JP5733691B2 - Method for continuous recovery of particle components in solution - Google Patents

Method for continuous recovery of particle components in solution Download PDF

Info

Publication number
JP5733691B2
JP5733691B2 JP2008253778A JP2008253778A JP5733691B2 JP 5733691 B2 JP5733691 B2 JP 5733691B2 JP 2008253778 A JP2008253778 A JP 2008253778A JP 2008253778 A JP2008253778 A JP 2008253778A JP 5733691 B2 JP5733691 B2 JP 5733691B2
Authority
JP
Japan
Prior art keywords
phase
particle
solution
aqueous
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008253778A
Other languages
Japanese (ja)
Other versions
JP2010082530A (en
Inventor
弘親 長縄
弘親 長縄
信之 柳瀬
信之 柳瀬
哲志 永野
哲志 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2008253778A priority Critical patent/JP5733691B2/en
Priority to EP09252285.3A priority patent/EP2172254B1/en
Priority to EP11166870.3A priority patent/EP2364758B1/en
Priority to US12/570,470 priority patent/US20100078382A1/en
Publication of JP2010082530A publication Critical patent/JP2010082530A/en
Priority to US13/527,013 priority patent/US9108124B2/en
Application granted granted Critical
Publication of JP5733691B2 publication Critical patent/JP5733691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、目的物質である粒子成分が存在する水溶液(水相)と水と混じり合わない溶媒(溶媒相)とが成す液液界面に、水溶液中の粒子成分が凝集する現象を利用して、フィルタや遠心分離機を用いることなく、溶液中の粒子成分を連続して回収する方法に関するものである。   The present invention utilizes a phenomenon in which particle components in an aqueous solution aggregate at a liquid-liquid interface formed by an aqueous solution (aqueous phase) in which the particle component as a target substance exists and a solvent (solvent phase) that does not mix with water. The present invention relates to a method for continuously collecting particle components in a solution without using a filter or a centrifuge.

溶液中の粒子成分の捕集には、通常、フィルタろ過法が用いられる。フィルタろ過法は簡単な操作で簡便に行うことができるというメリットはあるが、フィルタが目詰まりを起こすため、連続的に溶液を処理するには不向きである。また、フィルタは、通常、消耗品であることから、コスト面や廃棄物の発生という問題点もある。さらには、溶存成分の一部がフィルタに吸着されてしまう場合もあるため、粒子成分のみを分別的に回収したいというニーズにこたえられないことがある。   A filter filtration method is usually used for collecting the particle components in the solution. The filter filtration method has a merit that it can be easily performed by a simple operation, but the filter causes clogging, and is not suitable for continuously treating a solution. In addition, since the filter is usually a consumable item, there are problems of cost and generation of waste. Furthermore, since some of the dissolved components may be adsorbed by the filter, it may not be possible to meet the need to collect only the particle components separately.

フィルタろ過法に代わる粒子成分の捕集法として、最近では、フィルタレスの手法である連続遠心分離法がよく利用されている(例えば、特許文献1を参照)。連続遠心分離法では、水溶液を連続的に処理して粒子成分を捕集することができる。ただし、連続遠心分離法を利用した装置は安価ではなく、処理時間が長くランニングコストも大きい、コンパクト・軽量ではない、処理能力が大きくないなどの欠点がある。
特開平09−085120号公報
Recently, a continuous centrifugation method, which is a filterless technique, is often used as a method for collecting particle components in place of the filter filtration method (see, for example, Patent Document 1). In the continuous centrifugation method, particle components can be collected by continuously treating an aqueous solution. However, an apparatus using a continuous centrifugation method is not inexpensive, has a disadvantage that it has a long processing time and a large running cost, is not compact and lightweight, and does not have a large processing capacity.
JP 09-085120 A

従来の遠心分離によるフィルタレス粒子成分回収法(連続遠心分離法)を利用した装置は、連続的な粒子成分の回収を可能にするものの、単位時間当りの処理量(処理能力)が大きくないうえに、長時間の遠心力を必要とすることからランニングコストが大きく、装置そのものがコンパクト・軽量ではない。すなわち、費用対効果やサイズ・重さの面から、その利用が限定されてしまう。また、粒子成分は回収できても、溶存成分を回収することはできない。しかし、溶液中の粒子成分とともに溶存成分をも同時に回収・除去したいという高いニーズが存在する。例えば、粒子成分、溶存成分を区別することなく、すべての有害成分を同時除去したい場合である。一方、溶存成分と粒子成分とを分別的に同時回収したいというニーズも存在する。例えば、精製を目的とした成分分離の観点からである。2種以上の手法を組み合わせることなく、ただ1つの手法で溶存成分と粒子成分とを分別的に同時回収する方法は、まだ知られていない。   Although the conventional device using the filterless particle component recovery method (centrifugation method) by centrifugal separation enables continuous particle component recovery, the amount of processing (processing capacity) per unit time is not large. In addition, since a long centrifugal force is required, the running cost is high, and the device itself is not compact and lightweight. That is, its use is limited in terms of cost effectiveness and size / weight. Moreover, even if the particle component can be recovered, the dissolved component cannot be recovered. However, there is a high need to simultaneously collect and remove dissolved components as well as particle components in the solution. For example, it is a case where it is desired to remove all harmful components simultaneously without distinguishing between particle components and dissolved components. On the other hand, there is a need to separately collect dissolved components and particle components simultaneously. For example, from the viewpoint of component separation for the purpose of purification. There is not yet known a method for separating and simultaneously recovering dissolved components and particle components using only one method without combining two or more methods.

溶液中の粒子成分を回収する技術は、様々な産業において高いニーズを持つ。1つには、有害物質としての粒子成分を除去したいというニーズである。粒子成分には人体、生物に有害なものがあり、そのような粒子成分は効率的に回収・除去する必要がある。また、粒子成分そのものが無害であっても、有害物質を吸着することで有害化するケースもある。一方、生成物としての粒子成分を回収したいというニーズもある。金属やプラスチックなどの微粒子は、各種デバイスの材料として重要であるが、溶液中での反応を利用して製造されることが多いため、生成した微粒子を溶液中から効率的に回収する技術が必要となる。さらには、溶液中の微量成分の分析法の1つである共沈法への適用が考えられる。共沈法とは、溶液中に含まれる微量な目的成分を沈澱物として分離・回収する方法だが、沈殿物の十分な沈降には長い時間(例えば、数日)を要する。そこで、沈降を待つことなく沈殿物である粒子成分を迅速に回収したいというニーズがある。   Technology for recovering particulate components in solution has high needs in various industries. One is the need to remove particulate components as harmful substances. Some particle components are harmful to human bodies and living organisms, and such particle components need to be efficiently recovered and removed. Moreover, even if the particle component itself is harmless, it may be harmful by adsorbing harmful substances. On the other hand, there is a need to recover the particle component as a product. Fine particles such as metals and plastics are important as materials for various devices, but since they are often manufactured using reactions in solution, technology is needed to efficiently recover the generated fine particles from the solution. It becomes. Furthermore, the application to the coprecipitation method which is one of the analysis methods of the trace component in a solution can be considered. The coprecipitation method is a method of separating and recovering a trace amount of a target component contained in a solution as a precipitate, but it takes a long time (for example, several days) to sufficiently settle the precipitate. Therefore, there is a need to quickly collect particulate components that are precipitates without waiting for sedimentation.

本発明の目的は、液液界面への粒子成分の凝集現象を利用することで、フィルタや遠心分離機を用いることなく、溶液中の粒子成分を連続して迅速に回収する方法を提供することにある。   An object of the present invention is to provide a method for continuously and rapidly recovering particle components in a solution without using a filter or a centrifuge by utilizing the aggregation phenomenon of the particle components at the liquid-liquid interface. It is in.

本発明の他の目的は、水溶液中に浮遊する粒子成分を回収すると同時に、水溶液中に溶存している成分(例えば、金属イオン)を溶媒抽出(液液抽出)し、回収する方法を提供することにある。   Another object of the present invention is to provide a method for recovering a particle component suspended in an aqueous solution and simultaneously recovering a component (for example, metal ion) dissolved in the aqueous solution by solvent extraction (liquid-liquid extraction). There is.

本発明の1つの観点に係る溶液中粒子成分の連続回収方法は、目的とする粒子成分が浮遊する水溶液(水相)と水と混じり合わない溶媒(溶媒相)の成す液液界面に、水溶液中の粒子成分が凝集する現象を利用して、水溶液中の粒子成分をフィルタレスで連続して回収することを特徴とする。この場合、液液界面への粒子成分の凝集を促進させるため、水相と溶媒相を混合して乳濁させた状態(エマルション)とすることが好ましい。   A method for continuously recovering particle components in a solution according to one aspect of the present invention includes an aqueous solution at a liquid-liquid interface formed by an aqueous solution (aqueous phase) in which a target particle component is suspended and a solvent (solvent phase) that is not mixed with water. The particle component in the aqueous solution is continuously collected without a filter by utilizing the phenomenon that the particle component in the solution aggregates. In this case, in order to promote the aggregation of the particle component at the liquid-liquid interface, it is preferable that the aqueous phase and the solvent phase are mixed and emulsified (emulsion).

本発明の他の観点に係る溶液中粒子成分の連続回収方法は、水相中の粒子成分が液液界面に凝集する凝集現象並びに水相中の溶存成分が液液界面を通じて溶媒相に抽出される液液抽出現象を利用して、水相中の粒子成分と溶存成分の両方を同時回収することを特徴とする。なお、液液抽出と併用することで溶存金属イオンなどを同時回収する場合には、抽出剤と呼ばれる有機配位子を溶媒に添加することがある。   In the method for continuously recovering particle components in solution according to another aspect of the present invention, the particle component in the aqueous phase aggregates at the liquid-liquid interface, and the dissolved component in the aqueous phase is extracted into the solvent phase through the liquid-liquid interface. It is characterized in that both the particle component and the dissolved component in the aqueous phase are recovered simultaneously using the liquid-liquid extraction phenomenon. In the case of simultaneously recovering dissolved metal ions and the like by using in combination with liquid-liquid extraction, an organic ligand called an extractant may be added to the solvent.

本発明に係る方法を用いた装置は、従来の連続遠心分離法による装置と比べて、格段に処理能力が大きく、ランニングコスト、イニシャルコスト、メンテナンスコストは逆に大幅に小さく、尚且つコンパクトである。よって、様々なプラントでの利用が期待できる。また、本発明の方法は、粒子成分のみならず、液液抽出の手法を併用することで、必要に応じて、溶存成分をも同時に回収できるという従来方法に見られない顕著な効果を持つ。   The apparatus using the method according to the present invention has much higher processing capacity than the conventional continuous centrifugal apparatus, and the running cost, initial cost and maintenance cost are significantly smaller and more compact. . Therefore, utilization in various plants can be expected. In addition, the method of the present invention has a remarkable effect that is not found in the conventional method, in which not only the particle components but also the liquid-liquid extraction method can be used together, so that dissolved components can be recovered at the same time.

本発明に係る溶液中粒子成分の連続回収方法について、以下図面を参照して詳細に説明する。初めに、図1及び図2を参照する。図1は、本発明の原理であるところの、液液界面への粒子成分の凝集現象の一例を示している。また、図2は、本発明の溶液中粒子成分の連続回収方法を実施するための具体的装置の一例を示している。   The method for continuously recovering particle components in solution according to the present invention will be described in detail below with reference to the drawings. First, refer to FIG. 1 and FIG. FIG. 1 shows an example of the aggregation phenomenon of particle components at the liquid-liquid interface, which is the principle of the present invention. FIG. 2 shows an example of a specific apparatus for carrying out the continuous recovery method for particle components in a solution according to the present invention.

図1を参照する。試験管に粒子成分であるところの酸化鉄Fe2O3を多量に含む懸濁水溶液を用意し(図1(a)参照)、そこにイソオクタンを静かに添加し(図1(b)参照)、10秒間手で振とうした後、1分間静置した(図1(c)参照)。この一連の操作によって、液液界面に酸化鉄Fe2O3が凝集し、懸濁していた水溶液が浄化された。このとき、水相と溶媒相を混合して乳濁させた状態(エマルション)にすることにより、液液界面への粒子成分の凝集を促進させることができる。 Please refer to FIG. Prepare a suspended aqueous solution containing a large amount of iron oxide Fe 2 O 3 as a particle component in a test tube (see Fig. 1 (a)), and then gently add isooctane (see Fig. 1 (b)). The sample was shaken by hand for 10 seconds and allowed to stand for 1 minute (see FIG. 1C). Through this series of operations, iron oxide Fe 2 O 3 aggregated at the liquid-liquid interface, and the suspended aqueous solution was purified. At this time, the aggregation of the particle component at the liquid-liquid interface can be promoted by mixing the aqueous phase and the solvent phase into an emulsion (emulsion).

次に、図2に基づいて、本発明に係る溶液中粒子成分の連続回収方法について具体的に説明する。図2に示されたエマルションフロー装置10は、水相を噴出させる第1ヘッド部11、溶媒相を噴出させる第2ヘッド部12、エマルションフローが発生するカラム部13、カラム部の上方及び下方に設置した相分離部(上方相分離部14及び下方相分離部15)から成る装置本体と送液ポンプ16(2連式1台もしくは単式2台)によって構成される。なお、ヘッド部(11,12)は、必ずしも液相(水相、溶媒相、あるいは乳濁混合相)と接触している必要はない。このエマルションフロー装置10には、リザーバー20の水試料が導管21を介して送られてくるようになっている。この第1ヘッド部11は、両端が開いた筒、又はその一端を1μmから5mmのメッシュあるいは孔を有するシートで覆った筒、又は一端の閉じた筒の回りあるいはその閉じた部分あるいは回りと閉じた部分の両方に直径1μm から5mmの適当数の孔をあけた構造あるいはその孔をあけた筒のまわりをさらに1μmから1mmのメッシュあるいは孔を有するシートで覆った構造、もしくは、10μmから1mmの孔径を持つ多孔体(例えば、焼結ガラス)を筒に接着した構造を持つ。また、第2ヘッド部12は、第1ヘッド部11の構造と同様な構造を持つが、第2ヘッド部12の持つ孔あるいはメッシュの大きさは、第1ヘッド部11の持つ孔あるいはメッシュの大きさと異なっていても良い。上方相分離部14および下方相分離部15では、エマルションフローが通過する部分の急激な体積増加を利用して相分離を行うが、必ずしもカラム13よりも径の大きい容器である必要はなく、カラム部13に挿入された、カラム部13よりも体積の小さな、口の窄まった容器であっても良い。 Next, based on FIG. 2, the continuous collection method of the particle | grain component in a solution which concerns on this invention is demonstrated concretely. The emulsion flow apparatus 10 shown in FIG. 2 includes a first head part 11 for ejecting an aqueous phase, a second head part 12 for ejecting a solvent phase, a column part 13 for generating an emulsion flow, and above and below the column part. It is composed of an apparatus main body composed of the installed phase separation units (upper phase separation unit 14 and lower phase separation unit 15) and a liquid feed pump 16 (one duplex unit or two single units). The head portions (11, 12) are not necessarily in contact with the liquid phase (aqueous phase, solvent phase, or emulsion mixed phase). A water sample in the reservoir 20 is sent to the emulsion flow device 10 via a conduit 21. The first head portion 11 is a cylinder whose both ends are open, a cylinder whose one end is covered with a 1 μm to 5 mm mesh or a sheet having a hole, a cylinder which is closed at one end, its closed part or its periphery. A structure in which an appropriate number of holes having a diameter of 1 μm to 5 mm are formed in both of the parts, or a structure in which the perforated cylinder is further covered with a sheet having a hole of 1 μm to 1 mm or a hole, or 10 μm to 1 mm. It has a structure in which a porous body (for example, sintered glass) having a pore size is bonded to a cylinder. The second head unit 12 has a structure similar to that of the first head unit 11, but the size of the hole or mesh of the second head unit 12 is the size of the hole or mesh of the first head unit 11. It may be different from the size. In the upper phase separation unit 14 and the lower phase separation unit 15, phase separation is performed by utilizing a sudden volume increase in a portion through which the emulsion flow passes, but the container need not necessarily be a container having a larger diameter than the column 13. A container having a smaller volume than the column part 13 and having a narrow mouth may be inserted into the part 13.

次に、図2の装置の動作について説明する。粒子成分を含む水試料のリザーバー20とエマルションフロー装置10とを結合する導管21に設けられた送液ポンプ16により、リザーバー20からの水試料を、エマルションフロー装置10の第1ヘッド部11である筒を通して溶媒相中に向かって噴出させる。それと同時に、エマルションフロー装置10の第2ヘッド部12である筒を通して水相の流れに向い合うように、溶媒相を微細化した液滴を噴出させる。これにより、エマルションフロー装置10のカラム部13には、水相と溶媒相との混合相(乳濁混合相)からなる流れ(エマルションフローと称する)が発生する。その乳濁混合相がエマルションフロー装置10の相分離部(14,15)に到達すると、エマルションフローの状態が解かれて水相と溶媒相に相分離する。上方相分離部14には溶媒相が集合し、下方相分離部15には水相が集合する。上方相分離部14での清浄な溶媒相は、第2ヘッド部12を通じて循環される。また、下方相分離部15での清浄な水相は、処理後の排水として取り出される。なお、ヘッド部(11,12)の筒は必ずしも円筒ではなく、たとえば四角い筒であっても良い。また、カラム部13、相分離部14、15の形状についても円柱状である必要はなく、たとえば四角柱状であっても良い。   Next, the operation of the apparatus shown in FIG. 2 will be described. The water sample from the reservoir 20 is supplied to the first head portion 11 of the emulsion flow apparatus 10 by a liquid feed pump 16 provided in a conduit 21 that connects the reservoir 20 of the water sample containing the particle component and the emulsion flow apparatus 10. It is ejected through the cylinder and into the solvent phase. At the same time, droplets in which the solvent phase is refined are ejected so as to face the flow of the aqueous phase through the cylinder which is the second head portion 12 of the emulsion flow apparatus 10. Thereby, in the column part 13 of the emulsion flow apparatus 10, the flow (it calls an emulsion flow) which consists of a mixed phase (emulsion mixed phase) of a water phase and a solvent phase generate | occur | produces. When the emulsion mixed phase reaches the phase separation section (14, 15) of the emulsion flow apparatus 10, the state of the emulsion flow is released and the phase is separated into an aqueous phase and a solvent phase. A solvent phase collects in the upper phase separation unit 14, and an aqueous phase collects in the lower phase separation unit 15. The clean solvent phase in the upper phase separation unit 14 is circulated through the second head unit 12. Moreover, the clean aqueous phase in the lower phase separation part 15 is taken out as waste water after processing. The cylinder of the head part (11, 12) is not necessarily a cylinder, and may be a square cylinder, for example. Further, the shapes of the column portion 13 and the phase separation portions 14 and 15 are not necessarily cylindrical, and may be, for example, a quadrangular prism shape.

カラム部13におけるエマルションフローの発生にともなって、水試料中の粒子成分31がカラム部13の内壁に付着するようになる。エマルション化によって面積が著しく増大した液液界面に凝集した粒子成分は、水相にも溶媒相にも移行することなく、乳濁混合相であるエマルションフローの内部に留まるため、エマルションフロー内での循環を重ねた後、器壁に付着するからである。カラム部内壁に付着した粒子成分31は、例えば、図2に示すようなピストン30を用いて回収することができる。   As the emulsion flow occurs in the column part 13, the particle component 31 in the water sample comes to adhere to the inner wall of the column part 13. The particle component that has aggregated at the liquid-liquid interface whose area has been remarkably increased by emulsification stays inside the emulsion flow, which is an emulsion mixed phase, without transferring to either the aqueous phase or the solvent phase. This is because it adheres to the vessel wall after repeated circulation. The particle component 31 adhering to the inner wall of the column part can be recovered using, for example, a piston 30 as shown in FIG.

以下に、具体的な実施例を示す。図3および図4に示すそれぞれ小型および中型(共に高さは70cm)のエマルションフロー装置を製作し、粒子成分のみを回収する実験、及び粒子成分と溶存成分を同時回収する実験を行い、装置の性能評価を行うとともに、従来法(連続遠心分離法)による結果と比較した。粒子成分としては、粒子直径を20μmから25μmの範囲内に分級した酸化アルミニウムAl2O3粒子を用い、溶存成分としては、イッテルビウムYb(3価イオン)を用いた。なお、本発明は、これらの実施例によって何ら制限されるものではない。 Specific examples are shown below. The small and medium-sized emulsion flow devices shown in FIGS. 3 and 4 (both 70 cm in height) were manufactured, and the experiment for collecting only the particle component and the experiment for simultaneously collecting the particle component and the dissolved component were conducted. While performing performance evaluation, it compared with the result by the conventional method (continuous centrifugation method). As the particle component, aluminum oxide Al 2 O 3 particles classified into a particle diameter of 20 μm to 25 μm were used, and ytterbium Yb (trivalent ion) was used as the dissolved component. In addition, this invention is not restrict | limited at all by these Examples.

以下に示す実施例では、分級によりサイズをそろえた酸化アルミニウムAl2O3粒子を使用し、処理後の水相中に残存した粒子をろ過法により回収・重量測定することにより、回収できた粒子の比率(回収率)を求めた。以下に、粒子の分級法と回収率の求め方を示す。
<酸化アルミニウムAl2O3粒子の分級法>
In the examples shown below, particles that can be recovered by using aluminum oxide Al 2 O 3 particles that have been sized by classification and collecting and measuring the weight of particles remaining in the aqueous phase after treatment by filtration. The ratio (recovery rate) was determined. The particle classification method and how to obtain the recovery rate are shown below.
<Aluminum oxide Al 2 O 3 particle classification method>

以下の要領で、市販の酸化アルミニウムAl2O3を分級した。
1)酸化アルミニウムAl2O3を五酸化リン入りデシケータで一晩、乾燥した。
2)2種類のステンレスふるい(20μmと25μm)を用いて分級した。
・まず、25μmのふるいを用いて、25μm以上のサイズの粒子を除去した(ふるいを通過した粒子を採取)。
・さらに、20μmのふるいを用いて、20μm以下のサイズの粒子を除去した(ふるいの上に残った粒子を採取)。よって、酸化アルミニウムAl2O3粒子は、20μm以上25μm以下のサイズのみに分級された。
<酸化アルミニウムAl2O3粒子の回収率の求め方>
Commercially available aluminum oxide Al 2 O 3 was classified in the following manner.
1) Aluminum oxide Al 2 O 3 was dried overnight in a desiccator containing phosphorus pentoxide.
2) Classification was performed using two types of stainless steel sieves (20 μm and 25 μm).
First, particles having a size of 25 μm or more were removed using a 25 μm sieve (collecting particles that passed through the sieve).
-Furthermore, particles having a size of 20 μm or less were removed using a 20 μm sieve (collecting the particles remaining on the sieve). Therefore, the aluminum oxide Al 2 O 3 particles were classified only to a size of 20 μm or more and 25 μm or less.
<How to find the recovery rate of aluminum oxide Al 2 O 3 particles>

装置により回収されず、水相中の残存している酸化アルミニウムAl2O3粒子をろ過法により測定した。フィルタには、水接触による重量変化のないポリカーボネート製フィルタ(0.2μm)を使用した。
1)フィルタの空重量を測定した。
2)水相2〜3Lに含まれる酸化アルミニウムAl2O3粒子をフィルタで分離した。
3)フィルタをシリカゲルの入ったデシケータ内で1日程度、乾燥した。
4)フィルタ重量を測定し、空重量との差を残存する酸化アルミニウムAl2O3粒子の重量とした。処理前の原液中のAl2O3濃度(添加量から計算)をa(mg/L)、残存Al2O3濃度をb(mg/L)とすると、回収率 =(a−b)/a×100(%)。
Aluminum oxide Al 2 O 3 particles not recovered by the apparatus and remaining in the aqueous phase were measured by a filtration method. As the filter, a polycarbonate filter (0.2 μm) having no weight change due to water contact was used.
1) The empty weight of the filter was measured.
2) Aluminum oxide Al 2 O 3 particles contained in 2 to 3 L of aqueous phase were separated by a filter.
3) The filter was dried for about 1 day in a desiccator containing silica gel.
4) The filter weight was measured, and the difference from the empty weight was taken as the weight of the remaining aluminum oxide Al 2 O 3 particles. Assuming that the Al 2 O 3 concentration (calculated from the amount added) in the untreated solution is a (mg / L) and the remaining Al 2 O 3 concentration is b (mg / L), the recovery rate = (ab) / a × 100 (%).

小型装置による水溶液中粒子成分の回収実験   Experiments on recovery of particulate components in aqueous solution using a small device

図3を参照する。小型のエマルションフロー装置10a(装置体積 = 3 L、装置重量 = 2 kg)を用いて、酸化アルミニウムAl2O3粒子を回収する実験を行った。具体的には、0.02 Mの酸化アルミニウムAl2O3粒子(粒径20μmから25μm)が混入する20 Lの硝酸水溶液(pH 2)を用意し、1 Lのイソオクタンを配置した小型エマルションフローを用いて、粒子成分の回収実験を行った。図3(a)は、このとき用いた小型エマルションフロー装置の写真である。この装置の第1ヘッド部11は一端の閉じたポリプロピレン製の筒の周囲に直径1 mmの孔を10個あけた構造であり、第2ヘッド部12は40μmの孔径を持つ焼結ガラス板を筒に接着した構造のものである。また、エマルションを避けて清浄な溶媒相を確実に送液できるように、上方相分離部14としては、口の窄まった容器をカラム部13の上方に挿入して用いた(図3(b)を参照)。下方相分離部15としては、カラム部13よりも径の大きい容器をカラム部13の下方に結合して用いた。 Please refer to FIG. Using a small emulsion flow apparatus 10a (apparatus volume = 3 L, apparatus weight = 2 kg), an experiment was conducted to recover aluminum oxide Al 2 O 3 particles. Specifically, we prepared a 20 L nitric acid aqueous solution (pH 2) mixed with 0.02 M aluminum oxide Al 2 O 3 particles (particle size 20 μm to 25 μm), and used a small emulsion flow with 1 L isooctane arranged. Then, a recovery experiment of the particle component was conducted. FIG. 3 (a) is a photograph of the small emulsion flow apparatus used at this time. The first head portion 11 of this apparatus has a structure in which ten holes with a diameter of 1 mm are formed around a polypropylene tube with one end closed, and the second head portion 12 is a sintered glass plate having a hole diameter of 40 μm. The structure is bonded to a cylinder. In addition, a container with a narrow mouth was inserted above the column unit 13 and used as the upper phase separation unit 14 so as to reliably deliver a clean solvent phase while avoiding the emulsion (FIG. 3 (b). )). As the lower phase separation part 15, a container having a diameter larger than that of the column part 13 was used by being coupled to the lower part of the column part 13.

上記の小型エマルションフロー装置を用いて、酸化アルミニウムAl2O3を粒子成分として含む20 Lの硝酸水溶液を処理するため、送液する水相の流量を毎時20 L、循環させる溶媒相の流量を毎時20 Lに設定したところ、処理時間に60分を要し(毎時20 Lの処理能力)、ほぼ100%(99.5%以上:測定誤算の点から小数点以下は正確ではない)の酸化アルミニウムAl2O3粒子を回収できた。 In order to treat 20 L of nitric acid aqueous solution containing aluminum oxide Al 2 O 3 as a particle component using the above small emulsion flow device, the flow rate of the aqueous phase to be sent is 20 L / hour, and the flow rate of the solvent phase to be circulated is When set to 20 L / hour, the processing time required 60 minutes (processing capacity of 20 L / hour), almost 100% (99.5% or more: the decimal point is not accurate from the point of measurement error) Al 2 Al 2 O 3 particles could be recovered.

中型装置による水溶液中粒子成分の回収実験   Experiments on recovery of particulate components in aqueous solution using medium-sized equipment

図4を参照する。図4は中型エマルションフロー装置10bを示す。ここで言う中型装置とは、(実施例1)に示した装置と比較し、装置体積にして約3倍の装置を意味する。この実験には、図4(a)に示した中型のエマルションフロー装置(装置体積 = 9 L、装置重量 = 4 kg)を用いた。この装置の第1ヘッド部11は一端の閉じたポリプロピレン製の筒の周囲に直径4.8 mmの孔を6個あけた構造であり、第2ヘッド部12は40μmの孔径を持つ焼結ガラス板を筒に接着した構造のものである。また、エマルションを避けて清浄な溶媒相を確実に送液できるように、上方相分離部14としては、口の窄まった容器をカラム部13の上方に挿入して用いた(図4(b)を参照)。下方相分離部15としては、カラム部13よりも径の大きい容器をカラム部13の下方に結合して用いた。なお、この装置は(実施例1)で用いたものと比べて、およそ10倍の処理能力を有することがわかった。
Please refer to FIG. FIG. 4 shows a medium emulsion flow apparatus 10b. The medium-sized device referred to here means a device whose device volume is about three times that of the device shown in (Example 1). In this experiment, the medium emulsion flow apparatus (apparatus volume = 9 L, apparatus weight = 4 kg) shown in FIG. 4 (a) was used. The first head portion 11 of this apparatus has a structure in which six holes with a diameter of 4.8 mm are formed around a polypropylene tube with one end closed, and the second head portion 12 is a sintered glass plate having a hole diameter of 40 μm. The structure is bonded to a cylinder. In addition, a container with a narrow mouth was inserted above the column unit 13 and used as the upper phase separation unit 14 so that a clean solvent phase could be reliably delivered while avoiding the emulsion (FIG. 4B). )). As the lower phase separation part 15, a container having a diameter larger than that of the column part 13 was used by being coupled to the lower part of the column part 13. This apparatus was found to have a processing capacity approximately 10 times that used in (Example 1).

0.02 Mの酸化アルミニウムAl2O3粒子(粒径20μmから25μm)が混入する200 Lの硝酸水溶液(pH 2)を用意し、2 Lのイソオクタンを配置した中型のエマルションフロー装置を用いて、粒子成分の回収実験を行った。送液する水相の流量を毎時228 L、循環させる溶媒相の流量を毎時30 Lに設定し、200 Lの水溶液の処理を53分で終えた(毎時228 Lの処理能力)。その結果、(実施例1)と同様に、ほぼ100%の酸化アルミニウムAl2O3粒子を回収できた。すなわち、溶液の処理能力を毎時20 L(実施例1)から毎時228 L(実施例2)に大幅に増大させても、酸化アルミニウムAl2O3の回収率には、ほとんど変化がなかった。以上から、エマルションフロー装置は、その性能を維持したままで、容易に大型化できることがわかった。 Prepare a 200 L aqueous nitric acid solution (pH 2) mixed with 0.02 M aluminum oxide Al 2 O 3 particles (particle size 20 μm to 25 μm), and use a medium emulsion flow device with 2 L isooctane in place. A component recovery experiment was conducted. The flow rate of the aqueous phase to be sent was set to 228 L / hour, the flow rate of the solvent phase to be circulated was set to 30 L / hour, and the treatment of the 200 L aqueous solution was completed in 53 minutes (processing capacity of 228 L / hour). As a result, almost 100% of the aluminum oxide Al 2 O 3 particles were recovered as in (Example 1). That is, even when the treatment capacity of the solution was significantly increased from 20 L / hour (Example 1) to 228 L / hour (Example 2), there was almost no change in the recovery rate of aluminum oxide Al 2 O 3 . From the above, it was found that the emulsion flow apparatus can be easily enlarged while maintaining its performance.

また、水相を噴出させるヘッド部(第1ヘッド部11)にあけた孔の大きさは、あまり重要ではないことも判明した。すなわち、サイズの大きな粒子成分を含む溶液についても、第1ヘッド部11の孔を大きくすれば、目詰まりを起こさせることなく、処理できることがわかった。なお、水相中の粒子成分は溶媒相にはまったく分配されないため、第2ヘッド部12は目詰まりの心配がないこともわかった。
(比較例1)連続遠心分離法との比較
It has also been found that the size of the hole formed in the head part (first head part 11) for ejecting the aqueous phase is not so important. That is, it was found that a solution containing a particle component having a large size can be processed without causing clogging if the hole of the first head portion 11 is enlarged. In addition, since the particle | grain component in an aqueous phase was not distributed at all to a solvent phase, it turned out that the 2nd head part 12 does not have worry about clogging.
(Comparative Example 1) Comparison with continuous centrifugation

市販の装置((株)コクサン製H-660型連続遠心分離機)を用いて、上記実施例で用いた分級した酸化アルミニウムAl2O3粒子を水溶液中から回収する実験を行った。このときのローター回転数は15,000 rpmであり、毎時23 Lで懸濁水溶液を処理したところ、酸化アルミニウムAl2O3粒子をほぼ100%(99.5%以上:測定誤算の点から小数点以下は正確ではない)回収できた。20 Lの懸濁水溶液を処理するのに、52分を要した(毎時23 Lの処理能力)。なお、H-660型連続遠心分離機のサイズは、650(幅)×650(奥行き)×870(高さ)mmであり、装置体積は368 L、重量は160 kgである。 Using a commercially available apparatus (H-660 type continuous centrifuge manufactured by Kokusan Co., Ltd.), an experiment was conducted to recover the classified aluminum oxide Al 2 O 3 particles used in the above examples from an aqueous solution. The rotor speed at this time was 15,000 rpm, and when the aqueous suspension was treated at 23 L / hour, almost 100% of aluminum oxide Al 2 O 3 particles (99.5% or more: from the point of measurement miscalculation, the decimal point is not accurate. Not) It took 52 minutes to process the 20 L suspension (23 L / hour throughput). The size of the H-660 type continuous centrifuge is 650 (width) × 650 (depth) × 870 (height) mm, the apparatus volume is 368 L, and the weight is 160 kg.

水溶液中の粒子成分と溶存成分の同時回収実験   Experiments on simultaneous recovery of particulate and dissolved components in aqueous solution

(実施例1)及び(実施例2)では、純粋なイソオクタンを溶媒相として用いたが、そこに適切な抽出剤を添加することで、溶存金属イオンを粒子成分とともに分別的に同時回収することができる。(実施例3)では、粒子成分として0.02 Mの酸化アルミニウムAl2O3、溶存成分としてイッテルビウムYb(3価イオン)を6 × 10-6 M含むpH 2の硝酸水溶液200 Lに対して、10 mMのビス(2-エチルヘキシル)リン酸:DEHPA(抽出剤)を含むイソオクタン2 Lを配置した上記の中型エマルションフロー装置を用いて実験を行った。その結果、粒子成分である酸化アルミニウムAl2O3のほぼ100%、溶存成分であるイッテルビウムYbの約98%を、それぞれ分別的に回収することができた。なお、この実験でも、図4(a)に示す中型装置を用い、送液する水相の流量を毎時231 L、循環させる溶媒相の流量を毎時30 Lに設定し、200 Lの水溶液の処理を52分で終えた(毎時231 Lの処理能力)。図5は、本実施例において回収操作を行った後にカラム部に大量に付着した酸化アルミニウムAl2O3粒子の様子を撮影したものである。 In (Example 1) and (Example 2), pure isooctane was used as a solvent phase, but by adding an appropriate extractant thereto, dissolved metal ions can be recovered together with the particle components in a fractional manner. Can do. In (Example 3), 0.02 M aluminum oxide Al 2 O 3 as a particle component and 10 L of nitric acid aqueous solution at pH 2 containing 6 × 10 −6 M ytterbium Yb (trivalent ion) as a dissolved component are 10 The experiment was conducted using the above medium emulsion flow apparatus in which 2 L of isooctane containing mM bis (2-ethylhexyl) phosphate: DEHPA (extractant) was placed. As a result, almost 100% of the aluminum oxide Al 2 O 3 as a particle component and about 98% of ytterbium Yb as a dissolved component could be recovered separately. In this experiment as well, using the medium-sized device shown in Fig. 4 (a), the flow rate of the water phase to be sent was set to 231 L / h, the flow rate of the solvent phase to be circulated was set to 30 L / h, and 200 L of aqueous solution was treated. Finished in 52 minutes (231 L / hour processing capacity). FIG. 5 is a photograph of the state of aluminum oxide Al 2 O 3 particles adhering in large quantities to the column part after performing the recovery operation in this example.

本発明で使用するエマルションフロー装置の粒子の捕集性能は、連続遠心分離機とほとんど差がない。また、エマルションフロー装置には、多数の重い金属部品を要する動力部が存在しないため、軽量であり、酸を含む溶液が扱えないといった制限がない。さらに、本発明の方法では、溶媒として、アルカン(例えば、灯油)などの水と混じりあわない溶媒を用いるため、液液抽出の手法と組み合わせることで、溶液中に溶解している溶存成分も同時に回収・除去することができるという特徴がある。なお、粒子成分とともに溶存成分を同時回収する場合には溶媒であるアルカンに抽出剤を添加することがあるが、水に対する溶解度が低く環境中で容易に分解する抽出剤を用いることで、環境負荷の小さい方法にできる。   The particle collection performance of the emulsion flow apparatus used in the present invention is almost the same as that of a continuous centrifuge. In addition, since there is no power unit that requires a large number of heavy metal parts, the emulsion flow apparatus is lightweight and does not have a restriction that a solution containing an acid cannot be handled. Furthermore, in the method of the present invention, a solvent that does not mix with water such as alkane (for example, kerosene) is used as the solvent. Therefore, in combination with the liquid-liquid extraction method, dissolved components dissolved in the solution can be simultaneously dissolved. It can be collected and removed. In the case of simultaneously recovering the dissolved components together with the particle components, an extractant may be added to the solvent alkane. However, by using an extractant that has low solubility in water and easily decomposes in the environment, Can be a small method.

本願発明による方法を利用した装置は、フィルタレスで連続的に溶液中の粒子成分を迅速且つ効率的に回収・除去することができ、遠心力などの機械的な外力を加える必要がないので、ランニングコストが小さい。また、シンプルな構造なので、扱いやすく、イニシャルコスト、メンテナンスコストが低く、コンパクトでもある。例えば、従来の連続遠心分離法を用いた市販装置(例えば、(株)コクサン製H-660型連続遠心分離機)と比べて、装置の体積、重量ともに1/40程度のエマルションフロー装置で、約10倍の処理能力を持ち、逆に、ランニングコスト、イニシャルコスト、メンテナンスコストは、いずれも1/10以下と推測される(実施例2及び比較例1を参照)。   The apparatus using the method according to the present invention can recover and remove particulate components in a solution continuously and without a filter, and does not need to apply mechanical external force such as centrifugal force. Running cost is small. In addition, the simple structure makes it easy to handle, has low initial costs, low maintenance costs, and is compact. For example, in comparison with a commercially available device using a conventional continuous centrifugation method (for example, Hoku-C type H-660 continuous centrifuge manufactured by Kokusan Co., Ltd.), the emulsion flow device has about 1/40 of the volume and weight of the device. It has a processing capacity of about 10 times, and conversely, the running cost, initial cost and maintenance cost are all estimated to be 1/10 or less (see Example 2 and Comparative Example 1).

以上のように、本法は、費用対効果、性能と扱いやすさ、コンパクトさ、環境への配慮などのすべての面で優れた方法であるため、様々な産業での活用が期待できる。例えば、工場廃水などに含まれる有害な粒子成分、あるいは有害物質を吸着して有害化した粒子成分の回収・除去技術、さらには、粒子成分とともに有害な溶存成分をも同時に除去する水浄化技術、溶液内反応を利用して製造した微粒子材料の回収技術、微量成分の分析で用いられる共沈法の迅速化など、様々な用途において、今までにない画期的な低コスト技術となり得る。また、環境浄化技術としての利用価値も大いに期待できる。   As described above, this method is excellent in all aspects such as cost-effectiveness, performance and ease of handling, compactness, and consideration for the environment, and can be expected to be used in various industries. For example, recovery / removal technology for harmful particulate components contained in factory wastewater, etc., or particulate components that are harmful by adsorbing harmful substances, and water purification technology that simultaneously removes harmful dissolved components together with particulate components, It can be a revolutionary low-cost technology that has never been seen before in various applications, such as the recovery of fine particle materials produced using in-solution reactions and the rapid coprecipitation method used in the analysis of trace components. In addition, the utility value as environmental purification technology can be greatly expected.

酸化鉄Fe2O3粒子の液液界面への凝集現象を説明するための写真である。Is a photograph for explaining the agglomeration of the liquid-liquid interface of the iron oxide Fe 2 O 3 particles. 本発明の溶液中粒子成分の連続回収方法を実施するための装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus for enforcing the continuous collection method of the particle | grain component in a solution of this invention. 図2に示された装置で使用されるエマルションフロー装置の小型実験用器具を示す全体構成図である。It is a whole block diagram which shows the small experimental instrument of the emulsion flow apparatus used with the apparatus shown by FIG. 図2に示された装置で使用されるエマルションフロー装置の中型実験用器具を示す全体構成図である。It is a whole block diagram which shows the medium-sized laboratory instrument of the emulsion flow apparatus used with the apparatus shown by FIG. 図2に示された装置で使用されるエマルションフロー装置の実験用器具のカラム部に付着した酸化アルミニウムAl2O3の状態を示す図である。Is a diagram showing a state of aluminum oxide Al 2 O 3 deposited on a column of laboratory instruments emulsion flow apparatus used in the apparatus shown in FIG.

符号の説明Explanation of symbols

10:エマルションフロー装置
11:第1ヘッド部
12:第2ヘッド部
13:カラム部
14:上方相分離部
15:下方相分離部
16:送液ポンプ
20:リザーバー
21:導管
30:懸濁粒子捕集用ピストン
31:付着懸濁粒子
10: Emulsion flow device 11: First head part 12: Second head part 13: Column part 14: Upper phase separation part 15: Lower phase separation part 16: Liquid feed pump 20: Reservoir 21: Conduit 30: Suspended particle trapping Piston 31 for collecting: Adhering suspended particles

Claims (2)

エマルションフローが発生するカラム部と、前記カラム部の上方及び下方に設置した相分離部を備えたエマルションフロー装置を用いて、溶液中粒子成分を連続回収する方法であって、
粒子成分を含む水溶液である水相を、前記カラム部内に噴出させ、前記水相の噴出と同時に、水と混じり合わない溶媒相を微細化した液滴を、前記水相の噴出と向い合うように前記カラム部内に噴出させることによって、前記カラム部内に前記水相と前記溶媒相の混合相から成るエマルションフローを発生させる段階、
前記エマルションフローが前記カラム部から前記相分離部に到達した際に前記エマルションフローの状態を解き、前記水相と前記溶媒相を相分離させる段階、及び
前記2つの段階を経ることで、前記水相と前記溶媒相の成す液液界面に凝集した前記水溶液中の粒子成分を、回収する段階から成ることを特徴とする溶液中粒子成分の連続回収方法。
A method of continuously recovering particle components in a solution using an emulsion flow apparatus provided with a column part where an emulsion flow occurs and a phase separation part installed above and below the column part,
An aqueous phase, which is an aqueous solution containing a particle component, is ejected into the column part, and at the same time as the ejection of the aqueous phase, droplets obtained by refining a solvent phase that does not mix with water face the ejection of the aqueous phase. Generating an emulsion flow consisting of a mixed phase of the aqueous phase and the solvent phase in the column portion by jetting into the column portion;
When the emulsion flow reaches the phase separation part from the column part, the state of the emulsion flow is released, and the water phase and the solvent phase are phase-separated; A method for continuously recovering particle components in solution, comprising the step of recovering the particle components in the aqueous solution aggregated at the liquid-liquid interface formed by the phase and the solvent phase.
請求項1に記載の方法において、相分離した前記溶媒相を循環させながら、前記水相の噴出と向い合うように前記カラム内に噴出させることによって、前記水溶液中の粒子成分を回収することを特徴とする溶液中粒子成分の連続回収方法。 The method according to claim 1, wherein the particle component in the aqueous solution is recovered by spraying into the column portion so as to face the spray of the aqueous phase while circulating the solvent phase after phase separation. A method for continuously recovering particle components in a solution.
JP2008253778A 2008-09-30 2008-09-30 Method for continuous recovery of particle components in solution Active JP5733691B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008253778A JP5733691B2 (en) 2008-09-30 2008-09-30 Method for continuous recovery of particle components in solution
EP09252285.3A EP2172254B1 (en) 2008-09-30 2009-09-28 Continuous collection method of particle component in aqueous solution and apparatus therefor
EP11166870.3A EP2364758B1 (en) 2008-09-30 2009-09-28 Continuous collection method of particle component in aqueous solution and apparatus therefor
US12/570,470 US20100078382A1 (en) 2008-09-30 2009-09-30 Continuous collection method of particle component in aqueous solution and apparatus therefor
US13/527,013 US9108124B2 (en) 2008-09-30 2012-06-19 Continuous collection method of particle component in aqueous solution and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008253778A JP5733691B2 (en) 2008-09-30 2008-09-30 Method for continuous recovery of particle components in solution

Publications (2)

Publication Number Publication Date
JP2010082530A JP2010082530A (en) 2010-04-15
JP5733691B2 true JP5733691B2 (en) 2015-06-10

Family

ID=42247020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008253778A Active JP5733691B2 (en) 2008-09-30 2008-09-30 Method for continuous recovery of particle components in solution

Country Status (1)

Country Link
JP (1) JP5733691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11571634B2 (en) 2019-06-19 2023-02-07 Japan Atomic Energy Agency Method and apparatus for producing specific substances by extraction and separation in a liquid-liquid system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856668A (en) * 1973-05-30 1974-12-24 R Shubert Method for treatment of coal washery waters
US4126551A (en) * 1977-04-08 1978-11-21 Freeport Minerals Company Method and apparatus for handling solvent extraction crud
JPH01123604A (en) * 1987-11-10 1989-05-16 Tsuushiyousangiyoushiyou Kiso Sangiyoukiyokuchiyou Light liquid-heavy liquid countercurrent extractor
US6500232B2 (en) * 2000-08-10 2002-12-31 Cognis Corporation Interfacial crud removal system for solvent extraction and method for solvent extraction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11571634B2 (en) 2019-06-19 2023-02-07 Japan Atomic Energy Agency Method and apparatus for producing specific substances by extraction and separation in a liquid-liquid system

Also Published As

Publication number Publication date
JP2010082530A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US9108124B2 (en) Continuous collection method of particle component in aqueous solution and apparatus therefor
JPH07290094A (en) Method and device for disposal of liquid fluid containing dissolved pollutant
JP5305382B2 (en) Counterflow emulsion flow continuous liquid-liquid extraction device
CN102381800A (en) Method for treatment of oily sewage at bottom of bilge of vessel and method for preparation of magnetic activated carbon for decontamination of oily sewage
WO2012121047A1 (en) Water treatment system and water treatment method
WO2009084068A1 (en) Process for separating and recovering the suspending fluids contained in exhausted slurries from the machining of silicon
JP5954163B2 (en) Oil / water separator
JP2008289975A (en) Continuous liquid-liquid extraction apparatus utilizing emulsion flow
JP5733691B2 (en) Method for continuous recovery of particle components in solution
JP7464905B2 (en) Oil-water separation device and method for refining scandium using the same
CN103466749A (en) Effective method for removing oil content in aqueous solution
RU162749U1 (en) HYDROCYCLONE
JP2018094477A (en) Separation method of active charcoal
Yanase et al. Counter Current “Emulsion Flow” Extractor for Continuous Liquid–Liquid Extraction from Suspended Solutions
CN101585514A (en) Method for reclaiming sulfuric acid from liquid-phase catalytic oxidation-biological method flue gas desulfurization by-product dilute acid solution by adopting film technology
US10625178B2 (en) Removal of organic solvents from aqueous process streams
WO2003022748A1 (en) System and method for water treatment
UA14319U (en) Method for processing liquid radioactive waste
CN204550495U (en) waste hydraulic oil filter regeneration system
Zanain et al. Removal of silver from wastewater using cross flow microfiltration
Zuo et al. Membrane extraction for separation of copper cations from acid solution using polypropylene hollow fibre membrane
WO2015187917A1 (en) Packed polymer fibers for removal of water immiscible material
CN215713248U (en) Laterite-nickel ore deposit leachate processing system
JP5766638B2 (en) Solid-liquid separation device and solid-liquid separation method
CN106395969A (en) Method for treating Cd&lt;2+&gt;/Cu&lt;2+&gt; wastewater by using animal blood powder as adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5733691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250