. (A)(B)は従来例を示す図面である。(A) (B) is drawing which shows a prior art example.

符号の説明Explanation of symbols

10 超電導コイルの支持枠
10b 冷媒流通用の切欠
10c 両端面
20 界磁側固定子
21 界磁コイル(超電導コイル)
22 冷却容器
26 超電導コイルユニット
28 内槽
29 外槽
30 柱状スペーサ
40 電機子側回転子
50 冷媒タンク
60 配管
100 超電導モータ
DESCRIPTION OF SYMBOLS 10 Support frame of superconducting coil 10b Notch for refrigerant distribution 10c Both end faces 20 Field side stator 21 Field coil (superconducting coil)
22 Cooling container 26 Superconducting coil unit 28 Inner tank 29 Outer tank 30 Columnar spacer 40 Armature side rotor 50 Refrigerant tank 60 Piping 100 Superconducting motor

Claims (6)

冷媒が充填される冷却容器内に収容される超電導コイルの支持枠であって、
前記支持枠は、円環状に巻回された超電導線の内周に配置する円筒形状で且つ前記超電導コイルの軸線方向の両端より突出しており、
該支持枠の軸線方向の長さは、該軸線方向の両端面が前記冷却容器の対向する内面と当接する長さに設定し、かつ、該両端に切欠を設けていることを特徴とする超電導コイルの支持枠。
A superconducting coil support frame accommodated in a cooling container filled with a refrigerant,
The support frame has a cylindrical shape arranged on the inner periphery of a superconducting wire wound in an annular shape, and protrudes from both ends in the axial direction of the superconducting coil,
The length of the support frame in the axial direction is set to a length in which both end surfaces in the axial direction are in contact with the opposing inner surfaces of the cooling vessel, and a notch is provided in both ends. Coil support frame.
前記支持枠は、軸線方向に並設した複数の超電導パンケーキコイルの巻枠に内嵌して貫通させ、前記並設したパンケーキコイルの軸線方向の両端より突出させており、
あるいは、1つの超電導コイルの巻枠自体を前記支持枠としている請求項1に記載の超電導コイルの支持枠。
The support frame is inserted into and penetrates the winding frames of a plurality of superconducting pancake coils arranged side by side in the axial direction, and protrudes from both ends in the axial direction of the arranged pancake coils,
Alternatively, the support frame for a superconducting coil according to claim 1, wherein the winding frame itself of one superconducting coil is used as the support frame.
前記両端に設ける切欠は、軸線方向の対向位置に設けている請求項1または請求項2に記載の超電導コイルの支持枠。   The support frame for a superconducting coil according to claim 1 or 2, wherein the notches provided at both ends are provided at opposite positions in the axial direction. 前記軸線方向の両端に設ける切欠は、それぞれ周方向に間隔をあけて複数設け、該切欠を設けた領域の周方向の合計長さを全周長さの半分以下としている請求項1乃至請求項3のいずれか1項に記載の超電導コイルの支持枠。   A plurality of notches provided at both ends in the axial direction are provided at intervals in the circumferential direction, and the total length in the circumferential direction of the region in which the notches are provided is equal to or less than half of the total circumferential length. 4. A support frame for a superconducting coil according to any one of 3 above. 複数の前記切欠を周方向に30〜90度の間隔をあけて設けている請求項4に記載の超電導コイルの支持枠。   The superconducting coil support frame according to claim 4, wherein the plurality of notches are provided at intervals of 30 to 90 degrees in the circumferential direction. 請求項1乃至請求項5のいずれか1項に記載の支持枠を備えた超電導コイルを冷却容器内に収容しており、
前記冷却容器は、前記支持枠の内周に配置する内周壁と、前記支持枠に支持された超電導コイルの外周側に配置する外周壁と、前記内周壁と外周壁の軸線方向の両端縁を連結する両端側壁を備え、
前記支持枠の軸線方向の両端面を前記冷却容器の両端側壁の内面に当接して狭持固定していることを特徴とする超電導コイルユニット。
A superconducting coil comprising the support frame according to any one of claims 1 to 5 is housed in a cooling container,
The cooling container includes an inner peripheral wall disposed on the inner periphery of the support frame, an outer peripheral wall disposed on the outer peripheral side of the superconducting coil supported by the support frame, and both end edges in the axial direction of the inner peripheral wall and the outer peripheral wall. With both side walls to connect,
A superconducting coil unit characterized in that both end faces in the axial direction of the support frame are held in contact with inner faces of both end side walls of the cooling container.
JP2007297275A 2007-11-15 2007-11-15 Support frame for superconductive coil, and superconductive coil unit Withdrawn JP2009123970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297275A JP2009123970A (en) 2007-11-15 2007-11-15 Support frame for superconductive coil, and superconductive coil unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297275A JP2009123970A (en) 2007-11-15 2007-11-15 Support frame for superconductive coil, and superconductive coil unit

Publications (1)

Publication Number Publication Date
JP2009123970A true JP2009123970A (en) 2009-06-04

Family

ID=40815797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297275A Withdrawn JP2009123970A (en) 2007-11-15 2007-11-15 Support frame for superconductive coil, and superconductive coil unit

Country Status (1)

Country Link
JP (1) JP2009123970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496439A (en) * 2011-12-01 2012-06-13 西部超导材料科技有限公司 Framework applied to superconductive solenoid magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496439A (en) * 2011-12-01 2012-06-13 西部超导材料科技有限公司 Framework applied to superconductive solenoid magnet

Similar Documents

Publication Publication Date Title
JP3944140B2 (en) Claw pole motor stator
US8264107B2 (en) AFPM coreless multi-generator and motor
JP4890119B2 (en) Superconducting coil device and inductor type synchronous machine
JP2006187055A (en) Axial gap motor
EP1830452A1 (en) Cooling structure of superconducting motor
JP2010154740A (en) Slim type stator, manufacturing method thereof, slim type motor including slim type stator and directly connected drive apparatus for drum-washing machine
JP4593963B2 (en) Superconducting multipolar electrical machine
JP2009201343A (en) Permanent magnet rotating electrical machine
JP2016220298A (en) Axial gap type rotary electric machine
JP2007089345A (en) Cooling structure of superconducting motor
JP3936340B2 (en) Superconducting synchronous machine
JP4983561B2 (en) Superconducting motor
JP6402739B2 (en) Rotating electric machine
JP2022114761A (en) motor cooling structure
JP2008005654A (en) Inductor type synchronous machine
JP2000270502A (en) Rotating machine
WO2022196193A1 (en) Superconducting motor
JP2009123970A (en) Support frame for superconductive coil, and superconductive coil unit
JP2007060747A (en) Superconducting motor and vehicle equipped with that motor
JP2009170724A (en) Cooling vessel of superconductive coil
US7791246B2 (en) Axial motor
JP2009170716A (en) Cooling vessel of superconducting coil
JP2008001280A (en) Marine propulsion apparatus
KR101493288B1 (en) Stator and superconducting rotating machine having the same
JP6254926B2 (en) Axial gap type brushless motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201