JPH04147929A - Separation of rare earth element - Google Patents

Separation of rare earth element

Info

Publication number
JPH04147929A
JPH04147929A JP27051990A JP27051990A JPH04147929A JP H04147929 A JPH04147929 A JP H04147929A JP 27051990 A JP27051990 A JP 27051990A JP 27051990 A JP27051990 A JP 27051990A JP H04147929 A JPH04147929 A JP H04147929A
Authority
JP
Japan
Prior art keywords
rare earth
column
earth elements
organic solvent
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27051990A
Other languages
Japanese (ja)
Inventor
Hiromi Mochida
裕美 持田
Fumio Mikuni
三国 文雄
Fumitaka Sakurai
桜井 文隆
Jiro Oshima
大島 治郎
Mitsugi Sato
貢 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP27051990A priority Critical patent/JPH04147929A/en
Publication of JPH04147929A publication Critical patent/JPH04147929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To separate and recover rare earth elements in an organic solvent phase and an aqueous phase with superior separability by supplying a solution containing various rare earth elements into a pulse column containing an emulsion of organic solvent phase and aqueous phase. CONSTITUTION:An aqueous extract, such as dilute hydrochloric acid, is supplied from the top 11 of a pulse column 10 and an organic solvent is supplied from the bottom 12 of the column, and vibrations are applied to the whole solution to hold the inside of the column in an emulsive state. At this time, plural rare earth elements are incorporated into either of the aqueous extract or the organic solvent or an aqueous solution containing rare earth elements is supplied through the central part of the column 10 into the column to bring these rare earth elements into contact with the emulsion. The rare earth elements supplied into the column are efficiently separated into light rare earth elements and heavy rare earth elements and recovered in the aqueous extract phase and the organic solvent, respectively. Further, the aqueous extract and the organic solvent can be supplied into the column by providing mixer settlers 21, 22, and 23 to the top and bottom of the pulse column 10, respectively, and previously bringing the aqueous extract and the organic solvent into contact with each other via the above settlers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パルスカラムを用いた高い分離効果を有する
希土類元素の分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for separating rare earth elements that uses a pulse column and has a high separation effect.

希土類元素は磁性材料、蛍光体,電子材料、光学材料等
に幅広く用いられており、更にその用途が拡大している
.本発明は、各種の希土類元素。
Rare earth elements are widely used in magnetic materials, phosphors, electronic materials, optical materials, etc., and their applications are expanding further. The present invention relates to various rare earth elements.

特に重希土を効果的に分離回収する方法に関する。In particular, it relates to a method for effectively separating and recovering heavy rare earths.

〔従来技術とその課題〕[Conventional technology and its issues]

希土類元素の原料鉱石としては,一般に軽希土の含有量
が多いものとしてモナザイト、バストネサイトが知られ
ており、また重希土の含有量の多い鉱石として尋烏鉱が
知られている.ところで、此れ等の原料鉱石から希土類
元素を分離回収する場合、上記鉱石中には多種類の希土
類元素が混在しており、しかも各元素の性質が類似して
いるために希土類以外の元素に比べて分離回収が容易で
はない。
As raw material ores for rare earth elements, monazite and bastnaesite are generally known as those with a high content of light rare earth, and porphyrite is known as an ore with a high content of heavy rare earth. By the way, when separating and recovering rare earth elements from such raw material ores, there are many types of rare earth elements mixed in the ore, and the properties of each element are similar, so it is difficult to separate and recover rare earth elements from other raw material ores. It is not easy to separate and recover.

従来、希土類元素の分離し回収する方法として。Conventionally, as a method for separating and recovering rare earth elements.

イオン交換法、ミキサセトラーによる液々溶媒抽比法が
知られている。
An ion exchange method and a liquid-liquid solvent extraction method using a mixer settler are known.

上記イオン交換法においては、陽イオン交換樹脂と陰イ
オン交換樹脂を適宜用い、目的の希土類元素を順次吸着
分離する。イオン交換法によれば、比較的純度の高い希
土類元素を得ることができるが、イオン交換樹脂の種類
によって分離される希土類元素が限定され、多数の希土
類元素を分離するには適さない6更にイオン交換樹脂の
耐用性にも限界があり、このためコスト高になる問題が
ある。またイオン交換法は処理量も限られるので。
In the above ion exchange method, a cation exchange resin and an anion exchange resin are appropriately used to sequentially adsorb and separate the target rare earth element. According to the ion exchange method, rare earth elements with relatively high purity can be obtained, but the rare earth elements that can be separated are limited depending on the type of ion exchange resin, and it is not suitable for separating a large number of rare earth elements. There is also a limit to the durability of the replacement resin, which poses a problem of high costs. Also, the throughput of the ion exchange method is limited.

少量の処理には適用できるが工業生産には適さない。It can be applied to small-scale processing, but is not suitable for industrial production.

一方、従来のミキサセトラーによる液々溶媒抽出法はイ
オン交換法より多量の溶液を処理できるので製造コスト
が低い利点があり、従って工業的には液々溶媒抽出法が
従来主に実施されている。
On the other hand, the liquid-liquid solvent extraction method using a conventional mixer-settler has the advantage of lower production costs because it can process a larger amount of solution than the ion exchange method, and therefore the liquid-liquid solvent extraction method has traditionally been mainly practiced industrially. .

しかしながら従来のミキサセトラーによる抽出法は処理
時間が長く、しかも抽出溶液の液量が嵩む欠点がある。
However, the conventional extraction method using a mixer-settler has the drawbacks of long processing time and a large amount of extraction solution.

更に分離される希土類元素の純度はイオン交換法よる場
合よりも低く、近年需要の高まっている電子材料分野等
の原料として用いるには精製工程の負担が大きくなる問
題がある。
Furthermore, the purity of the rare earth elements separated is lower than that obtained by the ion exchange method, and there is a problem in that the purification process becomes burdensome when used as a raw material in the field of electronic materials, for which demand has been increasing in recent years.

本発明は従来のイオン交換法やミキサセトラーを用いる
方法に代えてパルスカラムを利用することにより分離効
果を格段に向上した希土類元素の分離方法を提供するこ
とを目的とする。
An object of the present invention is to provide a method for separating rare earth elements, which uses a pulse column instead of the conventional ion exchange method or method using a mixer settler, thereby greatly improving the separation effect.

〔発明の構成と作用:課題の解決手段〕本発明によれば
、パルスカラムの塔頂と塔底から各々塔内に有機溶媒相
と水相とを供給し、パルス振動下で向流接触させてエマ
ルジョン化し、有機溶媒相または水相の一方に溶解され
ている希土類元素を他方に抽出することを特徴とする希
土類元素の分離方法が提供される。
[Structure and operation of the invention: means for solving problems] According to the present invention, an organic solvent phase and an aqueous phase are supplied into the column from the top and bottom of a pulsed column, respectively, and brought into countercurrent contact under pulsed vibration. Provided is a method for separating rare earth elements, which is characterized in that the rare earth elements dissolved in one of an organic solvent phase or an aqueous phase are extracted into the other.

更に本発明によれば、パルスカラムの塔頂と塔底から各
々塔内に有機溶媒相と水相を供給し、パルス振動下で向
流接触させてエマルジョン化する一方、塔中央から希土
類元素の溶解液を塔内に供給し、希土類元素を有機溶媒
相と水相とに分離して抽出することを特徴とする希土類
元素の全層方法が提供される。
Furthermore, according to the present invention, an organic solvent phase and an aqueous phase are supplied into the column from the top and bottom of the pulse column, respectively, and emulsified by countercurrent contact under pulse vibration, while rare earth elements are fed from the center of the column. A full phase method for extracting rare earth elements is provided, which is characterized in that a solution is fed into a column, and the rare earth elements are separated into an organic solvent phase and an aqueous phase for extraction.

また本発明によれば、上記希土類元素の分離方法であっ
て、パルスカラムの塔頂および塔底にミキサセトラーを
設け、該ミキサセトラーを通じて予め有機相と水相を接
触させた後に各々塔内に供給することを特徴とする分離
方法が提供される。
Further, according to the present invention, in the above method for separating rare earth elements, a mixer settler is provided at the top and bottom of the pulse column, and after the organic phase and the aqueous phase are brought into contact with each other in advance through the mixer settler, the organic phase and the water phase are brought into contact with each other in the column. A separation method is provided, characterized in that:

本発明の分離方法においては、パルスカラムが用いられ
る。パルスカラムは他の分野では使用されているが、希
土類元素の分離に使用する例はこれまで知られていない
。パルスカラムの一般的な構造は、カラム内に多数の多
孔板が軸方向に沿って一定間隔に配設されており、カラ
ム塔頂と塔底から水等の抽出液と抽出元素が溶解されて
いる溶液とを各々供給して向流接触させる。このとき塔
内の液体に上下動のパルス状振動(脈動)を与えること
により多孔板を通じて交互に溶液と抽出液とが微粒子に
なって混合接触するので接触面積が格段に増加し高い抽
出効果を得ることができる。
In the separation method of the present invention, a pulse column is used. Although pulsed columns have been used in other fields, their use in separating rare earth elements is unknown. The general structure of a pulse column is that a large number of perforated plates are arranged at regular intervals along the axial direction within the column, and extractive liquid such as water and extracted elements are dissolved from the top and bottom of the column. and countercurrent contact with each other. At this time, by applying vertical pulse-like vibration (pulsation) to the liquid in the tower, the solution and extract liquid alternately form fine particles and mix and contact through the perforated plate, so the contact area increases significantly and a high extraction effect is achieved. Obtainable.

本発明の分離方法は、有機相に溶解している希土類元素
を水相に抽出する場合、あるいは水相に溶解している希
土類元素を有機相に抽出する場合の何れにも適用できる
。以下、希土類元素溶解液から有機相と水相に各々希土
類元素を分離抽出する場合について説明する。
The separation method of the present invention can be applied to either the case where a rare earth element dissolved in an organic phase is extracted into an aqueous phase, or the case where a rare earth element dissolved in an aqueous phase is extracted into an organic phase. Hereinafter, a case will be described in which rare earth elements are separated and extracted from a rare earth element solution into an organic phase and an aqueous phase, respectively.

パルスカラムの塔頂から抽出液として希塩酸などの弱酸
性水溶液を供給し、塔底から有機溶媒を供給して、液全
体に振動を与えて塔内をエマルジョン状態に保つ。一方
、塔中央から希土類元素が溶解している水溶液を塔内に
供給する。希土類元素の水溶液は塔内で有機溶媒と希塩
酸水溶液とに接触し、液のpHに応じ希土類元素は溶解
度にしたがって有機相に抽出され、他の希土類元素は水
相に抽出される。希土類元素はこの抽出により有機相と
水相の2つのグループに分離される。有機溶媒はパルス
カラムの塔頂から系外に抜き出され、必要に応じてアン
モニア等を添加してpoを調整した後に再びパルスカラ
ムに循環される。抽出操作を終えた有機溶媒および希塩
酸水溶液は系外に導かれ、必要に応じ、該有機溶媒およ
び希塩酸水溶液に溶解している希土類元素が更に分lI
I抽出される。なお本発明の方法により分離抽出を繰り
返す場合、有機相ないし水相のpHを調整することによ
り分離する希土類元素の種類を調整することができる。
A weakly acidic aqueous solution such as dilute hydrochloric acid is supplied from the top of the pulse column as an extractant, and an organic solvent is supplied from the bottom of the column to vibrate the entire liquid to maintain an emulsion inside the column. On the other hand, an aqueous solution containing dissolved rare earth elements is supplied into the tower from the center of the tower. The aqueous solution of rare earth elements comes into contact with an organic solvent and a dilute aqueous hydrochloric acid solution in the tower, and depending on the pH of the solution, the rare earth elements are extracted into the organic phase according to their solubility, and other rare earth elements are extracted into the aqueous phase. This extraction separates the rare earth elements into two groups: an organic phase and an aqueous phase. The organic solvent is taken out of the system from the top of the pulse column, and after adjusting the PO by adding ammonia or the like as necessary, it is circulated back to the pulse column. After the extraction operation, the organic solvent and dilute aqueous hydrochloric acid solution are led out of the system, and if necessary, the rare earth elements dissolved in the organic solvent and dilute aqueous hydrochloric acid solution are further separated.
I is extracted. Note that when the separation and extraction are repeated by the method of the present invention, the type of rare earth element to be separated can be adjusted by adjusting the pH of the organic phase or the aqueous phase.

本発明の分離方法は、パルスカラムの塔頂および塔底に
ミキサセトラーを設け、該ミキサセトラーを通じて有機
相と水相を接触させた後に各々塔内に供給する態様を含
む。パルスカラムを用いる抽出においては、効率よく分
離抽出を行なうためには、塔内を高いホールドアツプの
状態(エマルジョン中の水相の割合を多く)に保つこと
が必要である。塔内では希土類元素が水相に移行するに
従って次第に水相の比重が増加し、水相が落下し易くな
るので塔内に強い脈動を与えることにより塔内を高いホ
ールドアツプの状態に保つ。この場合、新しい水相が供
給される塔頂では水相の比重が小さく、また新しい有機
溶媒液が供給される塔底においても水相から有機相に希
土類元素が移行するので水相の比重が小さい。このよう
に塔内での水相の比重は均一ではない。塔内での水相の
比重差が大きいと、塔内を高いボールドアップの状態に
保つのが困難になる。そこでパルスカラムの塔頂と塔底
に各々ミキサセトラーを設け、該ミキサセトラーを通じ
て有機溶媒液と希塩酸水溶液とを向流接触させた後に塔
内に供給すれば、予め塔頂のミキサセトラー内で希土類
元素の溶解した有機溶媒液と新たに供給された希塩酸水
溶液とが接触して希塩酸水溶液に希土類元素の一部が抽
出され、塔内に供給される水相の比重が高く維持される
。一方、塔底のミキサセトラーでは新しく供給された有
機溶媒と希塩酸水溶液が接触して希塩酸水溶液に溶解し
ている希土類元素の一部が有機相に抽出されるので、塔
底に供給される有機相と水相が接触した際に、水相から
有機相への希土類元素の移行が少なく、水相の比重を高
く維持することができる。従って塔内を高いホールドア
ツプの状態に維持することができ、抽出分離効果を向上
することができる。
The separation method of the present invention includes an embodiment in which a mixer-settler is provided at the top and bottom of a pulse column, and the organic phase and aqueous phase are brought into contact through the mixer-settler and then supplied into the column. In extraction using a pulse column, in order to perform separation and extraction efficiently, it is necessary to maintain a high hold-up inside the column (high proportion of aqueous phase in the emulsion). As the rare earth elements move into the water phase within the tower, the specific gravity of the water phase gradually increases, making it easier for the water phase to fall, so strong pulsations are applied to the tower to maintain a high hold-up state. In this case, the specific gravity of the aqueous phase is low at the top of the tower where a new aqueous phase is supplied, and the specific gravity of the aqueous phase is low at the bottom of the tower where a new organic solvent is supplied as the rare earth elements are transferred from the aqueous phase to the organic phase. small. In this way, the specific gravity of the aqueous phase within the tower is not uniform. If the difference in specific gravity of the aqueous phase within the tower is large, it becomes difficult to maintain the inside of the tower in a highly bold-up state. Therefore, if a mixer-settler is provided at the top and bottom of the pulse column, and the organic solvent and dilute aqueous hydrochloric acid are brought into countercurrent contact through the mixer-settlers and then supplied into the column, the rare earth The organic solvent solution in which the elements are dissolved comes into contact with the newly supplied diluted hydrochloric acid aqueous solution, and a portion of the rare earth element is extracted into the diluted hydrochloric acid aqueous solution, thereby maintaining a high specific gravity of the aqueous phase supplied into the column. On the other hand, in the mixer settler at the bottom of the tower, the newly supplied organic solvent and dilute aqueous hydrochloric acid solution come into contact and a part of the rare earth elements dissolved in the dilute aqueous hydrochloric acid solution is extracted into the organic phase. When the aqueous phase comes into contact with the aqueous phase, there is little transfer of rare earth elements from the aqueous phase to the organic phase, and the specific gravity of the aqueous phase can be maintained high. Therefore, the inside of the column can be maintained in a high hold-up state, and the extraction and separation effect can be improved.

〔実施例および比較例〕[Examples and comparative examples]

図示するように、カラム10の塔頂11と塔底12にミ
キサセトラー21.22.23を設けたパルスカラム(
15cmψ 滞留水相量1321)を用い1Mミキサセ
トラー22.23を通じて、塔頂から希塩酸水溶液を0
.2171/win供給し、塔底から有機溶媒(50%
−2エチルへキシルリン酸エステル、 商品名PC−8
8A)を3.36 1/min供給する一方、塔中央か
ら次表の希土類元素含有水溶液を塔内に供給し、塔頂か
ら抜き出される有機溶媒をミキサセトラー21.22に
導き、ミキサセトラー21に供給される希塩酸水溶液と
接触させた。
As shown in the figure, a pulse column (
Using a 15 cm ψ and a retained aqueous phase volume of 1321), a dilute aqueous hydrochloric acid solution was poured from the top of the column through a 1M mixer settler 22.23.
.. 2171/win is supplied, and an organic solvent (50%
-2-ethylhexyl phosphate ester, trade name PC-8
8A) at a rate of 3.36 1/min, the rare earth element-containing aqueous solution shown in the following table is fed into the column from the center of the column, and the organic solvent extracted from the top of the column is led to mixer settler 21.22. was brought into contact with a dilute aqueous hydrochloric acid solution supplied to

該希塩酸水溶液に抽出されたプレグナント組成を併せて
次表に示す。
The composition of the pregnants extracted into the dilute aqueous hydrochloric acid solution is also shown in the following table.

希土類元素 Pr    Nd    Sm    E
u、   Gd7/−ド組成   0.004   0
.148   0.934   0.166   0.
749   (mol/1)プレグ組成   0.00
0  0.007  0.706  0.127  0
.572   (Iool/l)一方、ミキサセトラー
(1101,10段、滞留水相量275R)を用い、上
記希塩酸水溶液を0.1411/sin。
Rare earth element Pr Nd Sm E
u, Gd7/-de composition 0.004 0
.. 148 0.934 0.166 0.
749 (mol/1) Preg composition 0.00
0 0.007 0.706 0.127 0
.. 572 (Iool/l) On the other hand, using a mixer settler (1101, 10 stages, amount of retained aqueous phase 275 R), the above diluted hydrochloric acid aqueous solution was added at a rate of 0.1411/sin.

有機溶媒を2.191/win各々供給する一方、ミキ
サセトラー中央部から上記希土類元素水溶液を供給し、
希土類元素を分離抽出した。このプレグナント組成を次
表に示す。
While supplying the organic solvent at 2.191/win each, supplying the rare earth element aqueous solution from the center of the mixer settler,
Rare earth elements were separated and extracted. The composition of this pregnant is shown in the table below.

希土類元素 Pr    Nd    Sm    E
u   Gdプレグ組成   0.000  0.00
6  0.703  0.129  0.580   
(mol/1)上記結果から明らかなように、本発明の
パルスカラムを用いた抽出方法によれば、従来のミキサ
セトラーを用いた方法に比べて、同程度の抽出効果を達
成する場合に、ミキサセトラーの滞留水相量に比べて約
172の滞留水相量で済む利点がある。
Rare earth element Pr Nd Sm E
u Gd preg composition 0.000 0.00
6 0.703 0.129 0.580
(mol/1) As is clear from the above results, according to the extraction method using the pulse column of the present invention, when achieving the same extraction effect as the method using the conventional mixer settler, There is an advantage that the amount of retained water phase is only about 172 times the amount of retained water phase in the mixer settler.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の方法の実施態様を示す概略図。 図面中 10・・・カラム、11・・・塔頂、12・・
・塔底、21.22.23・・・ミキサセトラー特許呂
願人 三菱金属株式会社 代理人 弁理士松井政広(外1名)
The figure is a schematic diagram showing an embodiment of the method of the invention. In the drawing 10...Column, 11...Tower top, 12...
・Bottom, 21.22.23...Mixer settler patent applicant Mitsubishi Metals Corporation representative Patent attorney Masahiro Matsui (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)パルスカラムの塔頂と塔底から各々塔内に有機溶
媒相と水相とを供給し、パルス振動下で向流接触させて
エマルジョン化し、有機溶媒相または水相の一方に溶解
されている希土類元素を他方に抽出することを特徴とす
る希土類元素の分離方法。
(1) An organic solvent phase and an aqueous phase are supplied into the column from the top and bottom of the pulse column, and are brought into countercurrent contact under pulse vibration to form an emulsion, and the organic solvent phase and the aqueous phase are dissolved in either the organic solvent phase or the aqueous phase. A method for separating rare earth elements characterized by extracting one rare earth element from another.
(2)パルスカラムの塔頂と塔底から各々塔内に有機溶
媒相と水相を供給しパルス振動下で向流接触させてエマ
ルジョン化する一方、塔中央から希土類元素の溶解液を
塔内に供給し、希土類元素を有機溶媒相と水相とに分離
して抽出することを特徴とする希土類元素の分離方法。
(2) The organic solvent phase and the aqueous phase are supplied into the column from the top and bottom of the pulse column, respectively, and brought into countercurrent contact under pulse vibration to form an emulsion, while the rare earth element solution is fed into the column from the center of the column. A method for separating rare earth elements, characterized in that the rare earth elements are separated into an organic solvent phase and an aqueous phase and extracted.
(3)パルスカラムの塔頂および塔底にミキサセトラー
を設け、該ミキサセトラーを通じて予め有機相と水相を
接触させた後に各々塔内に供給することを特徴とする第
1請求項または第2請求項の希土類元素の分離方法。
(3) A mixer-settler is provided at the top and bottom of the pulse column, and the organic phase and aqueous phase are brought into contact with each other through the mixer-settler before being supplied into the column. Claimed method for separating rare earth elements.
JP27051990A 1990-10-11 1990-10-11 Separation of rare earth element Pending JPH04147929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27051990A JPH04147929A (en) 1990-10-11 1990-10-11 Separation of rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27051990A JPH04147929A (en) 1990-10-11 1990-10-11 Separation of rare earth element

Publications (1)

Publication Number Publication Date
JPH04147929A true JPH04147929A (en) 1992-05-21

Family

ID=17487358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27051990A Pending JPH04147929A (en) 1990-10-11 1990-10-11 Separation of rare earth element

Country Status (1)

Country Link
JP (1) JPH04147929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082531A (en) * 2008-09-30 2010-04-15 Japan Atomic Energy Agency Countercurrent emulsion flow continuous liquid-liquid extraction apparatus
CN101935756A (en) * 2010-09-03 2011-01-05 江西明达功能材料有限责任公司 Method for reclaiming rare-earth and organic phase from third phase of rare-earth extraction
CN103534368A (en) * 2011-05-10 2014-01-22 埃克洛普有限公司 Method for obtaining metals and rare earth metals from scrap
CN105543509A (en) * 2016-01-04 2016-05-04 李梅 Method for preparing rare earth chloride from mixed rare earth concentrate or bastnaesite concentrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082531A (en) * 2008-09-30 2010-04-15 Japan Atomic Energy Agency Countercurrent emulsion flow continuous liquid-liquid extraction apparatus
CN101935756A (en) * 2010-09-03 2011-01-05 江西明达功能材料有限责任公司 Method for reclaiming rare-earth and organic phase from third phase of rare-earth extraction
CN103534368A (en) * 2011-05-10 2014-01-22 埃克洛普有限公司 Method for obtaining metals and rare earth metals from scrap
CN105543509A (en) * 2016-01-04 2016-05-04 李梅 Method for preparing rare earth chloride from mixed rare earth concentrate or bastnaesite concentrate

Similar Documents

Publication Publication Date Title
US5011665A (en) Nonpolluting recovery of rare earth values from rare earth minerals/ores
KR930001132B1 (en) Process for the separation of neodymium or didymium from the rare earths contained in bastnaestite
US5015447A (en) Recovery of rare earth elements from sulphurous acid solution by solvent extraction
DE60022442T2 (en) METHOD FOR THE DIRECT GENERATION OF MIXED OXIDES OF RARE EARTH GROUTS THROUGH SELECTIVE EXTRACTION
EA036195B1 (en) Method for extraction and separation of rare earth elements
JP2756794B2 (en) Rare earth element separation method
JP3950968B2 (en) Method for separating and recovering Y and Eu
NO127964B (en)
US10246759B2 (en) Method of recovering rare-earth elements
US3676106A (en) Ion exchange process for the recovery of metals with cation exchange agents
JPH04147929A (en) Separation of rare earth element
US3883634A (en) Liquid-liquid extraction of germanium from aqueous solution using hydroxy-oximes
US4511541A (en) Process for the recovery of cadmium and other metals from solution
JPH03173725A (en) Fractionating method for rare earth element
US3524723A (en) Solvent extraction process for separating europium from other rare earths
US3514267A (en) Batch separator of yttrium and rare earths under total reflux
JPH05105975A (en) Separation of rare-earth elements
JPS60255621A (en) Collection of zirconium by solvent extraction
KR102299211B1 (en) Separation method of rare earth elements from the leaching solution of waste phosphors
RU2612107C2 (en) Method of extracting scandium from scandium-bearing product solution
JP2002536550A (en) Direct production process route for mixed rare earth metal oxides by selective extraction
KR930007139B1 (en) Process for the recovery of gallium from basic solution
US3089750A (en) Recovery of values from ores by use of electric fields
IL42487A (en) Process for the extractive purification of phosphoric acid containing cationic impurities
US3482932A (en) Process for separating yttrium from the lanthanide elements