JP5300015B2 - Cover structure of the surface of the levee body - Google Patents

Cover structure of the surface of the levee body Download PDF

Info

Publication number
JP5300015B2
JP5300015B2 JP2009057834A JP2009057834A JP5300015B2 JP 5300015 B2 JP5300015 B2 JP 5300015B2 JP 2009057834 A JP2009057834 A JP 2009057834A JP 2009057834 A JP2009057834 A JP 2009057834A JP 5300015 B2 JP5300015 B2 JP 5300015B2
Authority
JP
Japan
Prior art keywords
cement composite
water
fiber reinforced
reinforced cement
covering structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009057834A
Other languages
Japanese (ja)
Other versions
JP2010209602A (en
Inventor
英彦 緒方
九二雄 服部
勇 長束
将幸 石井
昇 坂田
大介 林
篤 大井
勝利 藤崎
道孝 岡本
康文 坂本
潤一 芳賀
博文 下田
格彦 久野
国雄 竹内
康之 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Tottori University
National University Corp Shimane University
Original Assignee
Kajima Corp
Tottori University
National University Corp Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Tottori University, National University Corp Shimane University filed Critical Kajima Corp
Priority to JP2009057834A priority Critical patent/JP5300015B2/en
Publication of JP2010209602A publication Critical patent/JP2010209602A/en
Application granted granted Critical
Publication of JP5300015B2 publication Critical patent/JP5300015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating structure of a dam body surface layer section which has superior water intercepting properties, can secure the required stability of a dam body without increasing the area of site, has earthquake resistance due to superior mechanical characteristics, and has superior construction efficiency. <P>SOLUTION: A high performance fiber-reinforced cementitious composite (HPFRCC) 8 is brought into surface contact with and joined to a water permeable material 5 as a porous concrete which is disposed under the composite and has a coefficient of permeability larger than 10<SP>-2</SP>to form into a laminated structure. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、既設の農業用ため池等に設置する貯水用の堤体もしくは河川の護岸その他の堤体で、表層部の改修、耐震性の向上を行う堤体表層部の被覆構造に関するものである。   TECHNICAL FIELD The present invention relates to a covering structure for a surface of a levee body, which is used to renovate a surface layer and improve seismic resistance in a dike for water storage or a river revetment or other dam body installed in an existing agricultural pond. .

耐震性の向上を目指した堤体の改修に関しては、堤体法面勾配の緩和を行うことで堤体断面の拡大による安定性の向上を実現することが考えられるが、これではコストがかかり、工期が長く、また、雑草木の繁茂があり、施工後、上流法面が侵食される懸念がある。   Regarding the renovation of the levee body with the aim of improving earthquake resistance, it may be possible to improve stability by expanding the section of the dam body by relaxing the slope of the levee body slope, but this is costly, The construction period is long, and there is a growing overgrowth of weed trees.

また、アルファルトフェーシングで被覆する堤体の改修では、耐久性に劣り、作業性が悪く、また、施工後後表面保護にひび割れが発生することが懸念される。   In addition, in the repair of a bank body covered with alpha-ltd facing, the durability is inferior, the workability is poor, and there is a concern that the surface protection will be cracked after construction.

これに対して防水性土木シート等の遮水シートを活用することが、下記特許文献等に示されている。
実公昭50−45885号公報 特開2001−98526号公報 特開2006−322302号公報
On the other hand, use of a water shielding sheet such as a waterproof civil engineering sheet is shown in the following patent documents.
Japanese Utility Model Publication No. 50-45885 JP 2001-98526 A JP 2006-322302 A

これらはシートを敷設することにより越流が数時間に亘って連続しても堤防土の浸食を防御するという発想に基づくものであり、例えば、特許文献2では図6に示すように、堤体9の芯土18を盛土し、さらに芯土18を転圧し、その上から本発明の半透水性土木シート1を連続的に施工して芯土18を間隙なく掩覆している。   These are based on the idea that the levee soil is protected from erosion even if the overflow continues for several hours by laying the sheet. For example, in Patent Document 2, as shown in FIG. Nine cores 18 are embanked, and the cores 18 are further crushed, and the semi-permeable civil engineering sheet 1 of the present invention is continuously applied thereon to cover the cores 18 without gaps.

半透水性土木シート1は、2層の合成繊維綿層2a、2bの中間に、800〜1200デニールのモノヒラメント糸を12〜16本/インチに織り込んだ高密度平布3と、ポリエチレン製またはエチレン−酢酸ビニール共重合体製の防水シート4を介在させて、2層の合成繊維のフェルト状マットのいずれか一方の側の表面から45±10本/cm2の針密度にて全体をニードルパンチ加工して成る。 The semi-permeable civil engineering sheet 1 includes a high-density flat cloth 3 in which 800 to 1200 denier monofilament yarns are woven into 12 to 16 yarns / inch between two synthetic fiber cotton layers 2a and 2b, and polyethylene or ethylene. -Needle punch with a needle density of 45 ± 10 / cm 2 from the surface of one side of a two-layer synthetic fiber felt mat with a vinyl acetate copolymer waterproof sheet 4 interposed Processed.

さらに、半透水性土木シート1の上に客土23を盛土し、転圧する。最後に、堤外側にコンクリート10を打設し、天端11を適宜舗装し、裏法面12に植生を施工すれば完成である。なお、客土の厚さは、適宜数10cm程度とする。   Furthermore, the customer soil 23 is embanked on the semi-permeable civil engineering sheet 1 and rolled. Finally, concrete 10 is placed on the outside of the bank, the top end 11 is paved as appropriate, and vegetation is constructed on the back slope 12 to complete. It should be noted that the thickness of the customer soil is appropriately several tens of centimeters.

13は河川水、14は河床、15は鋼矢板、16は蒲団籠である。   Reference numeral 13 is river water, 14 is a river bed, 15 is a steel sheet pile, and 16 is a steel ridge.

堤防表面に降った雨水は客土23に浸透し、半透水性土木シート1を透過して芯土18にまで浸透する。空気も同様である。   Rainwater that has fallen on the surface of the levee penetrates the customer soil 23, penetrates the semipermeable civil engineering sheet 1, and penetrates to the core soil 18. The same applies to air.

また、半透水性土木シート1は、シートの両側に摩擦係数の大きい合成繊維綿層2a、2bを有するので、客土23は合成繊維綿層2aに強く付着し、芯土18は合成繊維綿層2bに強く付着し、結果として半透水性土木シート1を介することにより、客土23と芯土18が強力に結合されることとなる。   Moreover, since the semi-permeable civil engineering sheet 1 has the synthetic fiber cotton layers 2a and 2b having a large friction coefficient on both sides of the sheet, the customer soil 23 is strongly attached to the synthetic fiber cotton layer 2a, and the core soil 18 is the synthetic fiber cotton. By strongly adhering to the layer 2b and, as a result, through the semi-permeable civil engineering sheet 1, the customer soil 23 and the core soil 18 are strongly bonded.

前記特許文献1から3のような遮水シートを使用するものでは、耐久性が劣り、また、作業性が悪い。施工後、シート損傷により、背面土砂の流出などが懸念される。   In the case of using the water shielding sheet as in Patent Documents 1 to 3, durability is inferior and workability is poor. After construction, there is concern about the outflow of backside soil due to sheet damage.

また、シート上に客土を盛土する場合には、雑草木の繁茂があり、施工後、上流法面が侵食される懸念がある。   In addition, there is a concern that the upstream slope will be eroded after construction because there is an overgrowth of weed trees when embankment is made on the sheet.

本発明の目的は前記従来例の不都合を解消し、遮水性がよく、しかも、用地を拡大することなく、所要の堤体安定性を確保することができ、優れた力学特性により高い耐震性を有し、かつ、施工性に優れる堤体表層部の被覆構造を提供することにある。   The object of the present invention is to eliminate the inconveniences of the conventional examples described above, to have good water shielding, and to ensure the required levee body stability without expanding the site, and to achieve high earthquake resistance with excellent mechanical properties. The object is to provide a covering structure for the surface layer portion of the levee body having excellent workability.

前記目的を達成するため請求項1記載の本発明は、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)をその下部に配設された透水係数が10(−2乗)より大きいポーラスコンクリートである透水性材料と面接触して結合させて積層構造としたことを要旨とするものである。   In order to achieve the above object, the present invention according to claim 1 is a porous concrete having a water permeability coefficient larger than 10 (−2), in which a plurality of fine cracked fiber reinforced cement composite materials (HPFRCC) are disposed below. The gist is that a laminated structure is formed by surface contact with the water-permeable material and bonding.

請求項1記載の本発明によれば、堤体の表面を被覆する複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)は、高い耐久性・耐摩耗性を発揮する。   According to the first aspect of the present invention, the multiple fine crack type fiber reinforced cement composite material (HPFRCC) covering the surface of the bank body exhibits high durability and wear resistance.

また、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)を直接堤体の法面に被覆した場合には図2に示すように、池内の水位低下時にため池と堤体の内部において水頭差ができ、堤体内部から表面遮水壁背面に向かって水圧が掛かることにより、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)が浮き上がったり、場合によっては崩壊したり損傷が生じるおそれがある。   Also, when the slope of the levee body is directly coated with multiple fine cracked fiber reinforced cement composite material (HPFRCC), as shown in Fig. 2, there is a water head difference between the pond and the dam body when the water level in the pond is lowered. When the water pressure is applied from the inside of the dam body toward the back surface of the surface impermeable wall, a plurality of fine cracked fiber reinforced cement composite materials (HPFRCC) may be lifted or possibly collapsed or damaged.

これに対して本発明は、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)の背面(基層)に排水層を設け、排水を良好にしたので水圧がかからないようにでき、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)が浮き上がったり、場合によっては崩壊したり損傷が生じるおそれはない。   On the other hand, the present invention provides a drainage layer on the back surface (base layer) of the multi-fine crack type fiber reinforced cement composite material (HPFRCC), and the drainage is improved, so that water pressure is not applied. There is no possibility that the cement composite material (HPFRCC) will be lifted, or in some cases, collapsed or damaged.

請求項2記載の本発明は、堤体は、貯水用のものであり、農業用のため池の堤体であることを要旨とするものである。   The gist of the present invention described in claim 2 is that the bank body is for storing water and is a bank bank for agricultural use.

請求項2記載の本発明によれば、前記池内の水位低下時にため池と堤体の内部における水頭差は、灌漑期に貯水を灌漑用水として使用したり、農閑期に泥浚えなどで落水(排水)を行ったり、貯水位の低下がある農業用のため池では頻繁に生じるものであり、排水層の存在は農業用のため池に対して特に有効である。   According to the second aspect of the present invention, when the water level in the pond decreases, the water head difference between the pond and the embankment is due to the use of stored water as irrigation water during the irrigation period, ) And water reservoirs with low water levels are frequently generated in agricultural ponds, and the presence of a drainage layer is particularly effective for agricultural ponds.

請求項3記載の本発明は、セメント複合材料は、下記〔M1〕の条件を満たすセメント調合マトリクスに、下記〔F1〕の条件を満たすPVA(Poly Vinyl Alcohol)短繊維を1vol.%以上3vol.%以下の配合量で配合したクラック分散型の繊維補強セメント複合材料であることを要旨とするものである。
〔M1〕
水結合材の重量百分比(W/C):25%以上
細骨材と結合材の重量比(S/C):1.5以下(0を含む)
単位水量:250〜450Kg/m
練り上がり直後の空気量:3.5〜20%
高性能AE減水剤:30Kg/m未満
〔F1〕
繊維径:0.05mm以下
繊維長:5〜20mm
繊維引張強度:1500〜2400MPa
According to the third aspect of the present invention, in the cement composite material, 1 vol. Of PVA (Poly Vinyl Alcohol) short fiber satisfying the following [F1] is added to a cement preparation matrix satisfying the following [M1]. % Or more 3 vol. The gist of the present invention is that it is a crack-dispersed fiber-reinforced cement composite material blended in a blending amount of not more than%.
[M1]
Weight percentage of water binder (W / C): 25% or more Weight ratio of fine aggregate to binder (S / C): 1.5 or less (including 0)
Unit water quantity: 250-450 kg / m 3
Air volume immediately after kneading: 3.5-20%
High-performance AE water reducing agent: less than 30 kg / m 3 [F1]
Fiber diameter: 0.05 mm or less Fiber length: 5-20 mm
Fiber tensile strength: 1500-2400 MPa

請求項3記載の本発明によれば、硬化後の高い引張ひずみ性能と低い収縮性を同時に実現する複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)の適正な配合を提供するものであり、引張ひずみが1%以上であることは、載荷方向(応力方向)とほぼ直角方向に多数のクラック(マルチクラック)が発生するクラック分散型の破壊現象が生じていることを意味する。マルチクラックの発生要因であるSteady State Cracking現象(SSC現象)をPVA繊維で実現すべく種々の試験研究を重ねたところ、用いるPVA繊維の性質と、マトリクスの性質をうまく組み合わせると、PVA繊維であっても引張ひずみ1%以上、好ましくは2%以上の高靭性FRC(Fiber Reinforced Concrete:繊維補強コンクリート)材料が得られる。   According to the third aspect of the present invention, there is provided an appropriate blending of a plurality of microcracked fiber reinforced cement composite materials (HPFRCC) that simultaneously realize high tensile strain performance after curing and low shrinkage, When the strain is 1% or more, it means that a crack dispersion type fracture phenomenon in which a large number of cracks (multi-cracks) are generated in a direction substantially perpendicular to the loading direction (stress direction). Various research studies have been conducted to realize the Steady State Cracking phenomenon (SSC phenomenon), which is the cause of multi-cracking, with PVA fibers. When the properties of the PVA fibers used and the properties of the matrix are successfully combined, Even so, a high toughness FRC (Fiber Reinforced Concrete) material having a tensile strain of 1% or more, preferably 2% or more can be obtained.

また、PVA短繊維F1を、水セメント比(W/C×100)が25%以上で砂セメント比(S/C)が1.5以下(0を含む)の調合のマトリクスに、1.5超え〜3vol.%以下の配合量で、3次元方向にランダムに分散配合させた場合と、PVA繊維F2を、水セメント比(W/C×100)が25%以上で砂セメント比(S/C)が1.5以下(0を含む)の調合のマトリクスに、1〜3vol.%の配合量で、3次元方向にランダムに分散配合させた場合には、クラック分散型の高靭性FRC材料が得られる。   Further, the PVA short fiber F1 is added to a matrix of a formulation having a water cement ratio (W / C × 100) of 25% or more and a sand cement ratio (S / C) of 1.5 or less (including 0). More than 3 vol.% Or less of the blended amount randomly distributed in the three-dimensional direction, and the PVA fiber F2 has a water cement ratio (W / C × 100) of 25% or more and a sand cement ratio (S / When the dispersion matrix is randomly dispersed in the three-dimensional direction at a blending amount of 1 to 3 vol.% In a matrix with a blend of C) of 1.5 or less (including 0), a crack-dispersed high toughness FRC material Is obtained.

請求項4記載の本発明は、複数微細ひび割れ型繊維補強セメント複合材料は、堤体上流側斜面から堤体頂部まで連続させたこと、請求項5記載の本発明は、複数微細ひび割れ型繊維補強セメント複合材料は、堤体上流側斜面から堤体頂部まで連続させ、かつ、堤体下流の法尻まで連続させること、請求項6記載の本発明は、堤体頂部に一部低い箇所を形成し、複数微細ひび割れ型繊維補強セメント複合材料は、この低い箇所から堤体下流の法尻まで連続させることを要旨とするものである。   In the present invention described in claim 4, the plural fine crack type fiber reinforced cement composite material is continuous from the dam body upstream side slope to the top of the dam body, and the present invention described in claim 5 is provided with the plural fine crack type fiber reinforced cement reinforcement. The cement composite material is continuous from the slope on the upstream side of the dam body to the top of the dam body, and is continued to the bottom of the dam body. However, the gist of the plural fine crack type fiber reinforced cement composite material is to continue from this low portion to the bottom of the dam body.

請求項4から6記載の本発明によれば、万が一、オーバートッピングした場合でも、堤体の決壊を防ぐことができる。   According to the present invention as set forth in claims 4 to 6, even if the overtopping should occur, the breakage of the levee body can be prevented.

請求項7記載の本発明は、複数微細ひび割れ型繊維補強セメント複合材料の表面に所定の凹凸粗さを形成することを要旨とするものである。   The gist of the present invention described in claim 7 is to form a predetermined roughness on the surface of the multiple fine crack type fiber reinforced cement composite material.

請求項7記載の本発明によれば、複数微細ひび割れ型繊維補強セメント複合材料の上にさらに被覆層を設ける場合でも、所定の凹凸粗さを形成することで付着性を高めることができる。   According to the seventh aspect of the present invention, even when a coating layer is further provided on the multiple fine crack type fiber reinforced cement composite material, the adhesion can be enhanced by forming a predetermined roughness.

請求項8記載の本発明は、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)の被覆層の上にさらに表面緑化可能な環境ポーラスコンクリート層を形成することを要旨とするものである。 The gist of the present invention described in claim 8 is to form an environmental porous concrete layer capable of further greening on the coating layer of a plurality of fine crack type fiber reinforced cement composite materials (HPFRCC).

請求項8記載の本発明によれば、堤体の表面の緑化を行うのに、ポーラスコンクリートは空隙率が高いので植生が成立しやすく、植生の復元に伴って生態系復元も達成できる。     According to the eighth aspect of the present invention, when the surface of the levee body is greened, the porous concrete has a high porosity, so that vegetation is easily formed, and the restoration of the ecosystem can be achieved along with the restoration of the vegetation.

以上述べたように本発明の堤体表層部の被覆構造は、改修後の堤体に高い耐久性を期待することができ、特に、気中箇所でも高い耐候性を期待することができ、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)の優れた力学特性により、地震時の安定性を改善することができる。   As described above, the covering structure of the surface of the levee body according to the present invention can be expected to have high durability to the dam body after repair, and in particular, can be expected to have high weather resistance even in the air. The excellent mechanical properties of the fine cracked fiber reinforced cement composite (HPFRCC) can improve stability during earthquakes.

さらに、貯水用のものである場合には、既設ため池の用地を拡大することなく、所要の堤体安定性を確保することができる。また、ため池の貯水量を確保しながら、所要の堤体安定性を確保することができ、ため池の改修に必要な盛土材料を減らすことができる。   Furthermore, when it is for water storage, the required levee body stability can be ensured without expanding the site of the existing pond. In addition, the required levee body stability can be ensured while securing the reservoir water volume, and the embankment material required for renovation of the pond can be reduced.

また、盛土が必要な場合でも、遮水性に拘わらずせん断強度の高い材料を使用することができ、改修後の堤体上で、重機やスコップなどを用いた維持管理作業を行うことができる。   Moreover, even when embankment is required, a material having high shear strength can be used regardless of water shielding, and maintenance work using heavy machinery or a scoop can be performed on the renovated dam body.

以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の堤体表層部の被覆構造の1実施形態を示す縦断側面図で、図中9は貯水用の堤体である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal side view showing an embodiment of a covering structure for a surface portion of a levee body according to the present invention, in which 9 is a dam body for water storage.

この貯水用の堤体9は、本実施形態では農業用のため池を形成するためのものである。   In this embodiment, the dike body 9 for water storage is for forming a pond for agriculture.

本発明は、堤体9の被覆構造として、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)8をその下部に配設された透水係数が10(−2乗)より大きいポーラスコンクリートである透水性材料5と面接触して結合させて積層構造とした。   In the present invention, as the covering structure of the levee body 9, a water permeable material which is a porous concrete having a water permeability coefficient larger than 10 (−2), in which a plurality of fine crack type fiber reinforced cement composite materials (HPFRCC) 8 are disposed in the lower part. The material 5 was brought into surface contact and bonded to form a laminated structure.

複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)8の厚さは05mm〜50mm、ポーラスコンクリートの厚さは100mm程度とする。   The thickness of the multiple fine crack type fiber reinforced cement composite material (HPFRCC) 8 is set to 05 mm to 50 mm, and the thickness of the porous concrete is set to about 100 mm.

複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC:High Performance Fiber Reinforced Cementitious Composites)8は、高靱性コンクリートとも略称されているが、モルタルマトリックス中に短繊維を体積比で1〜2%程度混入することにより、引張応力下において最初のひびわれが発生した後も1〜2%程度のひずみまで応力が低下しないひずみ硬化挙動(strain hardening property)を示し、かつマルチプルクラッキング(Multiple cracking property)と呼ばれる多数の微細なひび割れが分散発生する特徴を有する。   Multiple fine cracked fiber reinforced cement composites (HPFRCC: High Performance Fiber Reinforced Cementitious Compositions) 8 are also abbreviated as high tough concrete, but short fibers are mixed in the mortar matrix by about 1 to 2% by volume. Shows strain hardening behavior in which the stress does not decrease to a strain of about 1 to 2% even after the first crack is generated under tensile stress, and a number of fine cracking properties called multiple cracking properties. It has the characteristic that cracks occur in a dispersed manner.

図3に示すように、セメントに繊維を混入させた複合材料(DFRCC : Ductile Fiber Reinforced Cementitious Composites)は、ひび割れ面で繊維が架橋して応力伝達し、部材にせん断補強効果を付加できるものであるが、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)もその1つとして、クラック分散型の繊維補強セメント複合材料(ECC:Engineered Cementitious Composites)に代表される。   As shown in FIG. 3, a composite material (DFRCC: Ductile Fiber Reinforced Compositions) in which fibers are mixed in cement can transmit stress by bridging the fibers at the crack surface, and can add a shear reinforcement effect to the member. However, a multi-fine crack type fiber reinforced cement composite material (HPFRCC) is represented by a crack-dispersed fiber reinforced cement composite material (ECC).

クラック分散型の繊維補強セメント複合材料4は、例えば、特開2003−192421号公報に記載された自己充填性を有する低収縮性のひずみ硬化型セメント系複合材料を改良したものを使用する。すなわち、本発明においては、下記〔M1〕の条件を満たすセメント調合マトリクスに、下記〔F1〕の条件を満たすPVA(Poly Vinyl Alcohol)短繊維を1vol.%以上3vol.%以下の配合量で配合したクラック分散型の繊維補強セメント複合材料である。
〔M1〕
水結合材の重量百分比(W/C):25%以上
細骨材と結合材の重量比(S/C):1.5以下
単位水量:250〜450Kg/m3
練り上がり直後の空気量:3.5〜20%
高性能AE減水剤:30Kg/m3未満
〔F1〕
繊維径:0.05mm以下
繊維長:5〜20mm
繊維引張強度:1500〜2400MPa
As the crack-dispersion type fiber-reinforced cement composite material 4, for example, a material obtained by improving a low shrinkage strain-hardening cement composite material having a self-filling property described in Japanese Patent Application Laid-Open No. 2003-192421 is used. That is, in the present invention, 1 vol. Of PVA (Poly Vinyl Alcohol) short fiber satisfying the following [F1] is added to the cement preparation matrix satisfying the following [M1]. % Or more 3 vol. % Is a crack-dispersed fiber-reinforced cement composite material blended in a blending amount of not more than%.
[M1]
Weight percentage of water binder (W / C): 25% or more Weight ratio of fine aggregate to binder (S / C): 1.5 or less Unit amount of water: 250 to 450 Kg / m 3
Air volume immediately after kneading: 3.5-20%
High-performance AE water reducing agent: less than 30 kg / m 3 [F1]
Fiber diameter: 0.05 mm or less Fiber length: 5-20 mm
Fiber tensile strength: 1500-2400 MPa

〔F1〕の条件を満たすビニロン短繊維としては、ポリビニールアルコール樹脂を原料として製造されたコンクリートと同等以上の弾性係数を有する短繊維であるのが好ましく、代表的なものとして、引張強度が90kgf/cm2級、弾性係数(ヤング率)が2900kgf/mm2級で、比重が約1.3で形状が0.66mmφ×30mmの公知のもの(株式会社クラレ製)が使用できる。 The vinylon short fiber satisfying the condition of [F1] is preferably a short fiber having an elastic modulus equal to or higher than that of concrete produced using polyvinyl alcohol resin as a raw material, and a typical tensile strength is 90 kgf. A known material (manufactured by Kuraray Co., Ltd.) having a / cm 2 class, an elastic modulus (Young's modulus) of 2900 kgf / mm 2 class, a specific gravity of about 1.3 and a shape of 0.66 mmφ × 30 mm can be used.

ビニロン短繊維の配合量が1vol.%未満では割れ発生後の耐力が十分ではなく堤体改修の目的が十分に達成できない。他方、ビニロン短繊維の配合量が3.0vol.%を超えるような多量となると、施工上必要な流動性を満たすことが困難となる。   The blending amount of vinylon short fibers is 1 vol. If it is less than%, the yield strength after cracking is not sufficient, and the purpose of repairing the bank cannot be fully achieved. On the other hand, the blending amount of the vinylon short fiber is 3.0 vol. When the amount exceeds 20%, it becomes difficult to satisfy the fluidity necessary for construction.

また、高靭性FRC材料で使用する高性能AE減水剤としては、ポリカルボン酸系、ポリエーテル系、ナフタレン系、メラミン系、アミノスルホン酸系等のものが使用できる。この中でもポリカルボン酸系またはポリエーテル系のものが好ましい。   Moreover, as a high performance AE water reducing agent used in the high toughness FRC material, polycarboxylic acid type, polyether type, naphthalene type, melamine type, aminosulfonic acid type and the like can be used. Of these, those based on polycarboxylic acid or polyether are preferred.

ポーラスコンクリートは、セメントペーストに主に粗骨材を加えて作られ、 連続した空隙を多く含む特殊コンクリートであり、通常の密実なコンクリートとは異なり、透水性・通気性が有る。   Porous concrete is a special concrete that is mainly made by adding coarse aggregate to cement paste and contains many continuous voids. Unlike ordinary solid concrete, it has water permeability and breathability.

本発明で使用するポーラスコンクリートは、粗骨材の大きさで10(−2乗)より大きい透水係数を確保した。   The porous concrete used in the present invention secured a water permeability coefficient larger than 10 (−2) in terms of the size of the coarse aggregate.

次に施工手順について説明する。本発明では、先にポーラスコンクリートを施工するが、下記施工手順となる。
(1)吸出し防止シート19の設置
(2)ポーラスコンクリート用型枠設置
(3)ウインチの設置
(4)ポーラスコンクリートのアジテータ車からの荷卸し
(5)ペースト落下量の確認
(6)ポーラスコンクリートの敷均し・整正
(7)ポーラスコンクリートの締固め
(8)端部の締固め
(9)ポーラスコンクリート打設後の散水養生
(10)養生マット+散水
(11)養生マット十散水十ブルーシート
Next, the construction procedure will be described. In the present invention, porous concrete is first constructed, and the construction procedure is as follows.
(1) Installation of anti-suction sheet 19 (2) Installation of porous concrete form (3) Installation of winch (4) Unloading of porous concrete from agitator vehicle (5) Confirmation of amount of paste drop (6) Porous concrete (7) Compaction of porous concrete (8) Compaction of the end (9) Sprinkling curing after placing the porous concrete (10) Curing mat + Sprinkling (11) Curing mat 10 sprinkling 10 Blue sheet

次に、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)8の施工を行う。複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)8はクラック分散型の繊維補強セメント複合材料(ECC)として説明する。
(1)ECC打設前の散水
(2)施工継目部の処理(ラス網)
(3)ECCベースコンクリートの製造・運搬
(4)ECCベースコンクリートの荷卸し
(5)ECCの現場練混ぜ(二次練り)
(6)ECCの運搬
(7)ECCの敷き均し
(8)ECCの整正・締め固め〔船底型面振動〕
(9)ECCの入力仕上げ
(10)ECCの養生〔養生マット+散水+ブルーシート〕
Next, construction of a plurality of fine crack type fiber reinforced cement composite materials (HPFRCC) 8 is performed. The multiple fine crack type fiber reinforced cement composite material (HPFRCC) 8 will be described as a crack dispersion type fiber reinforced cement composite material (ECC).
(1) Sprinkling before ECC placement (2) Treatment of construction joints (Lath net)
(3) Manufacture and transportation of ECC base concrete (4) Unloading of ECC base concrete (5) On-site mixing of ECC (secondary mixing)
(6) Transportation of ECC (7) Leveling of ECC (8) Adjustment and compaction of ECC [Vessel bottom surface vibration]
(9) ECC input finishing (10) ECC curing [curing mat + watering + blue sheet]

クラック分散型の繊維補強セメント複合材料(ECC)の敷き均しを実施するには、練混ぜ直後のモルタルフロー値が165mm以上、好ましくは170〜180mmであるのがよい。165mm未満であると材料が適当に分散せず、均一に敷き均しができなくなることがある。   In order to carry out leveling of the crack-dispersed fiber reinforced cement composite material (ECC), the mortar flow value immediately after mixing is 165 mm or more, preferably 170 to 180 mm. If the thickness is less than 165 mm, the material may not be properly dispersed, and it may become impossible to spread uniformly.

しかし、あまりフロー値が高いとポンプ圧送時に材料分離を起こし、繊維が凝集してファイバーボールを生ずることがあるので180mm以下であるのがよい。このようなモルタルフロー値を安定して確保するには、30Kg/m3未満の高性能AE減水剤を配合し、練混ぜ直後の空気量を3.5〜20%好ましくは10〜20%とするのがよい。さらにこのような流動性を維持しながら材料分離抵抗を高めるために増粘剤を添加することが好ましい。とくにウエランガムなどの微生物発酵のバイオポリマーの使用(単位水量に対して0.01〜0.2%程度を配合する)が有益である。 However, if the flow value is too high, material separation may occur during pumping, and the fibers may aggregate to form fiber balls. In order to stably secure such a mortar flow value, a high performance AE water reducing agent of less than 30 kg / m 3 is blended, and the air amount immediately after mixing is 3.5 to 20%, preferably 10 to 20%. It is good to do. Furthermore, it is preferable to add a thickener to increase the material separation resistance while maintaining such fluidity. In particular, the use of a biopolymer for microbial fermentation such as welan gum (mixing about 0.01 to 0.2% with respect to the unit water amount) is beneficial.

なお、適度な粒度の粉体量を確保するために、セメントの一部をフライアッシュや高炉スラグ等の混和材で代替し、また骨材としては最大粒径が0.8mm以下、平均粒径が0.4mm以下の細骨材を使用するのが好ましい。したがって、前記〔M1〕の条件として、さらに、細骨材粒径:最大粒径0.8mm以下、平均粒径0.4mm以下という要件を加えるのが好ましい。そして、この細骨材と結合材の重量比(S/C)が1.5以下となるように配合するのがよい。水結合材比(W/C)については、敷き均し作業性を良好にするには25%以上とすることが必要である。   In order to secure an appropriate amount of powder, a part of the cement is replaced by an admixture such as fly ash or blast furnace slag, and the aggregate has a maximum particle size of 0.8 mm or less and an average particle size. It is preferable to use a fine aggregate of 0.4 mm or less. Therefore, it is preferable to add the requirements of the fine aggregate particle size: maximum particle size of 0.8 mm or less and average particle size of 0.4 mm or less as the condition of [M1]. And it is good to mix | blend so that the weight ratio (S / C) of this fine aggregate and binder may be 1.5 or less. The water binder ratio (W / C) needs to be 25% or more in order to improve the leveling workability.

このようにして敷き均し施工したクラック分散型の繊維補強セメント複合材料は前記の〔F1〕および〔M1〕の条件を満たす限りにおいて、材齢28日の硬化体の引張試験にて引張ひずみ1%以上を示すクラック分散型の高靭性FRC材料層となる。このため、割れ発生のメカニズムが、微小な割れが無数に生じたものとなり、幅の大きな割れには至らない。   The crack-dispersed fiber reinforced cement composite material spread and leveled in this way has a tensile strain of 1 in a tensile test of a hardened material at the age of 28 days as long as the conditions [F1] and [M1] are satisfied. % Or more of the crack dispersion type high toughness FRC material layer. For this reason, the mechanism of crack generation is that innumerable minute cracks occur, and a crack with a large width does not occur.

前記クラック分散型の繊維補強セメント複合材料(ECC)である複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)8は、堤体9の上流側斜面から堤体9の頂部20まで連続させる。   A plurality of fine crack type fiber reinforced cement composite material (HPFRCC) 8 which is the crack dispersion type fiber reinforced cement composite material (ECC) is continued from the upstream slope of the dam body 9 to the top 20 of the dam body 9.

かつ、堤体9の下流の法尻7まで連続させた。   And it was made to continue to the bottom 7 of the dam body 9 downstream.

また、堤体9の頂部20に一部低い箇所21を形成し、この低い箇所21から堤体9の下流の法尻7まで連続させるようにした。   In addition, a partially lower portion 21 is formed at the top portion 20 of the levee body 9 and is continued from the lower portion 21 to the bottom edge 7 downstream of the dam body 9.

このようにすることで、万が一、オーバートッピングした場合でも、堤体の決壊を防ぐことができる。   By doing in this way, even if it is over-topped, the breakage of the levee body can be prevented.

図示は省略するが、複数微細ひび割れ型繊維補強セメント複合材料8の表面に所定の凹凸粗さを形成する。   Although illustration is omitted, a predetermined roughness is formed on the surface of the plurality of fine crack type fiber reinforced cement composite material 8.

この所定の凹凸粗さは、ブラストまたはウォータージェットによる表面処理により形成する。 The predetermined roughness is formed by surface treatment with blast or water jet.

このようにすることで、複数微細ひび割れ型繊維補強セメント複合材料8の上にさらに被覆層を設ける場合でも付着性を高めることができる。   By doing in this way, even when providing a coating layer further on the multiple fine crack type fiber reinforced cement composite material 8, it is possible to improve adhesion.

図5は本発明の第2実施形態を示すもので、複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)8の被覆層の上にさらに表面緑化可能な環境ポーラスコンクリート層24を形成した。 FIG. 5 shows a second embodiment of the present invention, in which an environmental porous concrete layer 24 capable of further greening is formed on a coating layer of a plurality of fine crack type fiber reinforced cement composite materials (HPFRCC) 8.

緑化コンクリートとして用いられているポーラスコンクリートでは、粗骨材として、5号粗骨材(粒径13mm〜20mm)や6号粗骨材(粒径5〜13mm)程度ものが多く用いられる。   In porous concrete used as greening concrete, as coarse aggregate, No. 5 coarse aggregate (particle size 13 mm to 20 mm) or No. 6 coarse aggregate (particle size 5 to 13 mm) is often used.

生物の生息を考慮した緑化ポーラスコンクリートでは、可能な限り大きな空隙径を持ち、空隙の量も多いことが望まれ、スラグ細骨材を含む細骨材、セメントを含む粉体、水、及び必要に応じて用いる混和剤からなるモルタルと粗骨材を混練し、その後、養生して硬化させることにより製造されたポーラスコンクリートが好適である。   Greening porous concrete considering the habitat of living organisms is desired to have as large a void size as possible and to have a large amount of voids, fine aggregates including slag fine aggregate, powder containing cement, water, and necessary Porous concrete produced by kneading a mortar composed of an admixture used according to the conditions and coarse aggregate, and then curing and curing is preferred.

モルタルが、(1)セメントを60重量%以上含む粉体100重量部、(2)スラグ細骨材を50重量%以上含む細骨材50〜200重量部、及び(3)混和剤が4重量部以下であって、水と混和剤の合計量として15〜35重量部、からなるものであり、粗骨材の配合割合の上限が実積率、下限が実積率より10%少ない量であり、モルタルの配合割合が、空隙率が20〜35%となる量である。   Mortar (1) 100 parts by weight of powder containing 60% by weight or more of cement, (2) 50-200 parts by weight of fine aggregate containing 50% by weight or more of slag fine aggregate, and (3) 4% by weight of admixture. The total amount of water and admixture is 15 to 35 parts by weight, the upper limit of the proportion of the coarse aggregate is the actual volume ratio, and the lower limit is 10% less than the actual volume ratio. Yes, the blending ratio of mortar is such an amount that the porosity is 20 to 35%.

粗骨材としては、特に限定はなく一般的なコンクリート用の粗骨材が使用可能である。例えば、川砂利、陸砂利、砕石等を用いることができる。粗骨材の粒径については、空隙率が高く、空隙径が大きいポーラスコンクリートを製造する場合には、通常、最大寸法25mm程度以上のものを用いることが好ましいが、空隙率がより低く空隙径がより小さくても良い場合には、これを下回る粒径の粗骨材を用いても良い。   The coarse aggregate is not particularly limited, and general coarse aggregate for concrete can be used. For example, river gravel, land gravel, crushed stone, etc. can be used. As for the particle size of the coarse aggregate, when producing porous concrete having a high void ratio and a large void diameter, it is usually preferable to use one having a maximum dimension of about 25 mm or more. May be smaller, a coarse aggregate having a particle size smaller than this may be used.

セメントとしては、JISに定められたポルトランドセメント、混合セメント等の水硬性セメントを用いることができる。その他、必要に応じて、フライアッシュ、高炉スラグ粉末、シリカフューム、石灰石粉、珪石粉等のその他の粉体も使用できる。本発明では、セメントと、必要に応じて用いるその他の粉体を合計したものを粉体として用いる。粉体中に占めるセメントの割合は、60重量%程度以上とすることが好ましい。   As the cement, hydraulic cement such as Portland cement and mixed cement specified in JIS can be used. In addition, other powders such as fly ash, blast furnace slag powder, silica fume, limestone powder, and quartzite powder can be used as necessary. In the present invention, a total of cement and other powders used as necessary is used as the powder. The proportion of cement in the powder is preferably about 60% by weight or more.

細骨材としては、スラグ細骨材を用いた。スラグ細骨材としては、潜在水硬性を示すものであればよく、特に、JIS A 5011で規定される高炉スラグ細骨材が好ましい。また、スラグ細骨材は、川砂、陸砂、海砂、砕砂等の一般的な細骨材と混合使用することも可能である。本発明では、細骨材としては、土木建築学会で規定される、5mmふるいを85重量%以上通過するものを用いることができる。   As the fine aggregate, slag fine aggregate was used. Any slag fine aggregate may be used as long as it exhibits latent hydraulic properties, and a blast furnace slag fine aggregate defined by JIS A 5011 is particularly preferable. The slag fine aggregate can also be used in combination with common fine aggregates such as river sand, land sand, sea sand, and crushed sand. In the present invention, as the fine aggregate, those that pass 85% by weight or more of a 5 mm sieve specified by the Japan Society of Civil Engineers can be used.

細骨材に含まれるスラグ細骨材の割合は、50〜100重量%程度の範囲とすることが好ましく、スラグ細骨材の割合が多くなる程、ポーラスコンクリートの強度が高くなる傾向にある。   The proportion of the slag fine aggregate contained in the fine aggregate is preferably in the range of about 50 to 100% by weight, and the strength of the porous concrete tends to increase as the proportion of the slag fine aggregate increases.

更に、必要に応じて、減水剤、AE剤、AE減水剤、高性能減水剤、高性能AE減水剤等の各種の混和剤を用いることも可能である。   Furthermore, various admixtures such as a water reducing agent, an AE agent, an AE water reducing agent, a high performance water reducing agent, and a high performance AE water reducing agent can be used as necessary.

前記環境ポーラスコンクリートは、空隙率が20〜35%程度の範囲、即ち、コンクリート1m3中に200〜350リットル程度の空隙が存在することが好ましい。空隙率が低すぎると、充分な量の連続空隙を形成できず、緑化コンクリートとして不適切である。一方、空隙率が高すぎると、モルタル量が不足することになり、充分な強度が得られないので好ましくない。 The environmental porous concrete preferably has a porosity of about 20 to 35%, i.e., there are about 200 to 350 liters of voids in 1 m 3 of concrete. If the porosity is too low, a sufficient amount of continuous voids cannot be formed, which is inappropriate as greening concrete. On the other hand, if the porosity is too high, the amount of mortar will be insufficient, and a sufficient strength cannot be obtained, which is not preferable.

従って、前記環境ポーラスコンクリートでは、粗骨材と空隙部を除いた残部が、粉体、細骨材、水及び必要に応じて用いる混和剤からなるモルタルの容積となる。通常は、使用する粗骨材の種類にもよるが、コンクリート1m3中に、粉体、細骨材、水及び混和剤が合計量として60〜250リットル程度の範囲で含まれることになる。 Therefore, in the environmental porous concrete, the remainder excluding the coarse aggregate and the voids is the volume of mortar composed of powder, fine aggregate, water, and an admixture used as necessary. Normally, depending on the type of coarse aggregate used, the total amount of powder, fine aggregate, water and admixture is contained in 1 m 3 of concrete in the range of about 60 to 250 liters.

本発明の堤体表層部の被覆構造の第1実施形態を示す縦断側面図である。It is a vertical side view which shows 1st Embodiment of the covering structure of the embankment surface layer part of this invention. 本発明の堤体表層部の被覆構造との比較例を示す貯水用堤体表層部の被覆構造の縦断側面図である。It is a vertical side view of the covering structure of the dyke surface layer part for water storage which shows the comparative example with the covering structure of the dyke surface layer part of this invention. 複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)の説明図である。It is explanatory drawing of a multiple fine crack type fiber reinforced cement composite material (HPFRCC). 本発明の堤体表層部の被覆構造の要部の斜視図である。It is a perspective view of the principal part of the covering structure of the bank body surface layer part of this invention. 本発明の堤体表層部の被覆構造の第2実施形態を示す要部の斜視図である。It is a perspective view of the principal part which shows 2nd Embodiment of the covering structure of the embankment surface layer part of this invention. 従来例を示す縦断側面図である。It is a vertical side view which shows a prior art example.

1…半透水性土木シート 2a、2b…合成繊維綿層
3…高密度平布 4…防水シート
5…透水性材料 6…法肩
7…法尻
8…複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)
9…堤体 10…コンクリート
11…天端 12…裏法面
13…河川水 14…河床
15…鋼矢板 16…蒲団籠
17…基礎コンクリート 18…芯土
19…吸出防止シート 20…頂部
21…低い箇所 23…客土
24…環境ポーラスコンクリート層
DESCRIPTION OF SYMBOLS 1 ... Semi-permeable civil engineering sheet 2a, 2b ... Synthetic fiber cotton layer 3 ... High density flat cloth 4 ... Waterproof sheet 5 ... Water-permeable material 6 ... Method shoulder 7 ... Method bottom 8 ... Multiple fine crack type fiber reinforced cement composite material ( HPFRCC)
DESCRIPTION OF SYMBOLS 9 ... Dike body 10 ... Concrete 11 ... Top edge 12 ... Back slope 13 ... River water 14 ... River bed 15 ... Steel sheet pile 16 ... Steel ridge 17 ... Foundation concrete 18 ... Core soil 19 ... Suction prevention sheet 20 ... Top 21 ... Low Location 23 ... Guest soil 24 ... Environmental porous concrete layer

Claims (8)

複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)をその下部に配設された透水係数が10(−2乗)より大きいポーラスコンクリートである透水性材料と面接触して結合させて積層構造としたことを特徴とする堤体表層部の被覆構造。   Multi-cracked fiber reinforced cement composite material (HPFRCC) is bonded in surface contact with a water-permeable material which is a porous concrete having a water permeability coefficient larger than 10 (−2), which is disposed in the lower part of the composite structure. The covering structure of the surface layer part of a dam body characterized by this. 堤体は、貯水用のものであり、農業用のため池の堤体である請求項1記載の堤体表層部の被覆構造。   The covering structure for a surface portion of a levee body according to claim 1, wherein the dam body is for storing water and is a pond body for agricultural use. セメント複合材料は、下記〔M1〕の条件を満たすセメント調合マトリクスに、下記〔F1〕の条件を満たすPVA(Poly Vinyl Alcohol)短繊維を1vol.%以上3vol.%以下の配合量で配合したクラック分散型の繊維補強セメント複合材料である請求項1または請求項2記載の堤体表層部の被覆構造。
〔M1〕
水結合材の重量百分比(W/C):25%以上
細骨材と結合材の重量比(S/C):1.5以下(0を含む)
単位水量:250〜450Kg/m
練り上がり直後の空気量:3.5〜20%
高性能AE減水剤:30Kg/m未満
〔F1〕
繊維径:0.05mm以下
繊維長:5〜20mm
繊維引張強度:1500〜2400MPa
The cement composite material contains 1 vol. Of PVA (Poly Vinyl Alcohol) short fibers satisfying the following [F1] in a cement preparation matrix satisfying the following [M1]. % Or more 3 vol. The covering structure of a levee body surface layer portion according to claim 1 or 2, wherein the covering structure is a crack dispersion type fiber-reinforced cement composite material blended in a blending amount of not more than%.
[M1]
Weight percentage of water binder (W / C): 25% or more Weight ratio of fine aggregate to binder (S / C): 1.5 or less (including 0)
Unit water quantity: 250-450 kg / m 3
Air volume immediately after kneading: 3.5-20%
High-performance AE water reducing agent: less than 30 kg / m 3 [F1]
Fiber diameter: 0.05 mm or less Fiber length: 5-20 mm
Fiber tensile strength: 1500-2400 MPa
複数微細ひび割れ型繊維補強セメント複合材料は、堤体上流側斜面から堤体頂部まで連続させた請求項1ないし請求項3記載のいずれかに記載の堤体表層部の被覆構造。   The covering structure of the levee body surface layer part according to any one of claims 1 to 3, wherein the plurality of fine crack-type fiber reinforced cement composite materials are continuous from the slope on the upstream side of the dam body to the top of the dam body. 複数微細ひび割れ型繊維補強セメント複合材料は、堤体上流側斜面から堤体頂部まで連続させ、かつ、堤体下流の法尻まで連続させる請求項1ないし請求項3記載のいずれかに記載の堤体表層部の被覆構造。   The bank according to any one of claims 1 to 3, wherein the plurality of fine crack-type fiber reinforced cement composite materials are continuous from the slope on the upstream side of the bank body to the top of the bank body and are continued to the bottom of the slope downstream of the bank body. Body surface layer covering structure. 堤体頂部に一部低い箇所を形成し、複数微細ひび割れ型繊維補強セメント複合材料は、この低い箇所から堤体下流の法尻まで連続させる請求項5記載の堤体表層部の被覆構造。   The covering structure of the levee body surface layer part according to claim 5, wherein a part of the levee body top part is formed at a low part, and the plurality of fine crack type fiber reinforced cement composite materials are continuously connected from the low part to the bottom of the dam body. 複数微細ひび割れ型繊維補強セメント複合材料の表面に所定の凹凸粗さを形成する請求項1ないし請求項6のいずれかに記載の堤体表層部の被覆構造。   The covering structure of the levee body surface layer part according to any one of claims 1 to 6, wherein a predetermined uneven roughness is formed on a surface of the multiple fine crack type fiber reinforced cement composite material. 複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC)の被覆層の上にさらに表面緑化可能な環境ポーラスコンクリート層を形成する請求項1ないし請求項7のいずれかに記載の堤体表層部の被覆構造。 The covering structure of the levee body surface layer portion according to any one of claims 1 to 7, wherein an environmental porous concrete layer capable of surface greening is further formed on the covering layer of a plurality of fine crack type fiber reinforced cement composite materials (HPFRCC). .
JP2009057834A 2009-03-11 2009-03-11 Cover structure of the surface of the levee body Active JP5300015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057834A JP5300015B2 (en) 2009-03-11 2009-03-11 Cover structure of the surface of the levee body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057834A JP5300015B2 (en) 2009-03-11 2009-03-11 Cover structure of the surface of the levee body

Publications (2)

Publication Number Publication Date
JP2010209602A JP2010209602A (en) 2010-09-24
JP5300015B2 true JP5300015B2 (en) 2013-09-25

Family

ID=42970039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057834A Active JP5300015B2 (en) 2009-03-11 2009-03-11 Cover structure of the surface of the levee body

Country Status (1)

Country Link
JP (1) JP5300015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944212A (en) * 2019-03-22 2019-06-28 盐城工学院 Ecological porous type shore protection

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451919B1 (en) * 2013-03-27 2014-03-26 三菱樹脂株式会社 Block mat
JP6447965B2 (en) * 2014-06-10 2019-01-09 国立研究開発法人 海上・港湾・航空技術研究所 Wave splash prevention plate structure and installation method of wave splash prevention plate
CN109930559B (en) * 2019-02-27 2021-01-08 浙江水专工程建设监理有限公司 Dam reinforcing structure and construction method thereof
CN113404009B (en) * 2021-07-15 2022-09-09 长江水利委员会长江科学院 Novel concrete panel structure of rock-fill dam and construction method
CN114561913B (en) * 2022-03-04 2024-01-19 中国电建集团西北勘测设计研究院有限公司 Drainage partition structure of concrete panel rock-fill dam
CN115198704A (en) * 2022-08-19 2022-10-18 中水北方勘测设计研究有限责任公司 Earth-rock dam capable of preventing top-overflowing damage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920928U (en) * 1972-05-22 1974-02-22
JP2004049119A (en) * 2002-07-19 2004-02-19 Densho:Kk Vegetative concrete base and vegetative concrete block
JP4535421B2 (en) * 2003-05-23 2010-09-01 鹿島建設株式会社 Slope concrete construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944212A (en) * 2019-03-22 2019-06-28 盐城工学院 Ecological porous type shore protection

Also Published As

Publication number Publication date
JP2010209602A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5300015B2 (en) Cover structure of the surface of the levee body
US11428006B2 (en) Cementitious composite constituent relationships
CN103643656B (en) High rock-fill dam membrane anti-seepage body on deep coverage layer and construction method of high rock-fill dam membrane anti-seepage body
CN107922264B (en) Waterproof curing pad internally provided with quick-hardening polymer cement and manufacturing method thereof
KR101819641B1 (en) Multilayer Mat using Geotextile and Polymer Cement Mortar and Construction Method using thereof
JP4678496B2 (en) Impervious structure of waste disposal site
KR101692691B1 (en) A eco-friendly concrete retaining wall block composition and eco-friendly concrete retaining wall blocks manufactured by using the same
KR20110065829A (en) Cement concrete making method using micro and macro fiber and the cement concrete, the paving method therewith
KR101258821B1 (en) Porous concrete block using slag of blast furnace and retaining wall using the same, and method for constructing retaining wall using the same
US20190135707A1 (en) Cementitious composite constituent relationships
JP2005264718A (en) Ground foundation reinforcing structure
CN201486104U (en) Sedimentation tank structure of sink-type bathroom
CN112195874B (en) High homogeneity dam of dispersion soil
KR100806625B1 (en) Porous block for slope protection
CN1270996C (en) High-voids porous concrete and construction method for hank and slope protection
CN105239534A (en) Connecting structure for dam foundation gallery and dam body core wall
JP6361889B2 (en) Artificial shallow or tidal flat
CN111465736B (en) Gelled composite material and preparation method thereof
CN214573048U (en) Anti-freezing expanding pavement structure
CN201785732U (en) Waterproof layer structure of artificial lake bottom
CN111663501A (en) Sluice downstream energy dissipation structure with anti-clogging and anti-filtering functions and construction method thereof
JP2011247337A (en) Centrifugal reinforced concrete jacking pipe adapted to internal pressure
CN216183367U (en) Waterproof structure of foamed concrete
CN216689265U (en) Moulding protection of three-dimensional quick installation concrete is filled up
CN110080173B (en) Reverse filtering structure of panel dam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Ref document number: 5300015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250