JP2001058186A - Method and apparatus for making pure water - Google Patents

Method and apparatus for making pure water

Info

Publication number
JP2001058186A
JP2001058186A JP11235942A JP23594299A JP2001058186A JP 2001058186 A JP2001058186 A JP 2001058186A JP 11235942 A JP11235942 A JP 11235942A JP 23594299 A JP23594299 A JP 23594299A JP 2001058186 A JP2001058186 A JP 2001058186A
Authority
JP
Japan
Prior art keywords
water
chamber
cathode
anode
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11235942A
Other languages
Japanese (ja)
Inventor
Muneyoshi Sebe
宗義 瀬部
Mamoru Ito
護 伊東
Tatsugo Umehara
龍吾 梅原
Naoki Azuma
直樹 吾妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMP IONEX CORP
Aquas Corp
Original Assignee
AMP IONEX CORP
Aquas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMP IONEX CORP, Aquas Corp filed Critical AMP IONEX CORP
Priority to JP11235942A priority Critical patent/JP2001058186A/en
Publication of JP2001058186A publication Critical patent/JP2001058186A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PROBLEM TO BE SOLVED: To obtain highly pure water easily at a low cost by simple equipment by holding stable purity over a long period of time. SOLUTION: In a pure water making apparatus, a cathode chamber 4 having a cathode 3 and an anode chamber 6 having an anode 5 are formed in opposed relationship. Desalting chambers 9 and concn. chambers 10 are successively formed by cation exchange membranes 7 and anion exchange membranes 8 alternately arranged between the cathode chamber 4 and the anode chamber 5. While voltage is applied across the cathode 3 and the anode 5, water to be treated is allowed to flow to the desalting chambers 9 and water to be treated is allowed to flow to the concn. chambers 10 as conc. water. Water to be treated is allowed to flow to the anode chamber 6 as electrode water and the electrode water passed through the anode chamber 6 to become acidic is allowed to flow to the cathode chamber 4. Ions in water to be treated passed through the desalting chambers 9 move to the concn. chambers 10 to make deionized pure water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気透析作用を利用
した電気再生式純水の製造方法および純水の製造装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for producing pure water by electro-regeneration using electrodialysis.

【0002】[0002]

【従来の技術】従来の純水製造方法としては、イオン交
換樹脂を充填した充填塔に被処理水を通過させ、この被
処理水を純水に生成するイオン交換樹脂を使用したイオ
ン交換法が知られている。
2. Description of the Related Art As a conventional method for producing pure water, there is an ion exchange method using an ion exchange resin in which water to be treated is passed through a packed tower filled with an ion exchange resin and the water to be treated is converted into pure water. Are known.

【0003】このイオン交換法では、被処理水の純水生
成に従いイオン交換樹脂の交換能力が飽和し、この交換
能力が飽和したイオン交換樹脂を酸性またはアルカリ性
の再生剤にて交換能力を再生し、イオン交換樹脂を反復
使用している。このイオン交換樹脂の再生操作は煩雑
で、多量の酸性、アルカリ性の再生廃液が排出され、酸
性再生剤、アルカリ性再生剤の貯蔵、取り扱いに細心の
注意が必要である問題を有している。
In this ion exchange method, the exchange capacity of the ion exchange resin is saturated with the generation of pure water to be treated, and the exchange capacity of the ion exchange resin having the saturated exchange capacity is regenerated with an acidic or alkaline regenerant. , Ion-exchange resin is used repeatedly. The operation of regenerating the ion exchange resin is complicated, a large amount of acidic and alkaline regenerating waste liquid is discharged, and there is a problem that careful storage and handling of the acidic regenerating agent and the alkaline regenerating agent are required.

【0004】また、近年、電気再生式の純水製造方法が
開発され、この電気再生式の純水製造方法に用いられる
純水製造装置2は、図2に示すように、陰極3を有する
陰極室4、陽極5を有する陽極室6、陰極室4と陽極室
6との間に交互に配設した陽イオン交換膜7と陰イオン
交換膜8とにて順次に形成された脱塩室9と濃縮室10と
を備え、被処理水を前記陰極室4、陽極室6、脱塩室9
および濃縮室10に供給するようにしている。
In recent years, an electric regeneration type pure water production method has been developed, and a pure water production apparatus 2 used in this electric regeneration type pure water production method has a cathode 3 having a cathode 3 as shown in FIG. A chamber 4, an anode chamber 6 having an anode 5, and a desalination chamber 9 formed by a cation exchange membrane 7 and an anion exchange membrane 8 alternately arranged between the cathode chamber 4 and the anode chamber 6. And a concentrating chamber 10, and the water to be treated is supplied to the cathode chamber 4, the anode chamber 6, and the desalination chamber 9.
And it supplies it to the concentration room 10.

【0005】そして、この脱塩室9にイオン交換体11を
充填し、被処理水に含まれている電解質は陽極5と陰極
3との間に電圧を印加することによりイオン交換体11中
を電位の方向に移動してイオン交換膜7,8を透過して
濃縮室10に濃縮され、脱塩室9を流動する被処理水は脱
イオン化されて純水が生成される。
[0005] The desalting chamber 9 is filled with an ion exchanger 11, and the electrolyte contained in the water to be treated is passed through the ion exchanger 11 by applying a voltage between the anode 5 and the cathode 3. The water moves in the direction of the potential, passes through the ion exchange membranes 7 and 8, is concentrated in the concentration chamber 10, and the water to be treated flowing in the desalting chamber 9 is deionized to generate pure water.

【0006】この純水製造装置2で処理される被処理水
は、逆浸透膜装置1の逆浸透膜を通過した透過水または
他の一次純水製造装置により処理された一次純水を用い
るため、純水製造装置2に供給される被処理水に含まれ
ていた大部分の電解質、有機物成分を予め除去し、純水
製造装置2の負荷を低減して高純度の純水が生成される
ようにしている。
As the water to be treated in the pure water producing apparatus 2, permeated water passing through the reverse osmosis membrane of the reverse osmosis membrane apparatus 1 or primary pure water treated by another primary pure water producing apparatus is used. Most of the electrolytes and organic components contained in the water to be treated supplied to the pure water production apparatus 2 are removed in advance, and the load on the pure water production apparatus 2 is reduced to produce high-purity pure water. Like that.

【0007】この電気再生式の純水製造方法では、脱塩
室9のイオンはイオン交換体11の内部を移動し、イオン
交換能力が飽和しないため、イオン交換体11の再生操作
が不要で、イオン交換体11を再生するための酸性または
アルカリ性の再生剤を必要としない利点を有している。
In this method of producing pure water of the electric regeneration type, the ions in the desalting chamber 9 move inside the ion exchanger 11 and the ion exchange capacity is not saturated, so that the regeneration operation of the ion exchanger 11 is unnecessary. There is an advantage that an acidic or alkaline regenerating agent for regenerating the ion exchanger 11 is not required.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、被処理
水の水質が悪化したり、前処理の一次純水製造装置が劣
化するなどして、後述の図3に示すように、生成された
純水の純度が低下する場合があった。
However, due to the deterioration of the quality of the water to be treated and the deterioration of the pretreatment primary pure water producing apparatus, as shown in FIG. In some cases decreased in purity.

【0009】発明者等の研究の結果、被処理水中にカル
シウムなどの硬度成分が多い場合、逆浸透膜装置1また
は一次純水製造装置の処理のみでは硬度成分が充分に除
去されず、また、逆浸透膜の劣化、詰まり、一次純水製
造装置の劣化などにより、純水製造装置の処理水中に硬
度成分が残存、または陰極室4と陽極室6への硬度成分
の漏洩が生じる場合がある。
As a result of the study by the inventors, when the water to be treated contains a large amount of hardness components such as calcium, the hardness component is not sufficiently removed only by the treatment of the reverse osmosis membrane device 1 or the primary pure water production device. Due to the deterioration and clogging of the reverse osmosis membrane, the deterioration of the primary pure water production device, etc., the hardness component may remain in the treated water of the pure water production device, or the hardness component may leak to the cathode chamber 4 and the anode chamber 6. .

【0010】そして、陰極室4に硬度成分の漏洩が生じ
ると、陰極室4に硬度成分が濃縮され易くなり、陰極室
4の電極水の一部は陰極3から電子が供給されるために
アルカリ性に傾いているため、炭酸カルシウムや水酸化
カルシウムの生成、析出が起こり易くなり、陰極3の電
極部分にスケールとなって付着し、陰極3に通電しにく
くなって処理水の純度が低下することが判明した。
When the hardness component leaks into the cathode chamber 4, the hardness component tends to be concentrated in the cathode chamber 4, and a part of the electrode water in the cathode chamber 4 becomes alkaline because electrons are supplied from the cathode 3. , The formation and precipitation of calcium carbonate and calcium hydroxide are liable to occur, and they become scales and adhere to the electrode portion of the cathode 3, making it difficult to supply electricity to the cathode 3 and reducing the purity of the treated water. There was found.

【0011】また、陰極3にスケールが付着することに
より陰極室4内の通水面積が変化して陽極室6と陰極室
4との通水バランスが崩れ、陰極室4への通水量が減少
し、さらに陰極室4内の濃縮が進み、スケールの生成が
増幅される。そこで、逆浸透膜装置1の前段または後段
に陽イオン交換樹脂による軟水装置を設置し、硬度成分
を除去する方法が提案され、或いは、スケールの析出を
防止を図るために、特開平10−128338号公報に
記載されているように、純水製造装置2の前段に電解装
置を設置して純水製造装置に酸性水を供給する方法が提
案されている。
Further, the scale adhering to the cathode 3 changes the water flow area in the cathode chamber 4, thereby disrupting the water flow balance between the anode chamber 6 and the cathode chamber 4, and reducing the water flow to the cathode chamber 4. Then, the concentration in the cathode chamber 4 further proceeds, and the generation of scale is amplified. Therefore, a method of removing a hardness component by installing a water softener using a cation exchange resin before or after the reverse osmosis membrane device 1 has been proposed, or Japanese Patent Application Laid-Open No. H10-128338 has been proposed in order to prevent precipitation of scale. As described in the publication, a method has been proposed in which an electrolytic device is installed in a stage preceding the pure water production device 2 to supply acidic water to the pure water production device.

【0012】しかしながら、硬度成分を予め除去する方
法、酸性水を供給する方法では、軟水装置、電解装置の
再生作業が必要であり、操作が煩雑になり、さらに軟水
装置では食塩を使用するため、ランニングコストが増大
し、また、軟水装置、電解装置の再生中には純水製造装
置2の運転ができなくなるので、軟水装置、電解装置を
複数台設置して交互に運転させる必要があり、イニシャ
ルコストが高価となり、設置スペースの点で問題とな
る。
However, the method of removing the hardness component in advance and the method of supplying the acidic water require regeneration of the water softening device and the electrolysis device, which makes the operation complicated, and the soft water device uses salt. The running cost increases, and the pure water producing apparatus 2 cannot be operated during regeneration of the water softening device and the electrolytic device. Therefore, it is necessary to install a plurality of water softening devices and the electrolytic devices and operate them alternately. The cost is high, which is a problem in terms of installation space.

【0013】本発明は上記問題点に鑑み、陽極室の電極
水には陰イオンが、陰極室の電極水には陽イオンが濃縮
され、陽極室を流動する電極水は電気分解されて陽極へ
電子を供給するため酸性になり、陰極室の電極水の一部
は陰極から電子が供給されるためにアルカリ性になり、
陰極室と陽極室とから流出した電極水を混合することに
より、中性付近の水質となることに着目してなされたも
ので、簡易な設備によって容易にかつ低コストで、原水
が悪化したり、前処理が劣化しても長期間にわたって安
定した純度を保つことができる純水製造方法および純水
製造装置を提供するものである。
In view of the above problems, the present invention concentrates anions in the electrode water in the anode compartment and concentrates cations in the electrode water in the cathode compartment. Electrode water flowing in the anode compartment is electrolyzed to the anode. It becomes acidic to supply electrons, and part of the electrode water in the cathode chamber becomes alkaline because electrons are supplied from the cathode,
By mixing the electrode water flowing out of the cathode chamber and the anode chamber, the water quality near neutrality was focused on, and the raw water deteriorated easily and at low cost with simple equipment. Another object of the present invention is to provide a pure water production method and a pure water production apparatus capable of maintaining stable purity for a long period of time even if the pretreatment deteriorates.

【0014】[0014]

【課題を解決するための手段】請求項1記載の発明の純
水の製造方法は、陰極を有する陰極室と陽極を有する陽
極室との間に交互に配設された陽イオン交換膜と陰イオ
ン交換膜とにて順次に脱塩室と濃縮室とを形成し、前記
陰極と陽極との間に電圧を印加しながら、前記脱塩室に
被処理水を流動させるとともに前記濃縮室に濃縮水を流
動させ、さらに前記陽極室に電極水を流動させ、前記陽
極室を通過して酸性となった電極水を前記陰極室に流動
させ、前記脱塩室を流動する被処理水中のイオンを前記
濃縮室に移動させて脱イオン化処理された純水を製造す
るものである。
According to a first aspect of the present invention, there is provided a method for producing pure water, comprising a cation exchange membrane and a cathode alternately disposed between a cathode chamber having a cathode and an anode chamber having an anode. A desalting chamber and a concentrating chamber are sequentially formed with the ion-exchange membrane, and while applying a voltage between the cathode and the anode, the water to be treated flows through the desalting chamber and is concentrated in the concentrating chamber. Flowing water, further flowing electrode water into the anode chamber, flowing the electrode water that has become acidic after passing through the anode chamber to the cathode chamber, and ionizing the water to be treated flowing through the desalting chamber. The deionized water is moved to the concentration chamber to produce pure water.

【0015】そして、陰極と陽極との間に電圧を印加し
ながら、脱塩室に被処理水を流動させることにより、被
処理水中のイオンを濃縮室に移動させて被処理水は脱イ
オン化処理された純水が製造される。このとき、陰極室
の電極水はアルカリ性傾向になっても、陽極室の酸性と
なった電極水が陰極室に供給され、陰極室を通過するに
したがい中和され、陰極室を流出した電極水はほぼ中性
となっており、陰極室はスケール成分が水酸化カルシウ
ムのスケールとなって析出することを防ぐことができ、
陰極にスケールが付着することがなく、処理水の純水純
度が低下することなく連続的に運転ができる。
[0015] Then, while applying a voltage between the cathode and the anode, the water to be treated flows into the desalting chamber, whereby ions in the water to be treated are moved to the concentration chamber, and the water to be treated is deionized. Purified water is produced. At this time, even if the electrode water in the cathode chamber becomes alkaline, the electrode water that has become acidic in the anode chamber is supplied to the cathode chamber and neutralized as it passes through the cathode chamber, and the electrode water flows out of the cathode chamber. Is almost neutral, and the cathode compartment can prevent the scale components from being precipitated as calcium hydroxide scale,
The scale can be prevented from adhering to the cathode, and the operation can be continuously performed without reducing the purity of the treated water.

【0016】請求項2記載の発明の純水の製造装置は、
陰極を有する陰極室と陽極を有する陽極室と、前記陰極
室と陽極室との間に交互に配設した陽イオン交換膜およ
び陰イオン交換膜とにて順次に形成された脱塩室と濃縮
室と、前記脱塩室に被処理水を流動させるとともに濃縮
室に濃縮水を流動させ、さらに陽極室に電極水を流動さ
せる給水系と、前記陽極室を通過して酸性となった電極
水を前記陰極室に流動させる配水系とを備え、前記脱塩
室を流動する被処理水中のイオンを前記濃縮室に移動さ
せて脱イオン化処理された純水を製造するものである。
The pure water producing apparatus according to the second aspect of the present invention comprises:
A desalination chamber and a concentrator formed sequentially with a cathode chamber having a cathode, an anode chamber having an anode, and a cation exchange membrane and an anion exchange membrane alternately arranged between the cathode chamber and the anode chamber. Chamber, a water supply system for flowing the water to be treated into the desalting chamber, the concentrated water to the concentrating chamber, and the electrode water to the anode chamber, and the electrode water passing through the anode chamber and becoming acidic. And a water distribution system for flowing deionized water into the cathode chamber, and moving ions in the water to be treated flowing through the demineralization chamber to the concentration chamber to produce deionized pure water.

【0017】そして、陰極と陽極との間に電圧を印加し
ながら、脱塩室に被処理水を流動させることにより、被
処理水中のイオンが濃縮室に移動されて被処理水は脱イ
オン化処理された純水が製造される。このとき、陰極室
の電極水はアルカリ性傾向になっても、陽極室を通過し
て酸性となった電極水を陰極室に流動させる配水系によ
って陽極室の酸性となった電極水が陰極室に供給され、
陰極室を通過するにしたがい中和され、陰極室を流出し
た電極水はほぼ中性となっており、陰極室はスケール成
分が水酸化カルシウムのスケールとなって析出すること
を防ぐことができ、陰極にスケールが付着することがな
く、処理水の純水純度が低下することなく連続的に運転
ができる。
Then, by flowing the water to be treated into the desalting chamber while applying a voltage between the cathode and the anode, ions in the water to be treated are moved to the concentration chamber, and the water to be treated is subjected to deionization treatment. Purified water is produced. At this time, even if the electrode water in the cathode chamber becomes alkaline, the water in the anode chamber becomes acidic due to the water distribution system that allows the electrode water that has passed through the anode chamber to flow into the cathode chamber. Supplied,
The electrode water is neutralized as it passes through the cathode chamber, and the electrode water flowing out of the cathode chamber is almost neutral, and the cathode chamber can prevent the scale component from being precipitated as calcium hydroxide scale, The scale can be prevented from adhering to the cathode, and the operation can be continuously performed without reducing the purity of the treated water.

【0018】なお、前記各発明の脱塩室には、必要に応
じて樹脂、繊維などの適宜の形態のイオン交換体を充填
する。
The desalting chamber of each of the above-mentioned inventions is filled with an ion exchanger in an appropriate form such as resin or fiber as required.

【0019】[0019]

【発明の実施の形態】次に本発明の純水の製造方法およ
び純水の製造装置の一実施の形態を図1に基いて、図2
に示す構成と同一構成を同一符号で示して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a method for producing pure water and an apparatus for producing pure water according to the present invention will be described with reference to FIG.
The same components as those shown in FIG.

【0020】純水製造装置2は、陰極3を有し電極水が
流動される陰極室4と陽極5を有し電極水が流動される
陽極室6とを対向して形成する。この陰極室4と陽極室
6との間に陽イオン交換膜(カチオン交換膜)7と陰イ
オン交換膜(アニオン交換膜)8とを交互に配設し、陰
極室4側から陽イオン交換膜7と陰イオン交換膜8との
間をイオン交換体11を充填した脱塩室9を形成し、この
脱塩室9に隣接して陰イオン交換膜8と陽イオン交換膜
7との間に濃縮室10を形成する。さらに順次に陽イオン
交換膜7と陰イオン交換膜8にて仕切られた脱塩室9と
濃縮室10とを形成し、陽極室6に隣接して陰イオン交換
膜8と陽イオン交換膜7との間に脱塩室9を形成する。
The pure water producing apparatus 2 has a cathode chamber 4 having a cathode 3 and flowing electrode water, and an anode chamber 6 having an anode 5 and flowing electrode water. A cation exchange membrane (cation exchange membrane) 7 and an anion exchange membrane (anion exchange membrane) 8 are alternately arranged between the cathode chamber 4 and the anode chamber 6, and the cation exchange membrane is arranged from the cathode chamber 4 side. A desalination chamber 9 filled with an ion exchanger 11 is formed between the anion exchange membrane 7 and the anion exchange membrane 8, and between the anion exchange membrane 8 and the cation exchange membrane 7 adjacent to the desalination chamber 9. A concentration chamber 10 is formed. Further, a desalting chamber 9 and a concentration chamber 10 separated by a cation exchange membrane 7 and an anion exchange membrane 8 are sequentially formed, and an anion exchange membrane 8 and a cation exchange membrane 7 are arranged adjacent to the anode chamber 6. To form a desalting chamber 9.

【0021】また、前記各脱塩室9には樹脂、繊維など
適宜の形態のイオン交換体11を充填する。
Each of the desalting chambers 9 is filled with an ion exchanger 11 of an appropriate form such as resin or fiber.

【0022】また、前記純水製造装置2の前段に逆浸透
膜12を有する逆浸透膜装置1を設け、この逆浸透膜装置
1を透過した被処理水の透過水を前記各脱塩室9に導入
側に供給してこの各脱塩室9をそれぞれ流動させる給水
系13と、前記逆浸透膜装置1を透過した被処理水を前記
各濃縮室10の導入側に濃縮水として供給してこの各濃縮
室10を流動させる給水系14と、さらに前記逆浸透膜装置
1を透過した被処理水を前記陽極室6の導入側に電極水
として供給してこの陽極室6を流動させる給水系15とが
設けられている。
A reverse osmosis membrane device 1 having a reverse osmosis membrane 12 is provided in front of the pure water production device 2, and the permeated water permeating the reverse osmosis membrane device 1 is passed through the respective desalination chambers 9. And a water supply system 13 for supplying each of the desalting chambers 9 to the inlet side and flowing the water to be treated which has passed through the reverse osmosis membrane device 1 to the inlet side of each of the concentrating chambers 10 as concentrated water. A water supply system 14 for flowing each of the concentrating chambers 10 and a water supply system for supplying water to be treated that has passed through the reverse osmosis membrane device 1 to the introduction side of the anode chamber 6 as electrode water to flow the anode chamber 6 15 are provided.

【0023】また、前記陽極室6を通過して酸性となっ
た電極水を前記陰極室4の導入側に供給してこの陰極室
4に流動させる配水系16が設けられている。
Further, a water distribution system 16 is provided for supplying the electrode water, which has become acidic after passing through the anode chamber 6, to the introduction side of the cathode chamber 4 and flowing the same to the cathode chamber 4.

【0024】さらに、前記各脱塩室9の導出側には純水
に生成された処理水の配水系17が接続され、また、前記
各濃縮室10の導出側には濃縮排水系18が接続され、さら
に、前記陰極室4の導出側には電極排水系19が接続され
ている。
Further, an outlet of each of the desalting chambers 9 is connected to a water distribution system 17 for treated water generated in pure water, and an outlet of each of the enrichment chambers 10 is connected to a concentrated drainage system 18. Further, an electrode drainage system 19 is connected to the outlet side of the cathode chamber 4.

【0025】次に、この実施の形態の作用を説明する。Next, the operation of this embodiment will be described.

【0026】陰極3と陽極5との間に電圧を印加しなが
ら、逆浸透膜装置1を透過した被処理水の透過水を給水
系13によって各脱塩室9に導入側に供給してこの各脱塩
室9をそれぞれ流動させ、また、逆浸透膜装置1を透過
した被処理水を給水系14によって各濃縮室10の導入側に
濃縮水として供給してこの各濃縮室10を流動させ、さら
に、逆浸透膜装置1を透過した被処理水を給水系15によ
って陽極室6の導入側に電極水として供給してこの陽極
室6を流動させる。
While applying a voltage between the cathode 3 and the anode 5, the permeated water permeated through the reverse osmosis membrane device 1 is supplied to each desalting chamber 9 by the water supply system 13 on the introduction side. Each of the desalting chambers 9 is made to flow, and the water to be treated that has passed through the reverse osmosis membrane device 1 is supplied as concentrated water to the introduction side of each of the concentrating chambers 10 by the water supply system 14 so that each of the concentrating chambers 10 is made to flow. Further, the water to be treated that has passed through the reverse osmosis membrane device 1 is supplied by the water supply system 15 to the introduction side of the anode chamber 6 as electrode water, and the anode chamber 6 is caused to flow.

【0027】また、陽極室6を通過して酸性となった電
極水を前記陰極室4の導入側に供給してこの陰極室4に
流動させる配水系16が設けられている。
Further, a water distribution system 16 is provided for supplying the electrode water, which has become acidic after passing through the anode chamber 6, to the introduction side of the cathode chamber 4 and flowing the same to the cathode chamber 4.

【0028】イオン交換体11が充填された脱塩室9を流
動される被処理水中のイオンはイオン交換体11の中を電
位の方向に移動して陽イオン交換膜7または陰イオン交
換膜8を透過して濃縮室10に移動して濃縮され、脱塩室
9を通過した被処理水は脱イオン化されて純水に生成さ
れ、各脱塩室9の導出側に接続した配水系17によって純
水に生成された処理水は配水される。
Ions in the water to be treated flowing through the desalting chamber 9 filled with the ion exchanger 11 move in the direction of the electric potential in the ion exchanger 11 to become the cation exchange membrane 7 or the anion exchange membrane 8. The water to be treated passes through the condensing chamber 10 and is concentrated. The water to be treated that has passed through the desalting chamber 9 is deionized to be purified water, and is supplied to a water distribution system 17 connected to the outlet of each desalting chamber 9. Treated water generated in pure water is distributed.

【0029】さらに、陽極室6には陰イオン交換膜8を
透過して陰イオンが移動し、また、陰極室4には陽イオ
ン交換膜7を透過して陽イオンが移動し、陽極室6での
イオン反応は、 H2 O→2H+1/2O2 ↑+2e となり、陰極室4でのイオン反応は、 H2 O+e→1/2H2 ↑+OH となり、陽極室6は酸性、陰極室4はアルカリ性とな
る。
Further, anions move through the anion exchange membrane 8 into the anode chamber 6, and cations move through the cation exchange membrane 7 into the cathode chamber 4. The ion reaction in the reaction becomes H 2 O → 2H ++ / O 2 ↑ + 2e , the ion reaction in the cathode chamber 4 becomes H 2 O + e → H 2 ↑ + OH , and the anode chamber 6 becomes acidic, The cathode chamber 4 becomes alkaline.

【0030】このように陰極室4内がアルカリ性となる
と、逆浸透膜装置1の透過水に含まれる微量のカルシウ
ムなどのスケール成分は水酸化カルシウムのスケール成
分となって析出される。
As described above, when the inside of the cathode chamber 4 becomes alkaline, a small amount of scale components such as calcium contained in the permeated water of the reverse osmosis membrane device 1 is precipitated as scale components of calcium hydroxide.

【0031】そして、水酸化カルシウムはpH9以上の塩
基性で析出されるが、配水系16によって陽極室6を通過
して酸性となった電極水が陰極室4の導入側に供給さ
れ、この陰極室4の導入側では電極水は酸性であり、こ
の陰極室4を流動するにしたがい中和されて、陰極室4
の導出側ではほぼ中性となり、水酸化カルシウムは中性
付近では析出されないことから、陰極室4では電極水は
アルカリ性とならないので、陰極室4ではスケール成分
が水酸化カルシウムは析出されないので、陰極3へのス
ケールの付着を引き起こすことがない。
Calcium hydroxide is precipitated in a basic condition of pH 9 or more. The electrode water which has passed through the anode chamber 6 by the water distribution system 16 and is made acidic is supplied to the introduction side of the cathode chamber 4. On the inlet side of the chamber 4, the electrode water is acidic, and is neutralized as it flows through the cathode chamber 4, so that the cathode water 4
Is almost neutral on the outlet side, and calcium hydroxide is not precipitated in the vicinity of neutrality. Therefore, the electrode water is not alkaline in the cathode chamber 4, and the scale component does not precipitate calcium hydroxide in the cathode chamber 4. 3 does not cause scale adhesion.

【0032】したがって、陰極3の電極部分にスケール
となって付着することによって陰極3に通電しにくくな
って処理水の水質が悪化したり、陰極3にスケールが付
着することにより陰極室4内の通水面積が変化して陽極
室6と陰極室4との通水バランスが崩れたり、陰極室4
への通水量が減少して陰極室4内の濃縮が進みスケール
の生成が増幅されて脱塩室9から導出される処理水の純
度を低下させることがない。
Therefore, when the scale 3 is attached to the electrode portion of the cathode 3, it is difficult to conduct electricity to the cathode 3, and the quality of the treated water is deteriorated. The water flow area changes, and the water flow balance between the anode chamber 6 and the cathode chamber 4 is lost.
The amount of water flowing to the cathode chamber 4 is reduced, the concentration in the cathode chamber 4 is advanced, and the generation of scale is amplified, so that the purity of the treated water led out from the desalting chamber 9 is not reduced.

【0033】また、濃縮室10から導出される濃縮水およ
び陰極室4から導出される電極水は各濃縮室10の導出側
の濃縮排水系18および陰極室4の導出側の電極排水系19
から排水される。
The concentrated water discharged from the concentrating chamber 10 and the electrode water discharged from the cathode chamber 4 are supplied to the concentrated drainage system 18 on the outlet side of each of the concentrating chambers 10 and the electrode drainage system 19 on the outlet side of the cathode chamber 4.
Drained from

【0034】前記実施の形態では、純水製造装置2は、
対向して配設した陰極室4と陽極室6との間に陽イオン
交換膜7と陰イオン交換膜8とを交互に配設して脱塩室
9と濃縮室10とを交互に形成した構成として説明した
が、陽極室6、脱塩室9、濃縮室10および陰極室4とを
同心円状に形成し、または陽極室6、脱塩室9、濃縮室
10および陰極室4をスパイラル状に形成することもでき
る。
In the above embodiment, the pure water producing apparatus 2
The cation exchange membrane 7 and the anion exchange membrane 8 are alternately arranged between the cathode chamber 4 and the anode chamber 6 which are arranged to face each other, and the desalting chamber 9 and the concentration chamber 10 are formed alternately. Although described as a configuration, the anode chamber 6, the desalination chamber 9, the concentration chamber 10 and the cathode chamber 4 are formed concentrically, or the anode chamber 6, the desalination chamber 9, the concentration chamber
10 and the cathode chamber 4 can be formed in a spiral shape.

【0035】さらに、前記実施の形態では、濃縮室10か
ら導出される濃縮水および陰極室4から導出される電極
水は各濃縮室10の導出側の濃縮排水系18および陰極室4
の導出側の電極排水系19からそれぞれ一過式で排水され
るようにした構成について説明したが、通電効率を高め
るために、濃縮室10から導出される濃縮水および陰極室
4から導出される電極水を給水系14,15に循環させる循
環系20,21を形成し、濃縮水および電極水として被処理
液の一部を給水系14,15から供給し、濃縮室10から導出
される濃縮水および陰極室4から導出される電極水と混
合し、また、濃縮排水系18および電極排水系19から濃縮
水および電極水の一部を排出させるようにすることもで
きる。
Further, in the above embodiment, the concentrated water discharged from the concentration chamber 10 and the electrode water discharged from the cathode chamber 4 are supplied to the concentrated drainage system 18 and the cathode chamber 4 on the discharge side of each concentration chamber 10.
Although the configuration in which the drain water is drained from the electrode drainage system 19 on the outlet side of the above in a temporary manner has been described, in order to increase the power supply efficiency, the concentrated water extracted from the concentration chamber 10 and the concentrated water extracted from the cathode chamber 4 are extracted. Forming circulation systems 20 and 21 for circulating the electrode water to the water supply systems 14 and 15, supplying part of the liquid to be treated as concentrated water and electrode water from the water supply systems 14 and 15, It is also possible to mix the water and the electrode water derived from the cathode chamber 4 and also to discharge a part of the concentrated water and the electrode water from the concentrated drainage system 18 and the electrode drainage system 19.

【0036】また、前記実施の形態では、前記純水製造
装置2の前段に逆浸透膜12を有する逆浸透膜装置1を設
け、この逆浸透膜装置1を透過した被処理水を純水製造
装置2に供給する構成としたが、逆浸透膜装置1に代え
て他の電解装置やイオン交換樹脂のイオン交換装置など
の一次純水製造装置を透過した被処理水の一次純水を純
水製造装置2に供給することもできる。
Further, in the above embodiment, a reverse osmosis membrane device 1 having a reverse osmosis membrane 12 is provided in front of the pure water production device 2, and the water to be treated that has passed through the reverse osmosis membrane device 1 is subjected to pure water production. Although it is configured to be supplied to the apparatus 2, the primary pure water to be treated that has passed through the primary pure water producing apparatus such as another electrolytic apparatus or an ion exchange apparatus of an ion exchange resin in place of the reverse osmosis membrane apparatus 1 is purified water. It can also be supplied to the manufacturing apparatus 2.

【0037】さらに、逆浸透膜装置1または他の電解装
置やイオン交換装置などの一次純水製造装置を設置する
ことなく、純水製造装置2に被処理水を直接的に供給す
るようにすることもできる。
Further, the water to be treated is directly supplied to the pure water producing apparatus 2 without installing a reverse osmosis membrane apparatus 1 or another primary pure water producing apparatus such as an electrolytic apparatus or an ion exchange apparatus. You can also.

【0038】[0038]

【実施例】次に本発明を実施例を比較例とともに具体的
に説明する。
Next, the present invention will be described in detail with reference to examples and comparative examples.

【0039】実験例1 茨城県境町の市水を被処理液の原水として図1(本発明
装置…陽極室6の導出側を陰極室6の導入側に接続)お
よび図2(従来例…陰極室4と陽極室6との導入側は並
列に接続)に示す電気再生式純水製造装置2により脱イ
オン化された純水を製造した。
Experimental Example 1 FIG. 1 (the present invention, in which the outlet side of the anode chamber 6 is connected to the introduction side of the cathode chamber 6) and FIG. 2 (conventional example, the cathode), using city water in Sakai-machi, Ibaraki as raw water for the liquid to be treated. (The introduction sides of the chamber 4 and the anode chamber 6 are connected in parallel.) The deionized pure water was produced by the electric regeneration type pure water producing apparatus 2 shown in FIG.

【0040】逆浸透膜装置1はデサル社製AG4040
FF型(合成高分子複合膜、NaCl脱塩率99%)を
用いた。この逆浸透膜装置1の透過水量(純水製造装置
2への供給水量)は1.13m3 /hである。また、電
気再生式純水製造装置2はエレクトロピュア社製のEP
M−32型を用いた。
The reverse osmosis membrane device 1 is AG4040 manufactured by Desaru.
FF type (synthetic polymer composite membrane, NaCl desalting rate 99%) was used. The amount of permeated water of this reverse osmosis membrane device 1 (the amount of water supplied to the pure water production device 2) is 1.13 m 3 / h. In addition, the electric regeneration type pure water production apparatus 2 is an EP made by Electropure.
M-32 type was used.

【0041】その実験により製造された純水は表1に示
すとおりである。
The pure water produced by the experiment is as shown in Table 1.

【0042】[0042]

【表1】 この実験から、従来の方法(比較例)では、陰極室4の
導出側で電極水はアルカリ性を呈していたものに対し、
本発明の方法では陰極室4の導出側で電極水はほぼ中性
をていしていることが明に認められた。
[Table 1] From this experiment, it was found that in the conventional method (comparative example), the electrode water exhibited alkalinity on the outlet side of the cathode chamber 4,
In the method of the present invention, it was clearly recognized that the electrode water was almost neutral on the outlet side of the cathode chamber 4.

【0043】実験例2 茨城県境町の市水を被処理液の原水として図1(本発明
装置…陽極室6の導出側を陰極室6の導入側に接続)お
よび図2(従来例…陰極室4と陽極室6との導入側は並
列に接続)に示す電気再生式純水製造装置2により脱イ
オン化された純水を製造し、純度の推移を観察した。原
水は微量のカルシウム、マグネシウムイオンを含有(そ
れぞれ1mg/L以下)していた。
EXPERIMENTAL EXAMPLE 2 FIG. 1 (the present invention: the outlet side of the anode chamber 6 is connected to the inlet side of the cathode chamber 6) and FIG. 2 (conventional example: cathode) (The introduction sides of the chamber 4 and the anode chamber 6 are connected in parallel.) The deionized pure water was produced by the electric regeneration type pure water producing apparatus 2 shown in FIG. Raw water contained trace amounts of calcium and magnesium ions (each 1 mg / L or less).

【0044】逆浸透膜装置1は本発明装置および比較例
ともに、合成高分子複合膜、NaCl脱塩率99%の逆
浸透膜装置を用いた。この逆浸透膜装置1の透過水量
(純水製造装置2への供給水量)は1.13m3 /h〜
1.2m3 /hである。また、本発明装置および比較例
に用いた電気再生式純水製造装置2は市販の装置を用い
た。
As the reverse osmosis membrane device 1, a reverse osmosis membrane device having a synthetic polymer composite membrane and a NaCl desalting rate of 99% was used for both the device of the present invention and the comparative example. The amount of permeated water of this reverse osmosis membrane device 1 (the amount of water supplied to the pure water production device 2) is 1.13 m 3 / h or more.
1.2 m 3 / h. In addition, a commercially available apparatus was used for the electric regeneration type pure water production apparatus 2 used in the apparatus of the present invention and the comparative example.

【0045】この実験により製造されたる純水の純度の
推移は図3に示すとおりである。
The transition of the purity of the pure water produced by this experiment is as shown in FIG.

【0046】この実験から、比較例では通水時間の経過
とともに純度が低下していることが明らかであり、装置
を分解して内部を確認したところ、陰極室4内の陰極3
の電極表面にスケールが付着していることが観察され
た。また、本発明装置では、純度が低下することなく安
定した運転を行うことができた。
From this experiment, it is clear that the purity was lowered with the passage of water passage time in the comparative example. When the apparatus was disassembled and the inside was confirmed, the cathode 3 in the cathode chamber 4 was confirmed.
It was observed that the scale adhered to the electrode surface of. Further, in the apparatus of the present invention, stable operation could be performed without lowering the purity.

【0047】[0047]

【発明の効果】本発明によれば、原水の水質が悪化した
り、前処理装置が劣化した場合でも水処理水の純水の純
度を低下させることがなく、安定して純度の高い純水を
連続的に、かつ長期間製造でき、運転管理が容易で簡略
化でき、運転コストの低減が図られ、工業的純水の製造
ににきわめて有利である。
According to the present invention, even if the quality of the raw water is deteriorated or the pretreatment device is deteriorated, the purity of the purified water is not reduced and the pure water having a stable high purity is not reduced. Can be manufactured continuously and for a long period of time, operation management can be simplified and simplified, operation costs can be reduced, and it is extremely advantageous for production of industrial pure water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す純水製造装置の説
明図である。
FIG. 1 is an explanatory diagram of a pure water production apparatus showing one embodiment of the present invention.

【図2】従来の純水製造装置の説明図である。FIG. 2 is an explanatory diagram of a conventional pure water production apparatus.

【図3】本発明の装置と従来の装置とによって製造され
た純水の純度の推移を示す図である。
FIG. 3 is a graph showing a change in purity of pure water produced by the apparatus of the present invention and a conventional apparatus.

【符号の説明】[Explanation of symbols]

3 陰極 4 陰極室 5 陽極 6 陽極室 7 陽イオン交換膜 8 陰イオン交換膜 9 脱塩室 10 濃縮室 13,14,15 給水系 16 配水系 3 Cathode 4 Cathode compartment 5 Anode 6 Anode compartment 7 Cation exchange membrane 8 Anion exchange membrane 9 Desalination compartment 10 Concentration compartment 13,14,15 Water supply system 16 Water distribution system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 護 東京都目黒区洗足二丁目22番6号 アクア ス株式会社内 (72)発明者 梅原 龍吾 東京都目黒区洗足二丁目22番6号 アクア ス株式会社内 (72)発明者 吾妻 直樹 東京都港区赤坂三丁目3番3号 エイエム ピー・アイオネクス株式会社内 Fターム(参考) 4D006 GA03 GA17 HA41 KA31 KA52 KA57 KB01 KC27 MA03 MA06 MA13 MA14 PA02 PB06 PB27 PC04 4D061 DA03 DB13 EA09 EB01 EB13 EB17 EB20 EB22 FA09  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Ito Mamoru 2-22-6 Senzoku, Meguro-ku, Tokyo Aquas Co., Ltd. (72) Inventor Ryugo Umehara 2-22-6 Senzoku, Meguro-ku, Tokyo Aquas Incorporated (72) Inventor Naoki Azuma 3-3 Akasaka, Minato-ku, Tokyo APM Ionics Inc. F-term (reference) 4D006 GA03 GA17 HA41 KA31 KA52 KA57 KB01 KC27 MA03 MA06 MA13 MA14 PA02 PB06 PB27 PC04 4D061 DA03 DB13 EA09 EB01 EB13 EB17 EB20 EB22 FA09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陰極を有する陰極室と陽極を有する陽極
室との間に交互に配設された陽イオン交換膜と陰イオン
交換膜とにて順次に脱塩室と濃縮室とを形成し、 前記陰極と陽極との間に電圧を印加しながら、前記脱塩
室に被処理水を流動させるとともに前記濃縮室に濃縮水
を流動させ、さらに前記陽極室に電極水を流動させ、 前記陽極室を通過して酸性となった電極水を前記陰極室
に流動させ、 前記脱塩室を流動する被処理水中のイオンを前記濃縮室
に移動させて脱イオン化処理された純水を製造すること
を特徴とした純水の製造方法。
1. A desalting chamber and a concentrating chamber are sequentially formed by a cation exchange membrane and an anion exchange membrane alternately arranged between a cathode chamber having a cathode and an anode chamber having an anode. While applying a voltage between the cathode and the anode, flowing the water to be treated into the desalting chamber and flowing the concentrated water into the concentrating chamber, further flowing electrode water into the anode chamber, Making the electrode water that has become acidic after passing through the chamber flow into the cathode chamber, and moving ions in the water to be treated flowing through the desalting chamber to the concentration chamber to produce deionized pure water. The method for producing pure water characterized by the following.
【請求項2】 陰極を有する陰極室と陽極を有する陽極
室と、 前記陰極室と陽極室との間に交互に配設した陽イオン交
換膜および陰イオン交換膜とにて順次に形成された脱塩
室と濃縮室と、 前記脱塩室に被処理水を流動させるとともに濃縮室に濃
縮水を流動させ、さらに陽極室に電極水を流動させる給
水系と、 前記陽極室を通過して酸性となった電極水を前記陰極室
に流動させる配水系とを備え、 前記脱塩室を流動する被処理水中のイオンを前記濃縮室
に移動させて脱イオン化処理された純水を製造すること
を特徴とする純水の製造装置。
2. A cathode chamber having a cathode, an anode chamber having an anode, and a cation exchange membrane and an anion exchange membrane which are alternately arranged between the cathode chamber and the anode chamber. A desalting chamber and a concentrating chamber; a water supply system for flowing the water to be treated into the desalting chamber and flowing the concentrated water to the concentrating chamber; and further allowing the electrode water to flow to the anode chamber. And a water distribution system that causes the electrode water to flow to the cathode chamber, wherein ions in the water to be treated flowing in the desalting chamber are moved to the concentration chamber to produce deionized pure water. Characteristic pure water production equipment.
JP11235942A 1999-08-23 1999-08-23 Method and apparatus for making pure water Pending JP2001058186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11235942A JP2001058186A (en) 1999-08-23 1999-08-23 Method and apparatus for making pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11235942A JP2001058186A (en) 1999-08-23 1999-08-23 Method and apparatus for making pure water

Publications (1)

Publication Number Publication Date
JP2001058186A true JP2001058186A (en) 2001-03-06

Family

ID=16993520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11235942A Pending JP2001058186A (en) 1999-08-23 1999-08-23 Method and apparatus for making pure water

Country Status (1)

Country Link
JP (1) JP2001058186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094064A (en) * 2001-09-27 2003-04-02 Kurita Water Ind Ltd Electric deionization equipment
JP2005296878A (en) * 2004-04-15 2005-10-27 Hitachi Maxell Ltd Electrolytic ion water preparation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094064A (en) * 2001-09-27 2003-04-02 Kurita Water Ind Ltd Electric deionization equipment
JP2005296878A (en) * 2004-04-15 2005-10-27 Hitachi Maxell Ltd Electrolytic ion water preparation apparatus

Similar Documents

Publication Publication Date Title
US10662085B2 (en) Low energy system and method of desalinating seawater
JP3826690B2 (en) Electrodeionization device and pure water production device
AU2014212394B2 (en) Rechargeable electrochemical cells
JP4867720B2 (en) Pure water production method and apparatus
CA2347473A1 (en) Method and apparatus for preventing scaling in electrodeionization units
JP2008036486A (en) Electric deionizer
JP4403621B2 (en) Electrodeionization equipment
JP4710176B2 (en) Ultrapure water production equipment
JP2011062662A (en) Electric deionized water making apparatus
JP5114307B2 (en) Electric deionized water production equipment
JP3952127B2 (en) Electrodeionization treatment method
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP2008161760A (en) Pure water making method and pure water making apparatus
JPH022830A (en) Electric dialysis device
JP4505965B2 (en) Pure water production method
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP2001058186A (en) Method and apparatus for making pure water
JP2007063617A (en) Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
JP3729347B2 (en) Electric regenerative desalination equipment
JP2012183487A (en) Water treatment method and water treatment system
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2007245120A (en) Electrically operated apparatus for producing deionized water
JP2002011476A (en) Method of operating electric deionization device
JP2001269668A (en) Manufacturing method of pure water and device for manufacturing pure water