JP5305548B2 - 移動体識別方法及び装置 - Google Patents
移動体識別方法及び装置 Download PDFInfo
- Publication number
- JP5305548B2 JP5305548B2 JP2011196218A JP2011196218A JP5305548B2 JP 5305548 B2 JP5305548 B2 JP 5305548B2 JP 2011196218 A JP2011196218 A JP 2011196218A JP 2011196218 A JP2011196218 A JP 2011196218A JP 5305548 B2 JP5305548 B2 JP 5305548B2
- Authority
- JP
- Japan
- Prior art keywords
- time
- block
- image
- motion vector
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Closed-Circuit Television Systems (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
Description
(a)時刻(t−1)のフレーム画像と時刻tのフレーム画像との相関関係に基づき時刻tのフレーム画像中の移動体を識別し、
(b)第1移動体に対する第2移動体の相対動作の特徴量を観測量として検出し、該観測量の時系列を観測系列として記憶し、
(c)該観測系列の参照系列に対する類似度を算出して移動体間動作を分類し、
(d)該観測系列の衝突参照系列に対する該類似度が設定値より大きい場合、衝突事故であると判定する。
(a)該識別IDがIDjである時刻(t−1)のブロックjをその動きベクトルVjで移動させたときの、時刻tの画像フレーム中の対応するブロックiの枠を、−Vj移動させ、移動した枠内の時刻(t−1)の画像と、時刻tのブロックiの画像との相関度に関係した評価値を計算し、
(b)該識別IDがIDkである時刻(t−1)のブロックkをその動きベクトルVkで移動させたときの、時刻tの画像フレーム中の対応する該ブロックjの枠を、−Vk移動させ、移動した枠内の時刻(t−1)の画像と、該時刻tのブロックjの画像との該相関度に関係した評価値を計算し、
(c)ステップ(a)と(b)で算出された評価値の大小関係に基づいて、該時刻tのブロックiがIDjであるかIDkであるかを決定する。
上記ステップ(b)の評価値は、該時刻tのブロックiの識別IDがIDkであると仮定したときの時刻(t−1)の対応するブロックnの動きベクトルVCn(t−1)と、時刻(t−1)のブロックnと隣接する、識別IDがIDkであるブロックの動きベクトルVBq(t−1)、q=1〜Nbとの差の絶対値|VCn(t−1)−VBq(t−1)|に関する量のqについての総和を含む。
図8(B):{1,1,1,1,1,1,1,1,1,1,1}
図9(A):{1,1,2,2,3,1,1,1,1,1,1}
図9(B):{1,1,2,2,3,1,1,1,1,1,1}
これらの観測系列から明らかなように、図8(A)、図9(A)及び図9(B)の観測系列からこれらの相対動作を識別することができない。そこで、これらの相対動作を識別可能にするために、移動体M1に対する移動体M2の相対位置ベクトルを図7に示すように量子化して第2スカラーとする。すなわち、相対位置ベクトルP12の始点を中心とし、移動体M1の動きベクトルV1の方向を基準方向とし、図7に点線で示すように領域を分割し、各領域をスカラーで表し、相対位置ベクトルP12をその終点が属する領域のスカラーに量子化する。
図8(B):{21,21,41,41,41,41,41,41,41,61,61}
図9(A):{61,61,42,42,43,41,41,41,41,21,21}
図9(B):{21,21,42,42,43,41,41,41,41,61,61}
第1スカラーと、移動体M1を基準にした第2スカラーとの和を観測量とすると、図8(A)、図8(B)、図9(A)及び図9(B)の観測系列はそれぞれ次のようになる。
図8(B):{21,21,41,41,41,41,41,41,41,61,61}
図9(A):{21,21,82,82,83,81,81,81,81,61,61}
図9(B):{61,61,82,82,83,81,81,81,81,21,21}
図7中に矢印付直線で示すように第2スカラーが、20→80→60のように変化する場合をPAS0、20→40→60のように変化する場合をPAS1、60→40→20のように変化する場合をPAS2、60→80→20のように変化する場合をPAS3と分類する。また、移動体M1から見た移動体M2の相対位置ベクトルの変化がPASkであり、移動体M2から見た移動体M1の相対位置の変化がPASmである場合、この変化をPASkmで表す。
(1)移動体M1とM2の相対動作が衝突と分類され、
(2)移動体M1又はM2が停止禁止領域内に停止しており、
(3)他の車が交差点で移動している
場合には、移動体M1とM2が衝突であると判定する。
ここにSP(t−1:i,j)及びBP(t:i,j)はそれぞれ、図16の枠SBR2内及び図17のブロックB(t:18,11)内の第i行第j列のピクセルの値であり、Σはi=1〜8及びj=1〜8についての総和(ブロック内全画素についての総和)を意味している。評価値UDの値が小さいほど相関度が高い。
|V(18−i,11−j)−V(t−1:i,j)|<ΔV
を満たすV(t−1:i,j)をもつブロックB(t−1:i,j)を見つければよい。ここにΔVは定数であり、例えばブロックの1辺の画素数の3倍の値である。ブロックB(t:18,11)に対応するクラスタC12内のブロックが複数有り、又は、ブロックB(t:18,11)に対応するクラスタクラスタC3内のブロックが複数有る場合には、その各々についての評価値を求め、最も小さい評価値に対応したIDをブロックB(t:18,11)に付与する。
評価値UDの値が小さいほど相関度が高い。同様にブロックB(t:18,11)のIDがID12であると仮定し、枠SBR2内の、クラスタC12に属する画素数Sを求めて評価値USを計算し、この値をUS(ID12)とする。図16と図17の場合には、US(ID12)=0であり、US(ID3)>US(ID12)である。
評価値UNの値が小さいほど相関度が高い。同様に図17中のブロックB(t:18,11)がID12であると仮定した場合、ブロックB(t:18,11)に隣接した8個のブロックについて、ID12が付与されている個数Nを求め、評価値UNを計算し、この値をUN(ID12)とする。
ここにΣはi=1〜NXについての総和を意味する。評価値UVの値が小さいほど相関度が高い。同様に、ブロックB(t:18,11)がID12であると仮定して求められた、時刻(t−1)の対応するブロックB(t−1:11,13)の動きベクトルVC=V2と、このブロックB(t−1:11,13)に隣接した8個のブロックのうちIDがID12であるNX=NX12個のブロック(図16中の×印付ブロック)の動きベクトルVBj(t−1)、j=1〜NXについて、評価値UVを計算し、この値をUV(ID12)とする。
U=αUD+βUS+γUN+δUV (5)
を評価関数とし、評価値Uが小さいほど類似度が高いと判定する。ここにγ及びδも正の定数であり、類似度の評価がより正確になるように経験的に定められる。
UT=ΣU(BKi,IDi)
が最小になるように、ID1〜IDnを決定する。ID1〜IDnの初期値は、上述のようにして求められた時刻tのオブジェクトマップにより与えられる。
(a)第1移動体に対する第2移動体の相対動作の特徴量を観測量として検出し、該観測量の時系列を観測系列として記憶し、
(b)該観測系列の、予め定められた衝突観測系列に対する類似度を算出し、
(c)該類似度が設定値より大きい場合、該第1移動体又は該第2移動体が、予め定められた停止禁止領域に停止しているかどうかに基づいて、衝突事故であるかどうかを判定する、
ことを特徴とする移動体異常事象検出方法。(1)
(付記2)上記ステップ(c)では、上記類似度が設定値より大きい場合、上記第1移動体又は上記第2移動体が、予め定められた停止禁止領域に停止しており、且つ、他の移動体が移動しているとき、衝突事故であると判定する、
ことを特徴とする付記1記載の移動体異常事象検出方法。(2)
(付記3)(d)上記類似度が上記設定値より小さい場合、上記第1移動体又は上記第2移動体が、予め定められた停止禁止領域に停止しているかどうかに基づいて、停止している移動体が故障であるかどうかを判定する、
ステップをさらに有することを特徴とする付記1又は2記載の移動体異常事象検出方法。(3)
(付記4)上記ステップ(d)では、上記類似度が設定値より小さい場合、上記第1移動体又は上記第2移動体が、予め定められた停止禁止領域に停止しており、且つ、他の移動体が移動しているとき、停止している移動体が故障であると判定する、
ことを特徴とする付記3記載の移動体異常事象検出方法。(4)
(付記5)時系列画像が格納される画像記憶部と、
格納された該時系列画像を処理して画像中の移動体の異常事象を検出する画像処理部と、
を有する移動体異常事象検出装置において、該画像処理部は、
