JP5301766B2 - Transparent substrate with antireflection film - Google Patents

Transparent substrate with antireflection film Download PDF

Info

Publication number
JP5301766B2
JP5301766B2 JP2006096669A JP2006096669A JP5301766B2 JP 5301766 B2 JP5301766 B2 JP 5301766B2 JP 2006096669 A JP2006096669 A JP 2006096669A JP 2006096669 A JP2006096669 A JP 2006096669A JP 5301766 B2 JP5301766 B2 JP 5301766B2
Authority
JP
Japan
Prior art keywords
film
layer
dielectric
transparent substrate
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006096669A
Other languages
Japanese (ja)
Other versions
JP2007271860A (en
Inventor
辰次 天野
雅義 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2006096669A priority Critical patent/JP5301766B2/en
Publication of JP2007271860A publication Critical patent/JP2007271860A/en
Application granted granted Critical
Publication of JP5301766B2 publication Critical patent/JP5301766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Description

本発明は反射防止機能を有する反射防止膜付透明基板に関する。   The present invention relates to a transparent substrate with an antireflection film having an antireflection function.

従来より、ガラス板やプラスチック板(プラスチックフィルム)等の透明基板に屈折率の異なる薄膜層を多数積層させ、反射防止機能を得る反射防止膜付透明基板が知られている(特許文献1)。このような反射防止膜付透明基板はディスプレイの表面部材として用いられることが多い。
特開昭63−131101号公報
Conventionally, a transparent substrate with an antireflection film that obtains an antireflection function by laminating many thin film layers having different refractive indexes on a transparent substrate such as a glass plate or a plastic plate (plastic film) is known (Patent Document 1). Such a transparent substrate with an antireflection film is often used as a surface member of a display.
JP-A-63-131101

このような、反射防止膜付透明基板の用途は近年拡大しており、例えば自動車や船舶等の計器類のディスプレイにも用いられてきている。しかしながら、自動車や船舶は劣悪な環境下で使用されることも多く、従来の反射防止膜付透明基板を用いる場合、このような環境下では反射防止膜の膜ハゲや性能劣化が生じやすく充分な耐久性が得られない。
本発明では上記従来技術の問題点に鑑み、耐久性のよい反射防止膜付透明基板を提供することを技術課題とする。
The use of such a transparent substrate with an antireflection film has been expanding in recent years, and has been used for displays of instruments such as automobiles and ships. However, automobiles and ships are often used in a poor environment, and when using a conventional transparent substrate with an antireflection film, the antireflection film is likely to be bald or deteriorate in performance under such an environment. Durability cannot be obtained.
In the present invention, in view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a transparent substrate with an antireflection film having good durability.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。
(1) 透明基板上に薄膜層を積層してなる反射防止膜付透明基板において、前記透明基板上に光学膜厚として10nm以上40nm以下であるAlからなる下地層と、該下地層の上に多層の誘電体層のみからなる反射防止膜とが形成されているとともに、該反射防止膜の耐候性の向上を得るために,該反射防止膜の最外層と該最外層の下に置かれる誘電体層との間に光学膜厚として20nm以上50nm以下であるAlの薄膜からなるバリア層と、が形成されていることを特徴とする。
(2) (1)の反射防止膜付透明基板において、前記反射防止膜は前記透明基板側から順に、前記透明基板の屈折率より高い屈折率である透明誘電体からなる第1誘電膜層と、前記透明基板の屈折率より低い屈折率である透明誘電体からなる第2誘電膜層と、前記透明基板の屈折率より高い屈折率である透明誘電体からなる第3誘電膜層と、最外層に前記透明基板の屈折率より低い屈折率である透明誘電体からなる第4誘電膜層と、との少なくとも4層を有し、前記バリア層は前記第3誘電膜層と第4誘電膜層との間に形成されていることを特徴とする。
(3) (2)の反射防止膜付透明基板において、前記第1及び第3誘電膜層はTiO2からなる薄膜層であり、前記第2及び第4誘電膜層はSiOからなる薄膜層であることを特徴とする。
(4) (1)〜(3)の反射防止膜付透明基板において、前記反射防止膜の上にさらにフッ素系化合物からなる防汚層が形成されていることを特徴とする。

In order to solve the above problems, the present invention is characterized by having the following configuration.
(1) In a transparent substrate with an antireflection film formed by laminating a thin film layer on a transparent substrate, an underlayer made of Al 2 O 3 having an optical film thickness of 10 nm to 40 nm on the transparent substrate, and the underlayer And an antireflection film consisting of only a plurality of dielectric layers is formed on the substrate, and in order to improve the weather resistance of the antireflection film, an outermost layer of the antireflection film and below the outermost layer are formed. A barrier layer made of an Al 2 O 3 thin film having an optical film thickness of 20 nm or more and 50 nm or less is formed between the dielectric layer to be placed .
(2) In the transparent substrate with an antireflection film according to (1), the antireflection film includes, in order from the transparent substrate side, a first dielectric film layer made of a transparent dielectric having a refractive index higher than the refractive index of the transparent substrate; A second dielectric film layer made of a transparent dielectric having a refractive index lower than the refractive index of the transparent substrate, a third dielectric film layer made of a transparent dielectric having a refractive index higher than the refractive index of the transparent substrate, The outer layer has at least four layers of a fourth dielectric film layer made of a transparent dielectric having a refractive index lower than that of the transparent substrate, and the barrier layer includes the third dielectric film layer and the fourth dielectric film. It is formed between the layers.
(3) In the transparent substrate with an antireflection film according to (2), the first and third dielectric film layers are thin film layers made of TiO 2 , and the second and fourth dielectric film layers are thin film layers made of SiO 2. It is characterized by being.
(4) In the transparent substrate with an antireflection film of (1) to (3), an antifouling layer made of a fluorine compound is further formed on the antireflection film.

本発明によれば、使用環境が悪くても膜ハゲや性能劣化を抑制し、耐久性のよい反射防止膜付透明基板を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, even if a use environment is bad, a film baldness and performance degradation can be suppressed and a transparent substrate with an antireflection film with good durability can be obtained.

以下、本発明の実施の形態における反射防止膜付透明基板について、図面を参照しながら説明する。図1は本発明の実施の形態における反射防止膜付透明基板の積層構成を示す概略図である。   Hereinafter, a transparent substrate with an antireflection film in an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a laminated structure of a transparent substrate with an antireflection film in an embodiment of the present invention.

1は透明の基板である。基板1は通常に入手できるものであればよく、屈折率は1.48以上1.7以下程度のものを使用する。具体的に、基板材料としてはガラス類(屈折率1.48〜1.70)、プラスチック類(アクリル基板(屈折率1.52)、ポリカーボネイト(屈折率1.59)、ポリエチレンテレフタレート(屈折率1.63)等)が用いられ、光学的に透明であれば特に限定されない。また、本実施形態で述べる基板とは板状に限らず、フィルム基板を含むものとしている。   Reference numeral 1 denotes a transparent substrate. The substrate 1 may be any substrate that is normally available and has a refractive index of about 1.48 or more and 1.7 or less. Specifically, the substrate material is glass (refractive index 1.48 to 1.70), plastics (acrylic substrate (refractive index 1.52), polycarbonate (refractive index 1.59), polyethylene terephthalate (refractive index 1). .63) and the like are used and are not particularly limited as long as they are optically transparent. The substrate described in the present embodiment is not limited to a plate shape, and includes a film substrate.

2は基板1上に形成される多層膜からなる反射防止膜の成膜前に事前に形成される下地層である。この下地層2は、反射防止膜を成膜する前に基板1にコーティングすることにより、基板1と反射防止膜との間の密着力を上げるために形成される層である。この下地層2を形成するための材料にはAl23(屈折率1.6)が用いられる。このような下地層2の膜厚(光学的膜厚nd)は、5nm以上80nm以下が好ましく、より好ましくは10nm以上40nm以下である。膜厚が5nm未満であると密着力が弱くなり、反射防止膜が剥がれやすくなる。また、膜厚が80nmを超えると、反射防止効果が得られにくくなる。なお、基板1と下地層2との間に基板1の表面を保護するためのハードコート層を設けるようにすることもできる。このようなハードコート層は一般的にアクリル系ハードコートを用いることができる。何れの場合においても、ハードコート(アンダーコート)の膜厚は、光学的な阻害が起こらないように基板の屈折率と同程度の屈折率を有するようにしておくことが好ましい。 Reference numeral 2 denotes an underlayer formed in advance before the formation of a multi-layer antireflection film formed on the substrate 1. The underlayer 2 is a layer formed to increase the adhesion between the substrate 1 and the antireflection film by coating the substrate 1 before forming the antireflection film. Al 2 O 3 (refractive index 1.6) is used as a material for forming the underlayer 2. The film thickness (optical film thickness nd) of such an underlayer 2 is preferably 5 nm or more and 80 nm or less, and more preferably 10 nm or more and 40 nm or less. When the film thickness is less than 5 nm, the adhesion is weakened and the antireflection film is easily peeled off. On the other hand, when the film thickness exceeds 80 nm, it is difficult to obtain the antireflection effect. Note that a hard coat layer for protecting the surface of the substrate 1 may be provided between the substrate 1 and the base layer 2. In general, an acrylic hard coat can be used for such a hard coat layer. In any case, it is preferable that the film thickness of the hard coat (undercoat) has a refractive index comparable to the refractive index of the substrate so that optical inhibition does not occur.

3は下地層2上に屈折率の異なる透明誘電体からなる誘電膜層(薄膜層)を複数積層することにより反射防止効果をもたせるための反射防止層帯(反射防止膜)である。本実施形態における反射防止層帯3は4つの誘電膜層3a〜3dにより形成されている。
3aは基板1の屈折率よりも高い屈折率をもつ透明誘電体からなる第1誘電膜層である。第1誘電膜層3aに使用される透明誘電体は、使用する基板1に応じて適宜選択されるが、基板1及び下地層2の屈折率よりも高い屈折率の必要がある。また同時に、安価に入手可能でかつ安定した成膜が確認されているものが好ましいため、それらを考慮して屈折率が1.90以上2.50以下程度の範囲のものが使用される。具体的には、第1誘電膜層3aの主成分にはZrO2(屈折率1.95)や、TiO2(屈折率2.20)、等が挙げられる。第1誘電膜層3の光学的膜厚nd(以後、単に膜厚と記す)は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。膜厚がこれ以上薄くても厚くても、反射防止効果が得られにくい。
Reference numeral 3 denotes an antireflection layer band (antireflection film) for providing an antireflection effect by laminating a plurality of dielectric film layers (thin film layers) made of transparent dielectric materials having different refractive indexes on the base layer 2. The antireflection layer band 3 in this embodiment is formed by four dielectric film layers 3a to 3d.
Reference numeral 3 a denotes a first dielectric film layer made of a transparent dielectric having a refractive index higher than that of the substrate 1. The transparent dielectric used for the first dielectric film layer 3a is appropriately selected according to the substrate 1 to be used, but it needs to have a refractive index higher than that of the substrate 1 and the underlying layer 2. At the same time, it is preferable that the film is available at a low cost and has been confirmed to have a stable film formation. Therefore, a film having a refractive index in the range of about 1.90 or more and 2.50 or less is used. Specifically, ZrO 2 (refractive index 1.95), TiO 2 (refractive index 2.20), and the like are listed as main components of the first dielectric film layer 3a. The optical film thickness nd (hereinafter simply referred to as film thickness) of the first dielectric film layer 3 is preferably 10 nm or more and 600 nm or less, and more preferably 50 nm or more and 550 nm or less. Even if the film thickness is thinner or thicker than this, it is difficult to obtain the antireflection effect.

3bは第1誘電膜層3a上に積層され、基板1の屈折率よりも低い屈折率をもつ透明誘電体からなる第2誘電膜層である。第2誘電膜層3bに使用される透明誘電体は、使用する基板1に応じて適宜選択されるが、基板1及び下地層2の屈折率よりも低い屈折率の必要がある。また同時に、安価に入手可能でかつ安定した成膜が確認されているものが好ましいため、それらを考慮して屈折率が1.35以上1.50以下程度の範囲のものが使用される。具体的には、第2誘電膜層3bの主成分にはSiO2(屈折率1.46)やMgF2(屈折率1.38)が挙げられる。また、第2誘電膜層3bの膜厚は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。膜厚がこれ以上薄くても厚くても、反射防止効果が得られにくい。 Reference numeral 3 b denotes a second dielectric film layer which is laminated on the first dielectric film layer 3 a and is made of a transparent dielectric having a refractive index lower than that of the substrate 1. The transparent dielectric used for the second dielectric film layer 3b is appropriately selected according to the substrate 1 to be used, but it needs to have a refractive index lower than that of the substrate 1 and the underlying layer 2. At the same time, it is preferable that the film is available at a low cost and has been confirmed to have a stable film formation. Therefore, a film having a refractive index in the range of 1.35 to 1.50 is used in consideration of these. Specifically, SiO 2 (refractive index 1.46) and MgF 2 (refractive index 1.38) are listed as main components of the second dielectric film layer 3b. The film thickness of the second dielectric film layer 3b is preferably 10 nm or more and 600 nm or less, more preferably 50 nm or more and 550 nm or less. Even if the film thickness is thinner or thicker than this, it is difficult to obtain the antireflection effect.

3cは第2誘電膜層3b上に積層され、基板1の屈折率よりも高い屈折率をもつ透明誘電体からなる第3誘電膜層である。第3誘電膜層3cに使用される透明誘電体は、第1誘電膜層3aと基本的に同じ材料のものが使用可能であるが、反射防止効果を向上させるためには第1誘電膜層3aにて用いられる材料の屈折率と同じか、それより高い屈折率を有する材料を用いることが好ましい。第3誘電膜層3cの膜厚は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。膜厚がこれ以上薄くても厚くても、反射防止効果が得られにくい。   Reference numeral 3 c denotes a third dielectric film layer which is laminated on the second dielectric film layer 3 b and is made of a transparent dielectric having a refractive index higher than that of the substrate 1. The transparent dielectric used for the third dielectric film layer 3c can be basically made of the same material as that of the first dielectric film layer 3a. To improve the antireflection effect, the first dielectric film layer is used. It is preferable to use a material having the same or higher refractive index than that of the material used in 3a. The film thickness of the third dielectric film layer 3c is preferably 10 nm or more and 600 nm or less, more preferably 50 nm or more and 550 nm or less. Even if the film thickness is thinner or thicker than this, it is difficult to obtain the antireflection effect.

3dは第3誘電膜層3cの上方(本実施形態では最外層)に積層され、基板1の屈折率よりも低い屈折率をもつ透明誘電体からなる第4誘電膜層である。第4誘電膜層3dに使用される透明誘電体は、第2誘電膜層3bと基本的に同じ材料のものが使用可能である。また、第4誘電膜層3dの膜厚は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。膜厚がこれ以上薄くても厚くても、反射防止効果が得られにくい。   Reference numeral 3d denotes a fourth dielectric film layer which is laminated above the third dielectric film layer 3c (in this embodiment, the outermost layer) and is made of a transparent dielectric having a refractive index lower than that of the substrate 1. The transparent dielectric used for the fourth dielectric film layer 3d can be made of basically the same material as the second dielectric film layer 3b. The thickness of the fourth dielectric film layer 3d is preferably 10 nm or more and 600 nm or less, more preferably 50 nm or more and 550 nm or less. Even if the film thickness is thinner or thicker than this, it is difficult to obtain the antireflection effect.

4は反射防止層帯を形成する膜の最外層の下に形成され、反射防止層帯3の耐候性を向上させるためのバリア層である。本実施形態のバリア層4は、第3誘電膜層3cと第4誘電膜層3dとの間に形成される。このバリア層4を形成するための材料にはAl23(屈折率1.6)が用いられる。このようなバリア層4の膜厚は、10nm以上60nm以下が好ましく、より好ましくは20nm以上50nm以下である。膜厚が10nm未満であると所望する効果が得られ難い。また、膜厚が60nmを超えると、反射防止膜による反射防止効果が得られにくくなる。 Reference numeral 4 denotes a barrier layer formed under the outermost layer of the film forming the antireflection layer zone and improving the weather resistance of the antireflection layer zone 3. The barrier layer 4 of the present embodiment is formed between the third dielectric film layer 3c and the fourth dielectric film layer 3d. Al 2 O 3 (refractive index 1.6) is used as a material for forming the barrier layer 4. The film thickness of such a barrier layer 4 is preferably 10 nm or more and 60 nm or less, more preferably 20 nm or more and 50 nm or less. If the film thickness is less than 10 nm, it is difficult to obtain a desired effect. On the other hand, when the film thickness exceeds 60 nm, it is difficult to obtain the antireflection effect by the antireflection film.

また、反射防止層帯3を形成する各層の最適な膜厚は以下の方法により決定される。
初めに、用途に応じて必要とされる下地層2及びバリア層4の膜厚を決定させておく。また、用途に応じて反射防止層帯3に使用する材料の屈折率を固定値とし、最適化アルゴリズムを用いながら反射防止層帯3の各層の膜厚を変化させていく。このような手法により、視野2°、標準光CにおけるL*a*b*表色系のクロマティクネス指数a*、b*を−2〜+2の範囲以内としつつ、このようなクロマティクネス指数a*、b*の範囲内において最も高い透過率若しくは最も低い反射率が得られるような誘電体層膜厚を求める。最適化アルゴリズムは例えば、Adaptive Random SearchやModified Gardient、Monte Carilo method、Simurated Annealing等、メリット関数を使用した様々な最適化手法を基に与えられる。
The optimum film thickness of each layer forming the antireflection layer band 3 is determined by the following method.
First, the required film thicknesses of the underlayer 2 and the barrier layer 4 are determined according to the application. Further, the refractive index of the material used for the antireflection layer band 3 is set to a fixed value according to the application, and the film thickness of each layer of the antireflection layer band 3 is changed using an optimization algorithm. By such a method, the chromaticness index a is set such that the chromaticness index a * and b * of the L * a * b * color system in the field of view 2 ° and the standard light C is within the range of −2 to +2. The dielectric layer thickness is determined so as to obtain the highest transmittance or the lowest reflectance within the range of * and b *. The optimization algorithm is given based on various optimization methods using merit functions such as Adaptive Random Search, Modified Gardient, Monte Carilo method, and Simulated Rated Annealing.

上記で示した各薄膜層を基板1上に形成する方法としては、物理的気層成長方法(PVD)では真空蒸着方法やスパッタ方法、イオンプレーティング方法等が挙げられる。また、化学的気層成長方法(CVD)では、めっき方法や化学的気層成長方法等が挙げられる。これらの成膜方法は、本実施の形態としてすべて使用可能であるが、成膜に際して高温を伴うような方法では熱によるプラスチック基板の変形等が考えられるため、プラスチック基板での多層膜の成膜は高熱を必要としない真空蒸着方法やスパッタ方法が好適に用いられる。   Examples of a method for forming each thin film layer on the substrate 1 include a vacuum vapor deposition method, a sputtering method, an ion plating method, and the like in the physical vapor deposition method (PVD). In addition, examples of the chemical vapor deposition method (CVD) include a plating method and a chemical vapor deposition method. Any of these film forming methods can be used as this embodiment mode. However, since a method involving a high temperature during film formation may cause deformation of the plastic substrate due to heat, the multilayer film is formed on the plastic substrate. A vacuum deposition method or sputtering method that does not require high heat is preferably used.

なお、前述の実施形態では反射防止層帯を4層の誘電体層から形成するものとしているが、これに限るものではなく、所望する透過率(反射率)が得られるような多層構造(例えば2層〜6層等)を形成すればよい。また、反射防止層帯の上(最表面)に撥水性を高めて防汚効果を持たせるためのフッ素系化合物からなる薄膜層を形成することもできる。このような防汚層は膜厚5nm以上20nm程度(反射防止効果を損なわない程度)にて形成させる。   In the above-described embodiment, the antireflection layer band is formed from four dielectric layers. However, the present invention is not limited to this, and a multilayer structure (for example, a desired transmittance (reflectance)) can be obtained. (2 to 6 layers, etc.) may be formed. Further, a thin film layer made of a fluorine-based compound for enhancing the water repellency and providing an antifouling effect can be formed on the antireflection layer band (outermost surface). Such an antifouling layer is formed with a film thickness of about 5 nm to about 20 nm (a level that does not impair the antireflection effect).

以下に実施例、及び比較例を挙げる。
<実施例1>
アクリル系ハードコート(屈折率1.52)付きアクリル基板(屈折率1.52)を用意し、真空蒸着法により、各層の形成を行った。始めにAl23(屈折率1.6)からなる下地層を膜厚10nmにて基板上(ハードコート上)に形成した。次に下地層の上にTiO2(2.20)からなる第1誘電膜層を膜厚30nmにて形成し、さらに第1誘電膜層の上に、SiO2(1.46)からなる第2誘電膜層を膜厚43nmで、TiO2からなる第3誘電膜層を膜厚230nmで順次積層した。第3誘電膜層を形成後、その上にAl23からなるバリア層を膜厚40nmにて形成し、バリア層の上にSiO2からなる第4誘電膜層(最外層)を膜厚95nmで形成して、合計6層からなる反射防止膜付透明基板を作成した。このようにして得られた反射防止膜付透明基板の視感度透過率を測定した。測定装置は朝日分光社製 視感度透過率計MODEL304を用いた。得られた視感度透過率は95.9%であった。
このようにして得られた反射防止膜付透明基板の密着性及び耐候性を評価するために、以下の評価を行った。
Examples and comparative examples are given below.
<Example 1>
An acrylic substrate (refractive index 1.52) with an acrylic hard coat (refractive index 1.52) was prepared, and each layer was formed by vacuum deposition. First, an underlayer made of Al 2 O 3 (refractive index 1.6) was formed on a substrate (on a hard coat) with a film thickness of 10 nm. Next, a first dielectric film layer made of TiO 2 (2.20) is formed to a thickness of 30 nm on the underlayer, and a first dielectric film layer made of SiO 2 (1.46) is formed on the first dielectric film layer. A second dielectric film layer having a thickness of 43 nm and a third dielectric film layer made of TiO 2 having a thickness of 230 nm were sequentially stacked. After the third dielectric film layer is formed, a barrier layer made of Al 2 O 3 is formed thereon with a thickness of 40 nm, and a fourth dielectric film layer (outermost layer) made of SiO 2 is formed on the barrier layer. A transparent substrate with an antireflective film having a total thickness of 6 layers was formed. The visibility transmittance of the thus obtained transparent substrate with an antireflection film was measured. As a measuring apparatus, Asahi Spectroscopic Visibility Transmittance Model MODEL304 was used. The visibility transmission obtained was 95.9%.
In order to evaluate the adhesion and weather resistance of the thus obtained transparent substrate with an antireflection film, the following evaluation was performed.

(評価1)
評価1ではJIS B 7754の規格に準じてキセノンランプを用いた耐候性試験、及び密着性試験を行った。キセノンランプはスガ試験器(株)製の「キセノンロングライフウェザーメーター」(WEL-25AX-HC.B.EC)を用い、キセノンランプから30cmほど離れた位置に上記の反射膜付透明基板とブラックパネル(BP)を置き、BP温度63℃となるようにキセノンランプの出力を調整し、反射膜付透明基板に向けて長時間キセノン光を照射した。
照射開始から24時間毎に蒸留水にて湿らせたワイピングクロスにより、反射膜付透明基板の成膜面側を3Kg荷重で50往復させ反射防止膜の膜ハゲの有無を確認した。
変化がなければ○、軽く擦り痕が残れば△、膜ハゲが確認された場合には×とした。また、外観検査ではクラック等がなければ○、クラックが入れば×とした。
以上の結果を表1に示す。
(Evaluation 1)
In Evaluation 1, a weather resistance test and an adhesion test using a xenon lamp were performed according to the standard of JIS B 7754. The xenon lamp uses “Xenon Long Life Weather Meter” (WEL-25AX-HC.B.EC) manufactured by Suga Test Instruments Co., Ltd. The panel (BP) was placed, the output of the xenon lamp was adjusted so that the BP temperature was 63 ° C., and the xenon light was irradiated for a long time toward the transparent substrate with a reflective film.
With a wiping cloth moistened with distilled water every 24 hours from the start of irradiation, the film-forming surface side of the transparent substrate with a reflective film was reciprocated 50 times with a 3 kg load to confirm the presence or absence of film baldness on the antireflection film.
If there was no change, it was rated as “◯”, a light scratch mark was left as “Δ”, and a film baldness was confirmed as “x”. In addition, in the appearance inspection, “O” was given if there were no cracks, and “X” was given if there were cracks.
The results are shown in Table 1.

(評価2)
評価2では、冷熱サイクル試験を行って反射膜付透明基板の耐候性を検査した。冷熱サイクル用試験機は楠本化成(株)製の「気槽式 熱衝撃試験器」(WINTECH NT-1020A)を用いて、反射膜付透明基板に対して−30℃の冷風と85℃の温風を30分間隔で交互に当て、これを1サイクルとし、5サイクル毎に反射膜付透明基板の外観を確認した。外観検査ではクラック等がなければ○、クラックが入れば×とした。
以上の結果を表2に示す。
(Evaluation 2)
In Evaluation 2, a cold cycle test was performed to inspect the weather resistance of the transparent substrate with a reflective film. The test equipment for the thermal cycle uses “Air tank type thermal shock tester” (WINTECH NT-1020A) manufactured by Enomoto Kasei Co., Ltd., with -30 ° C cold air and 85 ° C temperature on the transparent substrate with a reflective film. Wind was applied alternately at intervals of 30 minutes, and this was defined as one cycle, and the appearance of the transparent substrate with a reflective film was confirmed every five cycles. In the appearance inspection, if there was no crack or the like, it was marked as ◯, and if there was a crack, it was marked as x.
The results are shown in Table 2.

<実施例2>
実施例2では、下地層の膜厚を20nmに変えた以外は、すべて実施例1と同じ条件にて成膜を行い反射防止膜付透明基板を得た。得られた視感度透過率は95.5%であった。
また、実施例1と同様に評価1及び評価2の試験を行った。その結果を表1、表2に示す。
<Example 2>
In Example 2, a film was formed under the same conditions as in Example 1 except that the film thickness of the underlayer was changed to 20 nm to obtain a transparent substrate with an antireflection film. The visibility transmission obtained was 95.5%.
Moreover, the test of evaluation 1 and evaluation 2 was done like Example 1. FIG. The results are shown in Tables 1 and 2.

<実施例3>
実施例3では、下地層の膜厚を40nmに変えた以外は、すべて実施例1と同じ条件にて成膜を行い反射防止膜付透明基板を得た。得られた視感度透過率は95.6%であった。
また、実施例1と同様に評価1及び評価2の試験を行った。その結果を表1、表2に示す。
<Example 3>
In Example 3, a film was formed under the same conditions as in Example 1 except that the film thickness of the underlayer was changed to 40 nm to obtain a transparent substrate with an antireflection film. The visibility transmission obtained was 95.6%.
Moreover, the test of evaluation 1 and evaluation 2 was done like Example 1. FIG. The results are shown in Tables 1 and 2.

<比較例1>
比較例1では、下地層をなくした以外は、すべて実施例1と同じ条件にて成膜を行い反射防止膜付透明基板を得た。得られた視感度透過率は95.9%であった。
また、実施例1と同様に評価1及び評価2の試験を行った。その結果を表1、表2に示す。
<Comparative Example 1>
In Comparative Example 1, a film was formed under the same conditions as in Example 1 except that the base layer was eliminated, and a transparent substrate with an antireflection film was obtained. The resulting luminous transmittance was 95.9%.
Moreover, the test of evaluation 1 and evaluation 2 was done like Example 1. FIG. The results are shown in Tables 1 and 2.

<比較例2>
比較例2では、下地層及びバリア層を無くし、基板上から順にTiO2からなる第1誘電膜層を膜厚33nm、SiO2からなる第2誘電膜層を膜厚45nm、TiO2からなる第3誘電膜層を膜厚236nm、SiO2からなる第4誘電膜層(最外層)を膜厚128nmで形成して、合計4層からなる反射防止膜付透明基板を作成した。得られた視感度透過率は95.8%であった。
また、実施例1と同様に評価1及び評価2の試験を行った。その結果を表1、表2に示す。
<Comparative example 2>
In Comparative Example 2, the base layer and the barrier layer are eliminated, the first dielectric film layer made of TiO 2 is formed in a thickness of 33 nm, and the second dielectric film layer made of SiO 2 is formed in a thickness of 45 nm and made of TiO 2 in order from the substrate. A three-dielectric film layer was formed with a film thickness of 236 nm, and a fourth dielectric film layer (outermost layer) made of SiO 2 was formed with a film thickness of 128 nm to produce a transparent substrate with an antireflection film consisting of a total of four layers. The visibility transmission obtained was 95.8%.
Moreover, the test of evaluation 1 and evaluation 2 was done like Example 1. FIG. The results are shown in Tables 1 and 2.

<結果>
表1に示すように、実施例1〜3の反射防止膜付透明基板においては、何れも視感度透過率が90%以上と高透過率を示すとともに、比較例1及び2と比べ、耐候性、密着性ともに良好な結果が得られた。特に実施例3ではキセノンランプを用いた耐候性試験、及び密着性試験において216Hを超えても膜ハゲが見られない結果となった。また、図2に実施例3と比較例2における反射率特性のグラフを示す。これに示すように、本発明の実施形態である実施例3の膜構成であっても、比較例2に示す一般的な反射防止膜の反射率特性と大きく異なっていない。このため、本発明によれば、反射防止性能を従来と大きく変化させることなく、耐候性、密着性を向上させることが可能である。
<Result>
As shown in Table 1, in the transparent substrates with antireflection films of Examples 1 to 3, the luminous transmittance is 90% or more and high transmittance, and weather resistance is higher than those of Comparative Examples 1 and 2. Good results were obtained in both adhesion. In particular, in Example 3, film baldness was not observed even when exceeding 216H in a weather resistance test and an adhesion test using a xenon lamp. FIG. 2 shows a graph of reflectance characteristics in Example 3 and Comparative Example 2. As shown in this figure, even the film configuration of Example 3, which is an embodiment of the present invention, is not significantly different from the reflectance characteristics of a general antireflection film shown in Comparative Example 2. For this reason, according to this invention, it is possible to improve a weather resistance and adhesiveness, without changing an antireflection performance large conventionally.

本実施形態における多層膜付透明基板の膜構成を示した図である。It is the figure which showed the film | membrane structure of the transparent substrate with a multilayer film in this embodiment. 実施例3と比較例2の反射率特性を示したものである。The reflectance characteristics of Example 3 and Comparative Example 2 are shown.

符号の説明Explanation of symbols

1 基板
2 下地層
3 反射防止層帯
3a 第1誘電膜層
3b 第2誘電膜層
3c 第3誘電膜層
3d 第4誘電膜層
4 バリア層

DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Underlayer 3 Antireflection layer 3a 1st dielectric film layer 3b 2nd dielectric film layer 3c 3rd dielectric film layer 3d 4th dielectric film layer 4 Barrier layer

Claims (4)

透明基板上に薄膜層を積層してなる反射防止膜付透明基板において、
前記透明基板上に光学膜厚として10nm以上40nm以下であるAlからなる下地層と、該下地層の上に多層の誘電体層のみからなる反射防止膜とが形成されているとともに、該反射防止膜の耐候性の向上を得るために,該反射防止膜の最外層と該最外層の下に置かれる誘電体層との間に光学膜厚として20nm以上50nm以下であるAlの薄膜からなるバリア層と、が形成されていることを特徴とする反射防止膜付透明基板。
In a transparent substrate with an antireflection film formed by laminating a thin film layer on a transparent substrate,
On the transparent substrate, an underlayer made of Al 2 O 3 having an optical film thickness of 10 nm to 40 nm and an antireflection film made of only a multilayer dielectric layer are formed on the underlayer, In order to improve the weather resistance of the antireflection film, an Al 2 O film having an optical film thickness of 20 nm or more and 50 nm or less between the outermost layer of the antireflection film and the dielectric layer placed under the outermost layer. A transparent substrate with an antireflection film, wherein a barrier layer comprising a thin film 3 is formed.
請求項1の反射防止膜付透明基板において、前記反射防止膜は前記透明基板側から順に、前記透明基板の屈折率より高い屈折率である透明誘電体からなる第1誘電膜層と、前記透明基板の屈折率より低い屈折率である透明誘電体からなる第2誘電膜層と、前記透明基板の屈折率より高い屈折率である透明誘電体からなる第3誘電膜層と、最外層に前記透明基板の屈折率より低い屈折率である透明誘電体からなる第4誘電膜層と、との少なくとも4層を有し、前記バリア層は前記第3誘電膜層と第4誘電膜層との間に形成されていることを特徴とする反射防止膜付透明基板。 2. The transparent substrate with an antireflection film according to claim 1, wherein the antireflection film includes, in order from the transparent substrate side, a first dielectric film layer made of a transparent dielectric having a refractive index higher than a refractive index of the transparent substrate, and the transparent substrate. A second dielectric film layer made of a transparent dielectric having a refractive index lower than the refractive index of the substrate; a third dielectric film layer made of a transparent dielectric having a refractive index higher than the refractive index of the transparent substrate; and And a fourth dielectric film layer made of a transparent dielectric material having a refractive index lower than that of the transparent substrate, and the barrier layer includes the third dielectric film layer and the fourth dielectric film layer. A transparent substrate with an antireflection film, which is formed in between. 請求項2の反射防止膜付透明基板において、前記第1及び第3誘電膜層はTiO2からなる薄膜層であり、前記第2及び第4誘電膜層はSiOからなる薄膜層であることを特徴とする反射防止膜付透明基板。 In the transparent substrate with an antireflection film according to claim 2, said first and third dielectric layer is a thin film layer composed of TiO 2, the second and fourth dielectric layer is a thin film layer formed of SiO 2 A transparent substrate with an antireflection film characterized by 請求項1〜3の反射防止膜付透明基板において、前記反射防止膜の上にさらにフッ素系化合物からなる防汚層が形成されていることを特徴とする反射防止膜付透明基板。 4. The transparent substrate with an antireflection film according to claim 1, wherein an antifouling layer made of a fluorine compound is further formed on the antireflection film.
JP2006096669A 2006-03-31 2006-03-31 Transparent substrate with antireflection film Active JP5301766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096669A JP5301766B2 (en) 2006-03-31 2006-03-31 Transparent substrate with antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096669A JP5301766B2 (en) 2006-03-31 2006-03-31 Transparent substrate with antireflection film

Publications (2)

Publication Number Publication Date
JP2007271860A JP2007271860A (en) 2007-10-18
JP5301766B2 true JP5301766B2 (en) 2013-09-25

Family

ID=38674723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096669A Active JP5301766B2 (en) 2006-03-31 2006-03-31 Transparent substrate with antireflection film

Country Status (1)

Country Link
JP (1) JP5301766B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133216A1 (en) 2011-03-25 2012-10-04 Hoya株式会社 Plastic lens
KR102149946B1 (en) 2014-01-10 2020-08-31 엘지이노텍 주식회사 Anti-reflection sheet
JP5906507B1 (en) * 2015-02-27 2016-04-20 株式会社昭和真空 Multilayer-coated resin substrate and method for producing the same
KR102279537B1 (en) * 2020-09-28 2021-07-21 주식회사 그린머테리얼솔루션 Composition for transparent thin film heating element
WO2022114146A1 (en) * 2020-11-30 2022-06-02 デクセリアルズ株式会社 Optical laminate and article
CN115373055A (en) * 2021-05-17 2022-11-22 大永真空设备股份有限公司 Optical multilayer film and use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124391B2 (en) * 1992-09-29 2001-01-15 ホーヤ株式会社 Optical member having antireflection film
JP3581783B2 (en) * 1998-02-24 2004-10-27 日本板硝子株式会社 Glass article coated with conductive anti-reflective coating
JPH11258405A (en) * 1998-03-12 1999-09-24 Toppan Printing Co Ltd Antireflection film
EP1152263A4 (en) * 1999-09-30 2003-08-20 Nikon Corp Optical device with multilayer thin film and aligner with the device
JP2003215309A (en) * 2001-04-17 2003-07-30 Sony Corp Antireflection film and antireflection layer-affixed plastic substrate
JP3979814B2 (en) * 2001-10-04 2007-09-19 オリンパス株式会社 Optical thin film manufacturing method
JP4190773B2 (en) * 2002-02-26 2008-12-03 オリンパス株式会社 Antireflection film, optical lens and optical lens unit
JP2003262854A (en) * 2002-03-11 2003-09-19 Fuji Photo Film Co Ltd Plastic substrate and liquid crystal display device

Also Published As

Publication number Publication date
JP2007271860A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5262066B2 (en) Manufacturing method of antireflection film and manufacturing method of polarizing plate including the same
JP4816183B2 (en) Optically laminated biaxially stretched polyester film and hard coat film using the same
JP5301766B2 (en) Transparent substrate with antireflection film
JP5262110B2 (en) Base with antireflection film
JP5076729B2 (en) Antireflection film and polarizing plate using the same
JP2010191144A (en) Antireflection film
US20080131693A1 (en) Laminate for reflection film
TW201602624A (en) Low contrast anti-reflection articles with reduced scratch and fingerprint visibility
JP4793259B2 (en) Reflector
JP2008096828A (en) Manufacturing method of optical article and its optical article
US9341748B2 (en) Mirror for use in humid environments, and/or method of making the same
JP2008116611A (en) Antireflection film
US20130208375A1 (en) Mirror and methods of making the same
JP2010092003A (en) Antireflection film
JP2008260978A (en) Method for forming reflection film
JP2005280131A (en) Reflective film
US20130170059A1 (en) Mirror with optional permanent protective film, and/or methods of making the same
JP2009075325A (en) Antireflection film
JP6343580B2 (en) Optically transparent laminate
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
JP2006289901A (en) Reflection preventing film and display unit
JP2013182091A (en) Antireflection film and method for forming the same
JP4320866B2 (en) Antireflection laminate, optical functional laminate, and display device
JPWO2008133136A1 (en) Reflector
JP2009075417A (en) Antireflection film, and polarizing plate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5301766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250