JP4363639B2 - Electrolytic ion water generator - Google Patents

Electrolytic ion water generator Download PDF

Info

Publication number
JP4363639B2
JP4363639B2 JP2004119767A JP2004119767A JP4363639B2 JP 4363639 B2 JP4363639 B2 JP 4363639B2 JP 2004119767 A JP2004119767 A JP 2004119767A JP 2004119767 A JP2004119767 A JP 2004119767A JP 4363639 B2 JP4363639 B2 JP 4363639B2
Authority
JP
Japan
Prior art keywords
chamber
water
anode
cathode
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004119767A
Other languages
Japanese (ja)
Other versions
JP2005296878A (en
Inventor
直人 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2004119767A priority Critical patent/JP4363639B2/en
Publication of JP2005296878A publication Critical patent/JP2005296878A/en
Application granted granted Critical
Publication of JP4363639B2 publication Critical patent/JP4363639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、電解イオン水生成装置に関し、さらに詳しくは、電極へのスケールの付着を抑制できるように改善した電解イオン水生成装置に関するものである。   The present invention relates to an electrolytic ionic water generating device, and more particularly to an electrolytic ionic water generating device improved so that adhesion of scale to an electrode can be suppressed.

電解イオン水生成装置は、密閉電解槽に水を供給し、その電解槽内の陽極と陰極との間に直流電圧を印加して、水を電気分解して正極の近傍に集まった酸性水と、負極の近傍に集まったアルカリ水をそれぞれ電極の近傍から取水できるように構成されている。そして、得られたアルカリ水は飲料水などに使用され、酸性水は美容や殺菌効果のある水として使用される。   The electrolytic ionic water generating device supplies acidic water collected in the vicinity of the positive electrode by supplying water to the sealed electrolytic cell, applying a direct current voltage between the anode and the cathode in the electrolytic cell, and electrolyzing the water. The alkaline water collected near the negative electrode can be taken from the vicinity of the electrode. And the obtained alkaline water is used for drinking water etc., and acidic water is used as water with beauty and a bactericidal effect.

しかしながら、上記構造の電解イオン水生成装置では、使用するにしたがって、電解能が低下するという問題があった。これは、電解槽に内蔵している電極の表面にカルシウムやマグネシウムなどに基づくスケール(異物)が吸着して析出し、そのスケールによって抵抗が増加して電極間に流れる電流が減少するからである。この電極表面に付着するスケールは、電極に反対の電圧を印加することによって除去できることから、この反対電圧の印加による洗浄方法に関して種々の提案がなされている。   However, the electrolytic ionic water generating device having the above-described structure has a problem that the electrolytic capacity is lowered as it is used. This is because the scale (foreign matter) based on calcium, magnesium, etc. is adsorbed and deposited on the surface of the electrode built in the electrolytic cell, and the resistance increases by the scale and the current flowing between the electrodes decreases. . Since the scale adhering to the electrode surface can be removed by applying an opposite voltage to the electrode, various proposals have been made regarding cleaning methods by applying the opposite voltage.

例えば、アルカリ水を排水するアルカリ水排水モードと、酸性水を排水する酸性水排水モードとの時間差から、電極に逆電圧を印加する時間を演算し、例えば、アルカリ水排水モードの使用時間が、酸性水排水モードの使用時間よりも長いとき、酸性水を排水するモードで電極に直流電圧を印加して、電極を洗浄する方法が提案されている。
特開平8−19781号公報
For example, from the time difference between the alkaline water draining mode for draining alkaline water and the acidic water draining mode for draining acidic water, the time for applying the reverse voltage to the electrode is calculated, for example, the usage time of the alkaline water draining mode is There has been proposed a method of cleaning an electrode by applying a DC voltage to the electrode in a mode in which the acidic water is drained when the usage time of the acidic water draining mode is longer.
Japanese Patent Laid-Open No. 8-19781

しかしながら、上記方法では、電極洗浄中は装置が使用できなかったり、連続使用ではスケールが付着して効率が低下するため、長時間連続して装置を使用することができないという問題があった。   However, in the above method, there is a problem that the apparatus cannot be used during electrode cleaning or the apparatus cannot be used continuously for a long time because the scale adheres and the efficiency decreases during continuous use.

本発明は、上記のような従来の電解イオン水の生成に関する技術の問題点を解決し、電解イオン水の生成において電極へのスケールの付着を抑制し、電極へのスケールの付着に伴う電極洗浄の必要がない電解イオン水生成装置を提供することを目的とする。   The present invention solves the above-mentioned technical problems related to the production of electrolytic ionic water, suppresses the adhesion of scale to the electrode in the production of electrolytic ionic water, and cleans the electrode accompanying the adhesion of the scale to the electrode. It is an object of the present invention to provide an electrolytic ionic water generating apparatus that does not require the above.

本発明は、陽極および陰極からなる一対の電極と、アニオン交換膜とカチオン交換膜とを貼り合わせたバイポーラ膜によって仕切られたカチオン濃縮室とアニオン濃縮室とを有し、かつ、カチオン濃縮室の外側に隔膜と陽極とで仕切られた陽極室と、アニオン濃縮室の外側に隔膜と陰極とで仕切られた陰極室とを有し、バイポーラ膜のアニオン交換膜はカチオン濃縮室側に配置され、バイポーラ膜のカチオン交換膜はアニオン濃縮室側に配置されていて、前記陽極と陰極との間に電圧を印加することによって、陽極室内のカチオンおよび陰極室内のアニオンをそれぞれカチオン濃縮室内およびアニオン濃縮室内に移動させ、カチオンをカチオン濃縮室内に濃縮し、アニオンをアニオン濃縮室内に濃縮する機構を有しており、イオンを含有する水を、陽極室に供給し、陽極室を通過した前記水を陰極室に供給して処理する電解イオン水生成装置を構成することによって、前記課題を解決したものである。
The present invention has a cation concentration chamber and an anion concentration chamber partitioned by a pair of electrodes consisting of an anode and a cathode, a bipolar membrane in which an anion exchange membrane and a cation exchange membrane are bonded, and the cation concentration chamber An anode chamber partitioned by a diaphragm and an anode on the outside, and a cathode chamber partitioned by a diaphragm and a cathode on the outside of the anion concentration chamber, the anion exchange membrane of the bipolar membrane is disposed on the cation concentration chamber side, The cation exchange membrane of the bipolar membrane is disposed on the side of the anion concentration chamber, and by applying a voltage between the anode and the cathode, the cation in the anode chamber and the anion in the cathode chamber are respectively converted into the cation concentration chamber and the anion concentration chamber. It has a mechanism that concentrates cations in the cation concentration chamber and concentrates anions in the anion concentration chamber and contains ions. Was fed into the anode chamber, by configuring the electrolytic ion water generator for processing is supplied to the cathode chamber of the water passed through the anode chamber, it is obtained by solving the above problems.

本発明の電解イオン水生成装置では、イオンを電極表面ではなく中央のバイポーラ膜の表面に集めることにより、電極へのスケール付着を抑制することができる。   In the electrolytic ionic water generating apparatus of the present invention, it is possible to suppress the scale adhesion to the electrode by collecting ions on the surface of the central bipolar membrane instead of the electrode surface.

すなわち、本発明の電解イオン水生成装置では、電極間の中央にアニオン交換膜とカチオン交換膜とを貼り合わせたバイポーラ膜を設置し、陽極室のカチオンを隔膜とバイポーラ膜とで仕切られたカチオン濃縮室に移動させて、カチオンをカチオン濃縮室内に濃縮して系外に排出し、陰極室のアニオンを隔膜とバイポーラ膜とで仕切られたアニオン濃縮室に移動させてアニオンをアニオン濃縮室内に濃縮して系外に排出するので、電極表面へのスケールの付着を抑制することができる。   That is, in the electrolytic ionic water generator of the present invention, a bipolar membrane in which an anion exchange membrane and a cation exchange membrane are bonded together is installed at the center between the electrodes, and the cation in the anode chamber is partitioned by the diaphragm and the bipolar membrane. Move to the concentration chamber, concentrate cations in the cation concentration chamber and discharge them outside the system, move the anions in the cathode chamber to the anion concentration chamber partitioned by the diaphragm and bipolar membrane, and concentrate the anions in the anion concentration chamber Since it is discharged out of the system, the adhesion of scale to the electrode surface can be suppressed.

例えば、被処理水としてCaCl2 を溶解させた水を考えた場合、まず陽極室に導入された被処理水は電極間に印加された電圧により、Ca2+イオンが陽極室から隔膜を通ってカチオン濃縮室に移動して濃縮され、カチオン濃縮室からアルカリ水(アルカリ性の水)として排出される。これにより陽極室内の水はCl- イオンを多量に含む酸性となるが、続いて陰極室に導入されることによって電圧の力でCl- イオンがアニオン濃縮室に移動して濃縮され、アニオン濃縮室から酸性水として排出され、陰極室からはイオン濃度の低い純水が排出されることになる。この場合、陽極の表面ではCl- イオンの濃度が高くなるが、陰極の表面ではCa2+イオンの除去された水が導入されるため、陰極の表面へのカルシウムスケールの生成は大幅に低減されることになる。もし、マグネシウム(Mg)を含む被処理水を導入してカチオン濃縮室が高濃度のアルカリ性になった場合、一般にpH12以上でMg(OH)2 が析出するが、バイポーラ膜はカチオン濃縮室側がアニオン交換膜となるように配置されているので、アニオン交換膜とMg2+イオンとの電気的な反発により、スケールはバイポーラ膜の表面にこびりつくようなことはなく、通水によって簡単に除去することができる。 For example, when considering water in which CaCl 2 is dissolved as the water to be treated, the water to be treated introduced into the anode chamber first causes Ca 2+ ions to pass through the diaphragm from the anode chamber due to the voltage applied between the electrodes. It moves to the cation concentration chamber, is concentrated, and is discharged from the cation concentration chamber as alkaline water (alkaline water). As a result, the water in the anode chamber becomes acidic containing a large amount of Cl ions, but when introduced into the cathode chamber, the Cl ions move to the anion concentration chamber and are concentrated by the force of voltage. From the cathode chamber, it is discharged as acidic water, and pure water having a low ion concentration is discharged from the cathode chamber. In this case, the concentration of Cl 2 ions is increased on the surface of the anode, but water from which Ca 2+ ions have been removed is introduced on the surface of the cathode, so that the generation of calcium scale on the surface of the cathode is greatly reduced. Will be. If water to be treated containing magnesium (Mg) is introduced and the cation concentration chamber becomes highly alkaline, Mg (OH) 2 generally precipitates at pH 12 or higher, but bipolar membranes have an anion on the cation concentration chamber side. Since it is arranged to be an exchange membrane, the scale does not stick to the surface of the bipolar membrane due to the electrical repulsion between the anion exchange membrane and Mg 2+ ions, and can be easily removed by passing water Can do.

従って、本発明の電解イオン水生成装置によれば、電極表面へのスケールの生成が大幅に抑制され、長時間連続して電極洗浄をすることなく安定して電解イオン水を供給することが可能となる。   Therefore, according to the electrolytic ionic water generating apparatus of the present invention, the generation of scale on the electrode surface is greatly suppressed, and it is possible to supply electrolytic ionic water stably without washing the electrode continuously for a long time. It becomes.

これに対して、従来の電解イオン水生成装置では、被処理水を電気分解することにより、陽極表面にアニオンを集め、陰極表面にカチオンを集め、それぞれの電極表面の水を採取することによって酸性およびアルカリ性の水を得るため、陰極表面のカルシウムやマグネシウム濃度が高くなり、その結果、陰極表面にスケールを生じることになる。   On the other hand, in the conventional electrolytic ionic water generating apparatus, the anion is collected on the anode surface by collecting the water to be treated, the cations are collected on the cathode surface, and the water on each electrode surface is collected. In addition, in order to obtain alkaline water, the concentration of calcium and magnesium on the cathode surface increases, and as a result, scale is generated on the cathode surface.

また、本発明の電解イオン水生成装置で、陰極室から得られるイオン濃度の低い水は、純水や軟水として飲料などに利用可能であることから、本発明は上記電解イオン水生成装置と同じ構成で純水または軟水生成装置とすることができる。   Moreover, in the electrolytic ionic water generating apparatus of the present invention, water with a low ion concentration obtained from the cathode chamber can be used for beverages or the like as pure water or soft water. Therefore, the present invention is the same as the electrolytic ionic water generating apparatus. It can be set as a pure water or soft water production | generation apparatus by a structure.

つぎに、本発明の電解イオン水生成装置について図面を用いて説明する。図1は本発明の電解イオン水生成装置の一実施形態を示す概略図であり、この図1に示す電解イオン水生成装置は、電気分解を行うための正極1と負極2とからなる一対の電極と、アニオン交換膜3aとカチオン交換膜3bとを貼り合わせたバイポーラ膜3によって仕切られたカチオン濃縮室6とアニオン濃縮室7とを有している。そして、上記バイポーラ膜3はアニオン交換膜3aがカチオン濃縮室6側に配置され、カチオン交換膜3bがアニオン濃縮室7側に配置されている。   Next, the electrolytic ionic water generator of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing an embodiment of the electrolytic ionic water generator of the present invention. The electrolytic ionic water generator shown in FIG. 1 is a pair of a positive electrode 1 and a negative electrode 2 for performing electrolysis. It has a cation concentration chamber 6 and an anion concentration chamber 7 which are partitioned by an electrode, a bipolar membrane 3 in which an anion exchange membrane 3a and a cation exchange membrane 3b are bonded together. In the bipolar membrane 3, the anion exchange membrane 3a is arranged on the cation concentration chamber 6 side, and the cation exchange membrane 3b is arranged on the anion concentration chamber 7 side.

また、カチオン濃縮室6の外側には隔膜4で仕切られた陽極室8が設けられ、この陽極室8の他方の面には陽極1が配置されている。つまり、陽極室8は隔膜4と陽極1とで仕切られている。また、アニオン濃縮室7の外側には隔膜5で仕切られた陰極室9が設けられ、この陰極室9の他方の面には陰極2が配置されている。つまり、陰極室9は隔膜5と陰極2とで仕切られている。なお、本発明においては、上記のように、カチオン濃縮室6の外側には隔膜4で仕切られた陽極室8が設けられとか、陽極室8は隔膜4と陽極1とで仕切られとか、アニオン濃縮室7の外側には隔膜5で仕切られた陰極室9が設けられとか、陰極室9は隔膜5と陰極2とで仕切られている、と表現しているが、隔膜4、陽極1、隔膜5、陰極2などは、それぞれ、それらの機能が発揮できるように配置されていればよく、陽極室8の全部が隔膜4と陽極1とで仕切られていることは要求されず、それらと他の部材とで仕切られていてもよいし、また、陰極室9の全部も隔膜5と陰極2とで仕切られていることは要求されず、それらと他の部材とで仕切られていてもよい。   An anode chamber 8 partitioned by a diaphragm 4 is provided outside the cation concentration chamber 6, and the anode 1 is disposed on the other surface of the anode chamber 8. That is, the anode chamber 8 is partitioned by the diaphragm 4 and the anode 1. Further, a cathode chamber 9 partitioned by a diaphragm 5 is provided outside the anion concentration chamber 7, and the cathode 2 is disposed on the other surface of the cathode chamber 9. That is, the cathode chamber 9 is partitioned by the diaphragm 5 and the cathode 2. In the present invention, as described above, the anode chamber 8 partitioned by the diaphragm 4 is provided outside the cation concentration chamber 6, the anode chamber 8 is partitioned by the diaphragm 4 and the anode 1, or an anion. Although the cathode chamber 9 partitioned by the diaphragm 5 is provided outside the concentration chamber 7 or the cathode chamber 9 is partitioned by the diaphragm 5 and the cathode 2, the diaphragm 4, the anode 1, The diaphragm 5 and the cathode 2 are only required to be arranged so that their functions can be exerted, and it is not required that the whole anode chamber 8 is partitioned by the diaphragm 4 and the anode 1. It may be partitioned with other members, and it is not required that all of the cathode chamber 9 is partitioned with the diaphragm 5 and the cathode 2; Good.

上記隔膜4、5としては、不織布のような微細な孔が開いていてイオンと水の両方を透過させることができる膜が適しており、また、カチオン濃縮室6と陽極室8との間の隔膜4にはカチオン交換膜も適しており、アニオン濃縮室7と陰極室9との間の隔膜5にはアニオン交換膜も適している。   As the diaphragms 4 and 5, a membrane having a fine hole such as a nonwoven fabric and allowing both ions and water to pass therethrough is suitable, and between the cation concentration chamber 6 and the anode chamber 8 is suitable. A cation exchange membrane is also suitable for the diaphragm 4, and an anion exchange membrane is also suitable for the diaphragm 5 between the anion concentration chamber 7 and the cathode chamber 9.

この図1に示す電解イオン水生成装置では、スケールの原因となるカチオンを陰極2の表面ではなく、カチオン濃縮室6に集めるため、被処理水はまず陽極室8に通水する必要があり、陽極室8に導入された後に連続して陰極室9に導入される。カチオン濃縮室6やアニオン濃縮室7は水で満たされている必要があり、それらのカチオン濃縮室6やアニオン濃縮室7では陽極室8や陰極室9から移動したカチオンやアニオンが濃縮され、それらのカチオン濃縮室6やアニオン濃縮室7に一定の間隔もしくは連続して通水することによって生成した電解イオン水を取水することができる。すなわち、カチオン濃縮室6からはアルカリ水を取水することができ、また、アニオン濃縮室7からは酸性水を取水することができる。そして、陰極室9から得られる水はイオン濃度が低く、一般にいう軟水として使用できる。そして、導入する被処理水としては得ようとする電解水のpHによっては塩水を導入しても構わない。   In the electrolytic ionic water generating apparatus shown in FIG. 1, since the cations causing the scale are collected not in the surface of the cathode 2 but in the cation concentration chamber 6, the water to be treated must first pass through the anode chamber 8. After being introduced into the anode chamber 8, it is continuously introduced into the cathode chamber 9. The cation concentration chamber 6 and the anion concentration chamber 7 need to be filled with water. In the cation concentration chamber 6 and the anion concentration chamber 7, cations and anions that have moved from the anode chamber 8 and the cathode chamber 9 are concentrated. The electrolytic ionic water produced by passing water through the cation concentration chamber 6 and the anion concentration chamber 7 at a constant interval or continuously can be taken in. That is, alkaline water can be taken from the cation concentration chamber 6, and acidic water can be taken from the anion concentration chamber 7. And the water obtained from the cathode chamber 9 has low ion concentration, and can be used as soft water generally called. And as the to-be-treated water to be introduced, salt water may be introduced depending on the pH of the electrolyzed water to be obtained.

また、バイポーラ膜3によって水がOH- イオンとH+ イオンに電解され、それらのイオンがそれぞれカチオン濃縮室6とアニオン濃縮室7に供給されるため、カチオン濃縮室6ではNaOHやCa(OH)2 またはMg(OH)2 が生成され、アニオン濃縮室7ではガス発生を伴わないで酸を生成する。カチオン濃縮室6においては室内のpHが12以上になると一般にバイポーラ膜3の表面にMg(OH)2 などの析出が起こるが、バイポーラ膜3はカチオン濃縮室6側がアニオン交換膜3aとなるように配置されているため、析出したMg(OH)2 などのスケールはアニオン交換膜3aと電位的な反発によってバイポーラ膜3にこびりつくことなく、付着する程度なので通水による水洗によって簡単に除去することができる。 Further, since the bipolar membrane 3 electrolyzes water into OH ions and H + ions, and these ions are supplied to the cation concentration chamber 6 and the anion concentration chamber 7, respectively, in the cation concentration chamber 6, NaOH or Ca (OH). 2 or Mg (OH) 2 is generated, and the anion concentration chamber 7 generates an acid without generating gas. In the cation concentration chamber 6, Mg (OH) 2 or the like generally precipitates on the surface of the bipolar membrane 3 when the pH in the chamber becomes 12 or more. However, the bipolar membrane 3 is arranged such that the cation concentration chamber 6 side becomes the anion exchange membrane 3a. Therefore, the deposited scales such as Mg (OH) 2 do not stick to the bipolar membrane 3 due to potential repulsion with the anion exchange membrane 3a and can be easily removed by washing with water. it can.

この本発明の図1に示す電解イオン水生成装置では、被処理水の通水順序として、陽極室8に通水した後、陽極室8を通過した被処理水を陰極室9に導入する必要があるが、それ以外の通水方法や順序については特に限定されない。   In the electrolytic ionic water generator shown in FIG. 1 of the present invention, it is necessary to introduce the water to be treated that has passed through the anode chamber 8 into the cathode chamber 9 after passing through the anode chamber 8 as the flow order of the water to be treated. However, there are no particular restrictions on the other water flow methods and order.

つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。   Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples.

実施例1
この実施例1では、図1に示す構成の電解イオン水生成装置を用いて、電解イオン水(アルカリ性水と酸性水)の生成を行った。上記電解イオン水生成装置では、陽極1には白金をコートしたチタン板を用い、陰極2にステンレス鋼板を使用し、カチオン濃縮室6、アニオン濃縮室7の幅(図1では水平方向の距離)をそれぞれ10mmにし、陽極室8と陰極室9の幅をそれぞれ7mmとして、電極間距離(陽極1と陰極2との間の距離)を合計34mmとした。また、電極面積は、陽極1、陰極2とも、180mm×100mmであった。バイポーラ膜3はトクヤマ社製のバイポーラBP−1E(商品名)を用い、隔膜4、5にはジャパンゴアテックス社製の親水性PTFE不織布を用いた。そして、上記バイポーラ膜3はアニオン交換膜3aがカチオン濃縮室6側を向き、カチオン交換膜3bがアニオン交換膜7側を向くように配置した。
Example 1
In Example 1, electrolytic ionic water (alkaline water and acidic water) was generated using the electrolytic ionic water generator configured as shown in FIG. In the electrolyzed ion water generator, a titanium-coated titanium plate is used for the anode 1, a stainless steel plate is used for the cathode 2, and the widths of the cation concentration chamber 6 and the anion concentration chamber 7 (horizontal distance in FIG. 1). Was 10 mm, the width of the anode chamber 8 and the cathode chamber 9 was 7 mm, respectively, and the distance between the electrodes (the distance between the anode 1 and the cathode 2) was 34 mm in total. Moreover, the electrode area of both the anode 1 and the cathode 2 was 180 mm × 100 mm. Bipolar BP-1E (trade name) manufactured by Tokuyama Corporation was used for the bipolar membrane 3, and hydrophilic PTFE nonwoven fabric manufactured by Japan Gore-Tex was used for the diaphragms 4 and 5. The bipolar membrane 3 was disposed such that the anion exchange membrane 3a faced the cation concentration chamber 6 side and the cation exchange membrane 3b faced the anion exchange membrane 7 side.

また、この実施例1の電解イオン水生成装置では、被処理水を陽極室8を通過させた後に陰極室9を通過させるように被処理水用水路を設置し、それら陽極室8、陰極室9の被処理水の通過に伴って、カチオン濃縮室6からアルカリ水が得られるようにし、かつ、アニオン濃縮室7から酸性水が得られるようにした。そして、実施にあたっては、電極へのスケールの付着が抑制できることをより明確にするために、被処理水として塩化カルシウム(CaCl2 )を0.2質量%含む水を用意し、この被処理水をそれぞれ1.0L/minの流量で陽極室8とカチオン濃縮室6とアニオン濃縮室7に通水し、陽極室8を通過した被処理水がその後に陰極室9に導入されるようにして、電解イオン水の生成を行った。すなわち、被処理水を陽極室8とカチオン濃縮室6とアニオン濃縮室7に通水し、陽極1と陰極2との間に1.0Aの電流を通電し、この電解イオン水の生成処理を4時間連続して行い、カチオン濃縮室6からアルカリ水を取り出し、アニオン濃縮室7から酸性水を取り出した。この電解イオン水の生成処理を4時間行った後に、電極間の抵抗を測定したところ、処理開始時とほとんど変わっていなかった。すなわち、処理開始時の電極間の抵抗は70Ωであったが、4時間処理後の抵抗は72Ωであり、処理に伴う抵抗の増加はほとんどみられなかった。また、上記処理後、装置を分解し、装置内から陽極1と陰極2とを取り出し、それらの表面を観察したところ、陽極1の表面はもとより、陰極2の表面にもスケールの付着は認められなかった。 Further, in the electrolytic ionic water generator of Example 1, the water channel for water to be treated is installed so that the water to be treated passes through the anode chamber 8 and then through the cathode chamber 9. With the passage of the water to be treated, alkaline water was obtained from the cation concentration chamber 6 and acidic water was obtained from the anion concentration chamber 7. And in implementation, in order to clarify that adhesion of the scale to the electrode can be suppressed, water containing 0.2% by mass of calcium chloride (CaCl 2 ) is prepared as water to be treated. Water was passed through the anode chamber 8, the cation concentration chamber 6 and the anion concentration chamber 7 at a flow rate of 1.0 L / min, respectively, so that the water to be treated that passed through the anode chamber 8 was introduced into the cathode chamber 9 thereafter. Electrolytic ionic water was generated. That is, the water to be treated is passed through the anode chamber 8, the cation concentration chamber 6, and the anion concentration chamber 7, and a current of 1.0 A is passed between the anode 1 and the cathode 2 to generate this electrolytic ionic water. It carried out continuously for 4 hours, alkaline water was taken out from the cation concentration chamber 6, and acidic water was taken out from the anion concentration chamber 7. After the electrolytic ionic water generation treatment was performed for 4 hours, the resistance between the electrodes was measured. That is, the resistance between the electrodes at the start of the treatment was 70Ω, but the resistance after the treatment for 4 hours was 72Ω, and there was almost no increase in resistance accompanying the treatment. Further, after the treatment, the apparatus was disassembled, the anode 1 and the cathode 2 were taken out from the apparatus, and the surfaces thereof were observed. As a result, not only the surface of the anode 1 but also the surface of the cathode 2 was found to adhere to the scale. There wasn't.