第1移動体に対する第2移動体の相対動作の特徴量を観測量として検出する観測量検出部と、
該観測量の時系列を観測系列として記憶する観測系列記憶部と、
予め定められた停止禁止領域が格納される停止禁止領域記憶部と、
該観測系列の、予め定められた衝突観測系列に対する類似度を算出する類似度算出部と、
該類似度が設定値より大きい場合、該第1移動体又は該第2移動体が、該停止禁止領域に停止しているかどうかに基づいて、衝突事故であるかどうかを判定し、その結果を出力する判定部と、
を有することを特徴とする移動体異常事象検出装置。(5)
(付記6)上記判定部は、上記類似度が設定値より大きい場合、上記第1移動体又は上記第2移動体が、予め定められた停止禁止領域に停止しており、且つ、他の移動体が移動しているとき、衝突事故であると判定することを特徴とする付記5記載の移動体異常事象検出装置。
(a)第1移動体に対する第2移動体の相対動作の特徴量を観測量として検出し、該観測量の時系列を観測系列として記憶し、
(b)該観測系列の参照系列に対する類似度を算出し、
(c)該類似度の値に応じて該第1移動体に対する該第2移動体の動作を分類し、
該観測量は、該第1移動体に対する該第2移動体の相対速度ベクトルVと両者間の距離dに関する量を量子化した第1スカラーと、該第1移動体に対する該第2移動体の相対位置ベクトルを量子化した第2スカラーとを含むことを特徴とする移動体間動作分類方法。(6)
(付記10)上記第1スカラーは、V・f(d)を量子化したものであり、ここにf(d)は距離dの単調減少関数であることを特徴とする付記9記載の移動体間動作分類方法。
格納された該時系列画像を処理して画像中の移動体間の動作を分類する画像処理部と、
を有する移動体間動作分類装置において、該画像処理部は、
第1移動体に対する第2移動体の相対動作の特徴量を観測量として検出する観測量検出部と、
該観測量の時系列を観測系列として記憶する観測系列記憶部と、
該観測系列の参照系列に対する類似度を算出する類似度算出部と、
該類似度の値に応じて該第1移動体に対する該第2移動体の動作を分類する分類部とを有し、
該観測量は、該第1移動体に対する該第2移動体の相対速度ベクトルVと両者間の距離Dに関する量を量子化した第1スカラーと、該第1移動体に対する該第2移動体の相対位置ベクトルを量子化した第2スカラーとを含むことを特徴とする移動体間動作分類装置。(7)
(付記14)上記第1スカラーは、V・f(d)を量子化したものであり、ここにf(d)は距離dの単調減少関数であることを特徴とする付記13記載の移動体間動作分類装置。
(a)該識別IDがIDjである時刻(t−1)のブロックjをその動きベクトルVjで移動させたときの、時刻tの画像フレーム中の対応するブロックiの枠を、−Vj移動させ、移動した枠内の時刻(t−1)の画像と、時刻tのブロックiの画像との相関度に関係した評価値を計算し、
(b)該識別IDがIDkである時刻(t−1)のブロックkをその動きベクトルVkで移動させたときの、時刻tの画像フレーム中の対応する該ブロックjの枠を、−Vk移動させ、移動した枠内の時刻(t−1)の画像と、該時刻tのブロックjの画像との該相関度に関係した評価値を計算し、
(c)ステップ(a)と(b)で算出された評価値の大小関係に基づいて、該時刻tのブロックiがIDjであるかIDkであるかを決定する、
ことを特徴とする移動体識別方法。(8)
(付記18)上記ステップ(a)の評価値は、上記時刻tのブロックiの識別IDがIDjであると仮定したときの時刻(t−1)の対応するブロックmの動きベクトルVCm(t−1)と、時刻(t−1)のブロックmと隣接する、識別IDがIDjであるブロックの動きベクトルVBp(t−1)、p=1〜Naとの差の絶対値|VCm(t−1)−VBp(t−1)|に関する量のpについての総和を含み、
上記ステップ(b)の評価値は、該時刻tのブロックiの識別IDがIDkであると仮定したときの時刻(t−1)の対応するブロックnの動きベクトルVCn(t−1)と、時刻(t−1)のブロックnと隣接する、識別IDがIDkであるブロックの動きベクトルVBq(t−1)、q=1〜Nbとの差の絶対値|VCn(t−1)−VBq(t−1)|に関する量のqについての総和を含む、
ことを特徴とする付記17記載の移動体識別方法。(9)
(付記19)上記時刻tのフレーム画像に対する処理の前に、上記時刻(t−1)のフレーム画像において、識別IDが付与されている各ブロックの動きベクトルを、該ブロック及びこのブロックと同一IDが付与され且つこのブロックに隣接するブロックの動きベクトルを平均化したもので置き換えることを特徴とする付記17記載の移動体識別方法。
格納された該時系列画像の各々を、複数画素を含むブロックに分割して処理し、時刻(t−1)のフレーム画像に含まれている複数の移動体の識別IDが、ブロック単位で付与されているとともにブロック単位で移動体の動きベクトルが求められている場合に、時刻tのフレーム画像に含まれている複数の移動体のIDを、ブロック単位で付与するとともにブロック単位で移動体の動きベクトルを求める画像処理部と、
を有する移動体識別装置において、該画像処理部は、
(a)該識別IDがIDjである時刻(t−1)のブロックjをその動きベクトルVjで移動させたときの、時刻tの画像フレーム中の対応するブロックiの枠を、−Vj移動させ、移動した枠内の時刻(t−1)の画像と、時刻tのブロックiの画像との相関度に関係した評価値を計算し、
(b)該識別IDがIDkである時刻(t−1)のブロックkをその動きベクトルVkで移動させたときの、時刻tの画像フレーム中の対応する該ブロックjの枠を、−Vk移動させ、移動した枠内の時刻(t−1)の画像と、該時刻tのブロックjの画像との該相関度に関係した評価値を計算し、
(c)ステップ(a)と(b)で算出された評価値の大小関係に基づいて、該時刻tのブロックiがIDjであるかIDkであるかを決定する、
ことを特徴とする移動体識別装置。(10)
(付記21)上記処理(a)の評価値は、上記時刻tのブロックiの識別IDがIDjであると仮定したときの動きベクトルと、該時刻tでのブロックiと隣接するブロックの動きベクトルとの差の絶対値に関する量の値を含み、
上記処理(b)の評価値は、該時刻tのブロックiの識別IDがIDkであると仮定したときの動きベクトルと、該時刻tでのブロックiと隣接するブロックの動きベクトルとの差の絶対値に関する量の値を含む、
ことを特徴とする付記20記載の移動体識別装置。
20 画像処理装置
21 画像メモリ
22 背景画像生成部
23 ID生成/消滅部
24 オブジェクトマップ記憶部
25 移動体追跡部
26 観測量検出部
27 観測系列記憶部
28 分類部
29 判定部
30 停止禁止領域記憶部
Claims (2)
- 時系列画像の各々を、複数画素を含むブロックに分割して処理する移動体識別方法であって、時刻(t−1)のフレーム画像に含まれている複数の移動体の識別IDが、ブロック単位で付与されているとともにブロック単位で移動体の動きベクトルが求められている場合に、時刻tのフレーム画像に含まれている複数の移動体のIDを、ブロック単位で付与するとともにブロック単位で移動体の動きベクトルを求める移動体識別方法において、
(a)該識別IDがIDjである時刻(t−1)のブロックjをその動きベクトルVjで移動させたときの、時刻tの画像フレーム中の対応するブロックiの枠を、−Vj移動させ、移動した枠内の時刻(t−1)の画像と、時刻tのブロックiの画像との相関度に関係した評価値を計算し、
(b)該識別IDがIDkである時刻(t−1)のブロックkをその動きベクトルVkで移動させたときの、時刻tの画像フレーム中の対応する該ブロックjの枠を、−Vk移動させ、移動した枠内の時刻(t−1)の画像と、該時刻tのブロックjの画像との該相関度に関係した評価値を計算し、
(c)ステップ(a)と(b)で算出された評価値の大小関係に基づいて、該時刻tのブロックiがIDjであるかIDkであるかを決定すし、
上記ステップ(a)の評価値は、上記時刻tのブロックiの識別IDがIDjであると仮定したときの時刻(t−1)の対応するブロックmの動きベクトルVCm(t−1)と、時刻(t−1)のブロックmと隣接する、識別IDがIDjであるブロックの動きベクトルVBp(t−1)、p=1〜Naとの差の絶対値|VCm(t−1)−VBp(t−1)|に関する量のpについての総和を含み、
上記ステップ(b)の評価値は、該時刻tのブロックiの識別IDがIDkであると仮定したときの時刻(t−1)の対応するブロックnの動きベクトルVCn(t−1)と、時刻(t−1)のブロックnと隣接する、識別IDがIDkであるブロックの動きベクトルVBq(t−1)、q=1〜Nbとの差の絶対値|VCn(t−1)−VBq(t−1)|に関する量のqについての総和を含む、
ことを特徴とする移動体識別方法。 - 時系列画像が格納される画像記憶部と、
格納された該時系列画像の各々を、複数画素を含むブロックに分割して処理し、時刻(t−1)のフレーム画像に含まれている複数の移動体の識別IDが、ブロック単位で付与されているとともにブロック単位で移動体の動きベクトルが求められている場合に、時刻tのフレーム画像に含まれている複数の移動体のIDを、ブロック単位で付与するとともにブロック単位で移動体の動きベクトルを求める画像処理部と、
を有する移動体識別装置において、該画像処理部は、
(a)該識別IDがIDjである時刻(t−1)のブロックjをその動きベクトルVjで移動させたときの、時刻tの画像フレーム中の対応するブロックiの枠を、−Vj移動させ、移動した枠内の時刻(t−1)の画像と、時刻tのブロックiの画像との相関度に関係した評価値を計算し、
(b)該識別IDがIDkである時刻(t−1)のブロックkをその動きベクトルVkで移動させたときの、時刻tの画像フレーム中の対応する該ブロックjの枠を、−Vk移動させ、移動した枠内の時刻(t−1)の画像と、該時刻tのブロックjの画像との該相関度に関係した評価値を計算し、
(c)ステップ(a)と(b)で算出された評価値の大小関係に基づいて、該時刻tのブロックiがIDjであるかIDkであるかを決定し、
上記ステップ(a)の評価値は、上記時刻tのブロックiの識別IDがIDjであると仮定したときの時刻(t−1)の対応するブロックmの動きベクトルVCm(t−1)と、時刻(t−1)のブロックmと隣接する、識別IDがIDjであるブロックの動きベクトルVBp(t−1)、p=1〜Naとの差の絶対値|VCm(t−1)−VBp(t−1)|に関する量のpについての総和を含み、
上記ステップ(b)の評価値は、該時刻tのブロックiの識別IDがIDkであると仮定したときの時刻(t−1)の対応するブロックnの動きベクトルVCn(t−1)と、時刻(t−1)のブロックnと隣接する、識別IDがIDkであるブロックの動きベクトルVBq(t−1)、q=1〜Nbとの差の絶対値|VCn(t−1)−VBq(t−1)|に関する量のqについての総和を含む、
ことを特徴とする移動体識別装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011196218A JP5305548B2 (ja) | 2011-09-08 | 2011-09-08 | 移動体識別方法及び装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011196218A JP5305548B2 (ja) | 2011-09-08 | 2011-09-08 | 移動体識別方法及び装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010025228A Division JP4868426B2 (ja) | 2010-02-08 | 2010-02-08 | 移動体を含む画像の処理方法及び装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012003780A JP2012003780A (ja) | 2012-01-05 |
JP5305548B2 true JP5305548B2 (ja) | 2013-10-02 |
Family
ID=45535607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011196218A Expired - Lifetime JP5305548B2 (ja) | 2011-09-08 | 2011-09-08 | 移動体識別方法及び装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5305548B2 (ja) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3242362B2 (ja) * | 1998-04-13 | 2001-12-25 | 日本電信電話株式会社 | 映像符号化装置、および映像符号化プログラムを記録した記録媒体 |
JP4420512B2 (ja) * | 1999-06-01 | 2010-02-24 | 富士通マイクロエレクトロニクス株式会社 | 移動物体間動作分類方法及び装置並びに画像認識装置 |
-
2011
- 2011-09-08 JP JP2011196218A patent/JP5305548B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2012003780A (ja) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4480299B2 (ja) | 移動体を含む画像の処理方法及び装置 | |
Ghahremannezhad et al. | Real-time accident detection in traffic surveillance using deep learning | |
EP2709066A1 (en) | Concept for detecting a motion of a moving object | |
EP2960886A1 (en) | Moving object recognition systems, moving object recognition programs, and moving object recognition methods | |
Bloisi et al. | Argos—A video surveillance system for boat traffic monitoring in Venice | |
US20150169979A1 (en) | Trajectory modeling apparatus and method based on trajectory transformation | |
Mithun et al. | Video-based tracking of vehicles using multiple time-spatial images | |
CN109766867B (zh) | 车辆运行状态确定方法、装置、计算机设备和存储介质 | |
JP6439757B2 (ja) | 画像処理装置および画像処理方法 | |
KR20030074266A (ko) | 화상에 있어서의 이동체 추적 방법 및 장치 | |
Mehboob et al. | Trajectory based vehicle counting and anomalous event visualization in smart cities | |
JP4868426B2 (ja) | 移動体を含む画像の処理方法及び装置 | |
Adewopo et al. | Smart city transportation: Deep learning ensemble approach for traffic accident detection | |
US11176379B2 (en) | Method of acquiring detection zone in image and method of determining zone usage | |
EP2709065A1 (en) | Concept for counting moving objects passing a plurality of different areas within a region of interest | |
JP5305548B2 (ja) | 移動体識別方法及び装置 | |
Detzer et al. | Analysis of traffic safety for cyclists: The automatic detection of critical traffic situations for cyclists | |
Ghahremannezhad et al. | Traffic surveillance video analytics: A concise survey | |
CN114640807A (zh) | 基于视频的对象统计方法、装置、电子设备和存储介质 | |
JP4714872B2 (ja) | 画像上重畳移動物体分割方法及び装置 | |
Fekri et al. | A Forward Collision Warning System Using Deep Reinforcement Learning | |
Kamijo et al. | Incident detection in heavy traffics in tunnels by the interlayer feedback algorithm | |
JP7384181B2 (ja) | 画像収集装置、画像収集方法及び画像収集用コンピュータプログラム | |
JP4573590B2 (ja) | 画像処理による移動物体計測方法及び装置 | |
Wee et al. | Integrating Object Detection and Optical Flow Analysis for Real-time Road Accident Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121022 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130624 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5305548 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |