JP5302810B2 - Manufacturing method of three-dimensional molded circuit components - Google Patents

Manufacturing method of three-dimensional molded circuit components Download PDF

Info

Publication number
JP5302810B2
JP5302810B2 JP2009173024A JP2009173024A JP5302810B2 JP 5302810 B2 JP5302810 B2 JP 5302810B2 JP 2009173024 A JP2009173024 A JP 2009173024A JP 2009173024 A JP2009173024 A JP 2009173024A JP 5302810 B2 JP5302810 B2 JP 5302810B2
Authority
JP
Japan
Prior art keywords
mask material
plating
laser light
irradiation
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009173024A
Other languages
Japanese (ja)
Other versions
JP2011029369A (en
Inventor
哲男 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Kasei Co Ltd
Original Assignee
Sankyo Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Kasei Co Ltd filed Critical Sankyo Kasei Co Ltd
Priority to JP2009173024A priority Critical patent/JP5302810B2/en
Publication of JP2011029369A publication Critical patent/JP2011029369A/en
Application granted granted Critical
Publication of JP5302810B2 publication Critical patent/JP5302810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To selectively perform electrolytic plating even where there exist both portions of a portion difficult to remove by irradiation of a laser beam and a portion difficult to cover with a mask material regarding a portion which becomes a surface of a plating base and serves as a non-circuit. <P>SOLUTION: As regards those parts 22a-22d on the surface of an electroless copper plating 2 done onto an insulating substrate 1 that are easily removed by irradiation of the laser beam 3, which become non-circuits, the electroless copper plating is removed by irradiating this laser beam, and the parts not removed by irradiation of the laser beam, which will become non-circuits, are covered with a mask material 4. After the electrolytic copper platings 5 are laminated onto the parts 21 as circuits that are not removed by irradiation of the laser beam 3 and are not covered with the mask material 4, the mask material 4 is removed by being dissolved. All the electroless copper platings 2 other than the parts 21 that are covered by the electrolytic copper platings 5, which will become circuits, are removed by etching liquid. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、三次元成形回路部品の製造方法に関し、特に導電性被膜からなるめっき下地の表面に、電解めっきを選択的に形成する三次元成形回路部品の製造方法に関する。   The present invention relates to a method for manufacturing a three-dimensional molded circuit component, and more particularly to a method for manufacturing a three-dimensional molded circuit component that selectively forms electrolytic plating on the surface of a plating base made of a conductive film.

従来から絶縁性の基体の表面に、回路となる部分を除いてマスク材で被覆し、このマスク材で被覆されていない部分に、選択的に無電解めっきを施して導電性回路を形成する成形回路部品の製造方法が提案されている(例えば特許文献1等参照。)。また絶縁性の基体の全表面に、無電解めっきからなるめっき下地を施した後に、この無電解めっきに選択的にレーザー光を照射して非回路となる部分を除去し、除去されなかった回路となる部分に電解めっきを積層して、導電性回路を形成する成形回路部品の製造方法が提案されている(例えば特許文献2等参照。)。   Conventionally, the surface of an insulating substrate is covered with a mask material except for the part that becomes a circuit, and the part that is not covered with the mask material is selectively subjected to electroless plating to form a conductive circuit. A method of manufacturing a circuit component has been proposed (see, for example, Patent Document 1). In addition, after applying a plating base made of electroless plating to the entire surface of the insulating substrate, the non-circuit portion is removed by selectively irradiating the electroless plating with laser light, and the circuit that has not been removed There has been proposed a method of manufacturing a molded circuit component in which a conductive circuit is formed by laminating electrolytic plating on the portion to be (see, for example, Patent Document 2).

特開平11−145583号公報JP-A-11-145583 特許第2965803号公報Japanese Patent No. 2965803

しかるに、特に三次元の成形回路部品については、非回路となる部分について上述したマスク材の被覆が困難な部分と、レーザー光の照射による除去が困難な部分との、双方が存在する場合がある。例えば図2に示すヘリカルアンテナ等では、絶縁性基体101の表面において回路となる部分121は、長さがスパイラル状に長いため、この回路となる部分に隣接する、幅が狭く、かつ長さがスパイラル状に長い非回路となる部分122aを、マスク材を射出成形して被覆する場合には、このマスク材となる樹脂の流動抵抗が大きくなるために、射出圧力を高くする必要がある。ところが射出圧力を高くすると、基体の変形等の問題が生じるため、マスク材を射出成形して被覆することが困難となる。   However, particularly in the case of a three-dimensional molded circuit component, there may be both a portion that is difficult to cover with the mask material described above and a portion that is difficult to remove by laser light irradiation for a non-circuit portion. . For example, in the helical antenna shown in FIG. 2 and the like, the portion 121 that becomes a circuit on the surface of the insulating substrate 101 is long in a spiral shape, so that the width is narrow and the length is adjacent to the portion that becomes the circuit. In the case where the portion 122a that is a long non-circuit in a spiral shape is covered by injection molding of a mask material, the flow resistance of the resin that becomes the mask material is increased, so that it is necessary to increase the injection pressure. However, when the injection pressure is increased, problems such as deformation of the substrate occur, so that it is difficult to cover the mask material by injection molding.

そこでめっき下地として、ヘリカルアンテナ等の絶縁性基体101の全表面に無電解めっきを施し、非回路となる部分122aにレーザー光103を照射することによって、この非回路となる部分の無電解めっきを除去し、除去されなかった回路となる部分121の無電解めっきの表面に、電解めっきを積層することが考えられる。ところがレーザー光103を使用すれば、幅が狭く、かつ長さがスパイラル状に長い非回路となる部分122aを除去できるものの、例えば絶縁性基体に形成した開口孔122fの内部は、レーザー光の照射が困難であるため、この開口孔の内部に形成された無電解めっきを除去することができない。   Therefore, electroless plating is performed on the entire surface of the insulating substrate 101 such as a helical antenna as a plating base, and the non-circuit portion 122a is irradiated with the laser beam 103, whereby the non-circuit portion is electroless-plated. It is conceivable to deposit electrolytic plating on the surface of the electroless plating of the portion 121 that becomes a circuit that has been removed but not removed. However, if the laser beam 103 is used, the non-circuit portion 122a having a narrow width and a spiral length can be removed. However, for example, the inside of the opening hole 122f formed in the insulating substrate is irradiated with the laser beam. Therefore, the electroless plating formed in the opening hole cannot be removed.

さらにレーザー光の照射領域は円状であって、その照射エネルギーは、この円状の中心に向かって密度が高くなる円錐状のエネルギー分布になっている。したがって、被加工物表面に対しては、垂直に照射することが望ましく、被加工物表面に対して斜めに照射すると、照射領域が楕円形等になって広がり、照射領域におけるエネルギー密度が分散されて低下してしまう。このためレーザー光の照射による加工が困難となる。しかるに三次元形状の被加工物においては、被加工面が垂直面、傾斜面、あるいは円筒内部など多様に亘る場合がある。このうち有効なレーザー光の照射領域は、せいぜい垂直軸から30度未満の傾斜面であって、垂直な側面、裏面、あるいは円筒内部等は、レーザー光の照射によって加工することが困難となる。   Further, the irradiation region of the laser beam is circular, and the irradiation energy has a conical energy distribution in which the density increases toward the center of the circle. Therefore, it is desirable to irradiate the workpiece surface perpendicularly. When the workpiece surface is irradiated obliquely, the irradiation area spreads in an elliptical shape and the energy density in the irradiation area is dispersed. Will fall. For this reason, processing by laser light irradiation becomes difficult. However, in a workpiece having a three-dimensional shape, there are cases in which the surface to be processed extends in various ways such as a vertical surface, an inclined surface, or the inside of a cylinder. Of these, the effective laser light irradiation region is an inclined surface of less than 30 degrees from the vertical axis, and the vertical side surface, the back surface, the inside of the cylinder, and the like are difficult to process by laser light irradiation.

例えば図3に示すように、中央に略V字状の溝222gを有する絶縁性基体201において、この略V字状の溝を挟む両側の上面に、幅が狭く、かつ長い回路となる部分221に導電性回路を形成する場合には、この回路となる部分に挟まれた、幅が狭く、かつ長い非回路となる部分222aにマスク材を射出成形することは困難となる。したがって絶縁性基体201の全表面に無電解めっき等のめっき下地を形成し、このめっき下地について、非回路となる部分222aにレーザー光203を照射して除去することが考えられる。   For example, as shown in FIG. 3, in an insulating substrate 201 having a substantially V-shaped groove 222g at the center, a portion 221 that forms a long and narrow circuit on the upper surface on both sides sandwiching the substantially V-shaped groove. In the case of forming a conductive circuit, it is difficult to injection-mold a mask material on a portion 222a which is sandwiched between the portions to be the circuit and has a narrow width and a long non-circuit. Therefore, it is conceivable that a plating base such as electroless plating is formed on the entire surface of the insulating substrate 201, and the plating base is removed by irradiating the non-circuit portion 222a with the laser beam 203.

しかるに上述したように、略V字状の溝222gの両斜面の角度:θが、60度以上であると、この両斜面へのレーザー光203の照射エネルギー密度が低下して、レーザー光の照射によるめっき下地の除去が困難となる。また絶縁性基体201の右側面に開口する横溝222h内においては、レーザー光203の照射によって、めっき下地を除去することが困難となる。   However, as described above, when the angle θ of both slopes of the substantially V-shaped groove 222g is 60 degrees or more, the irradiation energy density of the laser beam 203 on both slopes is lowered, and the laser light irradiation is performed. It becomes difficult to remove the plating base. Further, in the lateral groove 222h opened on the right side surface of the insulating substrate 201, it is difficult to remove the plating base by the irradiation of the laser beam 203.

そこで本発明の目的は、非回路となる部分について、レーザー光を照射して除去できない部分とマスク材で被覆できない部分との双方が存在する場合にも、めっき下地の表面に電解めっきを選択的に形成することができる、三次元成形回路部品の製造方法を提供することにある。   Therefore, an object of the present invention is to selectively perform electroplating on the surface of the plating base even when there are both non-circuit portions that cannot be removed by irradiation with laser light and portions that cannot be covered with a mask material. It is an object of the present invention to provide a method for manufacturing a three-dimensional molded circuit component that can be formed into a single layer.