そして、被処理水の塩化カルシウムを0.2質量%含んだ水のpHは7.1であったが、上記処理によりカチオン濃縮室6から取り出したアルカリ水はpHが9.5であって、飲料水として使用が可能であり、また、アニオン濃縮室7から取り出された酸性水はpHが5.6であって、美容用のアストリンゼント水として使用が可能であった。   The pH of water containing 0.2% by mass of calcium chloride to be treated was 7.1, but the alkaline water taken out from the cation concentration chamber 6 by the above treatment had a pH of 9.5, It can be used as drinking water, and the acid water taken out from the anion concentration chamber 7 has a pH of 5.6 and can be used as cosmetic astringent water.

これに対して、従来の電解イオン水生成装置、すなわち、密閉電解槽内に陽極と陰極とを配置した電解イオン水生成装置に、上記実施例1と同様の被処理水を実施例1と同様に4時間処理したところ、処理後の電極間の抵抗は処理開始時の抵抗の約1.6倍に増加した。すなわち、この従来の電解イオン水生成装置では、処理開始時の抵抗は実施例1と同様に70Ωであったが、4時間処理後には抵抗が113Ωに増加していた。   On the other hand, in the conventional electrolytic ionic water generating device, that is, the electrolytic ionic water generating device in which the anode and the cathode are arranged in the sealed electrolytic cell, the same water to be treated as in Example 1 is the same as in Example 1. After the treatment for 4 hours, the resistance between the electrodes after the treatment increased to about 1.6 times the resistance at the start of the treatment. That is, in this conventional electrolytic ionic water generator, the resistance at the start of treatment was 70Ω as in Example 1, but the resistance increased to 113Ω after 4 hours of treatment.

また、上記従来の電解イオン水生成装置による処理後にその密閉電解槽から陽極と陰極とを取り出し、それらの表面を観察したところ、陽極の表面は変化がほとんど認められなかったが、陰極の表面には白いスケールが付着し、水洗しただけでは洗い流すことができなかった。   Further, after the treatment by the conventional electrolytic ionic water generator, the anode and the cathode were taken out from the sealed electrolytic cell, and when the surfaces were observed, the surface of the anode showed almost no change. The white scale adhered, and it was not possible to wash it off just by washing with water.

実施例3
この実施例3では、図1に示す構成の電解イオン水生成装置を用いて、電解イオン水(強アルカリ水と強酸性水)の生成を行った。上記電解イオン水生成装置では、陽極1には白金をコートしたチタン板を用い、陰極2にはステンレス鋼板を使用し、カチオン濃縮室6、アニオン濃縮室7の幅(図1では水平方向の距離)をそれぞれ10mmにし、陽極室8と陰極室9の幅をそれぞれ7mmとして、電極間距離(陽極1と陰極2との間の距離)を合計34mmとした。また、電極面積は、陽極1、陰極2とも、180mm×100mmであった。バイポーラ膜3はトクヤマ製のバイポーラBP−1E(商品名)を用い、隔膜4、5にはジャパンゴアテックス社製の親水性PTFE不織布を用いた。そして、上記バイポーラ膜3はアニオン交換膜3aがカチオン濃縮室6側を向き、カチオン交換膜3bがアニオン濃縮室7側を向くように配置した。
Example 3
In Example 3, electrolytic ionic water (strong alkaline water and strong acidic water) was generated using the electrolytic ionic water generating apparatus having the configuration shown in FIG. In the electrolytic ionic water generating apparatus, a titanium plate coated with platinum is used for the anode 1 and a stainless steel plate is used for the cathode 2, and the widths of the cation concentration chamber 6 and the anion concentration chamber 7 (the horizontal distance in FIG. 1). ) Was 10 mm, the width of the anode chamber 8 and the cathode chamber 9 was 7 mm, respectively, and the distance between the electrodes (the distance between the anode 1 and the cathode 2) was 34 mm in total. Moreover, the electrode area of both the anode 1 and the cathode 2 was 180 mm × 100 mm. Bipolar BP-1E (trade name) manufactured by Tokuyama was used for the bipolar membrane 3, and hydrophilic PTFE nonwoven fabric manufactured by Japan Gore-Tex was used for the diaphragms 4 and 5. The bipolar membrane 3 was disposed such that the anion exchange membrane 3a was directed to the cation concentration chamber 6 side and the cation exchange membrane 3b was directed to the anion concentration chamber 7 side.

また、この実施例3の電解イオン水生成装置では、被処理水を陽極室8を通過させた後に陰極室9を通過させるように被処理水用水路を設置し、それら陽極室8、陰極室9の被処理水の通過に伴って、カチオン濃縮室6から強アルカリ水が得られるようにし、かつ、アニオン濃縮室7から強酸性水が得られるようにした。そして、実施にあたっては、硬度45ppmの水道水を用意し、この水道水を被処理水として1.0L/minの流量で陽極室8に通水し、その陽極室8を通過した被処理水が陰極室9に導入されるようにして、電解イオン水の生成を行った。すなわち、陽極室8に被処理水としての硬度45ppmの水道水を通水し、その陽極室8を通過した被処理水が陰極室9に導入されるようにしつつ、カチオン濃縮室6とアニオン濃縮室7に硬度45ppmの水道水を注水して止水し、陽極1と陰極2の間に1.0Aの電流を通電し、この電解イオン水の生成処理を4時間連続して行い、その後、カチオン濃縮室6から強アルカリ水を取り出し、アニオン濃縮室7から強酸性水を取り出した。取り出された強アルカリ水のpHは12.8であり、強酸性水のpHは0.8であった。このように、水道水を原料に用いて強アルカリ水と強酸性水を生成することができた。   Further, in the electrolytic ionic water generating apparatus of Example 3, the water channel for water to be treated is installed so that the water to be treated passes through the anode chamber 8 and then the cathode chamber 9, and the anode chamber 8 and the cathode chamber 9 are provided. With the passage of the water to be treated, strong alkaline water was obtained from the cation concentration chamber 6 and strong acidic water was obtained from the anion concentration chamber 7. In the implementation, tap water having a hardness of 45 ppm is prepared, and this tap water is treated as treated water and passed through the anode chamber 8 at a flow rate of 1.0 L / min. Electrolytic ionic water was generated as introduced into the cathode chamber 9. In other words, tap water having a hardness of 45 ppm as water to be treated is passed through the anode chamber 8, and the water to be treated that has passed through the anode chamber 8 is introduced into the cathode chamber 9, while the cation concentration chamber 6 and the anion concentration are concentrated. Water of 45 ppm hardness was poured into the chamber 7 to stop the water, a current of 1.0 A was passed between the anode 1 and the cathode 2, and this electrolytic ionic water generation treatment was continuously performed for 4 hours. Strong alkaline water was taken out from the cation concentration chamber 6, and strongly acidic water was taken out from the anion concentration chamber 7. The pH of the strong alkaline water taken out was 12.8, and the pH of the strongly acidic water was 0.8. Thus, strong alkaline water and strong acid water could be produced using tap water as a raw material.

本発明の電解イオン水生成装置の一例を概略的に示す図である。It is a figure showing roughly an example of the electrolytic ionic water generating device of the present invention.

符号の説明Explanation of symbols

1 陽極
2 陰極
3 バイポーラ膜
3a アニオン交換膜
3b カチオン交換膜
4 隔膜
5 隔膜
6 カチオン濃縮室
7 アニオン濃縮室
8 陽極室
9 陰極室
DESCRIPTION OF SYMBOLS 1 Anode 2 Cathode 3 Bipolar membrane 3a Anion exchange membrane 3b Cation exchange membrane 4 Separation membrane 5 Separation membrane 6 Cation concentration chamber 7 Anion concentration chamber 8 Anode chamber 9 Cathode chamber

Claims (2)

陽極および陰極からなる一対の電極と、アニオン交換膜とカチオン交換膜とを貼り合わせたバイポーラ膜によって仕切られたカチオン濃縮室とアニオン濃縮室とを有し、かつ、カチオン濃縮室の外側に隔膜と陽極とで仕切られた陽極室と、アニオン濃縮室の外側に隔膜と陰極とで仕切られた陰極室とを有し、バイポーラ膜のアニオン交換膜はカチオン濃縮室側に配置され、バイポーラ膜のカチオン交換膜はアニオン濃縮室側に配置されていて、前記陽極と陰極との間に電圧を印加することによって、陽極室内のカチオンおよび陰極室内のアニオンをそれぞれカチオン濃縮室内およびアニオン濃縮室内に移動させ、カチオンをカチオン濃縮室内に濃縮し、アニオンをアニオン濃縮室内に濃縮する機構を有しており、イオンを含有する水を、陽極室に供給し、陽極室を通過した前記水を陰極室に供給して処理することを特徴とする電解イオン水生成装置。 A pair of electrodes consisting of an anode and a cathode; a cation concentration chamber and an anion concentration chamber partitioned by a bipolar membrane obtained by bonding an anion exchange membrane and a cation exchange membrane; and a membrane outside the cation concentration chamber An anode chamber partitioned by an anode and a cathode chamber partitioned by a diaphragm and a cathode outside the anion concentration chamber, the anion exchange membrane of the bipolar membrane is disposed on the cation concentration chamber side, and the cation of the bipolar membrane The exchange membrane is arranged on the anion concentration chamber side, and by applying a voltage between the anode and the cathode, the cation in the anode chamber and the anion in the cathode chamber are moved to the cation concentration chamber and the anion concentration chamber, respectively. concentration of the cation to cation concentration compartment, and have a mechanism for concentrating the anion anion concentration compartment, the water containing ions, an anode It is supplied to the electrolytic ion water generator which comprises treating is supplied to the cathode chamber the water passed through the anode chamber. 陽極および陰極からなる一対の電極と、アニオン交換膜とカチオン交換膜とを貼り合わせたバイポーラ膜によって仕切られたカチオン濃縮室とアニオン濃縮室とを有し、かつ、カチオン濃縮室の外側に隔膜と陽極とで仕切られた陽極室と、アニオン濃縮室の外側に隔膜と陰極とで仕切られた陰極室とを有し、バイポーラ膜のアニオン交換膜はカチオン濃縮室側に配置され、バイポーラ膜のカチオン交換膜はアニオン濃縮室側に配置されていて、前記陽極と陰極との間に電圧を印加することによって、陽極室内のカチオンおよび陰極室内のアニオンをそれぞれカチオン濃縮室内およびアニオン濃縮室内に移動させ、カチオンをカチオン濃縮室内に濃縮し、アニオンをアニオン濃縮室内に濃縮する機構を有しており、イオンを含有する水を、陽極室に供給し、陽極室を通過した前記水を陰極室に供給して処理することを特徴とする純水または軟水生成装置。
A pair of electrodes consisting of an anode and a cathode; a cation concentration chamber and an anion concentration chamber partitioned by a bipolar membrane obtained by bonding an anion exchange membrane and a cation exchange membrane; and a membrane outside the cation concentration chamber An anode chamber partitioned by an anode and a cathode chamber partitioned by a diaphragm and a cathode outside the anion concentration chamber, the anion exchange membrane of the bipolar membrane is disposed on the cation concentration chamber side, and the cation of the bipolar membrane The exchange membrane is arranged on the anion concentration chamber side, and by applying a voltage between the anode and the cathode, the cation in the anode chamber and the anion in the cathode chamber are moved to the cation concentration chamber and the anion concentration chamber, respectively. concentration of the cation to cation concentration compartment, and have a mechanism for concentrating the anion anion concentration compartment, the water containing ions, an anode Supplying the pure water or soft water generator, characterized in that the process is supplied to the cathode chamber the water passed through the anode chamber.
JP2004119767A 2004-04-15 2004-04-15 Electrolytic ion water generator Expired - Fee Related JP4363639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119767A JP4363639B2 (en) 2004-04-15 2004-04-15 Electrolytic ion water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004119767A JP4363639B2 (en) 2004-04-15 2004-04-15 Electrolytic ion water generator

Publications (2)

Publication Number Publication Date
JP2005296878A JP2005296878A (en) 2005-10-27
JP4363639B2 true JP4363639B2 (en) 2009-11-11

Family

ID=35329069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119767A Expired - Fee Related JP4363639B2 (en) 2004-04-15 2004-04-15 Electrolytic ion water generator

Country Status (1)

Country Link
JP (1) JP4363639B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6514851B2 (en) * 2014-04-09 2019-05-15 オルガノ株式会社 Deionized water production equipment
JP2018043164A (en) * 2015-01-28 2018-03-22 株式会社東芝 Adsorbent for water softening machine, water softening machine and electrolytic water manufacturing device
JP2016168542A (en) * 2015-03-12 2016-09-23 株式会社東芝 Device and method for generating electrolytic water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588306B2 (en) * 1976-07-20 1983-02-15 不二サッシ株式会社 Metal salt waste liquid purification equipment
JP3729386B2 (en) * 1997-10-21 2005-12-21 オルガノ株式会社 Electric deionized water production equipment
JP2001058186A (en) * 1999-08-23 2001-03-06 Aquas Corp Method and apparatus for making pure water
JP4403621B2 (en) * 2000-01-20 2010-01-27 栗田工業株式会社 Electrodeionization equipment
JP2002273428A (en) * 2001-03-16 2002-09-24 Matsushita Electric Works Ltd Electrolytic water generator

Also Published As

Publication number Publication date
JP2005296878A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
EP1386887B1 (en) A method for producing electrolyzed water
CN101960661B (en) Device and method for performing a reverse electrodialysis process
US20040168933A1 (en) Method and apparatus for producing electrolyzed water
KR19980033214A (en) Scale precipitation prevention method and apparatus in the production of deionized water
AU2014212394B2 (en) Rechargeable electrochemical cells
KR19980033215A (en) Fluorochemical Recovery and Recycling Methods Using Membranes
WO2005075359A1 (en) Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
JPH09262583A (en) Preparation of acidic water and alkaline water
JP3820248B2 (en) Electrolytic water conditioner
JP4403621B2 (en) Electrodeionization equipment
JP5282201B2 (en) Electrolyzed water generator
JP4710176B2 (en) Ultrapure water production equipment
JP4363639B2 (en) Electrolytic ion water generator
JP2010142674A (en) Water softener and hot-water supply apparatus equipped with it
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP2005219011A (en) Regeneration method for ion-exchange resin
TWI354652B (en) Water treatment system and method
JP3802580B2 (en) Electrolyzed water generator
JP4026344B2 (en) Membrane separation method and apparatus
CN108473344B (en) Electrolyzed water production device and device for producing water for dialysate preparation using same
JPH08117753A (en) Electrolytic water-making apparatus
JPH11221566A (en) Production of electrolytic water
JPH08299960A (en) Continuous electrolyzed ionic water generator
JP2000126775A (en) Method and apparatus for electrolytic sterilization
JPH09108677A (en) Electrolytic water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees