JP5305382B2 - Counterflow emulsion flow continuous liquid-liquid extraction device - Google Patents

Counterflow emulsion flow continuous liquid-liquid extraction device Download PDF

Info

Publication number
JP5305382B2
JP5305382B2 JP2008253779A JP2008253779A JP5305382B2 JP 5305382 B2 JP5305382 B2 JP 5305382B2 JP 2008253779 A JP2008253779 A JP 2008253779A JP 2008253779 A JP2008253779 A JP 2008253779A JP 5305382 B2 JP5305382 B2 JP 5305382B2
Authority
JP
Japan
Prior art keywords
liquid
extraction
phase
emulsion flow
phase separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008253779A
Other languages
Japanese (ja)
Other versions
JP2010082531A (en
Inventor
弘親 長縄
信之 柳瀬
哲志 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2008253779A priority Critical patent/JP5305382B2/en
Priority to EP11166870.3A priority patent/EP2364758B1/en
Priority to EP09252285.3A priority patent/EP2172254B1/en
Priority to US12/570,470 priority patent/US20100078382A1/en
Publication of JP2010082531A publication Critical patent/JP2010082531A/en
Priority to US13/527,013 priority patent/US9108124B2/en
Application granted granted Critical
Publication of JP5305382B2 publication Critical patent/JP5305382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、撹拌、振とうなどの機械的な外力を用いることなく連続的にエマルションの状態を発現させ、尚且つエマルション状態の流れ(エマルションフローと称する)を利用することで、水相と抽出溶媒相との効率的な接触を迅速に完了させる、エマルションフローによる2液相接触を利用した連続液液抽出装置に関するものである。   The present invention continuously develops an emulsion state without using mechanical external force such as stirring and shaking, and uses an emulsion state flow (referred to as emulsion flow) to extract an aqueous phase and an aqueous phase. The present invention relates to a continuous liquid-liquid extraction device that uses two-liquid phase contact by emulsion flow to quickly complete efficient contact with a solvent phase.

水溶液に含まれる目的成分を、抽出剤を含む水と混じり合わない溶媒(有機溶媒など)に抽出する液液抽出法(溶媒抽出法)は、金属の精製、核燃料の再処理、廃水中の有害成分の除去、有価物質の分離・回収によるリサイクルなど、様々な産業において幅広く利用されている。水溶液中の成分を抽出する方法には、液液抽出法の他にも、樹脂などの固体をカラムなどに充填して用いる固体抽出法がある。液液抽出法は、固体抽出法と比べると簡便ではないと言われるが、抽出容量の大きさと迅速さでは固体抽出法に勝る。水溶液中の目的成分を効率的に液液抽出するためには、水相と抽出溶媒相をよく混合することによって液液界面の面積を大きくし、界面反応を促進させる必要がある。そこで、通常は、撹拌、振動(振とう)などを連続的に行って、エマルションの状態(水と有機溶媒などが混じりあって乳濁した状態)を十分な時間、維持させることにより、液液間の物質移行を平衡状態に達せしめる。   The liquid-liquid extraction method (solvent extraction method), which extracts the target component contained in the aqueous solution into a solvent (such as an organic solvent) that does not mix with the water containing the extractant, is used for metal purification, nuclear fuel reprocessing, and hazardousness in wastewater. It is widely used in various industries such as removal of components and recycling by separation and recovery of valuable substances. In addition to the liquid-liquid extraction method, there is a solid extraction method that uses a solid such as a resin packed in a column or the like as a method for extracting components in an aqueous solution. The liquid-liquid extraction method is said to be less convenient than the solid extraction method, but is superior to the solid extraction method in terms of the size and speed of extraction capacity. In order to efficiently perform liquid-liquid extraction of the target component in the aqueous solution, it is necessary to increase the area of the liquid-liquid interface by well mixing the aqueous phase and the extraction solvent phase to promote the interfacial reaction. Therefore, normally, stirring and vibration (shaking) are continuously performed to maintain the state of the emulsion (water and organic solvent are mixed and milky) for a sufficient period of time. Allow the mass transfer between them to reach equilibrium.

連続的に一定流量の水相と抽出溶媒相を導入しながら水相中の成分を抽出溶媒相に抽出する装置としては、撹拌機を利用するミキサセトラが広く普及している。また、パルス発生による振動を液滴分散に利用したパルスカラム、遠心力を利用して分散・相分離を行う遠心抽出機といった比較的新しい連続液液抽出装置(特許文献1参照)も、原子力などの分野で利用されている(あるいは、利用されつつある)。とくに、遠心抽出機は、2液相の接触効率、相分離効率に優れ、高性能でありながらコンパクトなので、使用済核燃料の再処理技術への適用が期待されている。
特開平09−085120号公報
As an apparatus for continuously extracting a component in an aqueous phase into an extraction solvent phase while introducing a constant flow rate of an aqueous phase and an extraction solvent phase, a mixer setra using a stirrer is widely used. In addition, relatively new continuous liquid-liquid extraction devices (see Patent Document 1) such as a pulse column that uses vibration generated by pulse generation for droplet dispersion and a centrifugal extractor that performs dispersion / phase separation using centrifugal force are also available, such as nuclear power. Are used (or are being used). In particular, the centrifugal extractor is excellent in contact efficiency and phase separation efficiency of two liquid phases, and has high performance and compactness. Therefore, it is expected to be applied to a technique for reprocessing spent nuclear fuel.
JP 09-085120 A

しかしながら、いずれの装置も、機械的外力(撹拌、振動など)を持続的もしくは断続的に加えることで2液相混合を行っている点では共通しており、このことから、扱いにくさ、ランニングコスト・メンテナンスコスト・装置製作コスト(初期コスト)の高さ、安全面での不安などのデメリットが生じる。たとえば、1)機械的外力の発生に要する大きなエネルギー負担、2)機械的外力を発生させる駆動部の負担・疲労、3)運転開始時に要する長い調整作業、4)駆動部での摩擦や静電気による発火の危険、5)駆動部に要する高強度で高価な材料、6)撹拌、振動、あるいは高速回転に伴う騒音、7)地震時の安全確保での不安、などが挙げられる。   However, both devices are common in that two liquid phase mixing is performed by applying mechanical external force (stirring, vibration, etc.) continuously or intermittently. This makes it difficult to handle and running. Demerits such as high costs, maintenance costs, device manufacturing costs (initial costs), and safety concerns arise. For example, 1) Large energy burden required to generate mechanical external force, 2) Load / fatigue of drive unit that generates mechanical external force, 3) Long adjustment work required at the start of operation, 4) Friction or static electricity at drive unit There are dangers of ignition, 5) high-strength and expensive materials required for the drive unit, 6) noise associated with stirring, vibration, or high-speed rotation, and 7) anxiety in ensuring safety during an earthquake.

一方、最近開発されたエマルションフローは、送液のみで2液相混合の乳濁状態(エマルション)を発現させることができるので、従来の液液装置とは異なり、機械的外力を要しない(特願2007-136496:未公開)。このことから、上記のような従来装置の持つ欠点のすべてが解消される。エマルションフローは、樹脂などの固体をカラムに充填して用いるカラム式固液抽出と同様な簡便さで液液抽出(溶媒抽出)を行うことができる画期的な手法である。すなわち、エマルションフローを利用した抽出装置は、従来の溶媒抽出装置(ミキサセトラなど)の持つ長所(大きな抽出容量、迅速さ)に加えて、カラム式固液抽出器の持つ長所(扱いやすさ、低ランニングコスト)を合わせ持つ。大きな抽出容量と迅速さはカラム式固液抽出器では実現できず、扱いやすさと低ランニングコストは従来の溶媒抽出装置では実現できなかったことなので、これらが両立できた意義は非常に大きい。   On the other hand, the recently developed emulsion flow can develop an emulsion state (emulsion) of two-liquid phase mixing only by liquid feeding, and unlike a conventional liquid-liquid device, it does not require mechanical external force (special (Application No. 2007-136496: Unpublished). This eliminates all the disadvantages of the conventional apparatus as described above. Emulsion flow is an epoch-making technique capable of performing liquid-liquid extraction (solvent extraction) with the same simplicity as column-type solid-liquid extraction used by filling a column with a solid such as a resin. In other words, in addition to the advantages (large extraction capacity and quickness) of conventional solvent extraction devices (such as mixer-settler), the extraction device using emulsion flow has the advantages (ease of handling, low power) of the column type solid-liquid extractor. Together with running costs). Large extraction capacity and rapidity could not be realized with a column type solid-liquid extractor, and handling and low running cost could not be realized with a conventional solvent extraction apparatus.

エマルションフローは、上述のように画期的な手法ではあるが、いくつかの問題点も持っていた。まず、今までの単流方式では、きめの細かい良質なエマルションのフローを発生させることが困難で、エマルションに若干のむらが生じるため、90%を越える抽出率を得ることは容易ではなかった。また、単流方式では、広い領域でエマルションフローを安定に保つことが難しく、装置の大型化に難があった。さらに、水溶液を微細化して噴出させるヘッド部の孔が粒子成分によって目詰まりしてしまうという致命的な弱点も存在した。水溶液中には懸濁物として粒子成分が混在していることが多く、ヘッド部の目詰まりの問題はエマルションフローの大きな課題であった。なお、単流方式とは、抽出溶媒は送液することも微細化することもなく、水溶液のみをヘッド部で微細化して抽出溶媒中に噴出させる方式をいう。   Although the emulsion flow is an epoch-making technique as described above, it has some problems. First, in the conventional single-flow method, it is difficult to generate a fine-grained emulsion flow and there is some unevenness in the emulsion, so it is not easy to obtain an extraction rate exceeding 90%. In the single flow method, it is difficult to keep the emulsion flow stable in a wide area, and it is difficult to increase the size of the apparatus. In addition, there was a fatal weakness that the pores of the head part that makes the aqueous solution finer and ejected are clogged by particle components. In many cases, particle components are mixed as a suspension in an aqueous solution, and the problem of clogging of the head portion is a major problem in emulsion flow. Note that the single-flow method refers to a method in which the extraction solvent is not sent or refined, and only the aqueous solution is refined at the head portion and ejected into the extraction solvent.

本発明の目的は、単流方式エマルションフロー(初期型)の欠点を解決し、1)より良質なエマルションフローを発生させることで90%を越える抽出率を得ること、2)広い範囲にわたってエマルションフローを安定に保つことで装置の大型化を容易にすること、3)水溶液中の粒子成分によるヘッド部の孔の目詰まりを回避することができる向流方式エマルションフロー連続液液抽出装置を提供することにある。   The object of the present invention is to solve the disadvantages of a single-flow emulsion flow (initial type), 1) to obtain an extraction rate exceeding 90% by generating a better quality emulsion flow, and 2) to obtain an emulsion flow over a wide range. 3) Provided is a countercurrent emulsion flow continuous liquid-liquid extraction device that can easily increase the size of the device by maintaining a stable flow rate, and 3) can avoid clogging of holes in the head portion due to particle components in an aqueous solution. There is.

本願発明者は、前記課題を解決すべく鋭意研究を重ねた結果、向流方式を適用することにより、抽出率の格段の向上と装置の大型化に成功した。また、抽出溶媒相のみを微細化して循環させる向流方式を用いることで、ヘッド部の目詰まりを回避することにも成功した。   As a result of intensive studies to solve the above problems, the present inventor has succeeded in significantly improving the extraction rate and increasing the size of the apparatus by applying the countercurrent method. In addition, by using a countercurrent system in which only the extraction solvent phase is refined and circulated, clogging of the head portion has been successfully avoided.

本発明の1つの観点に係る向流方式エマルションフロー連続液液抽出装置は、水相を噴出させる第1ヘッド部、該第1ヘッド部と対抗して配置された、抽出溶媒相を噴出させる第2ヘッド部、エマルションフローが発生するカラム部、カラム部の上方に設置された上方相分離部、及び下方に設置された下方相分離部から成る装置本体と、送液ポンプとから構成される。   A counter-current emulsion flow continuous liquid-liquid extraction device according to one aspect of the present invention includes a first head unit that ejects an aqueous phase, and a first head unit that ejects an extraction solvent phase that is disposed to face the first head unit. The apparatus main body is composed of two head parts, a column part where an emulsion flow is generated, an upper phase separation part installed above the column part, and a lower phase separation part installed below, and a liquid feed pump.

向流方式を採用することによって、単流方式の装置と比較して、エマルションフローがより安定化し、尚且つよりきめの細かいエマルションフローを発生させられる。また、抽出溶媒を微細化して循環させる向流方式では、粒子成分の影響を受けずに安定な運転ができる。これは、水溶液中の粒子成分が抽出溶媒にはまったく分配されないという性質を利用したものである。すなわち、抽出溶媒相を微細化するにあたっては、ヘッド部(第2ヘッド部)が目詰まりする心配がない。なお、向流方式エマルションフローでは、この第2ヘッド部の構造がエマルションフローの質を左右し、水相を噴出させる第1ヘッド部の構造は重要でないこともわかった。すなわち、第1ヘッド部については、粒子成分が十分に通過できる構造(水相を微細化しない構造)であっても抽出率などに大きな影響は現れなかった。本願発明は、以上のような新しい知見に基づいて完成されたものである。   By adopting the counter-flow system, the emulsion flow is more stabilized and a finer emulsion flow can be generated as compared with a single-flow apparatus. In addition, the counter-current system in which the extraction solvent is refined and circulated enables stable operation without being affected by the particle components. This utilizes the property that the particle component in the aqueous solution is not distributed to the extraction solvent at all. That is, when the extraction solvent phase is miniaturized, there is no fear that the head portion (second head portion) is clogged. In the countercurrent emulsion flow, it was also found that the structure of the second head part determines the quality of the emulsion flow, and the structure of the first head part for ejecting the aqueous phase is not important. That is, for the first head part, even if the structure allows the particle component to pass sufficiently (structure that does not refine the aqueous phase), there is no significant effect on the extraction rate. The present invention has been completed based on the above new findings.

本発明により、単流方式エマルションフロー装置では得られなかったエマルションの良質化と安定化が実現し、目的成分をより高い抽出率で抽出できるようになるとともに、装置の大型化も容易になる。また、向流方式の採用によって、単流方式エマルションフロー装置の大きな弱点であった懸濁物などの粒子成分によるヘッド部の目詰まりの問題も解決できる。   According to the present invention, quality improvement and stabilization of an emulsion that could not be obtained with a single-flow emulsion flow apparatus can be realized, and target components can be extracted at a higher extraction rate, and the apparatus can be easily enlarged. In addition, the use of the counterflow system can also solve the problem of clogging of the head part due to particle components such as suspension, which was a major weakness of the single-flow system emulsion flow apparatus.

本発明に係る向流方式エマルションフロー連続液液抽出装置について、以下図面を参照して詳細に説明する。初めに、図1を参照する。図1は、本発明の向流方式エマルションフロー連続液液抽出装置の概略構成図を示している。   The countercurrent emulsion flow continuous liquid-liquid extraction apparatus according to the present invention will be described in detail below with reference to the drawings. First, refer to FIG. FIG. 1 shows a schematic configuration diagram of a countercurrent emulsion flow continuous liquid-liquid extraction apparatus of the present invention.

図1において、エマルションフロー装置10は、水相を噴出させる第1ヘッド部11、溶媒相を噴出させる第2ヘッド部12、エマルションフローが発生するカラム部13、カラム部の上方及び下方に設置した相分離部(上方相分離部14及び下方相分離部15)から成る装置本体と送液ポンプ16(2連式1台もしくは単式2台)によって構成される。なお、ヘッド部は、必ずしも液相(水相、溶媒相、あるいは乳濁混合相)と接触している必要はない。このエマルションフロー装置10には、リザーバー20の水試料が導管21を介して送られてくるようになっている。この第1ヘッド部11は、両端が開いた筒、またはその一端を1μmから5mmのメッシュあるいは孔を有するシートで覆った筒、または一端の閉じた筒の回りあるいはその閉じた部分あるいは回りと閉じた部分の両方に直径1μm から5mmの適当数の孔をあけた構造あるいはその孔をあけた筒のまわりをさらに1μmから1mmのメッシュあるいは孔を有するシートで覆った構造、もしくは、10μmから1mmの孔径を持つ多孔体(たとえば、焼結ガラス)を筒に接着した構造を持つ。また、第2ヘッド部は、第1ヘッド部の構造と同様な構造を持つが、第2ヘッド部の持つ孔あるいはメッシュの大きさは、第1ヘッド部の持つ孔あるいはメッシュの大きさと異なっていても良い。   In FIG. 1, the emulsion flow apparatus 10 is installed in the 1st head part 11 which ejects a water phase, the 2nd head part 12 which ejects a solvent phase, the column part 13 which an emulsion flow generate | occur | produces, and the upper part and the lower part of the column part. The apparatus main body is composed of a phase separation unit (upper phase separation unit 14 and lower phase separation unit 15) and a liquid feed pump 16 (one duplex unit or two single units). The head part does not necessarily need to be in contact with the liquid phase (aqueous phase, solvent phase, or emulsion mixed phase). A water sample in the reservoir 20 is sent to the emulsion flow device 10 via a conduit 21. The first head portion 11 is a cylinder whose both ends are open, a cylinder whose one end is covered with a sheet having a mesh of 1 μm to 5 mm or a hole, a cylinder which is closed at one end, its closed part or its periphery. A structure in which an appropriate number of holes having a diameter of 1 μm to 5 mm are formed in both of the parts, or a structure in which the perforated cylinder is further covered with a sheet having a hole of 1 μm to 1 mm or a hole, or 10 μm to 1 mm. It has a structure in which a porous body (for example, sintered glass) having a pore size is bonded to a cylinder. The second head portion has a structure similar to that of the first head portion, but the size of the hole or mesh of the second head portion is different from the size of the hole or mesh of the first head portion. May be.

次に、動作について説明する。水試料リザーバー20とエマルションフロー装置10とを結合する導管21に設けられた送液ポンプ16により、リザーバー20からの水溶液を、エマルションフロー装置10の第1ヘッド部11である筒を通して抽出溶媒中に向かって噴出させる。それと同時に、装置の第2ヘッド部12である筒を通して水溶液の流れに向い合うように抽出溶媒を噴出させる。これにより、エマルションフロー装置10のカラム部13には、水溶液と抽出溶媒との乳濁混合相からなる流れ(エマルションフローと称する)が発生する。図2に、カラム部13においてエマルションフローが発生している様子を示す。図2から、水相と抽出溶媒相が混合して、エマルション特有の乳濁状態になっていることがわかる。その乳濁混合相が、カラム部13の上方にある上方相分離部14や、カラム部13の下方にある下方相分離部15に到達すると、エマルションフローの状態が解かれて水相と抽出溶媒相に相分離する。図2及び図3から、上方相分離部14及び下方相分離部15において、エマルションフローが消滅していることがわかる。上方相分離部14には抽出溶媒相が集合し、下方相分離部15では水相が集合する。上方相分離部14での清浄な抽出溶媒は、第2ヘッド部12を通じて循環される。また、下方相分離部15での清浄な水相は、処理後の排水として取り出される。以下に、いくつかの具体的な実施例を示すが、本発明は、これらの実施例によって何ら限定されるものではない。たとえば、ヘッド部(11、12)は必ずしも円筒ではなく、たとえば四角い筒であっても良い。また、カラム部13、相分離部14、15の形状についても円柱状である必要はなく、たとえば四角柱状であっても良い。   Next, the operation will be described. The aqueous solution from the reservoir 20 is fed into the extraction solvent through the cylinder that is the first head portion 11 of the emulsion flow device 10 by the liquid feeding pump 16 provided in the conduit 21 that connects the water sample reservoir 20 and the emulsion flow device 10. It spouts toward. At the same time, the extraction solvent is ejected through the cylinder that is the second head portion 12 of the apparatus so as to face the flow of the aqueous solution. Thereby, in the column part 13 of the emulsion flow apparatus 10, the flow (it calls an emulsion flow) which consists of an emulsion mixed phase of aqueous solution and an extraction solvent generate | occur | produces. FIG. 2 shows a state in which the emulsion flow is generated in the column portion 13. From FIG. 2, it can be seen that the aqueous phase and the extraction solvent phase are mixed to form an emulsion-specific emulsion state. When the emulsion mixed phase reaches the upper phase separation part 14 above the column part 13 or the lower phase separation part 15 below the column part 13, the state of the emulsion flow is released, and the water phase and the extraction solvent Phase separate into phases. 2 and 3, it can be seen that the emulsion flow has disappeared in the upper phase separation unit 14 and the lower phase separation unit 15. The extraction solvent phase gathers in the upper phase separation unit 14, and the aqueous phase gathers in the lower phase separation unit 15. The clean extraction solvent in the upper phase separation unit 14 is circulated through the second head unit 12. Moreover, the clean aqueous phase in the lower phase separation part 15 is taken out as waste water after processing. Some specific examples are shown below, but the present invention is not limited to these examples. For example, the head portions (11, 12) are not necessarily cylindrical, and may be square tubes, for example. Further, the shapes of the column portion 13 and the phase separation portions 14 and 15 are not necessarily cylindrical, and may be, for example, a quadrangular prism shape.

硝酸水溶液からのイッテルビウムYb(III)の連続抽出   Continuous extraction of ytterbium Yb (III) from aqueous nitric acid solution

図4の写真に示す高さ70cmの向流方式エマルションフロー抽出装置10を用いて、硝酸水溶液からのイッテルビウムYb(III)の連続抽出実験を行った。なお、第1ヘッド部11は、直径1.5 cm、長さ5 cmで一端の閉じたポリプロピレン製の筒の周囲に38個の孔(直径2 mm)をあけ、さらにその回りを70μmのメッシュを有するテフロン(登録商標)シートで覆った構造である。また、第2ヘッド部は、40μmの孔径を持つ焼結ガラス板を筒に接着した構造である。上方相分離部14は、口の搾まった容器をカラム部13の上方に挿入した構造である。また、下方相分離部15は、カラム部13よりも径が大きい容器をカラム部13の下方に結合した構造である。 A continuous extraction experiment of ytterbium Yb (III) from an aqueous nitric acid solution was performed using a countercurrent emulsion flow extraction apparatus 10 having a height of 70 cm shown in the photograph of FIG. The first head unit 11 has a hole of 38 holes (diameter 2 mm) around a polypropylene tube having a diameter of 1.5 cm and a length of 5 cm and one end closed, and further has a mesh of 70 μm around the hole. The structure is covered with a Teflon (registered trademark) sheet. The second head portion has a structure in which a sintered glass plate having a hole diameter of 40 μm is bonded to a cylinder. The upper phase separation unit 14 has a structure in which a container with a squeezed mouth is inserted above the column unit 13. The lower phase separation unit 15 has a structure in which a container having a diameter larger than that of the column unit 13 is coupled to the lower side of the column unit 13.

金属イオンとしてイッテルビウムYb(III)を選び、抽出剤としてビス(2-エチルヘキシル)リン酸:DEHPAを用いて、イッテルビウムYb(III)の抽出率と送液量との関係を調べた。試料水溶液(水相)の体積は200L、抽出溶媒相の体積は2Lであり、抽出溶媒にはイソオクタンを用いた。水相は、硝酸を加えてpHを2.0に調整し、水相中のイッテルビウムYb(III)の濃度は、6 × 10-6 Mとした。また、抽出溶媒相中の抽出剤(DEHPA)の濃度は1 × 10-2 Mとした。 Using ytterbium Yb (III) as the metal ion and using bis (2-ethylhexyl) phosphate: DEHPA as the extractant, the relationship between the extraction rate of ytterbium Yb (III) and the amount of liquid fed was examined. The volume of the sample aqueous solution (aqueous phase) was 200 L, the volume of the extraction solvent phase was 2 L, and isooctane was used as the extraction solvent. The aqueous phase was adjusted to pH 2.0 by adding nitric acid, and the concentration of ytterbium Yb (III) in the aqueous phase was 6 × 10 −6 M. The concentration of the extractant (DEHPA) in the extraction solvent phase was 1 × 10 −2 M.

水相送液の流量は184 L/時間、抽出溶媒相循環の流量は30 L/時間で実験を行った(処理能力=毎時184 L)。排水された水相を25L毎に少量採取し、イッテルビウムYb(III)の濃度を誘導結合プラズマ質量分析装置(ICP-MS)によって測定した。図5にその結果を示す。送液量に関係なく、イッテルビウムYb(III)の抽出率は、およそ99%であった。   The experiment was carried out at a flow rate of 184 L / hour for the aqueous phase and 30 L / hour for the extraction solvent phase circulation (treatment capacity = 184 L / hour). A small amount of the drained aqueous phase was collected every 25 L, and the concentration of ytterbium Yb (III) was measured by an inductively coupled plasma mass spectrometer (ICP-MS). FIG. 5 shows the result. Regardless of the amount of liquid fed, the extraction rate of ytterbium Yb (III) was approximately 99%.

粒子成分共存下でのイッテルビウムYb(III)の連続抽出 Continuous extraction of ytterbium Yb (III) in the presence of particulate components

(実施例1)で用いたものと同じ向流方式エマルションフロー抽出装置(ただし、第1ヘッド部の構造は異なる)を用いて、粒子成分共存下でのイッテルビウムYb(III)の連続抽出実験を行った。なお、このとき用いた第1ヘッド部11は、直径1.5 cm、長さ5 cmで一端の閉じたポリプロピレン製の筒の周囲に直径4.8 mmの孔を6個あけただけの構造である(メッシュシートはなし)。第2ヘッド部12は、(実施例1)のときと同じで、40μmの孔径を持つ焼結ガラス板を筒に接着した構造である。   Using the same counter-current type emulsion flow extraction device used in (Example 1) (however, the structure of the first head part is different), continuous extraction experiments of ytterbium Yb (III) in the presence of particle components were conducted. went. The first head part 11 used at this time has a structure in which six holes having a diameter of 1.5 cm and a length of 5 cm and having a diameter of 5 cm and a closed end of a polypropylene tube are formed by six holes having a diameter of 4.8 mm (mesh). No sheet). The second head portion 12 is the same as in (Example 1), and has a structure in which a sintered glass plate having a hole diameter of 40 μm is bonded to a cylinder.

上記の向流方式エマルションフロー抽出装置を用いて、6 × 10-6 MのイッテルビウムYb(III)を含む硝酸水溶液(pH = 2.0)に酸化アルミニウムAl2O3の微粒子(粒径40μm以下)を共存させた水溶液から、1 × 10-2 MのDEHPAを含むイソオクタンにイッテルビウムYb(III)を抽出する実験を行った。試料水溶液(水相)の体積は200L、抽出溶媒相の体積は2Lとした。酸化アルミニウムAl2O3微粒子が共存する以外は(実施例1)の条件と同じである。なお、共存する酸化アルミニウムAl2O3の量は、モル濃度換算で0.02 Mである。 Using the above counter-current emulsion flow extraction device, fine particles of aluminum oxide Al 2 O 3 (particle size of 40 μm or less) are added to nitric acid aqueous solution (pH = 2.0) containing 6 × 10 -6 M ytterbium Yb (III). An experiment was conducted to extract ytterbium Yb (III) into isooctane containing 1 × 10 −2 M DEHPA from the coexisting aqueous solution. The volume of the sample aqueous solution (aqueous phase) was 200 L, and the volume of the extraction solvent phase was 2 L. The conditions are the same as in Example 1 except that aluminum oxide Al 2 O 3 fine particles coexist. The amount of aluminum oxide Al 2 O 3 coexisting is 0.02 M in terms of molar concentration.

水相送液の流量は237 L/時間、抽出溶媒相循環の流量は30 L/時間で実験を行った(処理能力=毎時237 L)。排水された水相を25L毎に少量採取し、イッテルビウムYb(III)の濃度をICP-MSによって測定した。図6に、その結果を示す。送液量に関係なく、イッテルビウムYb(III)の抽出率は、およそ97%であった。すなわち、(実施例1)での値99%と比較すればやや低いものの、十分に大きな抽出率が得られたことになる。また、第1ヘッド部11、第2ヘッド部12ともに、目詰まりはまったく発生しなかった。なお、図6の鎖線は図5のデータを示す。   The experiment was conducted at a water flow rate of 237 L / hour and an extraction solvent phase circulation flow rate of 30 L / hour (processing capacity = 237 L / hour). A small amount of the drained aqueous phase was collected every 25 L, and the concentration of ytterbium Yb (III) was measured by ICP-MS. FIG. 6 shows the result. The extraction rate of ytterbium Yb (III) was approximately 97% regardless of the amount of liquid fed. That is, a sufficiently large extraction rate was obtained although it was slightly lower than the value of 99% in Example 1. Moreover, clogging did not occur at all in the first head portion 11 and the second head portion 12. In addition, the chain line of FIG. 6 shows the data of FIG.

以上から、大量の粒子成分が共存する中からであっても、粒子成分の影響を受けることなく、水溶液中の金属イオンを抽出できることがわかった。また、向流方式エマルションフローでは、第2ヘッド部12の構造がエマルションフローの質を決定づけ、第1ヘッド部11の構造は重要ではないことも判明した。   From the above, it was found that metal ions in an aqueous solution can be extracted without being affected by particle components even when a large amount of particle components coexist. It was also found that in the countercurrent emulsion flow, the structure of the second head portion 12 determines the quality of the emulsion flow, and the structure of the first head portion 11 is not important.

装置を停止したときに再開に要する時間 Time required to restart when the device is stopped

(実施例2)で用いた向流方式エマルションフロー抽出装置(第1ヘッド部11、第2ヘッド部12の構造も同じ)を用いて、装置を停止したときに再開に要する時間を測定した。運転していた装置を一旦、完全に停止させた後、再度、送液ポンプを起動してから安定なエマルションフローが発生するまでの時間を測定した。   Using the countercurrent emulsion flow extraction device (the structure of the first head portion 11 and the second head portion 12 is the same) used in (Example 2), the time required for restarting when the device was stopped was measured. After the apparatus that had been operating was once completely stopped, the time from when the liquid feed pump was started to when a stable emulsion flow was generated was measured again.

水相送液の流量を205L/時間、抽出溶媒相循環の流量は30 L/時間として装置を運転中に、送液ポンプを突然停止させた。2分経過した後、再度、同じ条件で送液ポンプを稼働させたところ、約5秒でエマルションフローが安定に発生している状態にまで到達することがわかった。すなわち、送液が完全停止しても、調整作業を要することなく、即座に運転を再開できることがわかった。   The liquid feed pump was suddenly stopped while the apparatus was operating with the flow rate of the aqueous phase feed being 205 L / hour and the extraction solvent phase circulation being 30 L / hour. After 2 minutes, when the liquid feed pump was operated again under the same conditions, it was found that the emulsion flow reached a stable state in about 5 seconds. That is, it has been found that even if the liquid feeding is completely stopped, the operation can be resumed immediately without requiring adjustment work.

低レベル放射性廃液(模擬廃液)からのウランUの抽出 Extraction of uranium U from low-level radioactive liquid waste (simulated liquid waste)

原子力施設で使用した機器の解体撤去に伴って発生する除染廃液(付着した放射性物質を酸で洗浄・除去することで生じる廃液)を模擬して、Al(8.4 × 10-4 M)、Ti(4.6 × 10-4 M)、Cr(1.1 × 10-4 M)、Fe(4.2 × 10-2 M)、Co(4.3 × 10-3 M)、Ni(6.1 × 10-3 M)、Cu(2.1 × 10-4 M)、Mo(3.8 × 10-4 M)、及びU(5.0 × 10-7 M)を含む硫酸水溶液(pH 0.5)を調整し、(実施例2)と同様な構造の向流方式エマルションフロー抽出装置を用いて、ウランUの選択的な抽出を試みた。また、抽出剤としてはトリオクチルアミン:TOA、抽出溶媒には2.5vol%(体積パーセント)のn-オクタノールを含むイソオクタンを用いた。なお、TOAの濃度は0.3 Mであった。水相送液の流量は225 L/時間、抽出溶媒相循環の流量は30 L/時間で実験を行った(処理能力=毎時225 L)。その結果、種々の金属イオンが高濃度で共存する中から、低濃度のウランUのみをおよそ97%の抽出率で高選択的に抽出することができた。図7に、その結果を示す。なお、モリブデンMoも若干量が抽出されるが、沈殿除去が困難なモリブデンMoも抽出対象になることがあるため、むしろ好都合な結果である。 Simulating the decontamination waste liquid (waste liquid generated by washing and removing the attached radioactive material with an acid) that accompanies the dismantling and removal of the equipment used in the nuclear facility, Al (8.4 × 10 -4 M), Ti (4.6 x 10 -4 M), Cr (1.1 x 10 -4 M), Fe (4.2 x 10 -2 M), Co (4.3 x 10 -3 M), Ni (6.1 x 10 -3 M), Cu A sulfuric acid aqueous solution (pH 0.5) containing (2.1 × 10 −4 M), Mo (3.8 × 10 −4 M), and U (5.0 × 10 −7 M) was prepared , and the same structure as in (Example 2) The selective extraction of uranium U was tried using the counter-current type emulsion flow extraction device. Further, trioctylamine: TOA was used as the extractant, and isooctane containing 2.5 vol% (volume percent) of n-octanol was used as the extraction solvent. The TOA concentration was 0.3 M. The experiment was conducted at a water flow rate of 225 L / hour and an extraction solvent phase circulation flow rate of 30 L / hour (treatment capacity = 225 L / hour). As a result, among various metal ions coexisting at a high concentration, only a low concentration of uranium U could be extracted with a high extraction rate of approximately 97%. FIG. 7 shows the result. Although molybdenum Mo is also extracted in a small amount, molybdenum Mo, which is difficult to remove by precipitation, may be an object to be extracted.

本願発明の向流方式エマルションフロー連続液液抽出装置は、従来の連続液液抽出装置(ミキサセトラ、パルスカラム、遠心抽出機など)と比較して、産業利用において優位な数々の特徴をもつ。たとえば、費用対効果の点から、ランニングコスト及びメンテナンスコストが小さいことは重要である。従来の液液抽出装置とは異なり機械的外力(撹拌、振動など)を加え続ける必要がないため、その分の電力消費がない。唯一、駆動力を必要とする送液についても、高低差や排水の流れを利用すれば無電力方式の導入も可能である。また、扱いやすいということも、重要な要素である。たとえば、従来の連続液液抽出装置では、運転の立ち上げ時に長時間の調整作業を要し定常運転時にも微調整を要する。しかも、このような調整作業には熟練を要する。一方、エマルションフロー連続液液抽出装置は、送液量の変化に強く、送液が突然停止しても5秒程度で定常状態に復帰できるという安定さから、調整作業をほとんど必要とせず、扱いに熟練も要しない。このことは、人件費の大幅な削減につながる。また、シンプルな構造の装置なので製作が容易かつ安価で設備に要する初期コストが小さく、コンパクトな装置なので設置に広いスペースを要しないことも、プラント化において有利である。さらに、既存装置と比べて安全性が高いという利点もある。エマルションフローを原理とする装置では、カラム式固液抽出器と同様に振動の影響を受けにくいこと(耐震性が高いこと)、コンパクトな装置なので使用する有機溶媒の量を抑えられること、機械的外力(撹拌、振動など)を加え続けることによって発生する摩擦熱が存在しないことなどが安全性を高めている。また、調整作業などに伴う廃液が非常に少ないこと、騒音が少ないことなどは、環境への配慮という点から価値の高いメリットである。以上の利点は、機械的外力を使わないエマルションフロー装置が、カラム式固液抽出と同様な簡便さで、効率的な液液抽出を実現できることに起因するものである。   The counter-current emulsion flow continuous liquid-liquid extraction device of the present invention has a number of features that are advantageous in industrial use as compared with conventional continuous liquid-liquid extraction devices (mixer-settler, pulse column, centrifugal extractor, etc.). For example, from the viewpoint of cost effectiveness, it is important that the running cost and the maintenance cost are small. Unlike conventional liquid-liquid extraction devices, there is no need to continue to apply mechanical external force (stirring, vibration, etc.), so there is no power consumption. The only solution that requires driving force is the introduction of a non-powered system using the difference in elevation and the flow of drainage. In addition, being easy to handle is an important factor. For example, in a conventional continuous liquid-liquid extraction device, a long adjustment work is required at the start of operation, and fine adjustment is required even during steady operation. Moreover, such adjustment work requires skill. On the other hand, the emulsion flow continuous liquid-liquid extraction device is resistant to changes in the amount of liquid delivered and can be returned to the steady state in about 5 seconds even if the liquid delivery stops suddenly. No skill is required. This leads to a significant reduction in labor costs. In addition, it is also advantageous in planting that a simple structure is easy and inexpensive to manufacture, and the initial cost required for equipment is small, and that a compact device does not require a large space for installation. Furthermore, there is an advantage that the safety is higher than that of the existing apparatus. The device based on the emulsion flow is less susceptible to vibration (high earthquake resistance) like the column-type solid-liquid extractor, and the compact device can control the amount of organic solvent used. Safety is enhanced by the absence of frictional heat generated by continuously applying external force (stirring, vibration, etc.). In addition, the fact that the amount of waste liquid associated with adjustment work is very small and the noise is low is a highly valuable merit from the viewpoint of environmental considerations. The above advantages are due to the fact that an emulsion flow apparatus that does not use mechanical external force can realize efficient liquid-liquid extraction with the same simplicity as column-type solid-liquid extraction.

以上から、向流方式エマルションフロー連続液液抽出装置は、今後、液液抽出が関係する多くの産業(金属の精製技術、レアメタルのリサイクル技術など)において、大いに活用されるものと期待できる。また、今までの液液抽出装置にはない数々の優れた特徴から、液液抽出の新しい市場を開拓することも期待できる。たとえば、エマルションフローの原理を用いた装置の持つ、安全で扱いやすく、低コスト、コンパクトといった特徴から、使用済核燃料の湿式再処理における次世代型の連続液液抽出装置、大量に発生する低レベル放射性廃液に対する低コストで迅速な浄化装置などとして大いに期待できる(実施例4を参照)。また、これまでは、液液抽出法を環境水の浄化や大量排水の処理に適用することは、コスト面、操作面、安全面などから困難であったが、向流方式エマルションフローを用いることで、迅速で効率的な水浄化、排水処理が実現可能になると期待できる。   From the above, it is expected that the countercurrent emulsion flow continuous liquid-liquid extraction device will be greatly utilized in many industries related to liquid-liquid extraction (metal purification technology, rare metal recycling technology, etc.). In addition, it can be expected that a new market for liquid-liquid extraction will be cultivated from the many excellent features that liquid-liquid extraction devices have not so far. For example, because of the features of the equipment using the principle of emulsion flow, such as safe, easy to handle, low cost, and compact, next-generation type continuous liquid-liquid extraction equipment for wet reprocessing of spent nuclear fuel, low level generated in large quantities It can be expected greatly as a low-cost and quick purification device for radioactive liquid waste (see Example 4). In the past, it was difficult to apply the liquid-liquid extraction method to the purification of environmental water and the treatment of large-scale wastewater from the viewpoint of cost, operation, safety, etc. Therefore, it can be expected that rapid and efficient water purification and wastewater treatment can be realized.

向流方式エマルションフロー連続液液抽出装置の概略構成図である。It is a schematic block diagram of a counterflow system emulsion flow continuous liquid-liquid extraction apparatus. カラム部でのエマルションフローの発生及び上方相分離部でのエマルションフローの消滅を説明する図である。It is a figure explaining generation | occurrence | production of the emulsion flow in a column part, and extinction of the emulsion flow in an upper phase separation part. 下方相分離部においてエマルションフローが消滅する様子を説明する図である。It is a figure explaining a mode that an emulsion flow disappears in a lower phase separation part. 実施例で用いた向流方式エマルションフロー装置を示す図である。It is a figure which shows the countercurrent system emulsion flow apparatus used in the Example. 硝酸水溶液からのイッテルビウムYb(III)の連続抽出の結果を示すグラフである。It is a graph which shows the result of the continuous extraction of ytterbium Yb (III) from nitric acid aqueous solution. 粒子成分(Al2O3)共存下でのイッテルビウムYb(III)の連続抽出の結果を示すグラフである。It is a graph which shows the result of the continuous extraction of ytterbium Yb (III) in the presence of a particle component (Al 2 O 3 ). 向流方式エマルションフロー装置による除染廃液模擬廃液からのウランUの高選択的な抽出結果を示すグラフである。It is a graph which shows the highly selective extraction result of uranium U from the decontamination waste liquid simulation waste liquid by a counter-current system emulsion flow apparatus.

符号の説明Explanation of symbols

10:エマルションフロー装置
11:第1ヘッド部
12:第2ヘッド部
13:カラム部
14:上方相分離部
15:下方相分離部
16:送液ポンプ
20:リザーバー
21:導管
10: Emulsion flow device 11: First head part 12: Second head part 13: Column part 14: Upper phase separation part 15: Lower phase separation part 16: Liquid feed pump 20: Reservoir 21: Conduit

Claims (2)

送液ポンプ、
前記送液ポンプによって送られて来る水相を噴出させる第1ヘッド部、
前記第1ヘッド部と対抗して配置され、前記送液ポンプによって循環される抽出溶媒相を微細化して水相に向けて噴出させる第2ヘッド部、
水相と抽出溶媒相のエマルションフローが発生するカラム部、
前記カラム部の上方に設置された上方相分離部、及び
前記カラム部の下方に設置された下方相分離部を備え、
前記上方相分離部には抽出溶媒相が集合し、前記下方相分離部では水相が集合し、前記上方相分離部の抽出溶媒相が、前記第2ヘッド部を通じて循環されることを特徴とする向流方式エマルションフロー連続液液抽出装置。
Feed pump,
A first head part for ejecting the aqueous phase sent by the liquid feed pump;
A second head part arranged opposite to the first head part, for finely extracting the extraction solvent phase circulated by the liquid feed pump and ejecting it toward the aqueous phase;
A column part where an emulsion flow of an aqueous phase and an extraction solvent phase occurs,
An upper phase separation unit installed above the column unit; and
A lower phase separation unit installed below the column unit;
An extraction solvent phase gathers in the upper phase separation part, an aqueous phase gathers in the lower phase separation part, and the extraction solvent phase of the upper phase separation part is circulated through the second head part. Counterflow type emulsion flow continuous liquid-liquid extraction device.
請求項1記載の装置において、前記上方相分離部は、口の搾まった容器を前記カラム部の上方に挿入した構造を有し、前記下方相分離部は、前記カラム部よりも径が大きい容器をカラム部の下方に結合した構造を有していることを特徴とする向流方式エマルションフロー連続液液抽出装置。 2. The apparatus according to claim 1, wherein the upper phase separation unit has a structure in which a mouth-squeezed container is inserted above the column unit, and the lower phase separation unit has a larger diameter than the column unit. A counter-current emulsion flow continuous liquid-liquid extraction device having a structure in which a container is coupled to the lower part of a column part .
JP2008253779A 2008-09-30 2008-09-30 Counterflow emulsion flow continuous liquid-liquid extraction device Active JP5305382B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008253779A JP5305382B2 (en) 2008-09-30 2008-09-30 Counterflow emulsion flow continuous liquid-liquid extraction device
EP11166870.3A EP2364758B1 (en) 2008-09-30 2009-09-28 Continuous collection method of particle component in aqueous solution and apparatus therefor
EP09252285.3A EP2172254B1 (en) 2008-09-30 2009-09-28 Continuous collection method of particle component in aqueous solution and apparatus therefor
US12/570,470 US20100078382A1 (en) 2008-09-30 2009-09-30 Continuous collection method of particle component in aqueous solution and apparatus therefor
US13/527,013 US9108124B2 (en) 2008-09-30 2012-06-19 Continuous collection method of particle component in aqueous solution and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008253779A JP5305382B2 (en) 2008-09-30 2008-09-30 Counterflow emulsion flow continuous liquid-liquid extraction device

Publications (2)

Publication Number Publication Date
JP2010082531A JP2010082531A (en) 2010-04-15
JP5305382B2 true JP5305382B2 (en) 2013-10-02

Family

ID=42247021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008253779A Active JP5305382B2 (en) 2008-09-30 2008-09-30 Counterflow emulsion flow continuous liquid-liquid extraction device

Country Status (1)

Country Link
JP (1) JP5305382B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123907A (en) * 2014-12-26 2016-07-11 国立研究開発法人日本原子力研究開発機構 Emulsion stream control method
US11571634B2 (en) 2019-06-19 2023-02-07 Japan Atomic Energy Agency Method and apparatus for producing specific substances by extraction and separation in a liquid-liquid system
DE112022001104T5 (en) 2021-04-16 2024-02-01 Japan Atomic Energy Agency MULTI-STAGE LIQUID-LIQUID TYPE APPARATUS AND METHOD FOR PRODUCING SPECIFIC SUBSTANCES USING SAME

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720583B2 (en) * 2012-01-13 2015-05-20 信越化学工業株式会社 Liquid-liquid extraction apparatus, multistage liquid-liquid extraction apparatus using the same, and multistage continuous extraction apparatus for rare earth elements
CN105056575B (en) * 2015-09-11 2017-05-31 刘艾新 A kind of automatic liquid liquid abstraction instrument
JP6483886B2 (en) * 2018-03-30 2019-03-13 国立研究開発法人日本原子力研究開発機構 Emulsion flow generation and extinguishing device and method for producing specific substance using the same
CN109224512B (en) * 2018-09-17 2024-03-22 沈阳化工大学 Impact extraction device and extraction method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200525A (en) * 1978-04-03 1980-04-29 Chem-Pro Equipment Corp. Liquid extraction process and apparatus for accomplishing the same
JPH01123604A (en) * 1987-11-10 1989-05-16 Tsuushiyousangiyoushiyou Kiso Sangiyoukiyokuchiyou Light liquid-heavy liquid countercurrent extractor
JPH04147929A (en) * 1990-10-11 1992-05-21 Mitsubishi Materials Corp Separation of rare earth element
PT710126E (en) * 1993-07-30 2004-09-30 Aruba Internat Pty Ltd PLASMA DISPIPING SYSTEM

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123907A (en) * 2014-12-26 2016-07-11 国立研究開発法人日本原子力研究開発機構 Emulsion stream control method
US11571634B2 (en) 2019-06-19 2023-02-07 Japan Atomic Energy Agency Method and apparatus for producing specific substances by extraction and separation in a liquid-liquid system
DE112022001104T5 (en) 2021-04-16 2024-02-01 Japan Atomic Energy Agency MULTI-STAGE LIQUID-LIQUID TYPE APPARATUS AND METHOD FOR PRODUCING SPECIFIC SUBSTANCES USING SAME

Also Published As

Publication number Publication date
JP2010082531A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP5305382B2 (en) Counterflow emulsion flow continuous liquid-liquid extraction device
US9108124B2 (en) Continuous collection method of particle component in aqueous solution and apparatus therefor
EP2614868B1 (en) Liquid-liquid extraction unit, multistage liquid-liquid extraction apparatus using the unit, and multistage continuous extraction system for rare earth elements
US20080134837A1 (en) Method and System for Recovering Metal from Metal-Containing Materials
JP6483886B2 (en) Emulsion flow generation and extinguishing device and method for producing specific substance using the same
JP5565719B2 (en) Continuous liquid-liquid extraction device using emulsion flow
Kostanyan Extraction chromatographic separation of rare-earth metals in a cascade of centrifugal extractors
Yanase et al. New apparatus for liquid-liquid extraction,“emulsion flow” extractor
JP2006315931A (en) Method and apparatus for recovering phosphoric acid from metal ion-containing mixed acid aqueous solution containing phosphoric acid and at least one kind of acid except phosphoric acid
JP6488512B2 (en) Emulsion flow control method
Yanase et al. Counter Current “Emulsion Flow” Extractor for Continuous Liquid–Liquid Extraction from Suspended Solutions
Gasser et al. Sustainability of solvent extraction techniques in pollution prevention and control
JP7297294B2 (en) Method for producing specific substances by extraction and separation in a liquid-liquid system
Awwad Equilibrium and kinetic studies on the extraction and stripping of uranium (VI) from nitric acid medium into tri-phenylphosphine oxide using a single drop column technique
CN116844750A (en) Process and system for recycling radioactive organic waste solvent
JP4574639B2 (en) Heavy metal contamination liquid separation and extraction system
Belova Free supported liquid membranes
JP5733691B2 (en) Method for continuous recovery of particle components in solution
JP5078018B2 (en) Centrifugal extraction method and centrifugal extraction device
JP2004323947A (en) Continuous extracting apparatus and method for extracting metal using it
Makertiharta et al. Rare earth element enrichment using membrane based solvent extraction
WO2022220017A1 (en) Liquid-liquid system multi-stage device and method for producing specific substance using same
Shikerun et al. Refining of uranium solutions in centrifugal extractors
JPS63107704A (en) Extraction material and extraction method
KR101522771B1 (en) Vertical liquid-liguid separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250