JP7384181B2 - 画像収集装置、画像収集方法及び画像収集用コンピュータプログラム - Google Patents
画像収集装置、画像収集方法及び画像収集用コンピュータプログラム Download PDFInfo
- Publication number
- JP7384181B2 JP7384181B2 JP2021022546A JP2021022546A JP7384181B2 JP 7384181 B2 JP7384181 B2 JP 7384181B2 JP 2021022546 A JP2021022546 A JP 2021022546A JP 2021022546 A JP2021022546 A JP 2021022546A JP 7384181 B2 JP7384181 B2 JP 7384181B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- moving object
- distance
- predetermined
- determined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 14
- 238000004590 computer program Methods 0.000 title claims description 8
- 238000001514 detection method Methods 0.000 claims description 26
- 238000003384 imaging method Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 230000006399 behavior Effects 0.000 description 5
- 238000013527 convolutional neural network Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 240000004050 Pentaglottis sempervirens Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 241000905137 Veronica schmidtiana Species 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/54—Surveillance or monitoring of activities, e.g. for recognising suspicious objects of traffic, e.g. cars on the road, trains or boats
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/269—Analysis of motion using gradient-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0116—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/04—Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30232—Surveillance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30236—Traffic on road, railway or crossing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30241—Trajectory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/08—Detecting or categorising vehicles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Chemical & Material Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Geometry (AREA)
- Traffic Control Systems (AREA)
- Closed-Circuit Television Systems (AREA)
- Image Analysis (AREA)
Description
2 サーバ(画像収集装置)
3 カメラ
4 通信ネットワーク
11 通信インターフェース
12 ストレージ装置
13 メモリ
14 プロセッサ
21 検出部
22 判定部
23 保存部
Claims (5)
- 撮像部により得られた所定の地点または所定の車両の周囲を表す画像から移動物体を検出する検出部と、
前記画像から検出された移動物体と他の物体との距離を推定し、前記距離に基づいて、前記移動物体と前記他の物体とが衝突する危険が有るか否かを判定する判定部と、
前記危険が有ると判定した場合、前記画像を記憶部に保存する保存部と、
を有し、
前記判定部は、前記距離が所定の距離閾値以下である場合、前記危険が有ると判定するとともに、前記移動物体を前記画像よりも過去に前記撮像部により得られた画像に表された前記移動物体と対応付けることで前記移動物体を追跡し、前記移動物体の追跡結果に基づいて前記移動物体が通る軌跡を予測し、予測した前記軌跡上の何れかの位置における前記移動物体と前記他の物体間の距離が前記所定の距離閾値よりも小さい第2の閾値以下となった場合、前記危険が有ると判定する画像収集装置。 - 前記保存部は、前記危険が有ると判定された画像が得られた時点から一定期間の間に前記撮像部により得られた時系列の一連の画像を前記記憶部に保存する、請求項1に記載の画像収集装置。
- 前記検出部は、前記一定期間内において、前記移動物体が前記他の物体と衝突したこと、または前記移動物体が前記他の物体との衝突を避ける挙動を行ったことをさらに検出し、
前記保存部は、前記一連の画像のうち、前記移動物体が前記他の物体と衝突したとき、または前記移動物体が前記挙動を行ったときの画像を識別する情報を前記一連の画像とともに前記記憶部に保存する、請求項2に記載の画像収集装置。 - 撮像部により得られた所定の地点または所定の車両の周囲を表す画像から移動物体を検出し、
前記画像から検出された移動物体と他の物体との距離を推定し、前記距離に基づいて、前記移動物体と前記他の物体とが衝突する危険が有るか否かを判定し、
前記危険が有ると判定した場合、前記画像を記憶部に保存する、
ことを含み、
前記衝突する危険があるか否かの判定は、
前記距離が所定の距離閾値以下である場合、前記危険が有ると判定するとともに、前記移動物体を前記画像よりも過去に前記撮像部により得られた画像に表された前記移動物体と対応付けることで前記移動物体を追跡し、前記移動物体の追跡結果に基づいて前記移動物体が通る軌跡を予測し、予測した前記軌跡上の何れかの位置における前記移動物体と前記他の物体間の距離が前記所定の距離閾値よりも小さい第2の閾値以下となった場合、前記危険が有ると判定する
ことを含む画像収集方法。 - 撮像部により得られた所定の地点または所定の車両の周囲を表す画像から移動物体を検出し、
前記画像から検出された移動物体と他の物体との距離を推定し、前記距離に基づいて、前記移動物体と前記他の物体とが衝突する危険が有るか否かを判定し、
前記危険が有ると判定した場合、前記画像を記憶部に保存する、
ことをコンピュータに実行させ、
前記衝突する危険があるか否かの判定は、
前記距離が所定の距離閾値以下である場合、前記危険が有ると判定するとともに、前記移動物体を前記画像よりも過去に前記撮像部により得られた画像に表された前記移動物体と対応付けることで前記移動物体を追跡し、前記移動物体の追跡結果に基づいて前記移動物体が通る軌跡を予測し、予測した前記軌跡上の何れかの位置における前記移動物体と前記他の物体間の距離が前記所定の距離閾値よりも小さい第2の閾値以下となった場合、前記危険が有ると判定する
ことを含む画像収集用コンピュータプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021022546A JP7384181B2 (ja) | 2021-02-16 | 2021-02-16 | 画像収集装置、画像収集方法及び画像収集用コンピュータプログラム |
US17/554,660 US20220262122A1 (en) | 2021-02-16 | 2021-12-17 | Image collection apparatus and image collection method |
CN202210129012.9A CN114944082A (zh) | 2021-02-16 | 2022-02-11 | 图像收集装置、图像收集方法以及记录介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021022546A JP7384181B2 (ja) | 2021-02-16 | 2021-02-16 | 画像収集装置、画像収集方法及び画像収集用コンピュータプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022124740A JP2022124740A (ja) | 2022-08-26 |
JP7384181B2 true JP7384181B2 (ja) | 2023-11-21 |
Family
ID=82800743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021022546A Active JP7384181B2 (ja) | 2021-02-16 | 2021-02-16 | 画像収集装置、画像収集方法及び画像収集用コンピュータプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220262122A1 (ja) |
JP (1) | JP7384181B2 (ja) |
CN (1) | CN114944082A (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000207676A (ja) | 1999-01-08 | 2000-07-28 | Nec Corp | 交通事故検出装置 |
JP2014199546A (ja) | 2013-03-29 | 2014-10-23 | 富士通株式会社 | 運転支援装置及び運転支援方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100794631B1 (ko) * | 2006-04-24 | 2008-01-14 | 한국교통연구원 | 네비게이션 일체형 교통사고 자동녹화 시스템 |
JP2008186170A (ja) * | 2007-01-29 | 2008-08-14 | Fujitsu Ten Ltd | 運転支援装置および運転支援方法 |
JP5064257B2 (ja) * | 2008-01-31 | 2012-10-31 | 矢崎総業株式会社 | 車両用周辺状況記録装置 |
JP2010191793A (ja) * | 2009-02-19 | 2010-09-02 | Denso It Laboratory Inc | 警告表示装置及び警告表示方法 |
JP2010198552A (ja) * | 2009-02-27 | 2010-09-09 | Konica Minolta Holdings Inc | 運転状況監視装置 |
JPWO2010109831A1 (ja) * | 2009-03-23 | 2012-09-27 | コニカミノルタホールディングス株式会社 | ドライブレコーダ |
JP2011134207A (ja) * | 2009-12-25 | 2011-07-07 | Konica Minolta Holdings Inc | 運転記録装置および地図作成システム |
JP5920158B2 (ja) * | 2012-10-09 | 2016-05-18 | 株式会社デンソー | 移動体用画像記憶装置 |
DE102015011195A1 (de) * | 2015-08-26 | 2016-03-24 | Daimler Ag | Verfahren zum Anzeigen einer Kollision eines Objekts mit einem abgestellten Kraftfahrzeug und Vorrichtung dazu |
JP6880455B2 (ja) * | 2017-10-26 | 2021-06-02 | トヨタ自動車株式会社 | 運転支援装置及び運転支援システム |
US10363944B1 (en) * | 2018-02-14 | 2019-07-30 | GM Global Technology Operations LLC | Method and apparatus for evaluating pedestrian collision risks and determining driver warning levels |
US10817732B2 (en) * | 2018-12-20 | 2020-10-27 | Trimble Inc. | Automated assessment of collision risk based on computer vision |
JP6705495B1 (ja) * | 2018-12-26 | 2020-06-03 | 株式会社Jvcケンウッド | 車両用記録制御装置、車両用記録装置、車両用記録制御方法およびプログラム |
WO2020237207A1 (en) * | 2019-05-23 | 2020-11-26 | Systomix, Inc. | Apparatus and method for processing vehicle signals to compute a behavioral hazard measure |
US10885775B2 (en) * | 2019-06-06 | 2021-01-05 | Verizon Patent And Licensing Inc. | Monitoring a scene to analyze an event using a plurality of image streams |
US10916131B1 (en) * | 2019-10-01 | 2021-02-09 | Paul Schottland | Intersection and road monitoring for distracted or unsafe drivers |
US11663830B2 (en) * | 2020-08-21 | 2023-05-30 | Ubicquia Iq Llc | Node-based near-miss detection |
-
2021
- 2021-02-16 JP JP2021022546A patent/JP7384181B2/ja active Active
- 2021-12-17 US US17/554,660 patent/US20220262122A1/en active Pending
-
2022
- 2022-02-11 CN CN202210129012.9A patent/CN114944082A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000207676A (ja) | 1999-01-08 | 2000-07-28 | Nec Corp | 交通事故検出装置 |
JP2014199546A (ja) | 2013-03-29 | 2014-10-23 | 富士通株式会社 | 運転支援装置及び運転支援方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114944082A (zh) | 2022-08-26 |
US20220262122A1 (en) | 2022-08-18 |
JP2022124740A (ja) | 2022-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11380105B2 (en) | Identification and classification of traffic conflicts | |
Beymer et al. | A real-time computer vision system for measuring traffic parameters | |
JP3580475B2 (ja) | 周辺監視装置 | |
Song et al. | Vehicle behavior analysis using target motion trajectories | |
CN106652468A (zh) | 车辆道路前车违规检测和自车违规预警提醒装置及方法 | |
US20100322476A1 (en) | Vision based real time traffic monitoring | |
JP7024610B2 (ja) | 検知装置及び検知システム | |
Mithun et al. | Video-based tracking of vehicles using multiple time-spatial images | |
US20170259814A1 (en) | Method of switching vehicle drive mode from automatic drive mode to manual drive mode depending on accuracy of detecting object | |
JP5482672B2 (ja) | 移動物体検出装置 | |
CN109766867B (zh) | 车辆运行状态确定方法、装置、计算机设备和存储介质 | |
KR102434154B1 (ko) | 영상감시시스템에서의 고속 이동물체의 위치 및 모션 캡쳐 방법 | |
JP7454685B2 (ja) | 車両走行路内のデブリの検出 | |
JP2022036726A (ja) | 物体検出装置、物体検出方法及び物体検出用コンピュータプログラム | |
KR20180047149A (ko) | 충돌 위험 경고 장치 및 방법 | |
Park et al. | Vision-based surveillance system for monitoring traffic conditions | |
Beymer et al. | Tracking vehicles in congested traffic | |
Choi et al. | Cut-in vehicle warning system exploiting multiple rotational images of SVM cameras | |
CN105679090B (zh) | 一种基于智能手机的夜间司机驾驶辅助方法 | |
KR102345798B1 (ko) | 교차로 꼬리물기 인지 및 영상 저장 장치 | |
JP2019207655A (ja) | 検知装置及び検知システム | |
TWI730509B (zh) | 影像偵測區域取得方法及空間使用情況的判定方法 | |
Kanhere | Vision-based detection, tracking and classification of vehicles using stable features with automatic camera calibration | |
JP7384181B2 (ja) | 画像収集装置、画像収集方法及び画像収集用コンピュータプログラム | |
KR102452460B1 (ko) | Ptz 카메라를 통해 cctv 공간모델을 생성하는 장치, 방법 및 프로그램 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231023 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7384181 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |