JP5300023B2 - Pure water production apparatus and pure water production method - Google Patents

Pure water production apparatus and pure water production method Download PDF

Info

Publication number
JP5300023B2
JP5300023B2 JP2010118633A JP2010118633A JP5300023B2 JP 5300023 B2 JP5300023 B2 JP 5300023B2 JP 2010118633 A JP2010118633 A JP 2010118633A JP 2010118633 A JP2010118633 A JP 2010118633A JP 5300023 B2 JP5300023 B2 JP 5300023B2
Authority
JP
Japan
Prior art keywords
water
concentrated
supply
pure water
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010118633A
Other languages
Japanese (ja)
Other versions
JP2011245371A (en
Inventor
眞一郎 河野
浩一 工藤
幹育 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohzai Chemical Industry Co Ltd
Original Assignee
Tohzai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohzai Chemical Industry Co Ltd filed Critical Tohzai Chemical Industry Co Ltd
Priority to JP2010118633A priority Critical patent/JP5300023B2/en
Publication of JP2011245371A publication Critical patent/JP2011245371A/en
Application granted granted Critical
Publication of JP5300023B2 publication Critical patent/JP5300023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for producing pure water, in each of which by removing a scale component from concentrated water, the amount of the concentrated water to be discharged or the exchange frequency of equipment can be reduced, and furthermore, a trouble due to the adhesion of scale to the apparatus can be prevented, while the labor hour and cost required for the maintenance can be reduced. <P>SOLUTION: The apparatus for producing pure water includes: a supply means having a supply route for supplying supply water; a concentration membrane means for filtering the supply water to obtain pure water and concentrated water; a pure water means which is connected to the concentration membrane means to receive the supply of the pure water; and a water quality improvement means which is connected to the concentration membrane means to receive the supply of the concentrated water, includes a cathode and an anode to electrolyze the concentrated water, thereby improving the water quality of the concentrated water, and is connected to the supply route to supply the concentrated water, which is improved in the water quality, to the concentration membrane means. The cathode of the water quality improvement means is provided with a thermally-sprayed coating film, which is composed of a material including a metallic material and fluorinated pitch, on the surface thereof. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、不純物を含む水から純水を製造する純水製造装置及び純水製造方法に関する。   The present invention relates to a pure water production apparatus and a pure water production method for producing pure water from water containing impurities.

供給された水を濾過し、水中の電解質、固形物、コロイド及び微生物等の不純物を除去して純水を得るための装置が、従来より開発されている。これによって得られた純水は、医療、工業及び食品等の分野の配合や洗浄の用途に用いられ、さらに、不純物を除いた純度の高い水を精製するためにも用いられる。   An apparatus for obtaining pure water by filtering supplied water and removing impurities such as electrolytes, solids, colloids and microorganisms in the water has been developed. The pure water obtained in this way is used for compounding and cleaning applications in the fields of medicine, industry, food, etc., and further used for purifying high-purity water excluding impurities.

特に、濾過として逆浸透膜を用いた限外濾過を行い、純水としてRО水を得る装置が多く開発されている。逆浸透膜を用いた限外濾過によれば、この逆浸透膜を挟んで、不純物が除去された純水と、この不純物が濃縮された濃縮水とが得られる。しかしながら、このような限外濾過を続けると、濃縮水に含まれる不純物がさらに濃縮される。特に、水中には、電解質としてカルシウムやシリカ等を主成分とするスケール成分が含まれているため、その濃度の増加によって浸透圧の差が大きくなるので、限外濾過により高い水圧を要することとなる。その結果、逆浸透膜が目詰まりするおそれや、逆浸透膜が水圧によって破損するおそれが生ずる。   In particular, many devices have been developed that perform ultrafiltration using a reverse osmosis membrane as filtration to obtain RO water as pure water. According to ultrafiltration using a reverse osmosis membrane, pure water from which impurities are removed and concentrated water from which impurities are concentrated are obtained with the reverse osmosis membrane interposed therebetween. However, if such ultrafiltration is continued, impurities contained in the concentrated water are further concentrated. In particular, since water contains a scale component mainly composed of calcium, silica, etc. as an electrolyte, the difference in osmotic pressure increases with the increase in concentration, so that high water pressure is required for ultrafiltration. Become. As a result, the reverse osmosis membrane may be clogged or the reverse osmosis membrane may be damaged by water pressure.

特許文献1には、濃縮水を一定の水圧を超えないように調整しつつ、その一部を系外に排出することにより、逆浸透膜の目詰まりや水圧による破損を防ぐようにした純水製造装置が開示されている。   In Patent Document 1, pure water is prepared so as to prevent clogging of a reverse osmosis membrane or damage due to water pressure by discharging a part of the concentrated water outside the system while adjusting the concentrated water so as not to exceed a certain water pressure. A manufacturing apparatus is disclosed.

特許文献2には、限外濾過膜モジュールを備えた無菌水の製造装置が開示されており、この製造装置は、限外濾過膜モジュールに供給する原水(供給水)から電解質を一部除くためのイオン交換器を備えている。   Patent Document 2 discloses an apparatus for producing aseptic water provided with an ultrafiltration membrane module, and this production apparatus removes a part of the electrolyte from raw water (supply water) supplied to the ultrafiltration membrane module. It has an ion exchanger.

特開平11−104639号公報JP 11-104639 A 実公平07−19596号公報Japanese Utility Model Publication No. 07-19596

しかしながら、特許文献1の技術によると、高い濃度のスケール成分を含む濃縮水が多量に発生することから、この濃縮水を排水するために、多量の水を廃棄処理する必要が生じる。さらに、廃棄処理した分の水を純水製造装置に補給する必要もある。そのため、廃棄する及び補給する水のコストが莫大となり、環境にも影響する。また、濃縮水に含まれるスケール成分の濃度が高まると、逆浸透膜にかかる圧力が上昇するので、この逆浸透膜の目詰まりや破損を防ぐべく、濃度が高くなった濃縮水を廃棄し、水を補給する作業が頻繁に必要となる。   However, according to the technique of Patent Document 1, a large amount of concentrated water containing a high-concentration scale component is generated. Therefore, in order to drain this concentrated water, a large amount of water needs to be discarded. Furthermore, it is necessary to replenish the purified water production apparatus with water that has been disposed of. For this reason, the cost of water to be discarded and replenished becomes enormous and affects the environment. In addition, as the concentration of the scale component contained in the concentrated water increases, the pressure applied to the reverse osmosis membrane increases, so to prevent clogging and breakage of this reverse osmosis membrane, the concentrated water with a higher concentration is discarded, Work to replenish water is frequently required.

特許文献2の技術を応用し、原水から電解質を除去するイオン交換器を設ければ、濃縮水に含まれるスケール成分を減少させることが可能であり、これによって、逆浸透膜にかかる負担を小さくし、濃縮水の排水量を減少させることが可能であると考えられる。しかしながら、この場合、イオン交換器にスケール成分が多量に吸着するため、頻繁にメンテナンスを行う必要がある。しかも、このようなイオン交換器は非常に高価であるため、純水製造装置全体の製造コストも大幅に高くなってしまう。   By applying the technique of Patent Document 2 and providing an ion exchanger that removes the electrolyte from the raw water, it is possible to reduce the scale components contained in the concentrated water, thereby reducing the burden on the reverse osmosis membrane. Therefore, it is considered possible to reduce the amount of concentrated water discharged. However, in this case, since a large amount of scale components are adsorbed on the ion exchanger, frequent maintenance is required. Moreover, since such an ion exchanger is very expensive, the production cost of the pure water production apparatus as a whole is also greatly increased.

このような実情に鑑み、本願発明者等は、濃縮水からスケール成分を効率的に除去する方法として、この濃縮水を電解装置に通水して電解処理することで、水中のスケール成分を電極の表面に析出させ、その析出物を除去する水質改善方法を開発した(本願出願時に公知ではない)。   In view of such circumstances, the inventors of the present application, as a method for efficiently removing the scale component from the concentrated water, passed the concentrated water through an electrolyzer and electrolyzed it, thereby removing the scale component in water from the electrode. A method for improving the water quality was developed (which is not known at the time of filing this application).

本発明はこのような水質改善方法を利用して純水を製造するものであり、その目的は、濃縮水からスケール成分を除去することで供給水の供給量、濃縮水の廃棄量や機器の交換頻度を減少させることのできる純水製造装置及び純水製造方法を提供することにある。   The present invention is to produce pure water using such a water quality improvement method, and its purpose is to remove the scale component from the concentrated water to supply the supply water, discard the concentrated water, and An object of the present invention is to provide a pure water production apparatus and a pure water production method capable of reducing the replacement frequency.

本発明の他の目的は、装置へのスケールの付着によるトラブルを防止でき、メンテナンスの手間やコストを削減することのできる純水製造装置及び純水製造方法を提供することにある。   Another object of the present invention is to provide a pure water production apparatus and a pure water production method capable of preventing troubles due to the scale adhering to the apparatus and reducing maintenance labor and cost.

本発明の純水製造装置は、供給水を供給する供給路を有する供給手段と、供給水を濾過して純水と濃縮水とを得るための濃縮膜手段と、濃縮膜手段に接続して純水の供給を受ける純水手段と、濃縮膜手段に接続して濃縮水の供給を受け陰極及び陽極を備えて濃縮水を電解して水質改善するとともに水質改善された濃縮水を供給路に接続して濃縮膜手段に供給する水質改善手段とを備え、水質改善手段の陰極は金属材料とフッ化ピッチとを含む材料からなる溶射皮膜を表面に設けている。   The pure water production apparatus of the present invention is connected to a supply means having a supply path for supplying supply water, a concentration membrane means for filtering the supply water to obtain pure water and concentrated water, and a concentration membrane means. Pure water means that receives supply of pure water, and supply of concentrated water that is connected to the concentration membrane means, and is provided with a cathode and an anode to improve the water quality by electrolyzing the concentrated water and supply the concentrated water with improved water quality to the supply path Water quality improving means connected to the concentrated membrane means and the cathode of the water quality improving means is provided with a sprayed coating made of a material containing a metal material and a fluoride pitch on the surface.

水質改善した濃縮水はイオン強度が低下しているので、濃縮膜手段において濃縮しやすく、これを供給水と共に再濃縮しているので、濃縮水の廃棄量と供給水の供給量とがいずれも低減する。そのため、純水製造のコストが低減し、しかも環境への影響を低減することができる。イオン強度が低下した水を濃縮することで、純度の高い純水を得られ、純水手段から利用することができる。また、水質改善手段において、陰極及び陽極間に通電して濃縮水を電解処理すると、濃縮水内のスケールの主な成分であるカルシウムやシリカのイオンが陰極に引き寄せられて陰極表面に析出するので、濃縮水の水質が改善する。水質改善手段の陰極は、溶射皮膜に含まれるフッ化ピッチにより、その表面に物質が強固に付着しにくい状態となっている。スケールは塊状の一部の分子のみが陰極に固着し剥がれ易い状態で陰極に保持され、水中に遊離しない。そのため、水質改善された濃縮水におけるスケール成分の濃度が低くなり、スケールが濃縮水内に遊離しないので、頻繁に多量の濃縮水を廃棄する必要がなく、装置のメンテナンスも最小限にとどめることができる。また、陰極に保持されたスケールは、放水洗浄による水圧やブラッシング等で容易に除去することができる。その結果、メンテナンスの手間やコストを削減することができ、機器の交換頻度を減少させることができる。   Concentrated water with improved water quality has a reduced ionic strength, so it is easy to concentrate in the concentration membrane means, and this is re-concentrated with the feed water. To reduce. Therefore, the cost of producing pure water can be reduced, and the influence on the environment can be reduced. By concentrating water with reduced ionic strength, pure water with high purity can be obtained and used from pure water means. Also, in the water quality improvement means, when the concentrated water is electrolyzed between the cathode and the anode, calcium and silica ions, which are the main components of the scale in the concentrated water, are attracted to the cathode and deposited on the cathode surface. The water quality of the concentrated water is improved. The cathode of the water quality improving means is in a state in which the substance is hard to adhere firmly to the surface due to the fluoride pitch contained in the sprayed coating. The scale is held on the cathode in a state where only a part of the lump-like molecules are fixed to the cathode and easily peeled off, and is not released into water. For this reason, the concentration of scale components in the concentrated water with improved water quality is reduced, and the scale is not released into the concentrated water, so there is no need to frequently discard a large amount of concentrated water, and the maintenance of the equipment can be kept to a minimum. it can. In addition, the scale held on the cathode can be easily removed by water pressure by brushing or brushing. As a result, maintenance labor and costs can be reduced, and the frequency of equipment replacement can be reduced.

溶射皮膜の表面にはフッ化ピッチがこの表面から1〜100μm突出してなる凹凸が形成されていることが好ましい。フッ化ピッチが突出することで、溶射皮膜の表面に露出するフッ素元素の表面積が大きくなり、金属材料とフッ素元素との両方の面積が大きくなるので、スケールを金属材料に保持しやすく、フッ化ピッチが撥水性を有するため、剥がし易い。また凹凸が多いことでスケールが接触しやすく析出したスケールの塊が成長し易い。   It is preferable that the surface of the thermal spray coating has irregularities formed by projecting a fluoride pitch of 1 to 100 μm from this surface. The protrusion of the fluorinated pitch increases the surface area of the fluorine element exposed on the surface of the thermal spray coating, and the area of both the metal material and the fluorine element increases. Since the pitch has water repellency, it is easy to peel off. Moreover, since there are many unevenness | corrugations, the lump of the scale which the scale contacts easily and grows easily is easy to grow.

陰極のフッ化ピッチの径が30〜150μmであることも好ましい。この範囲であると、金属表面とフッ素元素表面との面積及び表面の粗さが充分に確保され、かつフッ化ピッチが溶射皮膜から突出しすぎず脱落しにくい。   It is also preferable that the diameter of the fluoride pitch of the cathode is 30 to 150 μm. Within this range, the area between the metal surface and the surface of the fluorine element and the surface roughness are sufficiently secured, and the fluorinated pitch does not protrude too much from the sprayed coating and is difficult to fall off.

供給水の水圧を検知して加圧手段の圧力を制御する圧力制御手段をさらに備えていることがより好ましい。濃縮膜手段に供給される供給水の水圧を高くすることで濃縮膜手段に限外濾過を行わせることができる。さらに、水圧に応じて圧力を加減することで濃縮膜手段への負担を軽減し、純水を得る効率や純水の純度を最適に保つことができる。   More preferably, pressure control means for detecting the water pressure of the feed water and controlling the pressure of the pressurizing means is further provided. By increasing the water pressure of the supply water supplied to the concentration membrane means, the concentration membrane means can perform ultrafiltration. Furthermore, by adjusting the pressure according to the water pressure, the burden on the concentration membrane means can be reduced, and the efficiency of obtaining pure water and the purity of pure water can be kept optimal.

濃縮水のイオン強度を検知して水質改善手段の電解を制御する電解制御手段をさらに備えていることも好ましい。イオン強度が高くなった濃縮水に通電して陰極にスケールを析出させ、又は通電する電力を増大することで陰極にスケールをより多く析出させることにより、濃縮水に含まれるイオンを低減させることができる。   It is also preferable to further include electrolysis control means for detecting the ionic strength of the concentrated water and controlling electrolysis of the water quality improvement means. It is possible to reduce the ions contained in the concentrated water by energizing the concentrated water with increased ionic strength and precipitating the scale on the cathode, or by increasing the power applied to deposit more scale on the cathode. it can.

純水手段は純水を貯留する純水貯留手段をさらに備えており、この純水貯留手段は水質検知手段を備えていることも好ましい。得られた純水が貯留でき、純水の水質によって濃縮膜手段での濃縮、水質改善手段で通電する電力の強さを調節することができるので、目的とする水質の純水を得ることができる。   The pure water means further includes a pure water storage means for storing pure water, and the pure water storage means preferably further includes a water quality detection means. The obtained pure water can be stored, and the strength of the electric power supplied by the concentration membrane means and the water quality improvement means can be adjusted according to the quality of the pure water, so that it is possible to obtain pure water of the desired water quality. it can.

濃縮水を水質改善手段に供給する流速を制御する流速制御手段をさらに備えていることも好ましい。濃縮水の流速を制御することで、濃縮水に含まれるスケール成分が陰極に接触する時間を制御することができ、陰極にスケールが析出する量を制御でき、スケールの厚みと大きさをコントロールし除去しやすくすることができる。   It is also preferable to further include a flow rate control unit that controls the flow rate of supplying the concentrated water to the water quality improvement unit. By controlling the flow rate of concentrated water, it is possible to control the time for the scale components contained in the concentrated water to contact the cathode, to control the amount of scale deposited on the cathode, and to control the thickness and size of the scale. It can be easily removed.

本発明の純水製造方法は、逆浸透膜により濃縮水を得る工程と、金属材料とフッ化ピッチとを含む材料からなる溶射皮膜を表面に有する陰極を用いて電解処理することにより上述の濃縮水を水質改善する工程と、水質改善した濃縮水と供給水とを逆浸透膜に供給して限外濾過し、純水と上述の濃縮水とを得る工程とを備えている。   The method for producing pure water of the present invention comprises the steps of obtaining concentrated water by a reverse osmosis membrane and the above-mentioned concentration by electrolytic treatment using a cathode having a thermal spray coating on the surface made of a material containing a metal material and a fluoride pitch. A step of improving water quality, and a step of supplying purified water having improved water quality and supply water to a reverse osmosis membrane and performing ultrafiltration to obtain pure water and the above-described concentrated water.

水質改善した濃縮水はイオン強度が低下しているので、逆浸透膜において濃縮しやすく、これを供給水と共に再濃縮しているので、濃縮水の廃棄量と供給水の供給量とがいずれも低減する。そのため、純水製造のコストが低減し、しかも環境への影響を低減することができる。また、水質改善する際に、濃縮水を電解処理すると、濃縮水内のスケールの主な成分であるカルシウムやシリカのイオンが陰極に引き寄せられて陰極表面に析出するので、濃縮水の水質が改善する。この陰極は、溶射皮膜に含まれるフッ化ピッチにより、その表面に物質が強固に付着しにくい状態となっている。スケールは塊状の一部の分子のみが陰極に固着し剥がれ易い状態で陰極に保持され、水中に遊離しない。そのため、水質改善された濃縮水におけるスケール成分の濃度が低くなり、スケールが濃縮水内に遊離しないので、頻繁に多量の濃縮水を廃棄する必要がなく、装置のメンテナンスも最小限にとどめることができる。また、陰極に保持されたスケールは、放水洗浄による水圧やブラッシング等で容易に除去することができる。その結果、メンテナンスの手間やコストを削減することができ、機器の交換頻度を減少させることができる。限外濾過のための逆透析膜を用いることで、簡易な構成で多量に供給水を濃縮でき、純水及び濃縮水が得られる。   Concentrated water with improved water quality has a reduced ionic strength, so it is easy to concentrate in the reverse osmosis membrane, and it is reconcentrated with the feed water, so both the amount of concentrated water discarded and the amount of feed water supplied are both To reduce. Therefore, the cost of producing pure water can be reduced, and the influence on the environment can be reduced. In addition, when improving the water quality, if the concentrated water is electrolytically treated, calcium and silica ions, which are the main components of the scale in the concentrated water, are attracted to the cathode and deposited on the cathode surface, so the quality of the concentrated water is improved. To do. This cathode is in a state where it is difficult for the substance to adhere firmly to the surface due to the fluoride pitch contained in the sprayed coating. The scale is held on the cathode in a state where only a part of the lump-like molecules are fixed to the cathode and easily peeled off, and is not released into water. For this reason, the concentration of scale components in the concentrated water with improved water quality is reduced, and the scale is not released into the concentrated water, so there is no need to frequently discard a large amount of concentrated water, and the maintenance of the equipment can be kept to a minimum. it can. In addition, the scale held on the cathode can be easily removed by water pressure by brushing or brushing. As a result, maintenance labor and costs can be reduced, and the frequency of equipment replacement can be reduced. By using a reverse dialysis membrane for ultrafiltration, a large amount of feed water can be concentrated with a simple configuration, and pure water and concentrated water can be obtained.

濃縮水のイオン強度及び水圧を検知する工程と、検知したイオン強度及び水圧の上昇に応じて逆浸透膜に印加する圧力を減少させ、又は電解処理で印加する電力を増大させる工程とをさらに備えたことが好ましい。水圧に応じて印加圧力を減少させ、濃縮水のイオン強度が高くなった際に通電する電力を増大させることで、逆浸透膜への水圧による負担を軽減し、陰極にスケールを多く析出させて濃縮水内に含まれるイオンを低減させることができ、純水を得る効率や純水の純度を最適に保つことができる。   A step of detecting the ionic strength and water pressure of the concentrated water, and a step of decreasing the pressure applied to the reverse osmosis membrane according to the detected increase in the ionic strength and water pressure or increasing the power applied in the electrolytic treatment. It is preferable. By reducing the applied pressure according to the water pressure and increasing the electric power applied when the ionic strength of the concentrated water increases, the burden due to the water pressure on the reverse osmosis membrane is reduced, and more scale is deposited on the cathode. The ions contained in the concentrated water can be reduced, and the efficiency of obtaining pure water and the purity of pure water can be kept optimal.

本発明によれば、水質改善した濃縮水はイオン強度が低下しているので、濃縮膜手段において濃縮しやすく、これを供給水と共に再濃縮しているので、濃縮水の廃棄量と供給水の供給量とがいずれも低減する。そのため、純水製造のコストが低減し、しかも環境への影響を低減することができる。イオン強度が低下した水を濃縮することで、純度の高い純水を得られ、純水手段から利用することができる。また、水質改善手段において、陰極及び陽極間に通電して濃縮水を電解処理すると、濃縮水内のスケールの主な成分であるカルシウムやシリカのイオンが陰極に引き寄せられて陰極表面に析出するので、濃縮水の水質が改善する。水質改善手段の陰極は、溶射皮膜に含まれるフッ化ピッチにより、その表面に物質が強固に付着しにくい状態となっている。スケールは塊状の一部の分子のみが陰極に固着し剥がれ易い状態で陰極に保持され、水中に遊離しない。そのため、水質改善された濃縮水におけるスケール成分の濃度が低くなり、スケールが濃縮水内に遊離しないので、頻繁に多量の濃縮水を廃棄する必要がなく、装置のメンテナンスも最小限にとどめることができる。また、陰極に保持されたスケールは、放水洗浄による水圧やブラッシング等で容易に除去することができる。その結果、メンテナンスの手間やコストを削減することができ、機器の交換頻度を減少させることができる。   According to the present invention, since the ionic strength of the concentrated water with improved water quality is reduced, it is easy to concentrate in the concentration membrane means, and this is reconcentrated together with the supply water. Both supply amounts are reduced. Therefore, the cost of producing pure water can be reduced, and the influence on the environment can be reduced. By concentrating water with reduced ionic strength, pure water with high purity can be obtained and used from pure water means. Also, in the water quality improvement means, when the concentrated water is electrolyzed between the cathode and the anode, calcium and silica ions, which are the main components of the scale in the concentrated water, are attracted to the cathode and deposited on the cathode surface. The water quality of the concentrated water is improved. The cathode of the water quality improving means is in a state in which the substance is hard to adhere firmly to the surface due to the fluoride pitch contained in the sprayed coating. The scale is held on the cathode in a state where only a part of the lump-like molecules are fixed to the cathode and easily peeled off, and is not released into water. For this reason, the concentration of scale components in the concentrated water with improved water quality is reduced, and the scale is not released into the concentrated water, so there is no need to frequently discard a large amount of concentrated water, and the maintenance of the equipment can be kept to a minimum. it can. In addition, the scale held on the cathode can be easily removed by water pressure by brushing or brushing. As a result, maintenance labor and costs can be reduced, and the frequency of equipment replacement can be reduced.

本発明の一実施形態に係る純水製造装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the pure water manufacturing apparatus which concerns on one Embodiment of this invention. 図1の純水製造装置における水質改善手段の陰極及び陽極へ通電した際の動作を説明する斜視図及びその一部を拡大した断面図である。It is the perspective view explaining the operation | movement at the time of supplying with electricity to the cathode and anode of the water quality improvement means in the pure water manufacturing apparatus of FIG. 1, and sectional drawing which expanded the part.

以下、本発明の純水製造装置の実施形態について図面を参照して説明する。   Hereinafter, an embodiment of a pure water production apparatus of the present invention will be described with reference to the drawings.

図1に示すように、純水製造装置1は、供給手段2から供給水20が供給される逆浸透膜手段(本発明の濃縮膜手段の一例)3と、この逆浸透膜手段3に接続された水質改善手段4とを備えている。   As shown in FIG. 1, the pure water production apparatus 1 is connected to a reverse osmosis membrane means (an example of the concentrated membrane means of the present invention) 3 to which supply water 20 is supplied from a supply means 2 and to the reverse osmosis membrane means 3. The water quality improvement means 4 was provided.

供給手段2は供給路5aを介して逆浸透膜手段3に接続され、逆浸透膜手段3は配管5bを介して水質改善手段4に接続され、水質改善手段4は配管5c及び供給路5aを介して逆浸透膜手段3に接続されている。逆浸透膜手段3はさらに配管5dを介して純水貯留手段7と接続されている。供給手段2からの供給水20と水質改善手段4によって水質改善された濃縮水、即ち被処理水41とは、逆浸透膜手段3に供給される。その際、供給路5aの途中に設けられた、例えば高圧ポンプによる加圧手段6によって、これら供給水20及び被処理水41は加圧されて印加される。逆浸透膜手段3から得られる濃縮水34は水質改善手段4へ送られ、純水33は純水貯留手段7を介して、純水の供給を受ける純水手段であるユースポイント70へ送られる。   The supply means 2 is connected to the reverse osmosis membrane means 3 via the supply path 5a, the reverse osmosis membrane means 3 is connected to the water quality improvement means 4 via the pipe 5b, and the water quality improvement means 4 is connected to the pipe 5c and the supply path 5a. And is connected to the reverse osmosis membrane means 3. The reverse osmosis membrane means 3 is further connected to the pure water storage means 7 through a pipe 5d. The supply water 20 from the supply means 2 and the concentrated water whose water quality has been improved by the water quality improvement means 4, that is, the treated water 41, are supplied to the reverse osmosis membrane means 3. In that case, these supply water 20 and to-be-processed water 41 are pressurized and applied by the pressurization means 6 provided in the middle of the supply path 5a, for example by a high pressure pump. The concentrated water 34 obtained from the reverse osmosis membrane means 3 is sent to the water quality improvement means 4, and the pure water 33 is sent via the pure water storage means 7 to a use point 70 that is a pure water means that receives the supply of pure water. .

供給手段2は、逆浸透膜手段3に供給される供給水20を供給する手段である。この供給水20は水道水と同程度の純度を有する水又はそれよりやや純度の高い水であることが望ましく、脱イオン水等のある程度精製された水も使用できる。本実施形態では、供給手段2は水道水を供給する上水道に接続されている。供給手段2には、水の供給量を制御可能なバルブ22が設けられ、このバルブ22は、制御装置(図示せず)によってその開閉が制御される電磁バルブである。さらに、供給手段2には、逆流を防止するための逆止弁23が設けられている。供給手段2と逆浸透膜手段3との間には、供給する水に含まれる固形物を除去するためのフィルタ等を備えた濾過器21が設けられている。   The supply means 2 is means for supplying the supply water 20 supplied to the reverse osmosis membrane means 3. The feed water 20 is desirably water having a purity comparable to that of tap water or water having a slightly higher purity, and water purified to some extent such as deionized water can also be used. In this embodiment, the supply means 2 is connected to the water supply which supplies tap water. The supply means 2 is provided with a valve 22 capable of controlling the supply amount of water, and this valve 22 is an electromagnetic valve whose opening and closing is controlled by a control device (not shown). Further, the supply means 2 is provided with a check valve 23 for preventing backflow. Between the supply means 2 and the reverse osmosis membrane means 3, a filter 21 provided with a filter or the like for removing solids contained in the supplied water is provided.

逆浸透膜手段3は、加圧された供給水20及び被処理水41を逆浸透膜により限外濾過して、純水33と濃縮水34とを生成する装置である。この逆浸透膜手段3は、逆浸透膜を挟んで純水側区画31と濃縮水側区画32との2つの区画を備え、濃縮水側区画32の水圧を高める限外濾過を行うことで、純水側区画31に純水33、濃縮水側区画32に濃縮水34を得るように構成されている。逆浸透膜手段3としては、従来の逆浸透膜による純水(RO水)製造に用いられているものを使用できる。本実施形態の逆浸透膜手段3は、セルロースを構成材料とする半透の逆浸透膜2枚をスパイラル形状としたものを使用している。供給水20が水道水などで塩素が含まれる場合、水質改善手段4の電解によって次亜塩素酸が発生するが、セルロースの逆浸透膜は次亜塩素酸と反応することがないので特に望ましい。   The reverse osmosis membrane means 3 is an apparatus that generates pure water 33 and concentrated water 34 by ultrafiltration of the pressurized supply water 20 and the water to be treated 41 through a reverse osmosis membrane. The reverse osmosis membrane means 3 includes two compartments, a pure water side compartment 31 and a concentrated water side compartment 32 with a reverse osmosis membrane interposed therebetween, and performs ultrafiltration to increase the water pressure of the concentrated water side compartment 32. Pure water 33 is obtained in the pure water side section 31 and concentrated water 34 is obtained in the concentrated water side section 32. As the reverse osmosis membrane means 3, those used in the production of pure water (RO water) using a conventional reverse osmosis membrane can be used. The reverse osmosis membrane means 3 of the present embodiment uses a spiral shape of two semipermeable reverse osmosis membranes made of cellulose. When the supply water 20 is tap water or the like and contains chlorine, hypochlorous acid is generated by electrolysis of the water quality improving means 4, but the reverse osmosis membrane of cellulose is particularly desirable because it does not react with hypochlorous acid.

逆浸透膜手段3の濃縮水側区画32に接続された供給路5aの途中には、上述した加圧手段6の他に、後述するイオン強度センサ60及び水圧センサ61が設けられている。一方、逆浸透膜手段3の純水側区画31に接続された配管5dの途中には、後述する水質検知センサ71(本発明の水質検知手段に対応する)が設けられている。また、逆浸透膜手段3の濃縮水側区画32から水質改善手段4に接続された配管5bの途中には、手動バルブ35が設けられている。なお、前述した加圧手段6および手動バルブ35によって水質改善手段4に供給する濃縮水34の流速を制御することができ、これらが本発明の流速制御手段を兼ねている。   In the middle of the supply path 5a connected to the concentrated water side section 32 of the reverse osmosis membrane means 3, an ionic strength sensor 60 and a water pressure sensor 61 described later are provided in addition to the pressurizing means 6 described above. On the other hand, in the middle of the pipe 5d connected to the pure water side section 31 of the reverse osmosis membrane means 3, a water quality detection sensor 71 (corresponding to the water quality detection means of the present invention) described later is provided. A manual valve 35 is provided in the middle of the pipe 5b connected from the concentrated water side section 32 of the reverse osmosis membrane means 3 to the water quality improvement means 4. Note that the flow rate of the concentrated water 34 supplied to the water quality improvement unit 4 can be controlled by the pressurizing unit 6 and the manual valve 35 described above, and these also serve as the flow rate control unit of the present invention.

水質改善手段4は、処理槽40と、処理槽40内に設けられており、金属材料とフッ化ピッチとを含む材料からなる溶射皮膜42a(図2)を表面に有する陰極42と、処理槽40内に設けられている陽極43と、陰極42及び陽極43間に流す電流を供給する電源44とを備えている。   The water quality improvement means 4 is provided in the treatment tank 40, the treatment tank 40, a cathode 42 having a thermal spray coating 42a (FIG. 2) made of a material containing a metal material and a fluorinated pitch, and a treatment tank. 40, an anode 43 provided in 40, and a power source 44 for supplying a current flowing between the cathode 42 and the anode 43 are provided.

図2に示すように、陰極42は陽極43と平行に対向するように処理槽40内に設けられる。この陰極42の表裏両面の全面が溶射皮膜42aによって覆われている。この溶射皮膜42aは、金属材料42bとフッ化ピッチ42cとを含む材料で構成されている。   As shown in FIG. 2, the cathode 42 is provided in the processing tank 40 so as to face the anode 43 in parallel. The entire front and back surfaces of the cathode 42 are covered with a sprayed coating 42a. The thermal spray coating 42a is made of a material including a metal material 42b and a fluoride pitch 42c.

陰極42の本体42dは、本実施形態では、SUS304から形成されており、縦横が195mm×240mmの寸法を有し、厚さが3〜30mmの寸法を有する矩形形状の平板から構成されている。この電極本体42dの両表面上に、溶射皮膜42aが積層されている。陰極42の一辺の端部には、電極端子部42eが形成されており、この電極端子部42eに一端が電源44に接続された導線45の他端が接続されている。   In the present embodiment, the main body 42d of the cathode 42 is made of SUS304, and is formed of a rectangular flat plate having dimensions of 195 mm × 240 mm in length and breadth and a thickness of 3 to 30 mm. A sprayed coating 42a is laminated on both surfaces of the electrode body 42d. An electrode terminal portion 42 e is formed at one end of the cathode 42, and the other end of a conducting wire 45 having one end connected to the power supply 44 is connected to the electrode terminal portion 42 e.

図2の拡大図からも分かるように、溶射皮膜42aは、金属材料42bによって形成された皮膜の中にフッ化ピッチ42cが分散された構成となっている。溶射皮膜42aとは、燃焼又は電気エネルギを用いて溶射材料を加熱し、溶融又はそれに近い状態にした粒子を素地に吹き付けて形成された皮膜(日本工業規格 JIS H8200)である。このように、金属材料42b内にフッ化ピッチ42cが分散する形をとることで、皮膜の表面が金属材料42bの金属及びフッ化元素からなっている。金属材料42bの一部が、溶射の過程で分解したフッ化ピッチ42cの一部と反応しフッ素化されている場合もある。金属材料42bは、ここでは導電性の高いニッケル(Ni)、銅(Cu)、亜鉛(Zn)、鉛(Pb)、カドミウム(Cd)、鉄(Fe)又はクロム(Cr)等のいずれか又は複数を含有するものであり、本実施形態では、Niを用いている。   As can be seen from the enlarged view of FIG. 2, the sprayed coating 42a has a configuration in which the fluorinated pitch 42c is dispersed in the coating formed of the metal material 42b. The thermal spray coating 42a is a coating (Japanese Industrial Standard JIS H8200) formed by heating a thermal spray material using combustion or electric energy and spraying particles that have been melted or brought close to it onto a substrate. Thus, the surface of the film is made of the metal of the metal material 42b and the fluorinated element by taking the form in which the fluoride pitch 42c is dispersed in the metal material 42b. A part of the metal material 42b may react with a part of the fluorinated pitch 42c decomposed during the thermal spraying process to be fluorinated. Here, the metal material 42b is nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), iron (Fe), chromium (Cr), or the like having high conductivity, In this embodiment, Ni is used.

フッ化ピッチ42cは、炭素ピッチをフッ素化して得られる物質である。炭素ピッチは芳香族の縮合六員環平面が脂肪族炭化水素の架橋によって積層された構造を主とするものであり、ガス製造過程の副産物として生成される石油系の炭素ピッチである。この炭素ピッチをフッ素ガス雰囲気下で直接反応させてフッ化ピッチ42cが得られる。フッ化ピッチ42cの組成として好ましいのはフッ素と炭素の元素比が0.5〜1.8程度のものである。このようにして得られるフッ化ピッチ42cは、その多くが粉末状の形状、即ち細かい粒状の形状を有している。フッ化ピッチ42cの径は、10〜200μmであり、比重は2.0である。フッ化ピッチ42cの径が200μmを超える場合や、含有量が30%を超える場合は、フッ化ピッチ42cの溶射皮膜42aからの脱落が起こり易い。   The fluoride pitch 42c is a substance obtained by fluorinating a carbon pitch. The carbon pitch is mainly composed of a structure in which aromatic condensed six-membered ring planes are laminated by cross-linking of aliphatic hydrocarbons, and is a petroleum-based carbon pitch generated as a by-product of the gas production process. This carbon pitch is directly reacted in a fluorine gas atmosphere to obtain a fluorinated pitch 42c. A preferred composition of the fluorinated pitch 42c is one having an element ratio of fluorine to carbon of about 0.5 to 1.8. Most of the fluorinated pitches 42c thus obtained have a powdery shape, that is, a fine granular shape. The diameter of the fluorinated pitch 42c is 10 to 200 μm, and the specific gravity is 2.0. When the diameter of the fluorinated pitch 42c exceeds 200 μm, or when the content exceeds 30%, the fluorinated pitch 42c easily falls off from the sprayed coating 42a.

溶射皮膜42aがフッ化ピッチ42cと金属材料42bとによって形成されることから、この溶射皮膜42aには、スケールが成長し易い金属表面とスケールが剥がれ易いフッ素元素表面とを有することとなる。これら金属表面及びフッ素元素表面は、それぞれがある程度の面積を有し、数μm〜数十μm(およそ1〜200μm前後)の間隔を隔てた、むらのある状態で分布した、いわゆるまだら状の分布となっている。さらに、平滑な金属材料42bの表面から粒状のフッ化ピッチ42cが突出した分布となるために、表面が粗く形成されている。特に、フッ化ピッチ42cの径が30μm以上であると、金属表面とフッ素元素表面との面積及び表面の粗さが充分に確保され、スケールをより剥がれやすくなるので望ましい。また、溶射皮膜42aの厚さとの関係から、フッ化ピッチ42cの径は150μm未満であることが望ましい。さらに、溶射皮膜42aの表面の凹凸によってスケール成分と表面の接触が起こりやすくなり、スケールを剥がしやすくなるので、フッ化ピッチ42cの径は50μm以上かつ100μm未満であることが特に望ましい。   Since the thermal spray coating 42a is formed by the fluorinated pitch 42c and the metal material 42b, the thermal spray coating 42a has a metal surface on which scales are likely to grow and a fluorine element surface on which scales are easily peeled off. These metal surfaces and fluorine element surfaces each have a certain area, and are distributed in an uneven state with a spacing of several μm to several tens of μm (approximately 1 to 200 μm), so-called mottled distribution. It has become. Furthermore, since the granular fluoride pitch 42c protrudes from the surface of the smooth metal material 42b, the surface is formed rough. In particular, when the diameter of the fluorinated pitch 42c is 30 μm or more, the area between the metal surface and the surface of the fluorine element and the surface roughness are sufficiently secured, and the scale is more easily peeled off. Further, from the relationship with the thickness of the thermal spray coating 42a, the diameter of the fluorinated pitch 42c is desirably less than 150 μm. Furthermore, since the scale component and the surface are likely to come into contact with each other due to the irregularities on the surface of the thermal spray coating 42a, the scale is easily peeled off.

フッ化ピッチ42cの溶射皮膜42aに対する含有量は1〜30重量%であることが望ましく、本実施形態では、約15重量%である。溶射皮膜42aの厚さはフッ化ピッチ42cの安定性から考えると20〜100μmであることがさらに望ましい。このようなフッ化ピッチ42cの径及び含有量で構成した場合、溶射皮膜42aの表面において、フッ化ピッチ42cやフッ素化された金属元素によるフッ素元素が表面積に占める割合は、0.001〜0.2%となる。   The content of the fluorinated pitch 42c with respect to the sprayed coating 42a is preferably 1 to 30% by weight, and in this embodiment, it is about 15% by weight. Considering the stability of the fluorinated pitch 42c, the thickness of the sprayed coating 42a is more preferably 20 to 100 μm. When configured with such a diameter and content of the fluorinated pitch 42c, the ratio of the fluorinated pitch 42c and the fluorine element due to the fluorinated metal element to the surface area of the sprayed coating 42a is 0.001 to 0. .2%.

溶射皮膜42aの表面からフッ化ピッチ42cが1〜100μm程度突出し、溶射皮膜42aの表面に凹凸が形成されていることが望ましい。フッ化ピッチ42cは、突出し過ぎると溶射皮膜42aから剥離する可能性があるが、突出した表面積の大きい方がよいので、10〜50μmの範囲で突出していることが特に望ましい。   It is desirable that the fluorinated pitch 42c protrudes from the surface of the sprayed coating 42a by about 1 to 100 μm, and that the surface of the sprayed coating 42a is uneven. The fluorinated pitch 42c may be peeled off from the thermal spray coating 42a if it protrudes too much, but it is preferable that the fluorinated pitch 42c protrude in the range of 10 to 50 [mu] m because it should have a larger surface area.

本実施形態においては、溶射皮膜42aは、粉末状のNiとフッ化ピッチ42cとから製造される溶射材料を用いて溶線式(ワイヤガス)溶射法によって形成されている。このような溶射材料に代えて、金属材料42bからなるワイヤ状、コイル状又は棒状等の溶射に適した形状の成形体中にフッ化ピッチ42cが一体的に含まれているワイヤ状の溶射材料を用いて、この溶射皮膜42aを形成しても良い。溶線式溶射法の他に、一般的な溶射法、例えばフレーム溶射法、ガス式溶射法、アーク溶射法、プラズマ溶射法又は爆発溶射法等も、溶射皮膜42aの形成に用いることができる。溶射法によって、径が20μm以上又は30μm以上といった大きな径のフッ化ピッチ42cを金属材料42b内に分散させることができる。溶射法は、溶射の際に溶解してプラズマ状となった金属材料が、空気中で冷えて溶射対象に付着することによって、溶射皮膜42aを形成するため、溶射や冷却の条件によって溶射皮膜42aの表面の状態を制御することが可能である。従って、溶射皮膜42aの表面を、滑らかな表面だけではなく、凹凸をも有する状態に形成することが可能である。   In this embodiment, the thermal spray coating 42a is formed by a hot wire (wire gas) thermal spraying method using a thermal spray material manufactured from powdered Ni and fluoride pitch 42c. Instead of such a thermal spray material, a wire-like thermal spray material in which a fluoride pitch 42c is integrally included in a molded body having a shape suitable for thermal spraying such as a wire shape, a coil shape or a rod shape made of a metal material 42b. The sprayed coating 42a may be formed using In addition to the hot wire spraying method, a general spraying method such as a flame spraying method, a gas spraying method, an arc spraying method, a plasma spraying method or an explosion spraying method can also be used for forming the sprayed coating 42a. By the thermal spraying method, the fluorinated pitch 42c having a large diameter of 20 μm or more or 30 μm or more can be dispersed in the metal material 42b. In the thermal spraying method, the metal material that is melted during the thermal spraying into a plasma form is cooled in the air and adheres to the thermal spray target, thereby forming the thermal spray coating 42a. It is possible to control the state of the surface. Therefore, it is possible to form the surface of the thermal spray coating 42a in a state having not only a smooth surface but also irregularities.

陰極42と電極端子部42eとの接続部や、電極端子部42eの導線45の露出部は、濃縮水34による錆びや電解による破損から防止できるよう被覆部材42fによって保護されている。本実施形態において、被覆部材42fは、エポキシ樹脂によるコーキング材で形成されている。   The connecting portion between the cathode 42 and the electrode terminal portion 42e and the exposed portion of the conductive wire 45 of the electrode terminal portion 42e are protected by a covering member 42f so as to be prevented from rusting due to the concentrated water 34 and damage due to electrolysis. In the present embodiment, the covering member 42f is formed of a caulking material made of an epoxy resin.

陽極43は、処理槽40内に、距離Lを隔てて陰極42と平行に対向するように配置されている。距離Lは例えば50mmである。距離Lが小さすぎると、互いの電極で成長したスケールが接触して短絡等の事故の生じるおそれがあるため、例えば本実施形態の電極のごとき表面積の場合は、25mmを下回ることは望ましくない。また、距離Lが大きくなると両極間の電気抵抗が大きくなり電解の効率が低下するので、特に100mmを上回ることは望ましくない。本実施形態においては、陽極43として、耐久性や電力効率が高いものとしてチタン基体に酸化ルテニウム(RuO)/酸化チタン(TiO)を主体とする貴金属酸化物を担持した多孔性電極であるDSE(登録商標、ペルメレック電極株式会社製)電極を用いている。しかしながら、陽極43を陰極42と同じ構成としても、他の任意の電極構成としても良い。陽極43は陰極42と同様に、電源44と接続する電極端子部43eと、この電極端子部43eを保護するための被覆部材43fとを備えている。 The anode 43 is disposed in the processing tank 40 so as to face the cathode 42 in parallel with a distance L. The distance L is, for example, 50 mm. If the distance L is too small, the scales grown on the electrodes may come into contact with each other and an accident such as a short circuit may occur. For example, in the case of a surface area such as the electrode of this embodiment, it is not desirable to be less than 25 mm. Further, when the distance L is increased, the electrical resistance between the two electrodes is increased and the efficiency of electrolysis is lowered, so that it is not particularly desirable to exceed 100 mm. In the present embodiment, the anode 43 is a DSE that is a porous electrode in which a noble metal oxide mainly composed of ruthenium oxide (RuO 2 ) / titanium oxide (TiO) is supported on a titanium substrate as a material having high durability and high power efficiency. (Registered trademark, manufactured by Permerek Electrode Co., Ltd.) An electrode is used. However, the anode 43 may have the same configuration as the cathode 42 or other arbitrary electrode configuration. As with the cathode 42, the anode 43 includes an electrode terminal portion 43e connected to the power source 44 and a covering member 43f for protecting the electrode terminal portion 43e.

処理槽40内には、逆浸透膜手段3からの濃縮水34が満たされている。処理槽40は、配管5c及び供給路5a、逆浸透膜手段3並びに配管5bを介して、濃縮水34が適宜循環できるように構成されている。処理槽40には、濃縮水34を適宜排水できる排水管46が、開閉可能なバルブ49と共に設けられている。このバルブ49は、制御装置(図示せず)によってその開閉が制御される電磁バルブである。   The treatment tank 40 is filled with the concentrated water 34 from the reverse osmosis membrane means 3. The treatment tank 40 is configured so that the concentrated water 34 can be appropriately circulated through the pipe 5c and the supply path 5a, the reverse osmosis membrane means 3 and the pipe 5b. The treatment tank 40 is provided with a drain pipe 46 that can appropriately drain the concentrated water 34 together with a valve 49 that can be opened and closed. The valve 49 is an electromagnetic valve whose opening and closing is controlled by a control device (not shown).

電源44は電極端子部42e及び43e並びに導線45を介して陰極42及び陽極43にそれぞれ接続されている。本実施形態では、この電源44として、1アンペアの直流安定化電源を使用している。   The power supply 44 is connected to the cathode 42 and the anode 43 through electrode terminal portions 42e and 43e and a conducting wire 45, respectively. In the present embodiment, a 1 ampere DC stabilized power supply is used as the power supply 44.

前述したように、加圧手段6と逆浸透膜手段3との間の供給路5aには、供給水20及び被処理水41のイオン強度を検知するイオン強度センサ60と、供給水20及び被処理水41の水圧を検知する水圧センサ61とが設けられている。イオン強度センサ60及び水圧センサ61は、加圧手段6の動作を制御可能な電子回路を備えた制御装置(図示せず)と接続されており、水圧センサ61とこの電子回路とが、加圧手段6による圧力を制御する圧力制御手段を構成している。   As described above, in the supply path 5a between the pressurizing means 6 and the reverse osmosis membrane means 3, the ion strength sensor 60 for detecting the ionic strength of the supply water 20 and the water to be treated 41, the supply water 20 and the target water. A water pressure sensor 61 that detects the water pressure of the treated water 41 is provided. The ionic strength sensor 60 and the water pressure sensor 61 are connected to a control device (not shown) provided with an electronic circuit capable of controlling the operation of the pressurizing means 6, and the water pressure sensor 61 and the electronic circuit are pressurized. The pressure control means for controlling the pressure by means 6 is configured.

純水貯留手段7は、逆浸透膜手段3で得られた純水33を利用時まで貯留しておくための貯留槽であり、貯留槽の容量は、純水33の利用量に応じて定められる。この純水貯留手段7は、純水33を外部に供給する手段である、ユースポイント70に接続されている。さらに、純水貯留手段7には、純水33のイオン強度を検出する水質検知センサ71が備えられている。本実施形態では、水質検知センサ71は純水貯留手段7と純水側区画31とを接続する配管5dの途中に設けられており、純水33のイオン強度を測定可能なセンサである。ユースポイント70には開閉可能なバルブ72が備えられている。このバルブ72は、制御装置(図示せず)によってその開閉が制御される電磁バルブである。   The pure water storage means 7 is a storage tank for storing the pure water 33 obtained by the reverse osmosis membrane means 3 until use, and the capacity of the storage tank is determined according to the usage amount of the pure water 33. It is done. The pure water storage means 7 is connected to a use point 70 which is a means for supplying pure water 33 to the outside. Further, the pure water storage means 7 is provided with a water quality detection sensor 71 for detecting the ionic strength of the pure water 33. In the present embodiment, the water quality detection sensor 71 is provided in the middle of the pipe 5d connecting the pure water storage means 7 and the pure water side section 31, and is a sensor capable of measuring the ionic strength of the pure water 33. The use point 70 is provided with a valve 72 that can be opened and closed. The valve 72 is an electromagnetic valve whose opening and closing is controlled by a control device (not shown).

次に、本実施形態の純水製造装置1の動作及び作用効果について説明する。   Next, operation | movement and effect of the pure water manufacturing apparatus 1 of this embodiment are demonstrated.

供給手段2から供給された供給水20と、後述する被処理水41とが、逆浸透膜手段3に加圧供給される。逆浸透膜手段3では、この供給水20と被処理水41とを逆浸透膜によって限外濾過され、純水側区画31にスケール成分等の不純物が除去された純水33が得られ、濃縮水側区画32に不純物が濃縮された濃縮水34が得られる。濃縮水34は配管5bを介して水質改善手段4に供給されて電解処理され、水質改善された濃縮水である被処理水41として再び逆浸透膜手段3に戻される。純水33は、配管5dを介して純水貯留手段7に送られる。   Supply water 20 supplied from the supply means 2 and treated water 41 to be described later are pressurized and supplied to the reverse osmosis membrane means 3. In the reverse osmosis membrane means 3, the feed water 20 and the water to be treated 41 are ultrafiltered by a reverse osmosis membrane, and pure water 33 from which impurities such as scale components are removed is obtained in the pure water side section 31, and concentrated. Concentrated water 34 in which impurities are concentrated in the water side compartment 32 is obtained. The concentrated water 34 is supplied to the water quality improving means 4 through the pipe 5b, subjected to electrolytic treatment, and returned to the reverse osmosis membrane means 3 again as treated water 41 which is concentrated water whose water quality has been improved. The pure water 33 is sent to the pure water storage means 7 through the pipe 5d.

水質改善手段4における水質改善処理について、以下、説明する。   The water quality improvement process in the water quality improvement means 4 will be described below.

この水質改善手段4においては、処理槽40の濃縮水34を電解処理することにより、この濃縮水34中に含まれるスケール47a、47b及び47cを析出させて水質改善した被処理水41を得ている。図2に示すように、陰極42の溶射皮膜42aは、その表面の一部をフッ化ピッチ42cとフッ素化した金属材料42bに由来するフッ素とが占めることによって、水に対する接触角が大きく、表面に液体が接触しにくい性質を有している。本実施形態における水質改善手段4の溶射皮膜42aでは、フッ化ピッチ42cの径と含有量とによって、水に対する接触角が120〜140°となっており、高い撥水性を有している。   In this water quality improvement means 4, by subjecting the concentrated water 34 in the treatment tank 40 to electrolytic treatment, scaled water 47 a, 47 b and 47 c contained in the concentrated water 34 are deposited to obtain treated water 41 with improved water quality. Yes. As shown in FIG. 2, the sprayed coating 42 a of the cathode 42 has a large contact angle with water due to the fact that a part of the surface is occupied by fluorine pitch 42 c and fluorine derived from the fluorinated metal material 42 b. It is difficult for liquids to come into contact with it. In the sprayed coating 42a of the water quality improvement means 4 in the present embodiment, the contact angle with water is 120 to 140 ° depending on the diameter and content of the fluorinated pitch 42c, and has high water repellency.

電解処理を行うには、まず、陰極42及び陽極43間に通電する。即ち、陰極42に保持されたスケール47a、47b及び47cや濃縮水34内のイオンの条件によって電気抵抗が変化するため、電源44から、これら陰極42及び陽極43間に定電流を流す。図2に示した例では、1アンペアの定電流を供給している。通電が行われると、濃縮水34に含まれるスケールの成分48は、陽極43側から陰極42に向かって電気泳動する。これによりスケールの成分48が固形となって析出し、固体スケール47a、47b及び47cとなって陰極42の表面及び裏面上に保持される。すでに固形となった固体スケール47a、47b及び47cは、スケール成分48がさらに保持されることで成長していく。陰極42の、陽極43と対向する面(表面)には固体スケール47a及び47bが特に多量に成長する。陰極42の裏面には、表面よりも量は少ないが固体スケール47cが成長する。   In order to perform the electrolytic treatment, first, electricity is applied between the cathode 42 and the anode 43. That is, since the electrical resistance changes depending on the conditions of the scales 47 a, 47 b and 47 c held in the cathode 42 and ions in the concentrated water 34, a constant current is passed from the power source 44 between the cathode 42 and the anode 43. In the example shown in FIG. 2, a constant current of 1 ampere is supplied. When energization is performed, the scale component 48 contained in the concentrated water 34 is electrophoresed from the anode 43 side toward the cathode 42. As a result, the scale component 48 is precipitated as a solid, and is formed on the front and back surfaces of the cathode 42 as solid scales 47a, 47b and 47c. The solid scales 47a, 47b, and 47c that have already become solid grow as the scale component 48 is further retained. A large amount of solid scales 47a and 47b grow on the surface (surface) of the cathode 42 facing the anode 43. A solid scale 47c grows on the back surface of the cathode 42, although the amount is smaller than that on the front surface.

溶射皮膜42aのうち、むらのある状態に、換言すれば、まだら状に分布しているフッ化ピッチ42cの表面は、フッ素元素の存在によって撥水性が高くなっており、液体が接触状態を保ちにくくなっている。即ち、フッ化ピッチ42cの表面は、処理槽40の中で濃縮水34に接している状態でも、濃縮水34の分子と接触した状態を保つことが難しくなっている。これに対して、同じくむらのある状態で分布している金属材料42bの表面は、濃縮水34の分子と接触した状態を保つことのできる接触表面42gとなっている。従って、溶射皮膜42aの表面の一部である接触表面42gにおいてのみ析出したスケールが保持され成長することとなる。従って、図2に示すように、溶射皮膜42aのごく一部の接触表面42gのみで保持された状態で成長した小型の固体スケール47a及び47cや、膜状に成長しているがその一部でしか溶射皮膜42aと接触状態を維持していない固体スケール47b等が成長することとなる。このように、塊状の固体スケール47a、47b及び47cが剥がれ易い状態で陰極42上に析出されるので、濃縮水34中に含まれるスケール成分が除去され、しかも、固体のスケールが遊離することもない。   In the sprayed coating 42a, in other words, the surface of the fluorinated pitch 42c distributed in a mottled pattern is highly water-repellent due to the presence of elemental fluorine, and the liquid remains in contact. It has become difficult. That is, even when the surface of the fluorinated pitch 42c is in contact with the concentrated water 34 in the treatment tank 40, it is difficult to keep the surface in contact with the molecules of the concentrated water 34. On the other hand, the surface of the metal material 42b, which is also distributed in an uneven state, is a contact surface 42g that can maintain a state in contact with the molecules of the concentrated water 34. Accordingly, the deposited scale is held and grows only on the contact surface 42g which is a part of the surface of the sprayed coating 42a. Therefore, as shown in FIG. 2, small solid scales 47a and 47c grown in a state where only a small part of the contact surface 42g of the thermal spray coating 42a is grown, or a part of the scale is grown in a film shape. However, the solid scale 47b or the like that maintains the contact state with the thermal spray coating 42a grows. As described above, since the massive solid scales 47a, 47b and 47c are easily separated from the cathode 42, the scale components contained in the concentrated water 34 are removed, and the solid scale may be liberated. Absent.

以上述べたように、水質改善手段4において水質改善された濃縮水である被処理水41は、供給水20と共に加圧手段6に供給され、加圧手段6によって加圧されつつ逆浸透膜手段3に再び供給される。なお、供給水20は、供給手段2から濾過器21によって固形物等の不純物を除去された上で逆浸透膜手段3に供給される。   As described above, the water to be treated 41, which is the concentrated water whose water quality has been improved by the water quality improving means 4, is supplied to the pressurizing means 6 together with the supply water 20, and the reverse osmosis membrane means while being pressurized by the pressurizing means 6. 3 is supplied again. The supply water 20 is supplied from the supply means 2 to the reverse osmosis membrane means 3 after impurities such as solid matter are removed by the filter 21.

逆浸透膜手段3の純水側区画31で得られた純水33は、純水貯留手段7に貯留され、利用時にバルブ72を開放してユースポイント70から利用される。ただし、水質検知センサ71で検知した純水33の水質が利用に不適である場合は、ユースポイント70から回収後、廃棄する。   The pure water 33 obtained in the pure water side section 31 of the reverse osmosis membrane means 3 is stored in the pure water storage means 7 and is used from the use point 70 by opening the valve 72 when used. However, if the water quality of the pure water 33 detected by the water quality detection sensor 71 is unsuitable for use, it is collected from the use point 70 and discarded.

逆浸透膜手段3に供給される供給水20及び被処理水41のイオン強度及び水圧はイオン強度センサ60及び水圧センサ61で、純水33の水質は水質検知センサ71で、それぞれ検知される。逆浸透膜手段3の限外濾過では、供給水20及び被処理水41のイオン強度が高くなると、これらの水圧が高まる。供給水20及び被処理水41のイオン強度及び水圧の上昇に応じて、得られる純水33はイオン強度が高くなる。純水33のイオン強度が利用目的に応じた範囲に収まり、供給水20及び被処理水41のイオン強度及び水圧が純水33のイオン強度を維持できる範囲に収まっていれば、供給水20の供給量を一定(例えば純水33の利用量と同量)に保ち、被処理水41の排水を行わずに運転することができ、水の廃棄量を減少させることができるほか、メンテナンスの手間やコストを最小限にすることが可能となる。   The ionic strength and water pressure of the supply water 20 and the water to be treated 41 supplied to the reverse osmosis membrane means 3 are detected by an ion strength sensor 60 and a water pressure sensor 61, and the quality of pure water 33 is detected by a water quality detection sensor 71, respectively. In the ultrafiltration of the reverse osmosis membrane means 3, when the ionic strength of the feed water 20 and the water to be treated 41 is increased, these water pressures are increased. As the ionic strength and water pressure of the supply water 20 and the water to be treated 41 increase, the resulting pure water 33 has a higher ionic strength. If the ionic strength of the pure water 33 falls within the range according to the purpose of use, and the ionic strength and water pressure of the supply water 20 and the water to be treated 41 fall within the range where the ionic strength of the pure water 33 can be maintained, the supply water 20 The supply amount is kept constant (for example, the same amount as the use amount of pure water 33), it can be operated without draining the treated water 41, the amount of water discarded can be reduced, and maintenance work And costs can be minimized.

本実施形態においては、実際には、制御装置(図示せず)によって、供給水20及び被処理水41の水圧とイオン強度が上昇し、純水33のイオン強度が上昇した場合は、供給水20及び被処理水41の水圧及び/又はイオン強度を低下させる以下のいずれか1つ以上の処理が行われる。即ち、
(1)加圧手段6による印加圧力を下げることにより、供給水20及び被処理水41の水圧を下げる、
(2)水質改善手段4の電源44から供給される電力を増大させて濃縮水34のスケール成分をより析出させることにより、被処理水41のイオン強度を下げる、
(3)水質改善手段4の排水管46に接続されたバルブ49を開放しイオン強度の高い濃縮水34を廃棄することにより、被処理水41のイオン強度と水圧を下げる、
(4)供給手段2に接続されたバルブ22によって供給水20の供給量を増加させることにより、供給水20及び被処理水41のイオン強度を下げる。供給水20及び被処理水41の水圧を制御することで、逆浸透膜手段3の逆浸透膜に水圧がかからず、装置内部のその他の箇所に水圧による負荷がかかることがないので、メンテナンスの手間やコストが最小限となる。
In the present embodiment, in practice, when the water pressure and ionic strength of the supply water 20 and the water to be treated 41 are increased by the control device (not shown) and the ionic strength of the pure water 33 is increased, the supply water 20 and any one or more of the following processes for reducing the water pressure and / or ionic strength of the water 41 to be treated are performed. That is,
(1) Lowering the water pressure of the supply water 20 and the treated water 41 by lowering the pressure applied by the pressurizing means 6;
(2) Decreasing the ionic strength of the water to be treated 41 by increasing the electric power supplied from the power supply 44 of the water quality improvement means 4 and precipitating the scale component of the concentrated water 34 more.
(3) The valve 49 connected to the drain pipe 46 of the water quality improvement means 4 is opened to discard the concentrated water 34 having high ionic strength, thereby reducing the ionic strength and water pressure of the water to be treated 41.
(4) The ionic strength of the supply water 20 and the for-treatment water 41 is lowered by increasing the supply amount of the supply water 20 by the valve 22 connected to the supply means 2. By controlling the water pressure of the feed water 20 and the water to be treated 41, the reverse osmosis membrane of the reverse osmosis membrane means 3 is not subjected to water pressure, and no load due to water pressure is applied to other locations inside the apparatus. Effort and cost are minimized.

陰極42に対するスケールの付着は、加圧装置6の圧力と、手動で手動バルブ35を制御することで調節できる。すなわち、これらの制御によって水質改善手段4に供給される濃縮水34の流速を高めると、濃縮水34が陰極42に接触する時間が短くなるので、陰極表面のスケールの厚み及び大きさが成長しにくくなる。また、陰極42に直接当たる水圧が高まり、スケールが剥がれることでも成長しにくくなる。特に、スケールが成長しすぎて電極の電解能力が低下する、水質改善装置4内で物理的に通水などの支障をきたしたりすることを、手動バルブ35の操作で防止できる。   The adhesion of the scale to the cathode 42 can be adjusted by controlling the pressure of the pressurizing device 6 and the manual valve 35 manually. That is, if the flow rate of the concentrated water 34 supplied to the water quality improvement means 4 is increased by these controls, the time for the concentrated water 34 to contact the cathode 42 is shortened, so that the scale thickness and size of the cathode surface grow. It becomes difficult. Further, the water pressure directly hitting the cathode 42 is increased, and it is difficult to grow even if the scale is peeled off. In particular, the operation of the manual valve 35 can prevent the scale from growing too much and causing the electrolysis ability of the electrode to decrease, and causing problems such as physical water flow in the water quality improvement device 4.

被処理水41は、供給水20と共に逆浸透膜手段3に供給され限外濾過されるが、スケール成分47a、47b及び47cが除去されてイオン強度が低下しているので限外濾過に過剰に高い圧力を要することがなく、水中にスケールが遊離していないので逆浸透膜に詰まりを起こさせることがなく、逆浸透膜手段3に負担をかけることが少なくなる。そのため、逆浸透膜手段3のメンテナンスや交換が最小限にとどめられる。   The water to be treated 41 is supplied to the reverse osmosis membrane means 3 together with the supply water 20 and ultrafiltered, but the scale components 47a, 47b and 47c are removed and the ionic strength is reduced, so that the ultrafiltration is excessive. Since no high pressure is required and the scale is not released in water, the reverse osmosis membrane is not clogged and the burden on the reverse osmosis membrane means 3 is reduced. Therefore, the maintenance and replacement of the reverse osmosis membrane means 3 can be minimized.

陰極42に析出して保持された固体スケールの除去は、以下のようにして行われる。まず、陰極42を処理槽40から取り出し、水道用ホースからの放水洗浄で、水圧を加える。通常、金属の結晶は滑らかな表面に付着し成長する際は板状や針状の結晶をとって成長するが、塊状の固体スケール47a、47b及び47cは、むらのある陰極42の表面に対して粒状や泡状に成長したものが互いに付着した粗いスラッジ、いわゆる多粒スラッジとして成長している。これらの多粒スラッジ、即ち、小型の固体スケール47a及び47cや、膜状の固体スケール47bは、いずれも接触表面42gのごく一部の小さい面積でしか溶射皮膜42aと接触していないので、水圧によって容易に剥がれ、流れ落ちる。そのため、陰極42からはこれらの操作によって容易に固体スケール47a、47b及び47cの塊を除去することができる。脱落した固体スケールは金属の小片、いわゆる固体金属フレークとなって、容易に除去又は回収処理できる。なお、陰極42を処理槽40に入れたままで配管から被処理水41を高速で循環させることで、陰極42の表面に水圧をかけて除去することもできる。またブラッシング等で軽く擦る力で固体スケールを剥がすこともできる。これらと水圧とを併用してもよい。
Removal of the solid scale deposited and held on the cathode 42 is performed as follows. First, the cathode 42 is taken out from the treatment tank 40, and water pressure is applied by water discharge washing from a water supply hose. Usually, when a metal crystal is attached to a smooth surface and grows, it takes a plate-like or needle-like crystal, but the massive solid scales 47a, 47b, and 47c are formed on the surface of the uneven cathode 42. As a result, it grows in the form of coarse sludge in which grains and foams are adhered to each other, so-called multi-grain sludge. These multi-grain sludges, that is, the small solid scales 47a and 47c and the film-like solid scale 47b are all in contact with the sprayed coating 42a only in a small area of the contact surface 42g. Easily peels off and flows down. Therefore, the solids 47a, 47b and 47c can be easily removed from the cathode 42 by these operations. The dropped solid scale becomes a small piece of metal, so-called solid metal flakes, and can be easily removed or recovered. Incidentally, the piping or we treated water 41 without turning cathode 42 to the processing tank 40 by circulating at high speed, can be removed by applying pressure to the surface of the cathode 42. Further, the solid scale can be peeled off with a light rubbing force by brushing or the like. These and water pressure may be used in combination.

本実施形態の変更態様として、逆浸透膜手段3が備える逆浸透膜を、例えばポリアミド又はPVAを構成材料としスパイラル、中空糸、平板等の形状としたものを使用可能である。この場合、供給水20に塩素が含まれる場合は、電解で生じた次亜塩素酸と逆浸透膜が反応しないよう、水質改善手段4と逆浸透膜手段3との間に活性炭を備えたフィルタなどで次亜塩素酸を除去する手段を設けるのが望ましい。   As a modified embodiment of the present embodiment, the reverse osmosis membrane provided in the reverse osmosis membrane means 3 can be made of, for example, polyamide or PVA as a constituent material and shaped like a spiral, a hollow fiber, a flat plate or the like. In this case, when the supply water 20 contains chlorine, a filter provided with activated carbon between the water quality improvement means 4 and the reverse osmosis membrane means 3 so that the hypochlorous acid generated by electrolysis does not react with the reverse osmosis membrane means. It is desirable to provide a means for removing hypochlorous acid.

本発明は、上述した実施形態に限定されるものでなく、特許請求の範囲に記載された発明の要旨を逸脱しない範囲内での種々、設計変更した形態を技術的範囲に含まれるものである。   The present invention is not limited to the above-described embodiments, and variously modified forms are included in the technical scope without departing from the gist of the invention described in the claims. .

本発明は、医療や工業用の水質浄化にも幅広く役立ち、生活や産業に貢献するのみならず、環境問題にも貢献できるものである。   The present invention is widely useful for medical and industrial water purification, and can contribute not only to life and industry but also to environmental problems.

1 純水製造装置
2 供給手段
3 逆浸透膜手段(濃縮膜手段)
4 水質改善手段
5a 供給路
5b、5c、5d 配管
6 加圧手段
7 純水貯留手段
20 供給水
21 濾過器
22、49、72 バルブ
23 逆止弁
31 純水側区画
32 濃縮水側区画
33 純水
34 濃縮水
35 手動バルブ
40 処理槽
41 被処理水
42 陰極
42a 溶射皮膜
42b 金属材料
42c フッ化ピッチ
42d 電極本体
42e、43e 電極端子部
42f、43f 被覆部材
42g 接触表面
43 陽極
44 電源
45 導線
46 排水管
47a、47b、47c 固体スケール
48 スケールの成分
60 イオン強度センサ
61 水圧センサ
70 ユースポイント(純水手段)
71 水質検知センサ
DESCRIPTION OF SYMBOLS 1 Pure water manufacturing apparatus 2 Supply means 3 Reverse osmosis membrane means (concentration membrane means)
4 Water quality improvement means 5a Supply path 5b, 5c, 5d Pipe 6 Pressurization means 7 Pure water storage means 20 Supply water 21 Filters 22, 49, 72 Valve 23 Check valve 31 Pure water side section 32 Concentrated water side section 33 Pure Water 34 Concentrated water 35 Manual valve 40 Treatment tank 41 Water to be treated 42 Cathode 42a Spray coating 42b Metal material 42c Fluoride pitch 42d Electrode body 42e, 43e Electrode terminal portions 42f, 43f Cover member 42g Contact surface 43 Anode 44 Power supply 45 Conductor 46 Drain pipes 47a, 47b, 47c Solid scale 48 Scale component 60 Ionic strength sensor 61 Water pressure sensor 70 Use point (pure water means)
71 Water quality detection sensor

Claims (10)

供給水を供給する供給路を有する供給手段と、前記供給水を濾過して純水と濃縮水とを得るための濃縮膜手段と、前記濃縮膜手段に接続して純水の供給を受ける純水手段と、前記濃縮膜手段に接続して濃縮水の供給を受け陰極及び陽極を備えて前記濃縮水を電解して水質改善するとともに水質改善された濃縮水を前記供給路に接続して前記濃縮膜手段に供給する水質改善手段とを備え、前記水質改善手段の前記陰極は金属材料とフッ化ピッチとを含む材料からなる溶射皮膜を表面に設け、
前記溶射皮膜の表面にはフッ化ピッチが該表面から1〜100μm突出してなる凹凸が形成されていることを特徴とする純水製造装置。
A supply means having a supply path for supplying supply water; a concentration membrane means for filtering the supply water to obtain pure water and concentrated water; and a pure water connected to the concentration membrane means for receiving supply of pure water Water means, and supply of concentrated water connected to the concentrated membrane means, provided with a cathode and an anode, to improve the water quality by electrolyzing the concentrated water and to connect the concentrated water improved in water quality to the supply path Water quality improving means for supplying to the concentrated film means, the cathode of the water quality improving means is provided with a sprayed coating made of a material containing a metal material and a fluoride pitch on the surface,
An apparatus for producing pure water, characterized in that the surface of the thermal spray coating is provided with irregularities in which a fluoride pitch protrudes from the surface by 1 to 100 μm.
前記陰極の前記フッ化ピッチの径が30〜150μmであることを特徴とする請求項1に記載の純水製造装置。   The diameter of the said fluoride pitch of the said cathode is 30-150 micrometers, The pure water manufacturing apparatus of Claim 1 characterized by the above-mentioned. 供給水を供給する供給路を有する供給手段と、前記供給水を濾過して純水と濃縮水とを得るための濃縮膜手段と、前記濃縮膜手段に接続して純水の供給を受ける純水手段と、前記濃縮膜手段に接続して濃縮水の供給を受け陰極及び陽極を備えて前記濃縮水を電解して水質改善するとともに水質改善された濃縮水を前記供給路に接続して前記濃縮膜手段に供給する水質改善手段とを備え、前記水質改善手段の前記陰極は金属材料とフッ化ピッチとを含む材料からなる溶射皮膜を表面に設け、
前記陰極の前記フッ化ピッチの径が30〜150μmであることを特徴とする純水製造装置。
A supply means having a supply path for supplying supply water; a concentration membrane means for filtering the supply water to obtain pure water and concentrated water; and a pure water connected to the concentration membrane means for receiving supply of pure water Water means, and supply of concentrated water connected to the concentrated membrane means, provided with a cathode and an anode, to improve the water quality by electrolyzing the concentrated water and to connect the concentrated water improved in water quality to the supply path Water quality improving means for supplying to the concentrated film means, the cathode of the water quality improving means is provided with a sprayed coating made of a material containing a metal material and a fluoride pitch on the surface,
The diameter of the said fluoride pitch of the said cathode is 30-150 micrometers, The pure water manufacturing apparatus characterized by the above-mentioned.
前記供給水の水圧を検知して前記水圧を制御する圧力制御手段を備えていることを特徴とする請求項1から3のいずれか1項に記載の純水製造装置。   The pure water production apparatus according to any one of claims 1 to 3, further comprising pressure control means for detecting a water pressure of the supply water and controlling the water pressure. 前記濃縮水のイオン強度を検知して前記水質改善手段の前記電解を制御する電解制御手段をさらに備えていることを特徴とする請求項1から4のいずれか1項に記載の純水製造装置。   5. The apparatus for producing pure water according to claim 1, further comprising an electrolysis control unit that detects the ionic strength of the concentrated water and controls the electrolysis of the water quality improvement unit. . 前記純水手段は純水を貯留する純水貯留手段をさらに備えており、前記純水貯留手段は水質検知手段を備えていることを特徴とする請求項1から5のいずれか1項に記載の純水製造装置。   The said pure water means is further provided with the pure water storage means which stores pure water, The said pure water storage means is provided with the water quality detection means, The any one of Claim 1 to 5 characterized by the above-mentioned. Pure water production equipment. 前記濃縮水を前記水質改善手段に供給する流速を制御する流速制御手段をさらに備えていることを特徴とする請求項1から6のいずれか1項に記載の純水製造装置。   The pure water production apparatus according to claim 1, further comprising a flow rate control unit that controls a flow rate of supplying the concentrated water to the water quality improvement unit. 逆浸透膜により濃縮水を得る工程と、金属材料とフッ化ピッチとを含む材料からなる溶射皮膜を表面に有する陰極を用いて電解処理することにより該濃縮水を水質改善する工程と、該水質改善した濃縮水と供給水とを前記逆浸透膜に供給して限外濾過し、純水と前記濃縮水とを得る工程とを備え、
前記溶射皮膜は表面にフッ化ピッチが該表面から1〜100μm突出してなる凹凸が形成されているものを用いることを特徴とする純水製造方法。
A step of obtaining concentrated water by a reverse osmosis membrane, a step of improving the water quality of the concentrated water by electrolytic treatment using a cathode having a thermal spray coating formed of a material containing a metal material and a fluorinated pitch on the surface, and the water quality A step of supplying improved concentrated water and supply water to the reverse osmosis membrane and performing ultrafiltration to obtain pure water and the concentrated water;
The method for producing pure water, characterized in that the thermal spray coating has a surface on which irregularities formed by fluorination pitch protruding from the surface by 1 to 100 μm are used.
逆浸透膜により濃縮水を得る工程と、金属材料とフッ化ピッチとを含む材料からなる溶射皮膜を表面に有する陰極を用いて電解処理することにより該濃縮水を水質改善する工程と、該水質改善した濃縮水と供給水とを前記逆浸透膜に供給して限外濾過し、純水と前記濃縮水とを得る工程とを備え、
前記陰極の前記フッ化ピッチの径が30〜150μmであることを特徴とする純水製造方法
A step of obtaining concentrated water by a reverse osmosis membrane, a step of improving the water quality of the concentrated water by electrolytic treatment using a cathode having a thermal spray coating formed of a material containing a metal material and a fluorinated pitch on the surface, and the water quality A step of supplying improved concentrated water and supply water to the reverse osmosis membrane and performing ultrafiltration to obtain pure water and the concentrated water;
The method for producing pure water, wherein a diameter of the fluoride pitch of the cathode is 30 to 150 μm.
前記濃縮水のイオン強度及び水圧を検知する工程と、該検知したイオン強度及び水圧の上昇に応じて前記逆浸透膜に印加する圧力を減少させ、又は前記電解処理で印加する電力を増大させる工程とをさらに備えたことを特徴とする請求項8又は9に記載の純水製造方法。   A step of detecting the ionic strength and water pressure of the concentrated water, and a step of decreasing the pressure applied to the reverse osmosis membrane according to the detected increase in the ionic strength and water pressure or increasing the power applied in the electrolytic treatment. The method for producing pure water according to claim 8 or 9, further comprising:
JP2010118633A 2010-05-24 2010-05-24 Pure water production apparatus and pure water production method Active JP5300023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118633A JP5300023B2 (en) 2010-05-24 2010-05-24 Pure water production apparatus and pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118633A JP5300023B2 (en) 2010-05-24 2010-05-24 Pure water production apparatus and pure water production method

Publications (2)

Publication Number Publication Date
JP2011245371A JP2011245371A (en) 2011-12-08
JP5300023B2 true JP5300023B2 (en) 2013-09-25

Family

ID=45411292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118633A Active JP5300023B2 (en) 2010-05-24 2010-05-24 Pure water production apparatus and pure water production method

Country Status (1)

Country Link
JP (1) JP5300023B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244288A (en) * 1991-01-30 1992-09-01 Nomura Micro Sci Kk Apparatus for making ultra-pure water
JPH09299944A (en) * 1996-05-13 1997-11-25 Japan Organo Co Ltd Fresh water producing device having reverse-osmosis membrane
JPH11104639A (en) * 1997-10-03 1999-04-20 Toray Kiki Kk Reverse osmosis membrane type pure water-making apparatus
JPH11189770A (en) * 1997-12-26 1999-07-13 Osaka Gas Co Ltd Water-repellent processing agent, formation of metal body into water-repellent and water-repellent metal body
JP3645703B2 (en) * 1998-01-09 2005-05-11 ペルメレック電極株式会社 Gas diffusion electrode structure
JP3999328B2 (en) * 1998-02-04 2007-10-31 大阪瓦斯株式会社 Thermal spray material and thermal spray coating
JP2000290790A (en) * 1999-04-06 2000-10-17 Osaka Gas Co Ltd Electrode for water electrolysis
JP2002273437A (en) * 2001-03-22 2002-09-24 Kurita Water Ind Ltd Desalting device
JP2006098003A (en) * 2004-09-30 2006-04-13 Kurita Water Ind Ltd Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JP2006198547A (en) * 2005-01-21 2006-08-03 Kurita Water Ind Ltd Electrolytic treatment method and apparatus for water system
JP2006255651A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Pure water producing system
JP2007098355A (en) * 2005-10-07 2007-04-19 Kurita Water Ind Ltd Electrolyzer
JP4872391B2 (en) * 2006-03-13 2012-02-08 栗田工業株式会社 Membrane separation device and membrane separation method
JP2010036160A (en) * 2008-08-07 2010-02-18 Kurita Water Ind Ltd Method and device for recovering water from discharged water

Also Published As

Publication number Publication date
JP2011245371A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
TWI535894B (en) Electrolysis system and electrolysis method for the same
EP2816141B1 (en) Electrolysis cell and electrolysis tank
TWI654145B (en) Cathode, electrochemical cell and use thereof
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
JP4104157B2 (en) Method and apparatus for purifying contaminated objects by heavy metals
US8062485B2 (en) Water treatment device
EP3597792A1 (en) Electrolytic cell and electrolytic bath
EP0717792A1 (en) Cell for the recovery of metals from dilute solutions
KR20140098056A (en) Method for regenerating plating liquid, plating method, and plating apparatus
JP2013108104A (en) Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method
JP4641003B2 (en) Electrolyzed water generation method and electrolyzed water generator
JP5300023B2 (en) Pure water production apparatus and pure water production method
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
JP5388143B2 (en) Water quality improvement device and water system circulation system
JP6386625B2 (en) Ag electrorefining equipment
JP3914032B2 (en) Electrodialysis electrode and electrodialysis method using the electrode
JP4102851B2 (en) Reaction tank for elution of heavy metals from contaminated materials
JP2001029956A (en) Method for electrolysis
KR102265478B1 (en) Sterilized water manufacturing device using reverse osmosis membrane
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JP2015054982A (en) ELECTROLYTIC PURIFICATION APPARATUS OF Ag AND ELECTROLYTIC PURIFICATION METHOD OF Ag USING THE SAME APPARATUS
JP4363639B2 (en) Electrolytic ion water generator
WO2022195708A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same
JPH11286796A (en) Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell
JP7232158B2 (en) Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Ref document number: 5300023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250