JP5303787B2 - 単一パステセレーション - Google Patents

単一パステセレーション Download PDF

Info

Publication number
JP5303787B2
JP5303787B2 JP2009201950A JP2009201950A JP5303787B2 JP 5303787 B2 JP5303787 B2 JP 5303787B2 JP 2009201950 A JP2009201950 A JP 2009201950A JP 2009201950 A JP2009201950 A JP 2009201950A JP 5303787 B2 JP5303787 B2 JP 5303787B2
Authority
JP
Japan
Prior art keywords
tessellation
processing units
memory
processing
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009201950A
Other languages
English (en)
Other versions
JP2010086528A (ja
Inventor
エス. レガキス ジャスティン
エム. キルガリフ エメット
パッカード モレトン ヘンリー
Original Assignee
エヌヴィディア コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌヴィディア コーポレイション filed Critical エヌヴィディア コーポレイション
Publication of JP2010086528A publication Critical patent/JP2010086528A/ja
Application granted granted Critical
Publication of JP5303787B2 publication Critical patent/JP5303787B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3836Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution
    • G06F9/3851Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution from multiple instruction streams, e.g. multistreaming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
    • G06F9/3887Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by a single instruction for multiple data lanes [SIMD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/52Parallel processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Image Generation (AREA)
  • Image Processing (AREA)
  • Multi Processors (AREA)

Description

[0001]本発明は、一般に、三次元表面パッチのテセレーションに関し、より詳細には、グラフィック処理パイプラインを通して単一パスでテセレーションを行うことに関する。
[0002]テセレーションハードウェアのためのプログラミングモデルは、三次元表面パッチのテセレーションを実行するべく実行される新規なシェーダープログラムを明らかにするように進化した。従来のハードウェアアーキテクチャーは、2パス解決策を使用してテセレーションを実行する。グラフィック処理パイプラインを通る第1パス中に、頂点シェーダー及びテセレーションコントロールシェーダー(又はコントロールハルシェーダー)プログラムが実行され、又、頂点データ及びテセレーションパラメータがメモリに記憶される。第1パスが完了した後、グラフィック処理パイプラインが再構成される。グラフィック処理パイプラインを通る第2パス中に、頂点データ及びテセレーションパラメータがメモリから読み取られ、テセレーション評価シェーダー(又はドメインシェーダー)及び幾何学的シェーダープログラムが実行されて、テセレーションオペレーションを完了する。典型的に、ソフトウェアアプリケーションプログラム又は装置ドライバが第1パス及び第2パスの両方を開始する。
[0003]従って、この技術では、テセレーションシェーダープログラムを実行するための改良されたシステム及び方法が必要とされている。
[0004]グラフィックプロセッサを通して単一パスでテセレーションを実行するためのシステム及び方法は、グラフィックプロセッサ内の処理リソースを、異なるテセレーションオペレーションを実行するためのセットへと分割する。頂点データ及びテセレーションパラメータは、メモリに記憶されるのではなく、1つの処理リソースから別の処理リソースへ直接ルーティングされる。それ故、表面パッチ記述がグラフィックプロセッサに与えられ、そしてメモリに中間データを記憶せずに、グラフィックプロセッサを通して単一の非中断パスでテセレーションが完了される。
[0005]グラフィックプロセッサを通して単一パスでテセレーションを実行するための本発明の方法の種々の実施形態は、グラフィックプロセッサの処理ユニットの第1セットを構成すると共に、グラフィックプロセッサ内の処理ユニットの第2セットを構成することを含む。処理ユニットの第1セットは、テセレーションコントロールシェーダーを実行して表面パッチを処理し、テセレーション詳細レベルを計算し、複数の頂点を含むグラフィックプリミティブを生成するように構成される。処理ユニットの第2セットは、テセレーション評価シェーダーを実行して複数の頂点の1つを各々処理するように構成される。次いで、テセレーションコントロールシェーダー及びテセレーション評価シェーダーが実行され、処理ユニットの第1セット及び処理ユニットの第2セットを通る単一パスで表面パッチをテセレートして、処理された頂点を生成する。
[0006]本発明の種々の実施形態は、グラフィックプロセッサを通る単一パスでテセレーションを実行するためのシステムを包含する。グラフィックプロセッサは、処理ユニットの第1セットと、処理ユニットの第2セットと、クロスバー相互接続部とを含む。処理ユニットの第1セットは、テセレーションコントロールシェーダーを実行して表面パッチを処理すると共に、複数の頂点を含むグラフィックプリミティブを生成するように構成される。処理ユニットの第2セットは、テセレーション評価シェーダーを実行して複数の頂点の1つを各々処理するように構成される。クロスバー相互接続部は、処理ユニットの第1セット及び処理ユニットの第2セットに結合され、処理ユニットの第1セットにより出力される複数の頂点を処理ユニットの第2セットの入力へルーティングするように構成される。
[0007]本発明の前述した特徴を詳細に理解できるように、概要について簡単に前述した本発明について、幾つかを添付図面に例示している実施形態に関して、以下により特定して説明する。しかしながら、添付図面は、本発明の典型的な実施形態のみを例示したもので、従って、本発明の範囲は、それに限定されるものではなく、本発明は、同等の効果を発揮できる他の実施形態も包含できることに注意されたい。
本発明の1つ以上の態様を具現化するように構成されたコンピュータシステムを示すブロック図である。 本発明の一実施形態による図1のコンピュータシステムのための並列処理サブシステムのブロック図である。 本発明の一実施形態による図2の1つのPPU内のGPCのブロック図である。 本発明の一実施形態による図2の1つのPPU内の区画ユニットのブロック図である。 本発明の一実施形態により図2のPPUの1つ以上を具現化のために構成できるグラフィック処理パイプラインの概念図である。 本発明の一実施形態によりテセレーションを単一パスで実行するための方法ステップのフローチャートである。 本発明の一実施形態によりテセレーションを単一パスで実行するように構成されたGPCのブロック図である。
[0015]本発明をより完全に理解するために、多数の特定の細部を以下に説明する。しかしながら、当業者であれば、1つ以上のこれら特定の細部がなくても、本発明を実施できることが明らかであろう。他の点について、本発明を不明瞭にしないために、良く知られた特徴は説明しない。
システムの概略
[0016]図1は、本発明の1つ以上の態様を具現化するように構成されたコンピュータシステム100を示すブロック図である。このコンピュータシステム100は、中央処理ユニット(CPU)102と、メモリブリッジ105を通りバス経路を経て通信するシステムメモリ104とを備えている。メモリブリッジ105は、図1に示すように、CPU102に一体化されてもよい。或いは又、メモリブリッジ105は、従来の装置、例えば、ノースブリッジチップであって、バスを経てCPU102へ接続されてもよい。メモリブリッジ105は、通信経路106(例えば、ハイパートランスポートリンク)を経てI/Oブリッジ107へ接続される。例えば、サウスブリッジチップでもよいI/Oブリッジ107は、1つ以上のユーザ入力装置108(例えば、キーボード、マウス)からユーザ入力を受け取り、そしてその入力を、経路106及びメモリブリッジ105を経てCPU102へ転送する。並列処理サブシステム112がバス又は他の通信経路113(例えば、PCIエクスプレス、アクセラレーテッドグラフィックポート、又はハイパートランスポートリンク)を経てメモリブリッジ105へ結合され、一実施形態では、並列処理サブシステム112は、ディスプレイ装置110(例えば、従来のCRT又はLCDベースのモニタ)へピクセルを配送するグラフィックサブシステムである。システムディスク114もI/Oブリッジ107に接続される。スイッチ116は、I/Oブリッジ107と、他のコンポーネント、例えば、ネットワークアダプタ118及び種々のアドインカード120及び121との間の接続を与える。I/Oブリッジ107には、USB又は他のポートコネクタ、CDドライバ、DVDドライバ、フィルム記録装置、等を含む他のコンポーネント(明確に示されていない)を接続することもできる。図1における種々のコンポーネントを相互接続する通信経路は、任意の適当なプロトコル、例えば、PCI(周辺コンポーネント相互接続)、PCIエクスプレス(PCI−E)、AGP(アクセラレーテッドグラフィックポート)、ハイパートランスポート、或いは他のバス又はポイント対ポイント通信プロトコルを使用して具現化されてもよいし、異なる装置間の接続が、この技術で良く知られたように、異なるプロトコルを使用してもよい。
[0017]一実施形態において、並列処理サブシステム112は、例えば、ビデオ出力回路を含むグラフィック及びビデオ処理に最適な回路を合体して、グラフィック処理ユニット(GPU)を構成する。別の実施形態では、並列処理サブシステム112は、ここで詳細に述べる基礎的な計算アーキテクチャーを維持しながら、汎用処理を行うように最適化された回路を合体する。更に別の実施形態では、並列処理サブシステム112は、1つ以上の他のシステム要素、例えば、メモリブリッジ105、CPU102及びI/Oブリッジ107と一体化されて、システムオンチップ(SoC)を形成してもよい。
[0018]ここに示すシステムは、例示に過ぎず、変更や修正が可能であることが明らかである。ブリッジの数及び配列を含む接続トポロジーは、必要に応じて変更されてもよい。例えば、ある実施形態では、システムメモリ104は、ブリッジを通さずにCPU102に直結され、他の装置は、メモリブリッジ105及びCPU102を経てシステムメモリ104と通信する。他の別のトポロジーにおいて、並列処理サブシステム112は、I/Oブリッジ107へ接続され、又はメモリブリッジ105ではなくCPU102に直結される。更に他の実施形態では、CPU102、I/Oブリッジ107、並列処理サブシステム112及びメモリブリッジ105の1つ以上が、1つ以上のチップに一体化される。ここに示す特定のコンポーネントは、任意のものであり、例えば、いかなる数のアドインカード又は周辺装置がサポートされてもよい。ある実施形態では、スイッチ116が取り去られ、ネットワークアダプタ118及びアドインカード120、121がI/Oブリッジ107に直結される。
[0019]図2は、本発明の一実施形態による並列処理サブシステム112を示す。図示されたように、並列処理サブシステム112は、1つ以上の並列処理ユニット(PPU)202を備え、その各々がローカル並列処理(PP)メモリ204に結合される。一般に、並列処理サブシステムは、多数UのPPUを備え、但し、U≧1である。(ここで、同じオブジェクトの複数のインスタンスは、オブジェクトを識別する参照番号と、必要に応じてインスタンスを識別するかっこ付き番号とで示される。)PPU202及び並列処理メモリ204は、1つ以上の集積回路デバイス、例えば、プログラム可能なプロセッサ、特定用途向け集積回路(ASIC)又はメモリデバイスを使用して具現化されてもよいし、或いは他の技術的に実現可能な形態で具現化されてもよい。
[0020]再び図1を参照すれば、ある実施形態において、並列処理サブシステム112における幾つかの又は全てのPPU202は、CPU102及び/又はシステムメモリ104により供給されるグラフィックデータからピクセルデータを生成し、ローカル並列処理メモリ204(例えば、従来のフレームバッファを含むグラフィックメモリとして使用できる)と相互作用して、ピクセルデータを記憶及び更新し、ピクセルデータをディスプレイ装置110配送し、等々に関連した種々のタスクを実行するように構成できるレンダリングパイプラインを伴うグラフィックプロセッサである。ある実施形態では、並列処理サブシステム112は、グラフィックプロセッサとして動作する1つ以上のPPU202、及び汎用計算に使用される1つ以上の他のPPU202を含んでもよい。PPUは、同じものでも異なるものでもよく、又、各PPUは、それ自身の専用の並列処理メモリ装置(1つ又は複数)を有してもよいし、又は専用の並列処理メモリ装置(1つ又は複数)を有していなくてもよい。1つ以上のPPU202がディスプレイ装置110へデータを出力してもよいし、又は各PPU202が1つ以上のディスプレイ装置110へデータを出力してもよい。
[0021]動作中に、CPU102がコンピュータシステム100のマスタープロセッサとなり、他のシステムコンポーネントのオペレーションを制御し整合させる。特に、CPU102は、PPU202のオペレーションを制御するコマンドを生成する。ある実施形態では、CPU102は、各PPU202のためのコマンドのストリームをコマンドバッファ(図1又は図2のいずれにも明確に示されていない)へ書き込み、このコマンドバッファは、システムメモリ104、並列処理メモリ204、又はCPU102及びPPU202の両方にアクセス可能な別の記憶位置に配置される。PPU202は、コマンドバッファからコマンドストリームを読み取り、次いで、CPU102のオペレーションに対して非同期でコマンドを実行する。又、CPU102は、コマンドバッファのコマンドに応答してPPU202が読み取ることのできるデータバッファを生成することもできる。各コマンド及びデータバッファは、複数のPPU202によって読み取ることができる。
[0022]図2に戻ると、各PPU202は、メモリブリッジ105へ接続される(又は1つの別の実施形態では、CPU102へ直結される)通信経路113を経てコンピュータシステム100の残部と通信するI/O(入力/出力)ユニット205を備えている。コンピュータシステム100の残部へのPPU202の接続を変更することもできる。ある実施形態では、並列処理サブシステム112は、コンピュータシステム100の拡張スロットへ挿入できるアドインカードとして具現化される。他の実施形態では、PPU202は、メモリブリッジ105又はI/Oブリッジ107のようなバスブリッジと共に単一チップ上に集積化することができる。更に別の実施形態では、PPU202の幾つかの又は全ての要素をCPU102と共に単一チップ上に集積化することができる。
[0023]一実施形態では、通信経路113は、この技術で知られたように各PPU202に専用レーンが割り当てられたPCI−Eリンクである。他の通信経路が使用されてもよい。I/Oユニット205は、通信経路113を経て送信するためのパケット(又は他の信号)を生成すると共に、通信経路113からの全ての到来パケット(又は他の信号)を受信して、それら到来パケットをPPU202の適当なコンポーネントに向ける。例えば、処理タスクに関連したコマンドは、ホストインターフェイス206に向けることができる一方、メモリオペレーション(例えば、並列処理メモリ204からの読み取り又はそこへの書き込み)に関連したコマンドは、メモリクロスバーユニット210に向けることができる。ホストインターフェイス206は、各コマンドバッファを読み取り、又、コマンドバッファにより指定されたワークをフロントエンド212へ出力する。
[0024]各PPU202は、高度な並列処理アーキテクチャーを具現化するのが好都合である。詳細に示されたように、PPU202(0)は、多数Cの一般的処理クラスター(GPC)208を含む処理クラスターアレイ230を備え、但し、C≧1である。各GPC208は、多数(例えば、数百又は数千)のスレッドを同時に実行することができ、ここで、各スレッドは、プログラムのインスタンスである。種々のアプリケーションにおいて、異なる形式のプログラムを処理するか又は異なる形式の計算を実行するために異なるGPC208が割り当てられる。例えば、グラフィックアプリケーションでは、テセレーションオペレーションを実行してパッチに対するプリミティブトポロジーを生成するためにGPC208の第1セットを割り当てることができ、又、テセレーションシェーディングを実行してプリミティブトポロジーに対してパッチパラメータを評価すると共に、頂点位置及び他の頂点ごとの属性を決定するためにGPC208の第2セットを割り当てることができる。GPC208の割り当ては、各形式のプログラム又は計算に対して生じるワークロードに基づいて変更し得る。或いは又、タイムスライススキームを使用して異なる処理タスク間をスイッチする処理タスクを実行するために全GPCを割り当ててもよい。
[0025]GPC208は、フロントエンドユニット212から処理タスクを定義するコマンドを受け取るワーク分配ユニット200を経て実行されるべき処理タスクを受け取る。処理タスクは、処理されるべきデータ、例えば、表面(パッチ)データ、プリミティブデータ、頂点データ、及び/又はピクセルデータ、並びにどのようにデータを処理すべきか(例えば、どんなプログラムを実行すべきか)を定義する状態パラメータ及びコマンドを指すポインタを含む。ワーク分配ユニット200は、タスクに対応するポインタをフェッチするように構成されてもよいし、ワーク分配ユニット200は、フロントエンド212からポインタを受け取ってもよいし、或いはワーク分配ユニット200は、データを直接受け取ってもよい。本発明のある実施形態では、アレイにおけるデータの位置をインデックスが指定する。フロントエンド212は、コマンドバッファによって指定された処理が開始される前にGPC208が有効な状態へと構成されることを保証する。
[0026]PPU202が、例えば、グラフィック処理に使用されるときには、各パッチに対する処理ワークロードが、ほぼ等しいサイズのタスクへ分割され、テセレーション処理を複数のGPC208へ分配できるようにする。ワーク分配ユニット200は、タスクを処理のために複数のGPC208に与えることのできる周波数においてタスクを出力するように構成することができる。本発明のある実施形態では、GPC208の各部分は、異なる形式の処理を実行するように構成される。例えば、第1部分は、頂点シェーディング及びトポロジー生成を実行するように構成され、第2部分は、テセレーション及び幾何学的シェーディングを実行するように構成され、更に、第3部分は、スクリーンスペースにおいてピクセルシェーディングを実行して、レンダリングされた像を形成するように構成されてもよい。異なる形式の処理を効率的に実行するためにGPC208の各部分を割り当てる能力は、異なる形式の処理により生成されるデータの膨張及び収縮を受け入れる。GPC208により生成される中間データは、下流GPC208によりデータが受け入れられる速度が、上流GPC208によりデータが生成される速度より遅いときに、最小の停滞状態でGPC208間に中間データを送信できるようにバッファすることができる。
[0027]メモリインターフェイス214は、並列処理メモリ204の一部分に各々直結された多数Dのメモリ区画ユニットへ区画化することができ、但し、D≧1である。メモリの各部分は、一般に、1つ以上のメモリデバイス(例えば、DRAM220)より成る。当業者であれば、DRAM220は、他の適当な記憶装置と置き換えることができ、一般的に従来設計のものでよいことが明らかであろう。それ故、詳細な説明は省略する。フレームバッファ又はテクスチャマップのようなレンダーターゲットは、DRAM220にわたって記憶され、区画ユニット215が各レンダーターゲットの部分を並列に書き込み、並列処理メモリ204の使用可能な帯域巾を効率的に使用できるようにする。
[0028]GPC208のいずれの1つも、並列処理メモリ204内の任意の区画ユニット215に書き込まれるべきデータを処理することができる。クロスバーユニット210は、各GPC208の出力を任意の区画ユニット214の入力又は別のGPC208へ更なる処理のためにルーティングするように構成される。GPC208は、クロスバーユニット210を通してメモリインターフェイス214と通信し、種々の外部メモリ装置から読み取ったり又はそこへ書き込んだりする。一実施形態では、クロスバーユニット210は、I/Oユニット205と通信するためにメモリインターフェイス214への接続を有すると共に、ローカル並列処理メモリ204への接続を有し、これにより、異なるGPC208内の処理コアが、システムメモリ104、又はPPU202に対してローカルでない他のメモリと通信できるようにする。クロスバーユニット210は、バーチャルチャンネルを使用して、GPC208と区画ユニット215との間でトラフィックストリームを分離することができる。
[0029]この場合も、GPC208は、これに限定されないが、直線的及び非直線的データ変換、ビデオ及び/又はオーディオデータのフィルタリング、モデリングオペレーション(例えば、物理の法則を適用して物体の位置、速度及び他の属性を決定すること)、像レンダリングオペレーション(例えば、テセレーションシェーダー、頂点シェーダー、幾何学的シェーダー及び/又はピクセルシェーダープログラム)、等を含む種々様々なアプリケーションに関する処理タスクを実行するようにプログラムすることができる。PPU202は、システムメモリ104及び/又はローカル並列処理メモリ204からのデータを内部(オンチップ)メモリへ転送し、そのデータを処理し、そしてそれにより得られるデータをシステムメモリ104及び/又はローカル並列処理メモリ204へ書き戻すことができ、このようなデータは、CPU102又は別の並列処理サブシステム112を含む他のシステムコンポーネントによってアクセスすることができる。
[0030]PPU202には、ローカルメモリを含まない任意の量のローカル並列処理メモリ204を設けることができ、又、ローカルメモリ及びシステムメモリを任意の組み合わせで使用することもできる。例えば、PPU202は、統合型メモリアーキテクチャー(UMA)実施形態では、グラフィックプロセッサである。このような実施形態では、専用グラフィック(並列処理)メモリがほとんど又は全く設けられず、PPU202は、システムメモリを排他的又はほぼ排他的に使用する。UMA実施形態では、PPU202は、ブリッジチップ又はプロセッサチップに一体化されてもよいし、或いはブリッジチップ又は他の通信手段を経てシステムメモリへPPU202を接続する高速リンク(例えば、PCI−E)をもつ個別のチップとして設けられてもよい。
[0031]上述したように、並列処理サブシステム112には、いかなる数のPPU202を含ませることもできる。例えば、複数のPPU202を単一のアドインカード上に設けることもできるし、又は複数のアドインカードを通信経路113に接続することもできるし、或いは1つ以上のPPU202をブリッジチップに一体化することもできる。マルチPPUシステムにおけるPPU202は、互いに同じものでも異なるものでもよい。例えば、異なるPPU202は、異なる数の処理コア、異なる量のローカル並列処理メモリ、等を有してもよい。複数のPPU202が存在する場合には、それらPPUは、単一のPPU202で可能であるよりも高いスループットでデータを処理するように並列に動作させることができる。1つ以上のPPU202を合体するシステムは、デスクトップ、ラップトップ、又はハンドヘルドパーソナルコンピュータ、サーバー、ワークステーション、ゲームコンソール、埋め込み型システム、等々を含む種々のコンフィギュレーション及びフォームファクタで具現化することができる。
処理クラスターアレイの概略
[0032]図3Aは、本発明の一実施形態による図2の1つのPPU202内のGPC208のブロック図である。各GPC208は、多数のスレッドを並列に実行するように構成することができ、ここで、「スレッド」という語は、入力データの特定のセットに対して実行される特定のプログラムのインスタンスを指す。ある実施形態では、複数の独立したインストラクションユニットを設けずに、多数のスレッドの並列実行をサポートするために、単一インストラクション多データ(SIMD)のインストラクション発行技術が使用される。他の実施形態では、各1つのGPC208内の処理エンジンのセットへインストラクションを発行するように構成された共通のインストラクションユニットを使用して、多数の一般的に同期されるスレッドの並列実行をサポートするために、単一インストラクション多スレッド(SIMT)技術が使用される。全処理エンジンが典型的に同じインストラクションを実行するというSIMD実行形態とは異なり、SIMT実行は、異なるスレッドが、所与のスレッドプログラムを通じて、発散する実行経路を容易にたどることができるようにする。当業者であれば、SIMD処理形態は、SIMT処理形態の機能的サブセットを表すことが理解されよう。
[0033]グラフィックアプリケーションでは、GPC208は、これに限定されないが、プリミティブ設定、ラスタ化及びzカリングを含むスクリーンスペースグラフィック処理ファンクションを実行するためのプリミティブエンジンを含むように構成されてもよい。図3Aに示すように、設定ユニット302は、グラフィックプリミティブを処理するためのインストラクションを受け取り、バッファからグラフィックプリミティブパラメータを読み取る。バッファは、L1キャッシュ315、区画ユニット215又はPPメモリ204に記憶されてもよい。ラスタライザ/zカルユニット303は、グラフィックプリミティブパラメータを受け取り、そしてラスタライザ/zカルユニット303に指定されるピクセルに交差するプリミティブをラスタ化する。ラスタライザ/zカルユニット303の1つのみに各ピクセルが指定され、従って、ラスタライザ/zカルユニット303に指定されないピクセルに交差するグラフィックプリミティブの部分は破棄される。又、ラスタライザ/zカルユニット303は、zカリングを実行して、見えないグラフィックプリミティブの部分も除去する。zプレROP(z preROP)ユニット304は、zデータにアクセスするためのアドレス変換を実行し、そして種々のz処理モードに基づいてzデータのための順序を維持する。
[0034]GPC208のオペレーションは、ワーク分配ユニット200から(設定ユニット302、ラスタライザ/zカルユニット303、及びzプレROPユニット304を経て)受け取られた処理タスクをストリーミングマルチプロセッサユニット(SMU)310へ分配するパイプラインマネージャー305を経て制御されるのが好都合である。又、パイプラインマネージャー305は、SMU310により出力される処理済みデータのための行先を指定することによりワーク分配クロスバー330を制御するように構成されてもよい。
[0035]一実施形態では、各GPC208は、多数MのSMU310を含み、但し、M≧1であり、又、各SMU310は、1つ以上のスレッドグループを処理するように構成される。又、各SMU310は、この技術で知られたように、手前のインストラクションが終了する前に新たなインストラクションを発行できるように、パイプライン化できる機能的ユニット(例えば、演算論理ユニット、等々)の同一セットを含むのが好都合である。機能的ユニットの任意の組み合わせを設けることができる。一実施形態では、機能的ユニットは、整数及び浮動小数点演算(例えば、加算及び乗算)、比較演算、ブール演算(AND、OR、XOR)、ビットシフト、及び種々の代数関数(例えば、平面補間、三角関数、指数関数、対数関数、等)の計算を含む様々なオペレーションをサポートし、そして同じ機能的ユニットハードウェアをレバレッジして、異なるオペレーションを実行することができる。
[0036]特定のGPC208へ送信される一連のインストラクションは、前記で定義したスレッドを構成し、SMU310内の並列処理エンジン(図示せず)にわたるある個数の同時実行スレッドの集合がここで「スレッドグループ」と称される。ここで使用する「スレッドグループ」は、異なる入力データに対して同じプログラムを同時に実行するスレッドのグループを指し、グループの各スレッドは、SMU310内の異なる処理エンジンに指定される。スレッドグループは、SMU310内の処理エンジンの個数より少ないスレッドを含んでもよく、この場合、幾つかの処理エンジンは、そのスレッドグループが処理されるときのサイクル中にアイドル状態となる。又、スレッドグループは、SMU310内の処理エンジンの個数より多いスレッドを含んでもよく、この場合、複数のクロックサイクルにわたって処理が行われる。各SMU310がG個までのスレッドグループを同時にサポートできるので、いかなる所与の時間にもGPC208ではGxM個までのスレッドグループを実行できることになる。
[0037]更に、SMU310内で複数の関連スレッドグループが同時にアクティブなことがある(異なる実行フェーズにおいて)。スレッドグループのこの集合は、ここでは、「協働スレッドアレイ」(CTA)と称される。特定のCTAのサイズは、m*kに等しく、但し、kは、スレッドグループ内の同時実行スレッドの数で、典型的に、SMU310内の並列処理エンジンの数の整数倍であり、又、mは、SMU310内の同時にアクティブなスレッドグループの数である。CTAのサイズは、一般的に、プログラマーと、CTAに使用可能なメモリ又はレジスタのようなハードウェアリソースの量とで決定される。
[0038]排他的なローカルアドレススペースが各スレッドに使用でき、そして共有のパーCTA(per-CTA)アドレススペースを使用して、CTA内のスレッド間にデータを通過させる。パースレッド(per-thread)ローカルアドレススペース及びパーCTAアドレススペースに記憶されたデータは、L1キャッシュ320に記憶され、又、エビクションポリシーを使用してデータをL1キャッシュ320に好意的に保持することができる。各SMU310は、ロード及び記憶オペレーションを実行するのに使用される対応L1キャッシュ320内のスペースを使用する。又、各SUM310は、全てのGPC208間に共有されてスレッド間のデータ転送に使用できる区画ユニット215内のL2キャッシュにもアクセスする。最終的に、SMU310は、例えば、並列処理メモリ204及び/又はシステムメモリ104を含むオフチップ「グローバル」メモリにもアクセスする。L2キャッシュは、グローバルメモリへ書き込まれ及びグローバルメモリから読み取られるデータを記憶するのに使用されてもよい。PPU202の外部のメモリをグローバルメモリとして使用してもよいことを理解されたい。
[0039]グラフィックアプリケーションでは、GPC208は、例えば、テクスチャサンプル位置を決定し、テクスチャデータを読み取り、テクスチャデータをフィルタリングするようなテクスチャマッピングオペレーションを実行するために各SMU310がテクスチャユニット315に結合されるように構成できる。テクスチャデータは、メモリインターフェイス214を経て読み取られ、L2キャッシュ、並列処理メモリ204、又はシステムメモリ104から必要に応じてフェッチされる。テクスチャユニット315は、テクスチャデータを内部キャッシュに記憶するように構成できる。ある実施形態では、テクスチャユニット315がL1キャッシュ320に結合され、テクスチャデータがL1キャッシュ320に記憶される。各SMU310は、処理されたタスクをワーク分配クロスバー330へ出力し、処理されたタスクを更なる処理のために別のGPC208に与えるか、又は処理されたタスクを、クロスバーユニット210を経てL2キャッシュ、並列処理メモリ204又はシステムメモリ104に記憶する。プレROP(プレラスタオペレーション)325は、SMU310からデータを受け取り、区画ユニット215内のROPユニットへデータを向け、カラー混合のための最適化を実行し、ピクセルカラーデータを編成し、そしてアドレス変換を実行するように構成される。
[0040]ここに述べるコアアーキテクチャーは、例示に過ぎず、変更や修正が可能であることが明らかである。いかなる数の処理エンジン、例えば、SMU310、テクスチャユニット315又はプレROP325がGPC208内に含まれてもよい。更に、1つのGPC208しか示されていないが、PPU202は、いかなる数のGPC208を含んでもよく、これらGPCは、どのGPC208が特定の処理タスクを受け取るかに実行振舞いが依存しないように、互いに機能的に同様であるのが好都合である。更に、各GPC208は、別々の個別の処理エンジン、L1キャッシュ320、等を使用して、他のGPC208とは独立して動作するのが好都合である。
[0041]図3Bは、本発明の一実施形態による図2の1つのPPU202内の区画ユニット215のブロック図である。図示されたように、区画ユニット215は、L2キャッシュ350、フレームバッファ(FB)355、及びラスタオペレーションユニット(ROP)360を備えている。L2キャッシュ350は、クロスバーユニット210及びROP325から受け取られるロード及び記憶オペレーションを実行するように構成された読み取り/書き込みキャッシュである。読み取りミス及び緊急書き戻し要求は、L2キャッシュ350により処理のためにFB355へ出力される。不正な更新も、日和見主義的な処理のためにFB355へ送信される。FB355は、並列処理メモリ204と直接インターフェイスし、読み取り及び書き込み要求を出力すると共に、並列処理メモリ204から読み取られたデータを受け取る。
[0042]グラフィックアプリケーションでは、ROP360は、ステンシル、zテスト、ブレンド、等のラスタオペレーションを実行し、そしてピクセルデータを処理済みグラフィックデータとして出力してグラフィックメモリに記憶する処理ユニットである。本発明のある実施形態では、ROP360が各区画ユニット215に代わって各GPC208内に含まれ、そしてピクセル読み取り及び書き込みがピクセル断片に代わってクロスバーユニット210を経て送信される。
[0043]処理済みグラフィックデータは、ディスプレイ装置110上に表示されてもよいし、或いはCPU102により又は並列処理サブシステム112内の処理エンティティの1つにより更に処理するためにルーティングされてもよい。各区画ユニット215は、ラスタオペレーションの処理を分配するためにROP360を含む。ある実施形態では、ROP360は、メモリに書き込まれるz又はカラーデータを圧縮すると共に、メモリから読み取られたz又はカラーデータを解凍するように構成されてもよい。
[0044]当業者であれば、図1、2、3A及び3Bについて述べたアーキテクチャーは、本発明の範囲を何ら限定するものではなく、又、ここに教示される技術は、これに限定されないが、1つ以上のCPU、1つ以上のマルチコアCPU、1つ以上のPPU202、1つ以上のGPC208、1つ以上のグラフィック又は特殊目的の処理ユニット、等を含む適切に構成された処理ユニットにおいて、本発明の範囲から逸脱せずに、具現化できることが理解されよう。
グラフィックパイプラインアーキテクチャー
[0045]図4は、本発明の一実施形態により図2のPPU202の1つ以上を具現化のために構成できるグラフィック処理パイプライン400の概念図である。例えば、SMU310の1つは、頂点処理ユニット415、幾何学的処理ユニット425及び断片処理ユニット460の1つ以上のファンクションを実行するように構成できる。データアッセンブラー410、プリミティブアッセンブラー420、ラスタライザ455及びラスタオペレーションユニット465のファンクションも、GPC208内の他の処理エンジン及びそれに対応する区画ユニット215により実行することができる。或いは又、グラフィック処理パイプライン400は、1つ以上のファンクションのための専用処理ユニットを使用して具現化されてもよい。
[0046]データアッセンブラー410の処理ユニットは、高次の表面、プリミティブ、等のための頂点データを収集し、そして頂点属性を含む頂点データを頂点処理ユニット415へ出力する。頂点処理ユニット415は、頂点シェーダープログラムを実行するように構成されたプログラム可能な実行ユニットであり、頂点シェーダープログラムにより照明及び変換頂点データが指定される。例えば、頂点処理ユニット415は、頂点データを、オブジェクトベースの座標表現(オブジェクトスペース)から、ワールドスペース或いは正規化装置座標(NDC)スペースのような交互ベースの座標系へと変換するようにプログラムすることができる。頂点処理ユニット415は、L1キャッシュ320、並列処理メモリ204、又はシステムメモリ104に記憶されたデータを、データアッセンブラー410により、頂点データの処理に使用するために読み取ることができる。
[0047]プリミティブアッセンブラー420は、頂点処理ユニット415から頂点属性を受け取り、記憶された頂点属性を必要に応じて読み取り、そして幾何学的処理ユニット425により処理するためのグラフィックプリミティブを構築する。グラフィックプリミティブは、三角形、線セグメント、点、等を含む。幾何学的処理ユニット425は、幾何学的シェーダープログラムを実行するように構成されたプログラム可能な実行ユニットで、幾何学的シェーダープログラムにより指定されたようにプリミティブアッセンブラー420から受け取られるグラフィックプリミティブを変換する。例えば、幾何学的処理ユニット425は、グラフィックプリミティブを1つ以上の新たなグラフィックプリミティブへと分割し、そしてその新たなグラフィックプリミティブをラスタ化するのに使用される平面方程式係数のようなパラメータを計算するようにプログラムすることができる。
[0048]ある実施形態では、幾何学的処理ユニット425は、幾何学的ストリームにおける要素を追加し又は削除することもできる。幾何学的処理ユニット425は、新たなグラフィックプリミティブを指定するパラメータ及び頂点を、ビューポートスケール、カル及びクリップユニット450へ出力する。幾何学的処理ユニット425は、並列処理メモリ204又はシステムメモリ104に記憶されたデータを、幾何学的データの処理に使用するために読み取ることができる。ビューポートスケール、カル及びクリップユニット450は、クリッピング、カリング及びビューポートスケーリングを実行し、そして処理されたグラフィックプリミティブをラスタライザ455へ出力する。
[0049]ラスタライザ455は、新たなグラフィックプリミティブをスキャン変換し、そして断片及びカバレージデータを断片処理ユニット460へ出力する。更に、ラスタライザ455は、zカリング及び他のzベース最適化を実行するように構成できる。断片処理ユニット460は、断片シェーダープログラムを実行するように構成されたプログラム可能な実行ユニットで、断片シェーダープログラムにより指定されるように、ラスタライザ455から受け取られる断片を変換する。例えば、断片処理ユニット460は、パースペクティブ補正、テクスチャマッピング、シェーディング、ブレンド、等のオペレーションを実行して、シェーディングされた断片を生成するようにプログラムすることができ、そのシェーディングされた断片は、ラスタオペレーションユニット465へ出力される。断片処理ユニット460は、並列処理メモリ204又はシステムメモリ104に記憶されたデータを、断片データの処理に使用するために読み取ることができる。断片は、プログラムされたサンプルレートに基づいて、ピクセル、サンプル又は他の粒度でシェーディングすることができる。
[0050]ラスタオペレーションユニット465は、ステンシル、zテスト、ブレンド、等のラスタオペレーションを実行し、そしてピクセルデータを処理済みグラフィックデータとして出力してグラフィックメモリに記憶する処理ユニットである。処理済みグラフィックデータは、ディスプレイ装置110に表示するか、或いはCPU102又は並列処理サブシステム112により更に処理するために、グラフィックメモリ、例えば、並列処理メモリ204、及び/又はシステムメモリ104に記憶することができる。本発明のある実施形態では、ラスタオペレーションユニット465は、メモリに書き込まれるz又はカラーデータを圧縮すると共に、メモリから読み取られたz又はカラーデータを解凍するように構成される。
単一パステセレーション
[0051]単一パスでテセレーションを実行するために、SMU310の第1部分は、テセレーションコントロールシェーダープログラムを実行するように構成され、又、SMU310の第2部分は、テセレーション評価シェーダープログラムを実行するように構成される。SMU310の第1部分は、10個のコントロールポイントで定義されるキュービックトライアングルプリミティブのような表面パッチ記述及び出力グラフィックプリミティブと、詳細レベル値のようなテセレーションパラメータとを受け取る。これらのグラフィックプリミティブ及びテセレーションパラメータは、PPメモリ204に記憶されるのではなく、L1キャッシュ320及びワーク分配クロスバー330を通して1つのSMU310から別のSMU310へルーティングされる。それ故、表面パッチ記述のテセレーションは、中間データをL2ラッチ350又はPPメモリ204に記憶することなく、GPC208を通る単一の非中断パスで完了となる。更に、アプリケーションプログラム又は装置ドライバ103は、表面パッチ記述を与え、テセレーション処理中にGPC208の部分を再構成しない。
[0052]第1部分におけるSMU310の数は、第2部分におけるSMU310の数に等しくてもよいし、それより大きくてもよいし、又はそれより小さくてもよい。重要なことに、第1部分及び第2部分におけるSMU310の数は、処理ワークロードに一致するように調整することができる。単一表面パッチにより生成される頂点の数は、計算されたテセレーション詳細レベルと共に変化する。それ故、SMU310の第1部分における単一のSMP310は、SMU310の第2部分における複数のSMP310に対して「ワーク」を生成することがある。というのは、テセレーションコントロールシェーダープログラムの実行で、データ拡張が生じ得るからである。
[0053]図5Aは、本発明の一実施形態によりテセレーションを単一パスで実行するための方法ステップのフローチャートである。ステップ510において、装置ドライバ103は、SMU310の第1セットをテセレーションコントロールシェーダープログラム実行のために構成する。テセレーションコントロールシェーダープログラムは、コントロールポイントの基礎の変更、テセレーション詳細レベルパラメータの計算、等々を実行することができ、表面パッチごとに一度実行される。パッチの基礎の変更は、テセレーションコントロールシェーダープログラムが、1つのパッチ(コントロールポイントのセット)を入力すると共に異なるパッチ(コントロールポイントの異なるセット)を出力するときに生じ、ここで、コントロールポイントの数は、入力パッチと出力パッチとの間で変化する。ステップ520において、装置ドライバ103は、SMU310の第2セットをテセレーション評価プログラム実行のために構成する。テセレーション評価コントロールシェーダープログラムは、パッチプリミティブコントロールポイント、各頂点に対するパラメータ(u、v)位置、変位マップ、等に基づいて各頂点の最終位置及び属性を計算することができ、出力頂点ごとに一度実行される。
[0054]ステップ520において、装置ドライバ103は、SMU310を第1セット及び第2セットへと構成し、そしてテセレーションコントロールシェーダー及びテセレーション評価シェーダープログラムをダウンロードし、これらプログラムは、GPC208により実行されて、表面データを処理すると共に、出力頂点を生成する。ステップ530において、SMU310の第1セットにおけるSMU310は、テセレーションコントロールシェーダープログラムを実行して、グラフィックプリミティブ、例えば、キュービックトライアングルのようなグラフィックプリミティブのためのコントロールポイントを生成する。
[0055]ステップ540において、SMU310の第1セットにより出力されるグラフィックプリミティブの頂点は、SMU310の第2セットの入力へ分配される。ステップ545において、SMU310の第2セットにおけるSMU310は、テセレーション評価シェーダープログラムを実行して、出力頂点を生成する。異なる頂点に対して、ステップ530、540及び545が異なる時間に行われることに注意されたい。それ故、第1セットのSMU310によりグラフィックプリミティブが出力されるときには、第2セットのSMU310がテセレーション評価プログラムの実行を開始し、出力頂点を生成する。SMU310は、単一パスで表面パッチを処理するように構成されるので、装置ドライバ103は、テセレーションオペレーション中に異なるオペレーションを実行するようにSMU310を再構成する必要がない。
[0056]図5Bは、本発明の一実施形態によりテセレーションを単一パスで実行するように構成されたGPC208のブロック図である。第1セット550は、テセレーションコントロールシェーダープログラムを実行するように構成されたSMU310の第1セットである。第2セット560は、テセレーション評価シェーダープログラムを実行するように構成されたSMU310の第2セットである。第1セット550、ワーク分配クロスバー330、及び第2セット560は、図5Aのステップ530、540及び545を実行するように構成することができる。ワーク分配クロスバー330は、第1セット550の各SMU310を第2セット560の各SMU310に接続するように構成される。
[0057]表面パッチを表す表面データ555は、図5Bに示すように、L1キャッシュ320に記憶され、第1セット550により読み取られる。パイプラインマネージャー305は、表面データ555の位置を第1セット550の各SMU310に与えて表面パッチを処理のために分配するように構成することができる。第1セット550によって出力されるグラフィックプリミティブを表すテセレーションデータ570は、L1キャッシュ320に記憶することができる。パイプラインマネージャー305は、第2セット560のSMU310の入力へグラフィックプリミティブ頂点を分配するのに必要なルーティング情報をワーク分配クロスバー330に与える。本発明のある実施形態、例えば、図5Bに示す実施形態において、テセレーションデータ570は、ワーク分配クロスバー330を通してルーティングされる。本発明の他の実施形態では、各グラフィックプリミティブ頂点の位置に対応するインデックスが、ワーク分配クロスバー330を通してルーティングされ、第1セット550により出力されたテセレーションデータ570を第2セット560の入力へ分配する。重要なことに、テセレーションデータ570は、PPメモリ204に記憶されるのではなく、L1キャッシュ320又はL2キャッシュ350に記憶され、テセレーションデータ570を読み取ったり書き込んだりするのに必要なクロックサイクルの数を減少する。
[0058]第1セット550のSMU310がテセレーションデータ570を書き込むときに、第2セット560のSMU310がテセレーションデータ570を読み取り、従って、テセレーションデータ570によって消費される記憶装置の量がL1キャッシュ320又はL2キャッシュ350内に適合するように減少される。これに対して、従来のシステムでは、2つの異なるパスを使用してプログラムを実行するときに、パッチのグループのためにテセレーションコントロールシェーダープログラムにより生成される全てのデータは、テセレーション評価シェーダープログラムを実行してデータを読み取るようにパイプラインが構成されるまで、オフチップメモリ、例えば、PPメモリ204に記憶される。更に、従来の2パス技術を使用するときには、典型的に、グループ内のパッチの数が多くて、テセレーションコントロールシェーダープログラムの実行とテセレーション評価シェーダープログラムの実行との間をスイッチするために生じるパイプライン再構成の頻度を減少させる。第1パスにおいて多数のパッチを処理することにより生成されるテセレーションデータは、テセレーションデータ570よりも大きな記憶装置を必要とし、それ故、オフチップメモリに記憶される。
[0059]図5A及び図5Bを参照して述べたように、表面パッチ記述のテセレーションは、PPメモリ204に中間データを記憶せずに、GPC208を通る単一の非中断パスで完了される。更に、アプリケーションプログラム又は装置ドライバ103は、表面パッチ記述を与えるが、テセレーション処理中にGPC208の部分を再構成しない。アプリケーションプログラマーは、好都合にも、PPU202を、単一パスで表面を処理するように自動的に構成される単一のテセレーションパイプラインとみなすことができる。
[0060]本発明の一実施形態は、コンピュータシステムと共に使用するためのプログラム製品として具現化することができる。このプログラム製品のプログラム(1つ又は複数)は、(ここに述べる方法を含めて)実施形態のファンクションを定義し、種々のコンピュータ読み取り可能な記憶媒体にこれを含ませることができる。ここに例示するコンピュータ読み取り可能な記憶媒体は、(i)情報が永久的に記憶される書き込み不能の記憶媒体(例えば、コンピュータ内のリードオンリメモリ装置、例えば、CD−ROMドライブにより読み取り可能なCD−ROMディスク、フラッシュメモリ、ROMチップ、又は任意の形式のソリッドステート不揮発性半導体メモリ)、及び(ii)変更可能な情報が記憶される書き込み可能な記憶媒体(例えば、ディスケットドライブ又はハードディスクドライブ内のフロッピーディスク、又は任意の形式のソリッドステートランダムアクセス半導体メモリ)を含むが、これらに限定されない。
[0061]以上、特定の実施形態を参照して本発明を説明した。しかしながら、当業者であれば、特許請求の範囲に記載された本発明の広い精神及び範囲から逸脱せずに種々の変更や修正がなされ得ることが理解されよう。従って、前記説明及び添付図面は、単なる例示に過ぎず、それに限定されるものではない。
100…コンピュータシステム、102…中央処理ユニット(CPU)、103…装置ドライバ、104…システムメモリ、105…メモリブリッジ、106…通信経路、107…I/Oブリッジ、108…ユーザ入力装置、112…並列処理サブシステム、113…通信経路、116…スイッチ、118…ネットワークアダプタ、120、121…アドインカード、200…ワーク分配ユニット、202…並列処理ユニット(PPU)、204…並列処理(PP)メモリ、205…I/Oユニット、206…ホストインターフェイス、208…一般的処理クラスター(GPC)、210…メモリクロスバーユニット、212…フロントエンド、214…メモリインターフェイス、230…処理クラスターアレイ、302…設定ユニット、303…ラスタライザ/zカルユニット、304…zプレROPユニット、305…パイプラインマネージャー、310…SMU、315…テクスチャユニット、320…L1キャッシュ、325…プレROP、330…ワーク分配クロスバー、350…L2キャッシュ、355…フレームバッファ(FB)、360…ラスタオペレーションユニット(ROP)

Claims (10)

  1. グラフィックプロセッサを通して単一パスでテセレーションを実行する方法であって、
    前記グラフィックプロセッサの処理ユニットの第1セットを構成して、テセレーションコントロールシェーダーを実行して表面パッチを処理すると共に複数の頂点を含むグラフィックプリミティブを生成するステップと、
    前記グラフィックプロセッサ内の処理ユニットの第2セットを構成して、テセレーション評価シェーダーを実行して前記複数の頂点の1つを各々処理するステップと、
    前記テセレーションコントロールシェーダー及び前記テセレーション評価シェーダーを実行して、前記処理ユニットの第1セット及び前記処理ユニットの第2セットを通る単一パスで前記表面パッチをテセレートし、処理された頂点を生成するステップと、
    を備えており、
    前記単一パスは、前記プロセッサの第1セットによって出力される前記複数の頂点を、前記プロセッサの第1セット及び前記プロセッサの第2セットに結合されたクロスバー相互接続部を通して、前記プロセッサの第2セットに分配することを含む、方法。
  2. 前記処理ユニットの第1セットにより出力される複数の頂点を前記処理ユニットの第2セットの入力へ分配するステップを更に備えた、請求項1に記載の方法。
  3. 前記分配するステップは、前記複数の頂点の各々を記憶する位置に対応するインデックスを前記処理ユニットの第1セットから前記処理ユニットの第2セットの入力へルーティングする段階を含む、請求項2に記載の方法。
  4. 前記テセレーションコントロールシェーダーは、前記表面パッチの各1つに対して一度実行されて、1つの表面パッチに対する詳細レベルパラメータを計算する、請求項1に記載の方法。
  5. 前記テセレーション評価シェーダーは、前記複数の頂点の各1つに対して一度実行されて、1つの頂点の最終位置及び属性を計算する、請求項1に記載の方法。
  6. 前記処理ユニットの各1つは、他の処理ユニットとは独立して、前記テセレーションコントロールシェーダー又は前記テセレーション評価シェーダーを実行する、請求項1に記載の方法。
  7. 単一パスでテセレーションを実行するシステムであって、
    グラフィックプロセッサを備え、該グラフィックプロセッサは、
    テセレーションコントロールシェーダーを実行して表面パッチを処理すると共に複数の頂点を含むグラフィックプリミティブを生成するように構成された処理ユニットの第1セットと、
    テセレーション評価シェーダーを実行して前記複数の頂点の1つを各々処理するように構成された処理ユニットの第2セットと、
    前記処理ユニットの第1セット及び前記処理ユニットの第2セットに結合され、前記処理ユニットの第1セットにより出力される複数の頂点を前記処理ユニットの第2セットの入力に与えるように構成されたクロスバー相互接続部と、
    を含むシステム。
  8. 前記テセレーションコントロールシェーダーは、前記表面パッチの各1つに対して一度実行されて、1つの表面パッチに対する詳細レベルパラメータを計算する、請求項7に記載のシステム。
  9. 前記テセレーション評価シェーダーは、前記複数の頂点の各1つに対して一度実行されて、1つの頂点の最終位置及び属性を計算する、請求項7に記載のシステム。
  10. 前記処理ユニットは、前記テセレーションコントロールシェーダー又は前記テセレーション評価シェーダーを実行して前記表面パッチを単一パスでテセレートするように構成された、請求項7に記載のシステム。
JP2009201950A 2008-09-29 2009-09-01 単一パステセレーション Active JP5303787B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/240,382 2008-09-29
US12/240,382 US20100079454A1 (en) 2008-09-29 2008-09-29 Single Pass Tessellation

Publications (2)

Publication Number Publication Date
JP2010086528A JP2010086528A (ja) 2010-04-15
JP5303787B2 true JP5303787B2 (ja) 2013-10-02

Family

ID=41171988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201950A Active JP5303787B2 (ja) 2008-09-29 2009-09-01 単一パステセレーション

Country Status (7)

Country Link
US (1) US20100079454A1 (ja)
JP (1) JP5303787B2 (ja)
KR (1) KR101091374B1 (ja)
CN (1) CN101714247B (ja)
DE (1) DE102009039231B4 (ja)
GB (1) GB2463763B (ja)
TW (1) TWI417806B (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0818277D0 (en) * 2008-10-06 2008-11-12 Advanced Risc Mach Ltd Graphics processing system
US8131931B1 (en) * 2008-10-22 2012-03-06 Nvidia Corporation Configurable cache occupancy policy
US8868838B1 (en) 2008-11-21 2014-10-21 Nvidia Corporation Multi-class data cache policies
US20100164954A1 (en) * 2008-12-31 2010-07-01 Sathe Rahul P Tessellator Whose Tessellation Time Grows Linearly with the Amount of Tessellation
US9436969B2 (en) * 2009-10-05 2016-09-06 Nvidia Corporation Time slice processing of tessellation and geometry shaders
WO2012012440A1 (en) * 2010-07-19 2012-01-26 Advanced Micro Devices, Inc. Data processing using on-chip memory in multiple processing units
US9804995B2 (en) * 2011-01-14 2017-10-31 Qualcomm Incorporated Computational resource pipelining in general purpose graphics processing unit
US9047686B2 (en) 2011-02-10 2015-06-02 Qualcomm Incorporated Data storage address assignment for graphics processing
US9626191B2 (en) 2011-12-22 2017-04-18 Nvidia Corporation Shaped register file reads
US10535185B2 (en) * 2012-04-04 2020-01-14 Qualcomm Incorporated Patched shading in graphics processing
US9436475B2 (en) 2012-11-05 2016-09-06 Nvidia Corporation System and method for executing sequential code using a group of threads and single-instruction, multiple-thread processor incorporating the same
US9947084B2 (en) 2013-03-08 2018-04-17 Nvidia Corporation Multiresolution consistent rasterization
KR102104057B1 (ko) 2013-07-09 2020-04-23 삼성전자 주식회사 점별로 테셀레이션 팩터를 할당하는 방법과 상기 방법을 수행할 수 있는 장치들
KR102066533B1 (ko) * 2013-11-19 2020-01-16 삼성전자 주식회사 도메인 쉐이딩 방법과 이를 수행하는 장치들
GB2518019B (en) * 2013-12-13 2015-07-22 Aveva Solutions Ltd Image rendering of laser scan data
KR102366808B1 (ko) * 2014-10-22 2022-02-23 삼성전자주식회사 캐시 메모리 시스템 및 그 동작방법
CN104933675B (zh) * 2015-07-02 2017-11-07 浙江大学 一种周期性可控的复杂镶嵌图案生成方法
US20170178384A1 (en) * 2015-12-21 2017-06-22 Jayashree Venkatesh Increasing Thread Payload for 3D Pipeline with Wider SIMD Execution Width
US10430229B2 (en) * 2015-12-21 2019-10-01 Intel Corporation Multiple-patch SIMD dispatch mode for domain shaders
US10068372B2 (en) 2015-12-30 2018-09-04 Advanced Micro Devices, Inc. Method and apparatus for performing high throughput tessellation
US10643296B2 (en) 2016-01-12 2020-05-05 Qualcomm Incorporated Systems and methods for rendering multiple levels of detail
US10643381B2 (en) 2016-01-12 2020-05-05 Qualcomm Incorporated Systems and methods for rendering multiple levels of detail
GB2543866B (en) 2016-03-07 2017-11-01 Imagination Tech Ltd Task assembly for SIMD processing
CN105957150A (zh) * 2016-05-16 2016-09-21 浙江大学 一种具有连续性和周期性表面图案的三维形体生成方法
US20170358132A1 (en) * 2016-06-12 2017-12-14 Apple Inc. System And Method For Tessellation In An Improved Graphics Pipeline
US10310856B2 (en) 2016-11-09 2019-06-04 Arm Limited Disabling thread execution when executing instructions in a data processing system
US10497084B2 (en) 2017-04-24 2019-12-03 Intel Corporation Efficient sharing and compression expansion of data across processing systems
US10127626B1 (en) * 2017-07-21 2018-11-13 Arm Limited Method and apparatus improving the execution of instructions by execution threads in data processing systems
US11055896B1 (en) * 2020-02-25 2021-07-06 Parallels International Gmbh Hardware-assisted emulation of graphics pipeline
CN113947515A (zh) * 2020-07-17 2022-01-18 芯原微电子(上海)股份有限公司 细分曲线数据处理实现方法、系统、介质及矢量图形处理装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982375A (en) * 1997-06-20 1999-11-09 Sun Microsystems, Inc. Floating point processor for a three-dimensional graphics accelerator which includes single-pass stereo capability
JP2000011190A (ja) * 1998-06-25 2000-01-14 Sony Corp 画像処理装置
US6707457B1 (en) * 1999-09-30 2004-03-16 Conexant Systems, Inc. Microprocessor extensions for two-dimensional graphics processing
US6954204B2 (en) * 2002-07-18 2005-10-11 Nvidia Corporation Programmable graphics system and method using flexible, high-precision data formats
US7379496B2 (en) * 2002-09-04 2008-05-27 Microsoft Corporation Multi-resolution video coding and decoding
US7034826B1 (en) * 2003-02-28 2006-04-25 Microsoft Corporation Spiral construction of a geodesic dome
US7109987B2 (en) * 2004-03-02 2006-09-19 Ati Technologies Inc. Method and apparatus for dual pass adaptive tessellation
US6972769B1 (en) * 2004-09-02 2005-12-06 Nvidia Corporation Vertex texture cache returning hits out of order
US7425952B2 (en) * 2004-11-23 2008-09-16 Metavr, Inc. Three-dimensional visualization architecture
US20060245500A1 (en) * 2004-12-15 2006-11-02 David Yonovitz Tunable wavelet target extraction preprocessor system
JP4255449B2 (ja) * 2005-03-01 2009-04-15 株式会社ソニー・コンピュータエンタテインメント 描画処理装置、テクスチャ処理装置、およびテセレーション方法
CN1952979B (zh) * 2005-10-14 2012-06-27 威盛电子股份有限公司 多重图形处理器系统及方法
US7583268B2 (en) * 2005-11-10 2009-09-01 Via Technologies, Inc. Graphics pipeline precise interrupt method and apparatus
US7634637B1 (en) * 2005-12-16 2009-12-15 Nvidia Corporation Execution of parallel groups of threads with per-instruction serialization
US7568063B2 (en) * 2006-02-02 2009-07-28 Hewlett-Packard Development Company, L.P. System and method for a distributed crossbar network using a plurality of crossbars
TWI385547B (zh) * 2006-10-27 2013-02-11 Hon Hai Prec Ind Co Ltd 圖形自動替換系統及方法
US8643644B2 (en) * 2008-03-20 2014-02-04 Qualcomm Incorporated Multi-stage tessellation for graphics rendering
US8120608B2 (en) * 2008-04-04 2012-02-21 Via Technologies, Inc. Constant buffering for a computational core of a programmable graphics processing unit

Also Published As

Publication number Publication date
US20100079454A1 (en) 2010-04-01
DE102009039231A1 (de) 2010-04-29
KR101091374B1 (ko) 2011-12-07
JP2010086528A (ja) 2010-04-15
GB2463763B (en) 2011-03-02
TW201019262A (en) 2010-05-16
DE102009039231B4 (de) 2020-06-25
KR20100036183A (ko) 2010-04-07
CN101714247B (zh) 2012-06-20
GB0914951D0 (en) 2009-09-30
GB2463763A (en) 2010-03-31
CN101714247A (zh) 2010-05-26
TWI417806B (zh) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5303787B2 (ja) 単一パステセレーション
US9947084B2 (en) Multiresolution consistent rasterization
US9286647B2 (en) Pixel shader bypass for low power graphics rendering
US8692829B2 (en) Calculation of plane equations after determination of Z-buffer visibility
JP5127815B2 (ja) Cpuトラフィックを特殊とマークすることによるデッドロックの回避
US8917271B2 (en) Redistribution of generated geometric primitives
US9830741B2 (en) Setting downstream render state in an upstream shader
US9589310B2 (en) Methods to facilitate primitive batching
US9953455B2 (en) Handling post-Z coverage data in raster operations
US8760455B2 (en) Restart index that sets a topology
US8599202B1 (en) Computing tessellation coordinates using dedicated hardware
US8624910B2 (en) Register indexed sampler for texture opcodes
US9436969B2 (en) Time slice processing of tessellation and geometry shaders
US8558833B1 (en) System and method for symmetric parameterization of independently tessellated patches
US8605085B1 (en) System and method for perspective corrected tessellation using parameter space warping
US8427493B2 (en) Draw commands with built-in begin/end
US9058672B2 (en) Using a pixel offset for evaluating a plane equation
US8947444B1 (en) Distributed vertex attribute fetch
US9013498B1 (en) Determining a working set of texture maps
US20140104267A1 (en) Low-power processing in depth read-only operating regimes
US8948167B2 (en) System and method for using domains to identify dependent and independent operations
US9147224B2 (en) Method for handling state transitions in a network of virtual processing nodes
US8976185B2 (en) Method for handling state transitions in a network of virtual processing nodes
US8749562B1 (en) Sharing binding groups between shaders
US9311733B2 (en) Efficient round point rasterization

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110921

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5303787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250