上記課題を解決するために、本発明の特徴は、絶縁性基体の表面に施しためっき下地の非回路となる部分について、レーザー光の照射による除去が容易な部分を、このレーザー光の照射によって除去すると共に、レーザー光の照射によって除去されていない非回路となる部分を、マスク材で被覆することにある。すなわち本発明による三次元成形回路部品の製造方法は、絶縁性基体を成形する第1工程と、上記絶縁性基体の表面に導電性被膜を形成する第2工程と、上記導電性被膜の表面であって非回路となる部分において、レーザー光の照射による除去が容易な部分を、このレーザー光の照射によって除去する第3工程とを備えている。   In order to solve the above-described problems, the present invention is characterized in that a portion of the plating base applied to the surface of the insulating substrate that is not a circuit is easily removed by laser light irradiation. In addition to removing, a portion that becomes a non-circuit that has not been removed by irradiation with laser light is covered with a mask material. That is, the method for manufacturing a three-dimensional molded circuit component according to the present invention includes a first step of forming an insulating base, a second step of forming a conductive coating on the surface of the insulating base, and a surface of the conductive coating. In addition, a third step of removing a portion that is easily removed by laser light irradiation in a non-circuit portion is removed by the laser light irradiation.

さらにこの製造方法は、上記導電性被膜の表面であって非回路となる部分において、上記レーザー光の照射によって除去されない部分を、上記マスク材で被覆する第4工程と、上記導電性被膜の表面であって上記レーザー光の照射によって除去されず、かつ上記マスク材で被覆されていない回路となる部分に、電解めっきを積層する第5工程と、上記マスク材を除去する第6工程と、上記電解めっきが積層されていない部分の導電性被膜を、エッチング液によって除去する第7工程とを備えている。上記導電性被膜は、無電解めっきまたは蒸着めっきのいずれかであることが望ましい。   Further, the manufacturing method includes a fourth step of coating a portion of the surface of the conductive film that is not a circuit and is not removed by the laser light irradiation with the mask material, and a surface of the conductive film. A fifth step of laminating electrolytic plating on a portion of the circuit that is not removed by the laser light irradiation and is not covered with the mask material; a sixth step of removing the mask material; and And a seventh step of removing the conductive film in a portion where the electroplating is not laminated with an etching solution. The conductive film is preferably either electroless plating or vapor deposition plating.

ところで上記非回路となる部分において、上記レーザー光の照射によって除去した部分と上記マスク材で被覆した部分とが相互に隣接する部分については、このレーザー光の照射によって除去した部分の外縁に沿って、正確にマスク材を被覆することは極めて困難である。したがってレーザー光の照射によって除去した部分の外縁と、マスク材を被覆した部分との間に隙間が生じる可能性がある。この隙間には、レーザー光の照射によって除去されず、かつマスク材で被覆されない導電性被膜が露呈することになるために、この隙間においては、本来非回路となる部分に電解めっきが形成されてしまう。   By the way, in the part which becomes the non-circuit, the part removed by the laser light irradiation and the part covered with the mask material are adjacent to each other along the outer edge of the part removed by the laser light irradiation. It is extremely difficult to accurately coat the mask material. Therefore, there is a possibility that a gap is generated between the outer edge of the portion removed by the laser light irradiation and the portion coated with the mask material. In this gap, a conductive film that is not removed by laser light irradiation and that is not covered with a mask material is exposed. Therefore, in this gap, electrolytic plating is formed in a portion that is originally non-circuited. End up.

そこで、かかる問題を回避するために、上記レーザー光の照射によって除去した部分と上記マスク材で被覆する部分とが相互に隣接する部分は、このレーザー光の照射によって除去した部分の上に、この隣接する部分から所定の幅分だけ、このマスク材がオーバーラップするように被覆することが望ましい。さらに上記マスク材は、加水分解性のポリグリコール酸またはポリ乳酸のいずれかであって、上記電解めっきは、酸性浴組成で行うことが望ましい。   Therefore, in order to avoid such a problem, the portion removed by the laser light irradiation and the portion covered by the mask material are adjacent to the portion removed by the laser light irradiation. It is desirable to cover the mask material so as to overlap by a predetermined width from the adjacent portion. Further, the mask material is either hydrolyzable polyglycolic acid or polylactic acid, and the electrolytic plating is desirably performed with an acidic bath composition.

ここで「絶縁性基体」とは、例えば合成樹脂、セラミックス、あるいはガラスが該当する。合成樹脂としては、熱可塑性樹脂が好ましいが、熱硬化性樹脂でもよく、かかる樹脂としては、例えば芳香族系液晶ポリマー、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルポリスルホン、ポリアリールスルホン、ポリエーテルイミド、ポリエステル、アクリロニトリル・ブタジエン・スチレン共重合樹脂、ポリアミド、変性ポリフェニレンオキサイド樹脂、ノルボルネン樹脂、フェノール樹脂、エポキシ樹脂が該当する。また「絶縁性基体」は、その形状を問わない。三次元的なものに限らず、二次元的なものも含む。例えば平板状のもの、多角形のブロック状のもの、表面が曲面状のもの、あるいは表面に開口孔や開口溝を有するものが該当し、複数の部品からなる場合も含む。   Here, the “insulating substrate” corresponds to, for example, synthetic resin, ceramics, or glass. The synthetic resin is preferably a thermoplastic resin, but may be a thermosetting resin. Examples of such a resin include aromatic liquid crystal polymers, polyether ether ketone, polysulfone, polyether polysulfone, polyaryl sulfone, polyetherimide, Examples include polyester, acrylonitrile / butadiene / styrene copolymer resin, polyamide, modified polyphenylene oxide resin, norbornene resin, phenol resin, and epoxy resin. The shape of the “insulating base” is not limited. Not only three-dimensional but also two-dimensional. For example, a flat plate shape, a polygonal block shape, a surface having a curved surface, or a surface having an opening hole or an opening groove is applicable, and includes a case of a plurality of parts.

「絶縁性基体を成形する」とは、射出成形に限らず、例えばブロック材からの削り出しも含む。「導電性被膜」とは、レーザー光の照射によって除去できるものであればよく、例えば無電解めっき、拡散めっき、または真空蒸着、スパッタリング、イオンプレーティング若しくは化学蒸着等の蒸着めっきが該当する。「マスク材」とは、その表面に電解めっきが形成されない絶縁材を意味し、絶縁性基体との相溶性が良い樹脂であれば、その種類を問わない。例えば絶縁性基体が芳香族系液晶ポリマーのときには、被覆材3の材料も同じ芳香族系液晶ポリマーを使用する。なお「マスク材」として、加水分解性の高分子材料であるポリグリコール酸またはポリ乳酸のいずれかを使用すれば、後工程において、このマスク材をアルカリ性溶液で加水分解することによって、容易に除去することができる。   “Making an insulating base” is not limited to injection molding, but includes, for example, cutting out from a block material. The “conductive film” is not particularly limited as long as it can be removed by laser light irradiation, and examples thereof include electroless plating, diffusion plating, or vapor deposition plating such as vacuum deposition, sputtering, ion plating, or chemical vapor deposition. The “mask material” means an insulating material on which electrolytic plating is not formed on the surface, and any type of resin can be used as long as the resin has good compatibility with the insulating base. For example, when the insulating substrate is an aromatic liquid crystal polymer, the same aromatic liquid crystal polymer is used as the material of the covering material 3. If the hydrolyzable polymer material polyglycolic acid or polylactic acid is used as the “mask material”, it can be easily removed by hydrolyzing the mask material with an alkaline solution in a later step. can do.

「レーザー光」は、スクライビングやトリミング等の微少量除去が可能であれば、その種別を問わない。例えばYAGレーザー、第2高調波レーザー、COレーザー、及びArレーザー等が該当する。「レーザー光の照射による除去が容易な部分」とは、レーザー光の照射方向から30度未満の範囲で傾いた傾斜面、並びにレーザー光で照射が困難な開口孔の内部、開口溝の内部、及び裏面等を除く部分を意味する。「電解めっき」には、例えば銅、ニッケル、金、銀、あるいはこれらの合金をめっき金属とするものが該当する。また同種金属または異種金属を重ねて電解めっきをする場合も含まれる。「導電性被膜をエッチングで除去する」の「エッチング」手段は、導電性被膜を溶解できるものであればよく、例えば塩化第二鉄を溶解した硫酸の水溶液や、過硫酸ナトリウムの水溶液に浸漬することが該当する。 The type of “laser light” is not limited as long as it can be removed by a small amount such as scribing or trimming. For example, a YAG laser, a second harmonic laser, a CO 2 laser, and an Ar laser are applicable. “Easy removal by laser light irradiation” means an inclined surface inclined within a range of less than 30 degrees from the laser light irradiation direction, an inside of an opening hole difficult to be irradiated with laser light, an inside of an opening groove, And the portion excluding the back surface. “Electrolytic plating” corresponds to, for example, copper, nickel, gold, silver, or an alloy thereof plated metal. Moreover, the case where the same kind of metal or a different kind of metal is electroplated is also included. The “etching” means of “removing the conductive film by etching” may be any means that can dissolve the conductive film. For example, it is immersed in an aqueous solution of sulfuric acid in which ferric chloride is dissolved or an aqueous solution of sodium persulfate. This is true.

「この隣接する部分から所定の幅分だけ、このマスク材がオーバーラップするように被覆する」とは、レーザー光の照射によって導電性被膜が除去された部分において、この除去された部分の外縁から、この除去された部分の内側に向かって、マスク材が所定の幅分だけ侵入するように被覆することを意味する。   “Coating so that this mask material overlaps by a predetermined width from this adjacent portion” means that the portion from which the conductive film has been removed by laser light irradiation is removed from the outer edge of the removed portion. This means that the mask material is coated so as to enter a predetermined width toward the inside of the removed portion.

導電性被膜の表面であって非回路となる部分について、レーザー光を照射して除去できない部分とマスク材で被覆できない部分との双方が存在する場合にも、この導電性被膜の表面に電解めっきを選択的に形成することができる。導電性被膜として無電解めっきまたは蒸着めっきを採用することによって、レーザー光の照射によって容易に除去可能な、厚さの薄いめっき下地を容易に形成することができる。   Electrolytic plating is also applied to the surface of the conductive coating even when there are both non-circuit areas on the surface of the conductive coating that cannot be removed by irradiating with laser light and portions that cannot be covered with the mask material. Can be selectively formed. By employing electroless plating or vapor deposition plating as the conductive coating, a thin plating base that can be easily removed by laser light irradiation can be easily formed.

レーザー光の照射によって除去した部分とマスク材で被覆した部分とが相互に隣接する部分においては、このレーザー光の照射によって除去した部分の上に、この隣接する部分から所定の幅分だけオーバーラップするように、このマスク材で被覆することによって、レーザー光の照射によって除去した部分とマスク材で被覆した部分との間に隙間が生じることを、容易かつ確実に防止することが可能となり、非回路となる部分に意図しない電解めっきが積層されることを防止できる。またマスク材に加水分解性の高分子材料であるポリグリコール酸またはポリ乳酸のいずれかを使用すれば、後工程において、このマスク材をアルカリ性溶液で加水分解することによって、容易に除去することができる。   In the part where the part removed by the laser light irradiation and the part covered with the mask material are adjacent to each other, the part removed by the laser light irradiation overlaps by a predetermined width from the adjacent part. Thus, by covering with this mask material, it becomes possible to easily and surely prevent a gap from being formed between the portion removed by laser light irradiation and the portion covered with the mask material. It is possible to prevent unintentional electrolytic plating from being laminated on a portion to be a circuit. In addition, if either hydrolyzable polymer material polyglycolic acid or polylactic acid is used for the mask material, it can be easily removed by hydrolyzing the mask material with an alkaline solution in a subsequent step. it can.

三次元成形回路部品の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a three-dimensional molded circuit component. 非回路となる部分にマスク材の被覆が困難なヘリカルアンテナの斜視図である。It is a perspective view of a helical antenna in which it is difficult to cover with a mask material on a non-circuit portion. レーザー光の照射によって非回路となる部分のめっき下地の除去が困難な形状を示す斜視図である。It is a perspective view which shows the shape where the removal of the plating foundation | substrate of the part which becomes a non-circuit by irradiation of a laser beam is difficult.

図1に示す工程図を参照しつつ、本発明による成形回路部品の製造方法を説明する。なお本発明による成形回路部品の製造方法は、第1工程〜第7工程を備えている(図A〜図G)。さて第1工程(図A)においては、熱可塑性樹脂を射出成形して、ブロック形状の第1の絶縁性基体1を形成する。ここで熱可塑性樹脂としては、例えば芳香族系液晶ポリマー(ポリプラスチック株式会社製「べクトラ#C820」)を使用する。次の第2工程(図B)において、絶縁性基体1の全表面に、めっき下地として無電解銅めっき2を施す。この無電解銅めっき2は、例えば次の公知の手順を用いる。   A method for manufacturing a molded circuit component according to the present invention will be described with reference to the process chart shown in FIG. In addition, the manufacturing method of the molded circuit component by this invention is equipped with the 1st process-the 7th process (FIG. A-FIG. G). In the first step (FIG. A), a thermoplastic resin is injection-molded to form a block-shaped first insulating substrate 1. Here, as the thermoplastic resin, for example, an aromatic liquid crystal polymer (“Vectra # C820” manufactured by Polyplastics Co., Ltd.) is used. In the next second step (FIG. B), electroless copper plating 2 is applied to the entire surface of the insulating substrate 1 as a plating base. The electroless copper plating 2 uses, for example, the following known procedure.

まず無電解銅めっき2との密着性を向上させるために、絶縁性基体1の全表面をエッチングにより粗化する。このエッチングは、カ性ソーダまたはカ性カリを所定濃度、例えば45重量%に溶解したアルカリ性水溶液を、所定温度、例えば50〜90℃に加熱し、絶縁性基体1を所定時間、例えば30分浸漬して行う。次に絶縁性基体1の粗化した表面に触媒を付与して、無電解めっきを析出させるための核を形成する。この触媒の付与手順としては、例えば、錫、パラジウム系の混合触媒液に、絶縁性基体1を浸漬した後、塩酸、硫酸などの酸で活性化し、表面にパラジウムを析出させる。または、塩化第1錫等の比較的強い還元剤を表面に吸着させ、金などの貴金属イオンを含む触媒溶液に浸漬し、表面に金を析出させる。液の温度は15〜23℃で5分間浸漬すれば良い。   First, in order to improve the adhesion with the electroless copper plating 2, the entire surface of the insulating substrate 1 is roughened by etching. In this etching, an alkaline aqueous solution in which caustic soda or caustic potash is dissolved at a predetermined concentration, for example, 45% by weight, is heated to a predetermined temperature, for example, 50 to 90 ° C., and the insulating substrate 1 is immersed for a predetermined time, for example, 30 minutes. And do it. Next, a catalyst is applied to the roughened surface of the insulating substrate 1 to form nuclei for depositing electroless plating. As a procedure for applying the catalyst, for example, the insulating substrate 1 is immersed in a mixed catalyst solution of tin and palladium, and then activated with an acid such as hydrochloric acid or sulfuric acid to deposit palladium on the surface. Alternatively, a relatively strong reducing agent such as stannous chloride is adsorbed on the surface and immersed in a catalyst solution containing noble metal ions such as gold to deposit gold on the surface. What is necessary is just to immerse the temperature of a liquid at 15-23 degreeC for 5 minutes.

次に触媒を付与した絶縁性基体1の全表面に、無電解銅めっき2を施す。無電解銅めっき2のめっき液は、例えば金属塩として硫酸銅を5〜15g/L、還元剤としてホルマリンの37容量%の溶液を8〜12mL/L、錯化材としてロッシェル塩を20〜25g/L、そしてアルカリ剤として水酸化ナトリウムを5〜12g/L混合した、温度20℃の溶液を使用する。なお無電解銅めっき2は、後工程においてレーザー光の照射によって、容易に除去できるように、0.2〜2μ程度の厚さにする。   Next, electroless copper plating 2 is applied to the entire surface of the insulating substrate 1 provided with the catalyst. The plating solution of electroless copper plating 2 is, for example, 5-15 g / L of copper sulfate as a metal salt, 8-12 mL / L of a 37% by volume solution of formalin as a reducing agent, and 20-25 g of Rochelle salt as a complexing material. / L, and a solution having a temperature of 20 ° C. mixed with 5 to 12 g / L of sodium hydroxide as an alkaline agent is used. The electroless copper plating 2 has a thickness of about 0.2 to 2 μm so that it can be easily removed by laser light irradiation in a subsequent process.

第3工程(図C)として、絶縁性基体1の表面を覆う無電解銅めっき2において、非回路となる部分であって、レーザー光3の照射による除去が容易な部分を、このレーザー光3の照射によって除去する。ここでレーザー光3の照射によって除去が容易な部分としては、絶縁性基体1の上面が該当する。一方レーザー光3の照射によって除去が困難な部分としては、絶縁性基体1の側面と裏面とが該当する。したがってレーザー光3の照射によって除去する部分は、絶縁性基体1の上面であって、幅が狭く、かつ長い回路となる部分21に隣接する、非回路となる部分22a、22b、22c及び22dとなる。なお回路となる部分21に挟まれた、幅が狭く、かつ長い非回路となる部分22b、22cは、上述したようにマスク材4となる樹脂の流動抵抗が大きくなるために、マスク材の射出成形によって被覆することが困難な部分である。なおレーザー光3としては、例えば出力6Wの第2高調波であって、スキャンスピード500mm/秒、Qスイッチ周波数30kHzにて3回走査する。   As a third step (FIG. C), in the electroless copper plating 2 covering the surface of the insulating substrate 1, a portion that becomes a non-circuit and can be easily removed by irradiation with the laser beam 3 is treated with the laser beam 3. Remove by irradiation. Here, the upper surface of the insulating substrate 1 corresponds to the portion that can be easily removed by irradiation with the laser beam 3. On the other hand, the side surface and the back surface of the insulating substrate 1 correspond to the portions that are difficult to be removed by irradiation with the laser beam 3. Therefore, the portion to be removed by the irradiation of the laser beam 3 is the upper surface of the insulating substrate 1, and the portions 22 a, 22 b, 22 c, and 22 d that become non-circuits adjacent to the portion 21 that becomes a narrow and long circuit, Become. In addition, since the flow resistance of the resin used as the mask material 4 increases as described above, the portions 22b and 22c that are narrow and long non-circuits sandwiched between the circuit-use portions 21 increase the injection of the mask material. It is a part that is difficult to cover by molding. The laser beam 3 is, for example, a second harmonic with an output of 6 W, and is scanned three times at a scan speed of 500 mm / second and a Q switch frequency of 30 kHz.

次の第4工程(D)として、絶縁性基体1の表面を覆う無電解銅めっき2において、非回路となる部分であって、上述したレーザー光3の照射によって除去されない部分、すなわちこの絶縁性基体の側面と裏面とをマスク材4で被覆する。なおレーザー光3の照射によって除去された部分と、マスク材4で被覆する部分とが相互に隣接する部分22a、22dは、このレーザー光の照射によって除去された部分の上に、この隣接する部分から所定の幅分だけ、このマスク材がオーバーラップ4aするように被覆する。なおマスク材4は、耐酸性を有し、アルカリ水溶液で容易に加水分解するポリ乳酸(三井化学株式会社製「レイシア#H-100J/F」)、あるいはポリグリコール酸(株式会社クレハ製「#KSK08」)のいずれかを使用する。   As the next fourth step (D), in the electroless copper plating 2 covering the surface of the insulating substrate 1, it is a portion that becomes a non-circuit and is not removed by irradiation with the laser beam 3 described above, that is, this insulating property. The side surface and the back surface of the substrate are covered with the mask material 4. The portions 22a and 22d where the portion removed by the irradiation with the laser beam 3 and the portion covered with the mask material 4 are adjacent to each other are above the portion removed by the irradiation with the laser beam. The mask material is coated so as to overlap by a predetermined width. The mask material 4 has acid resistance and is easily hydrolyzed with an alkaline aqueous solution (“Lacia # H-100J / F” manufactured by Mitsui Chemicals) or polyglycolic acid (“# manufactured by Kureha Co., Ltd.”). One of KSK08 ").

次の第5工程(図E)では、無電解銅めっき2の表面であって、上述したレーザー光3の照射によって除去されず、かつマスク材4で被覆されていない回路となる部分21に、電解銅めっき5を積層する。電解銅めっき5は、電解めっき液のpHが7以下の酸性浴組成または中性浴組成で行なう。上述したようにマスク材4は、アルカリ水溶液によって加水分解するが、耐酸性を有するからである。なお電解銅めっき5は、例えば次の公知の手段を使用する。すなわち酸性の硫酸銅浴を用い、その浴組成を、CuSO・5HO(75g)/lHSO(190g)/lCl(60ppm)/添加剤(適量)とする。また陽極材料を含リン銅として、浴温度は25℃に設定し、陰極電流密度を2.5A/dm2とする。なお電解銅めっき5の替わりに、浴組成が酸性の無電解ニッケルめっきを積層してもよい。 In the next fifth step (FIG. E), on the surface 21 of the electroless copper plating 2, which is not removed by the irradiation of the laser beam 3 and becomes a circuit 21 not covered with the mask material 4, The electrolytic copper plating 5 is laminated. The electrolytic copper plating 5 is performed with an acidic bath composition or a neutral bath composition in which the pH of the electrolytic plating solution is 7 or less. As described above, the mask material 4 is hydrolyzed by the alkaline aqueous solution, but has acid resistance. The electrolytic copper plating 5 uses, for example, the following known means. That is, an acidic copper sulfate bath is used, and the bath composition is CuSO 4 .5H 2 O (75 g) / lH 2 SO 4 (190 g) / lCl (60 ppm) / additive (appropriate amount). The anode material is phosphorous copper, the bath temperature is set to 25 ° C., and the cathode current density is 2.5 A / dm 2. Instead of the electrolytic copper plating 5, an electroless nickel plating having an acidic bath composition may be laminated.

次の第6工程(図F)において、マスク材4を除去する。上述したようにマスク材4は、アルカリ水溶液によって容易に加水分解するため、例えば濃度2〜15重量%、温度25〜70℃の苛性アルカリ(NaOH、KOHなど)水溶液中に、1〜120分程度浸漬して、このマスク材を除去する。   In the next sixth step (FIG. F), the mask material 4 is removed. As described above, since the mask material 4 is easily hydrolyzed by the alkaline aqueous solution, it is about 1 to 120 minutes in a caustic alkaline (NaOH, KOH, etc.) aqueous solution having a concentration of 2 to 15% by weight and a temperature of 25 to 70 ° C., for example. The mask material is removed by dipping.

最後の第7工程(図G)では、電解銅めっき5が積層されている回路となる部分21を除いて、絶縁性基体1の表面に残留する無電解めっき2を、エッチング液によって除去する。すなわち前工程における電解銅めっき5は、無電解銅めっき2に較べて、容易に厚くすることができる。したがって、電解銅めっき5のめっき厚さを、無電解銅めっき2に対して十分大きくしておけば、エッチング液によって、厚さの薄い無電解めっきだけを除去することが可能となる。ここでエッチング液としては、例えば絶縁性基体1を、過硫酸ナトリウム水溶液に1分間浸漬する。   In the final seventh step (FIG. G), the electroless plating 2 remaining on the surface of the insulating substrate 1 is removed by an etching solution, except for the portion 21 that becomes a circuit on which the electrolytic copper plating 5 is laminated. That is, the electrolytic copper plating 5 in the previous step can be easily made thicker than the electroless copper plating 2. Therefore, if the plating thickness of the electrolytic copper plating 5 is made sufficiently larger than that of the electroless copper plating 2, only the thin electroless plating can be removed by the etching solution. Here, as the etchant, for example, the insulating substrate 1 is immersed in an aqueous sodium persulfate solution for 1 minute.

導電性被膜の表面であって非回路となる部分について、レーザー光を照射して除去できない部分とマスク材で被覆できない部分との双方が存在する場合にも、この導電性被膜の表面に電解めっきを選択的に形成することができるため、電子機器等に関する産業に広く利用可能である。   Electrolytic plating is also applied to the surface of the conductive coating even when there are both non-circuit areas on the surface of the conductive coating that cannot be removed by irradiating with laser light and portions that cannot be covered with the mask material. Can be selectively formed, and thus can be widely used in industries related to electronic devices and the like.

1、101、201 絶縁性基体
2 無電解銅めっき(導電性被膜)
21、121、221 回路となる部分
22a、122a、222a 非回路となる部分
22b、22c、22d 非回路となる部分
3、103、203 レーザー光
4 マスク材
4a オーバーラップ
5 電解銅めっき(電解めっき)
1, 101, 201 Insulating substrate 2 Electroless copper plating (conductive film)
21, 121, 221 Circuit parts 22a, 122a, 222a Non-circuit parts 22b, 22c, 22d Non-circuit parts 3, 103, 203 Laser light 4 Mask material 4a Overlap 5 Electrolytic copper plating (electrolytic plating)

Claims (4)

絶縁性基体を成形する第1工程と、
上記絶縁性基体の表面に導電性被膜を形成する第2工程と、
上記導電性被膜の表面であって非回路となる部分において、レーザー光の照射による除去が容易な部分を、このレーザー光の照射によって除去する第3工程と、
上記導電性被膜の表面であって非回路となる部分において、上記レーザー光の照射によって除去されない部分をマスク材で被覆する第4工程と、
上記導電性被膜の表面であって上記レーザー光の照射によって除去されず、かつ上記マスク材で被覆されていない回路となる部分に電解めっきを積層する第5工程と、
上記マスク材を除去する第6工程と、
上記電解めっきが積層されていない部分の導電性被膜を、エッチング液によって除去する第7工程とを備える
ことを特徴とする三次元成形回路部品の製造方法。
A first step of forming an insulating substrate;
A second step of forming a conductive coating on the surface of the insulating substrate;
A portion of the surface of the conductive coating that is a non-circuit, a portion that is easily removed by laser light irradiation, and is removed by laser light irradiation;
A fourth step of covering a portion of the surface of the conductive coating that is not a circuit with a mask material that is not removed by the laser light irradiation;
A fifth step of laminating electrolytic plating on a portion of the surface of the conductive film that is not removed by irradiation with the laser light and becomes a circuit not covered with the mask material;
A sixth step of removing the mask material;
And a seventh step of removing the conductive film in a portion where the electroplating is not laminated with an etching solution. A method for producing a three-dimensional molded circuit component.
請求項1において、上記導電性被膜は、無電解めっきまたは蒸着めっきのいずれかである
ことを特徴とする三次元成形回路部品の製造方法。
The method for manufacturing a three-dimensional molded circuit component according to claim 1, wherein the conductive coating is either electroless plating or vapor deposition plating.
請求項1または2のいずれかにおいて、上記レーザー光の照射によって除去した部分と上記マスク材で被覆する部分とが相互に隣接する部分は、このレーザー光の照射によって除去した部分の上に、この隣接する部分から所定の幅分だけ、このマスク材がオーバーラップするように被覆する
ことを特徴とする三次元成形回路部品の製造方法。
3. The method according to claim 1, wherein the portion removed by the laser light irradiation and the portion covered with the mask material are adjacent to each other on the portion removed by the laser light irradiation. A method of manufacturing a three-dimensional molded circuit component, wherein the mask material is covered so as to overlap by a predetermined width from adjacent portions.
請求項1または2のいずれかにおいて、上記マスク材は、加水分解性のポリグリコール酸またはポリ乳酸のいずれかであって、
上記電解めっきは、酸性浴組成で行う
ことを特徴とする三次元成形回路部品の製造方法。
In any one of Claim 1 or 2, the said mask material is either hydrolyzable polyglycolic acid or polylactic acid,
The method for producing a three-dimensional molded circuit component, wherein the electrolytic plating is performed with an acidic bath composition.
JP2009173024A 2009-07-24 2009-07-24 Manufacturing method of three-dimensional molded circuit components Expired - Fee Related JP5302810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173024A JP5302810B2 (en) 2009-07-24 2009-07-24 Manufacturing method of three-dimensional molded circuit components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009173024A JP5302810B2 (en) 2009-07-24 2009-07-24 Manufacturing method of three-dimensional molded circuit components

Publications (2)

Publication Number Publication Date
JP2011029369A JP2011029369A (en) 2011-02-10
JP5302810B2 true JP5302810B2 (en) 2013-10-02

Family

ID=43637783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173024A Expired - Fee Related JP5302810B2 (en) 2009-07-24 2009-07-24 Manufacturing method of three-dimensional molded circuit components

Country Status (1)

Country Link
JP (1) JP5302810B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6158270B2 (en) * 2014-12-24 2017-07-05 キヤノン・コンポーネンツ株式会社 Resin product with plating film and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195544A (en) * 1995-01-19 1996-07-30 Hitachi Cable Ltd Method for manufacturing plastic molding having circuit pattern
JP3572960B2 (en) * 1998-09-30 2004-10-06 三菱電機株式会社 Manufacturing method of antenna
JP2002344116A (en) * 2001-05-16 2002-11-29 Sankyo Kasei Co Ltd Method of manufacturing circuit components
JP2006310455A (en) * 2005-04-27 2006-11-09 Sankyo Kasei Co Ltd Method of forming conductive circuit on inner wall of transparent hollow body

Also Published As

Publication number Publication date
JP2011029369A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP4996653B2 (en) Manufacturing method of molded circuit components
KR20060073434A (en) Printed wiring board and method of manufacturing the same
TWI546128B (en) A process for electroless plating and a solution used for the same
KR101475423B1 (en) Precursor substrate, flexible circuit board and process for producing the same
TWI399136B (en) Circuit board and manufacturing method thereof
JP2007180089A (en) Manufacturing method of resin molded component with circuit conductor pattern
WO2013082054A1 (en) Fabricating a conductive trace structure and substrate having the structure
TWI405515B (en) Circuit board and manufacturing method thereof
KR100601465B1 (en) Printed circuit board and method of fabricating the same
JP5628496B2 (en) Manufacturing method of three-dimensional molded circuit components
JP5302810B2 (en) Manufacturing method of three-dimensional molded circuit components
KR20150009930A (en) Printed circuit board precursor and method of manufacturing the same and flexible printed circuit board
KR20030067535A (en) Method for manufacturing double-sided circuit board
JP2018174190A (en) Through electrode substrate and manufacturing method thereof
WO2013160994A1 (en) Plated structure of through-hole
WO2012157135A1 (en) Method for manufacturing molded circuit board
JP2007214338A (en) Manufacturing method of one-side polyimide wiring board
CN110519917B (en) Method for manufacturing through hole
KR101555014B1 (en) Printed circuit board for forming fine wiring and method for manufacturing the same
JP2005005453A (en) Printed wiring board and its manufacturing method
JP2018174188A (en) Conductive substrate and manufacturing method thereof
CN108738249B (en) Method for manufacturing wiring substrate
TWI277379B (en) Conducting plate having top and bottom conductor layers electrically connected by vias
JP5102643B2 (en) Synthetic resin spring with conductive circuit
KR100911204B1 (en) Manufacturing method of build-up high density printed curcuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120621

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees