JP5297491B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5297491B2
JP5297491B2 JP2011063771A JP2011063771A JP5297491B2 JP 5297491 B2 JP5297491 B2 JP 5297491B2 JP 2011063771 A JP2011063771 A JP 2011063771A JP 2011063771 A JP2011063771 A JP 2011063771A JP 5297491 B2 JP5297491 B2 JP 5297491B2
Authority
JP
Japan
Prior art keywords
wafer
chip
adhesive layer
semiconductor
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011063771A
Other languages
Japanese (ja)
Other versions
JP2011135102A (en
Inventor
朋子 東野
忠一 宮崎
由之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011063771A priority Critical patent/JP5297491B2/en
Publication of JP2011135102A publication Critical patent/JP2011135102A/en
Application granted granted Critical
Publication of JP5297491B2 publication Critical patent/JP5297491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin semiconductor having chips stacked in multi-stages. <P>SOLUTION: A reformed region PL is formed by irradiating a semiconductor substrate 1S of a semiconductor wafer 1W with laser light having its condensing point inside the semiconductor substrate 1S. After a reverse surface of the semiconductor wafer 1W is subsequently coated with a liquid adhesive by a rotary coating method, the adhesive is dried to form a solid adhesive layer 8a. Then the semiconductor wafer 1W is divided into individual semiconductor chips based upon the reformed region PL as a division starting point. A semiconductor chip is bonded onto a principal surface of another semiconductor chip with an adhesive layer 8a on the reverse surface thereof to manufacture a semiconductor device having the semiconductor chips stacked in multi-stages. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、半導体装置の製造方法および半導体装置技術に関し、特に、チップの多段積層技術に関するものである。   The present invention relates to a method for manufacturing a semiconductor device and a semiconductor device technology, and more particularly, to a multistage stacking technology for chips.

近年、携帯電話やデジタルカメラ等に代表されるモバイル機器およびメモリカード等に代表される情報記憶媒体の小型軽量化に伴い、これらに組み込まれる半導体装置の高密度化が進められている。半導体装置の高密度化には、半導体装置を構成する半導体チップの薄型化が不可欠である。また、薄型化された半導体チップを2段、3段と多段に積み重ねる多段積層構成も開発され、半導体装置の高密度化がさらに進められている。   In recent years, with the reduction in size and weight of mobile devices such as mobile phones and digital cameras, and information storage media such as memory cards, the density of semiconductor devices incorporated therein has been increased. In order to increase the density of a semiconductor device, it is indispensable to reduce the thickness of a semiconductor chip constituting the semiconductor device. In addition, a multistage stacked structure in which thinned semiconductor chips are stacked in multiple stages, such as two stages and three stages, has been developed, and the density of semiconductor devices has been further increased.

多段に積み重ねた半導体チップ間を接着する方式には、例えば1段目の半導体チップの主面上に形成された複数の電極の内側の領域に、ペースト状の接着材を介して2段目の半導体チップを積層する方式がある。しかし、この方式では、2段目の半導体チップを搭載する際の押圧荷重により、ペースト状の接着材が上下の半導体チップ間から水平方向(1段目の半導体チップの複数の電極に向かって)はみ出し、下側の半導体チップの主面の電極を覆ってしまう場合がある。また、半導体チップが薄いためにペースト状の接着材が上側の半導体チップの裏面から側面を通じて主面にまき上がってしまう場合もある。さらに、接着材がペースト状なので厚さの精度が低い上、接着材の上に載せた半導体チップが傾いてしまう場合もある。   In the method of bonding semiconductor chips stacked in multiple stages, for example, the second stage is formed on a region inside a plurality of electrodes formed on the main surface of the first stage semiconductor chip via a paste-like adhesive. There is a method of stacking semiconductor chips. However, in this method, due to the pressing load when the second-stage semiconductor chip is mounted, the paste-like adhesive material moves horizontally between the upper and lower semiconductor chips (towards the plurality of electrodes of the first-stage semiconductor chip). In some cases, it protrudes and covers the electrode on the main surface of the lower semiconductor chip. Further, since the semiconductor chip is thin, the paste-like adhesive material may roll up from the back surface of the upper semiconductor chip to the main surface through the side surface. Further, since the adhesive is in a paste form, the thickness accuracy is low, and the semiconductor chip placed on the adhesive may be inclined.

これらの不具合を解決する方式として、例えばダイアタッチフィルム(Die Attach Film:以下、DAFという)等のようなフィルム状の接着部材が開発され、半導体装置の小型化、薄型化および半導体チップの多段積層化に貢献している。DAFを用いた半導体チップの接着方式には、例えばカットアンドリール方式とウエハ裏面貼り方式とがある。カットアンドリール方式は、チップサイズに切断したDAFを下側の半導体チップのチップ搭載面に搬送して貼り付け、その上に他の半導体チップを貼り付けるという方式である。一方、上記ウエハ裏面貼り方式は、半導体ウエハの裏面全面を覆うようにDAFを貼り付けた後、そのDAFをダイシング時に半導体チップと同時に切断し、その半導体チップをその裏面のDAFにより下側の半導体チップのチップ搭載面に貼り付けるという方式である。   As a method for solving these problems, for example, a film-like adhesive member such as a die attach film (hereinafter referred to as DAF) has been developed to reduce the size and thickness of a semiconductor device and to stack multiple layers of semiconductor chips. Contributing to Semiconductor chip bonding methods using DAF include, for example, a cut-and-reel method and a wafer back surface bonding method. The cut-and-reel method is a method in which a DAF cut to a chip size is transported and pasted to a chip mounting surface of a lower semiconductor chip, and another semiconductor chip is pasted thereon. On the other hand, in the above wafer backside pasting method, after the DAF is pasted so as to cover the entire backside of the semiconductor wafer, the DAF is cut simultaneously with the semiconductor chip at the time of dicing, and the semiconductor chip is cut into the lower semiconductor by the DAF on the backside. This is a method of pasting on the chip mounting surface of the chip.

なお、ダイボンディング技術については、例えば特開平8−236554号公報(特許文献1)に記載があり、ウエハの裏面にスピンコート法により熱可塑性導電性ポリイミド樹脂層を形成した後、そのウエハをチップ単位に分離して、裏面に熱可塑性導電性ポリイミド樹脂層を備えた半導体装置を得る技術が開示されている。   The die bonding technique is described, for example, in JP-A-8-236554 (Patent Document 1). After forming a thermoplastic conductive polyimide resin layer on the back surface of the wafer by spin coating, the wafer is chipped. A technique for obtaining a semiconductor device separated into units and having a thermoplastic conductive polyimide resin layer on the back surface is disclosed.

特開平8−236554号公報JP-A-8-236554

しかし、上記フィルム状の接着部材を用いた半導体チップの多段積層構成では、以下の課題があることを本発明者は見出した。   However, the present inventor has found that the multi-layered structure of semiconductor chips using the film-like adhesive member has the following problems.

第1は、フィルム状の接着部材の厚さに関する課題である。すなわち、フィルム状の接着部材の厚さは、フィルム状の接着部材の搬送や製造上の理由から10μm程度までが限界である。更に詳細に説明すると、フィルム状の接着部材はフィルム基板の上に接着層が形成されたものであるため、フィルム基板の厚さを無視する事ができない。そのため、10μm以下に薄くすることは困難である。このため、半導体チップの多段積層構成の全体的な薄型化を阻害する、という問題がある。   The first problem is related to the thickness of the film-like adhesive member. That is, the thickness of the film-like adhesive member is limited to about 10 μm for the reasons of conveyance and production of the film-like adhesive member. More specifically, since the film-like adhesive member has an adhesive layer formed on the film substrate, the thickness of the film substrate cannot be ignored. Therefore, it is difficult to reduce the thickness to 10 μm or less. For this reason, there is a problem that the overall thinning of the multi-layered structure of the semiconductor chips is hindered.

第2は、ダイシング方式の変革による課題である。ダイシング方式は、ダイシングブレードを高速回転させながら、ウエハの表面を押さえ付けるように切断するため、ウエハにかかる応力が非常に高い。すなわち、上記のように半導体ウエハの薄型化が進められているが、薄い半導体ウエハをブレードダイシング方式により切断すると半導体ウエハにチッピングが生じ、薄い半導体チップの抗折強度が著しく低下する問題がある。また、半導体装置の動作速度の向上の観点から半導体チップの配線層間絶縁膜として、誘電率が酸化シリコンよりも低い低誘電率膜(いわゆるLow−k膜)を使用する製品があるが、Low−K膜は脆いために剥がれ易いことや内部に微少な気泡を持つものがあり、ブレードダイシング方式では上手く切断できない場合がある。そこで、それらの問題を回避する新しいダイシング方式として、ステルスダイシング方式が注目されている。このステルスダイシング方式は、レーザ光を半導体ウエハの内部に照射して選択的に改質層を形成し、その改質層を分割起点として半導体ウエハを切断するダイシング方式である。この方式によれば、厚さ30μm程度の極めて薄い半導体ウエハでも、物理的にストレスを与えずに直接切断できるので、チッピングを低減でき、半導体チップの抗折強度を低下させることがない。その上、半導体ウエハの厚さに関わらず、毎秒300mm以上の高速ダイシングが可能なので、スループットを向上させることもできる。したがって、半導体チップの薄型化にはステルスダイシング方式は必須の技術である。しかし、上記のようにウエハ裏面貼り方式を採用する場合に、ステルスダイシング方式を行うと、樹脂層はレーザを通さないために樹脂層自体を切削することができず、DAFを上手く切断することができない場合がある。このため、DAFの材料として、切断に優れた硬さ、脆さを調整した樹脂材料を選択する必要があるが、その場合、材料コストがかかる上、樹脂の切削面が均一化せず、ダイシングラインに沿って綺麗に切断することが困難である。このため、半導体装置の歩留まりおよび信頼性が低下する。切削面を均一にするためには、樹脂層を5μm程度またはそれ以下に薄くすることが有効であるが、上記のようにDAFの厚さは、10μm程度までが限界である。したがって、ステルスダイシング方式の採用が阻害され、半導体チップの薄型化が阻害される、という問題がある。   The second is a problem due to the change of the dicing method. In the dicing method, since the dicing blade is cut so as to press the surface of the wafer while rotating at high speed, the stress applied to the wafer is very high. That is, although the semiconductor wafer is being thinned as described above, there is a problem that when the thin semiconductor wafer is cut by the blade dicing method, the semiconductor wafer is chipped, and the bending strength of the thin semiconductor chip is remarkably lowered. From the viewpoint of improving the operation speed of a semiconductor device, there is a product that uses a low dielectric constant film (so-called Low-k film) whose dielectric constant is lower than that of silicon oxide as a wiring interlayer insulating film of a semiconductor chip. Since the K film is fragile, it may be easily peeled off or may have fine bubbles inside, and may not be cut well by the blade dicing method. Therefore, stealth dicing has attracted attention as a new dicing method that avoids these problems. This stealth dicing method is a dicing method in which a laser beam is irradiated inside a semiconductor wafer to selectively form a modified layer, and the semiconductor wafer is cut using the modified layer as a division starting point. According to this method, even an extremely thin semiconductor wafer having a thickness of about 30 μm can be directly cut without physically stressing, so that chipping can be reduced and the bending strength of the semiconductor chip is not lowered. In addition, regardless of the thickness of the semiconductor wafer, high-speed dicing at 300 mm or more per second is possible, so that throughput can be improved. Therefore, the stealth dicing method is an essential technique for thinning the semiconductor chip. However, when adopting the wafer back surface sticking method as described above, if the stealth dicing method is performed, the resin layer cannot be cut because the resin layer does not pass the laser, and the DAF can be cut well. There are cases where it is not possible. For this reason, it is necessary to select a resin material with adjusted hardness and brittleness excellent as a material for DAF. In this case, however, the material cost is high, and the cutting surface of the resin is not uniformed and dicing is performed. It is difficult to cut cleanly along the line. For this reason, the yield and reliability of the semiconductor device are reduced. In order to make the cutting surface uniform, it is effective to make the resin layer as thin as about 5 μm or less, but as described above, the thickness of the DAF is limited to about 10 μm. Therefore, there is a problem that the adoption of the stealth dicing method is hindered and the thinning of the semiconductor chip is hindered.

そこで、本発明の目的は、チップを多段に積層した構成を有する半導体装置を薄型化することのできる技術を提供することにある。   Therefore, an object of the present invention is to provide a technique capable of reducing the thickness of a semiconductor device having a configuration in which chips are stacked in multiple stages.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

すなわち、本発明は、ウエハの裏面に液状の接着材を回転塗布法または印刷法により塗布し固体状の接着層を形成する工程と、前記ウエハに対してレーザダイシング処理を施す工程とを有するものである。   That is, the present invention includes a step of applying a liquid adhesive on the back surface of a wafer by a spin coating method or a printing method to form a solid adhesive layer, and a step of performing a laser dicing process on the wafer. It is.

また、本発明は、複数のチップを多段に積み重ねた構成を備え、前記複数のチップ間の接着層の厚さが、前記複数のチップの最下層のチップとこれを実装する配線基板との間の接着層の厚さよりも薄いものである。   In addition, the present invention has a configuration in which a plurality of chips are stacked in multiple stages, and the thickness of an adhesive layer between the plurality of chips is between a lowermost chip of the plurality of chips and a wiring board on which the chip is mounted. It is thinner than the thickness of the adhesive layer.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

すなわち、ウエハの裏面に回転塗布法または印刷法により液状の接着材を塗布し、固体状の接着層を形成する工程と、前記ウエハに対してレーザダイシング処理を施す工程とを有することにより、多段に積み重ねたチップ間の接着層の厚さを薄くすることができるので、チップを多段に積層した構成を有する半導体装置を薄型化することができる。   That is, a multi-stage process includes a step of applying a liquid adhesive to the back surface of the wafer by a spin coating method or a printing method to form a solid adhesive layer, and a step of performing a laser dicing process on the wafer. Since the thickness of the adhesive layer between the stacked chips can be reduced, a semiconductor device having a structure in which chips are stacked in multiple stages can be reduced in thickness.

本発明の一実施の形態である半導体装置の製造工程のフロー図である。It is a flowchart of the manufacturing process of the semiconductor device which is one embodiment of this invention. 図1の前工程後の半導体ウエハの主面の全体平面図である。FIG. 2 is an overall plan view of the main surface of the semiconductor wafer after the pre-process of FIG. 1. 図2の半導体ウエハの一例の要部拡大平面図である。FIG. 3 is an enlarged plan view of a main part of an example of the semiconductor wafer of FIG. 2. 図3の領域R1の拡大平面図である。FIG. 4 is an enlarged plan view of a region R1 in FIG. 図4のX1−X1線の断面図である。It is sectional drawing of the X1-X1 line | wire of FIG. 図1の裏面加工工程における半導体ウエハの断面図である。It is sectional drawing of the semiconductor wafer in the back surface process of FIG. 図6に続く裏面加工工程における半導体ウエハの断面図である。FIG. 7 is a cross-sectional view of a semiconductor wafer in a back surface processing step subsequent to FIG. 6. 図7に続く裏面加工工程における半導体ウエハの断面図である。FIG. 8 is a cross-sectional view of the semiconductor wafer in a back surface processing step subsequent to FIG. 7. 図1のチップ分割工程のレーザ照射工程時における半導体ウエハの断面図である。It is sectional drawing of the semiconductor wafer at the time of the laser irradiation process of the chip | tip division | segmentation process of FIG. 図1のチップ分割工程のレーザ照射工程時における半導体ウエハの要部拡大平面図である。FIG. 2 is an enlarged plan view of a main part of a semiconductor wafer during a laser irradiation process of the chip dividing process of FIG. 1. 図1のチップ分割工程の接着層形成工程時における半導体ウエハの断面図である。It is sectional drawing of the semiconductor wafer at the time of the contact bonding layer formation process of the chip | tip division | segmentation process of FIG. 左側は図11に続く接着層形成工程時における半導体ウエハの断面図、右側は図11に続く接着層形成工程時における半導体ウエハの裏面の全体平面図である。The left side is a cross-sectional view of the semiconductor wafer in the adhesive layer forming step following FIG. 11, and the right side is an overall plan view of the back surface of the semiconductor wafer in the adhesive layer forming step subsequent to FIG. 左側は図12に続く接着層形成工程時における半導体ウエハの断面図、右側は図12に続く接着層形成工程時における半導体ウエハの裏面の全体平面図である。The left side is a cross-sectional view of the semiconductor wafer during the adhesive layer forming step following FIG. 12, and the right side is an overall plan view of the back surface of the semiconductor wafer during the adhesive layer forming step following FIG. 図1のチップ分割工程のウエハマウント工程時における半導体ウエハの断面図である。FIG. 2 is a cross-sectional view of a semiconductor wafer during a wafer mounting process of the chip dividing process of FIG. 1. 図1のチップ分割工程のWSS剥離工程時における半導体ウエハの断面図である。It is sectional drawing of the semiconductor wafer at the time of the WSS peeling process of the chip | tip division | segmentation process of FIG. 図15に続く図1のWSS剥離工程時における半導体ウエハの断面図である。FIG. 16 is a cross-sectional view of the semiconductor wafer during the WSS peeling process of FIG. 1 following FIG. 15. 図1のウエハマウント工程後の半導体ウエハの主面およびこれが貼り付けられた治具の全体平面図である。FIG. 2 is an overall plan view of a main surface of a semiconductor wafer after the wafer mounting step of FIG. 1 and a jig to which the semiconductor wafer is attached. 図17のX2−X2線の断面図である。It is sectional drawing of the X2-X2 line | wire of FIG. 図1のチップ分割工程の分割工程時における半導体ウエハの断面図である。It is sectional drawing of the semiconductor wafer at the time of the division | segmentation process of the chip | tip division | segmentation process of FIG. 図1の分割工程時における半導体ウエハの裏面の全体平面図である。FIG. 2 is an overall plan view of the back surface of the semiconductor wafer during the dividing step of FIG. 1. 図1の組立工程のピックアップ工程時における半導体ウエハの断面図である。It is sectional drawing of the semiconductor wafer at the time of the pick-up process of the assembly process of FIG. 図1の組立工程のダイボンディング工程時における半導体チップの斜視図である。FIG. 2 is a perspective view of a semiconductor chip during a die bonding process of the assembly process of FIG. 1. 図1の組立工程のダイボンディング工程時における半導体チップの断面図である。FIG. 2 is a cross-sectional view of a semiconductor chip during a die bonding process in the assembly process of FIG. 1. 図1の組立工程のワイヤボンディング工程後における半導体装置の断面図である。FIG. 2 is a cross-sectional view of the semiconductor device after a wire bonding process in the assembly process of FIG. 1. 図1の組立工程の封止工程後における半導体装置の断面図である。It is sectional drawing of the semiconductor device after the sealing process of the assembly process of FIG. 本発明の他の実施の形態である半導体装置の製造工程における図1の接着層形成工程時の半導体ウエハの断面図である。It is sectional drawing of the semiconductor wafer at the time of the contact bonding layer formation process of FIG. 1 in the manufacturing process of the semiconductor device which is other embodiment of this invention. 図26の接着層形成工程時に用いるマスクの平面図である。It is a top view of the mask used at the time of the contact bonding layer formation process of FIG. 図26に続く接着層形成工程時の半導体ウエハの断面図である。FIG. 27 is a cross-sectional view of the semiconductor wafer during an adhesive layer formation step subsequent to FIG. 26. 図28の半導体ウエハの裏面側の平面図である。FIG. 29 is a plan view of the back surface side of the semiconductor wafer of FIG. 28. 図28に続く接着層形成工程時の半導体ウエハの断面図である。FIG. 29 is a cross-sectional view of the semiconductor wafer during an adhesive layer formation step subsequent to FIG. 28. 図30の半導体ウエハの裏面の平面図である。FIG. 31 is a plan view of the back surface of the semiconductor wafer of FIG. 30. 図30に続くチップ分割工程のウエハマウント工程時における半導体ウエハの断面図である。FIG. 31 is a cross-sectional view of a semiconductor wafer during a wafer mounting process of a chip dividing process following FIG. 30. 図32に続くWSS剥離工程後における半導体ウエハの断面図である。FIG. 33 is a cross-sectional view of the semiconductor wafer after the WSS peeling step following FIG. 32. 図33に続く分割工程時における半導体ウエハの断面図である。FIG. 34 is a cross-sectional view of the semiconductor wafer during the dividing step following FIG. 33. 図34の半導体ウエハの裏面の全体平面図である。FIG. 35 is an overall plan view of the back surface of the semiconductor wafer of FIG. 34. 本発明のさらに他の実施の形態である半導体装置の製造工程のフロー図である。It is a flowchart of the manufacturing process of the semiconductor device which is further another embodiment of this invention. 図36のチップ分割工程の接着層形成工程時における半導体ウエハの断面図である。FIG. 37 is a cross-sectional view of the semiconductor wafer during an adhesive layer forming step of the chip dividing step of FIG. 36. 左側は図37に続くチップ分割工程の接着層形成工程時における半導体ウエハの断面図、右側はこの時の半導体ウエハの全体平面図である。The left side is a cross-sectional view of the semiconductor wafer in the adhesive layer forming step of the chip dividing step following FIG. 37, and the right side is an overall plan view of the semiconductor wafer at this time. 左側は図38に続くチップ分割工程の接着層形成工程時における半導体ウエハの断面図、右側はこの時の半導体ウエハの全体平面図である。The left side is a cross-sectional view of the semiconductor wafer in the adhesive layer forming step of the chip dividing step following FIG. 38, and the right side is an overall plan view of the semiconductor wafer at this time. 図39に続く図36のウエハマウント工程時における半導体ウエハの断面図である。FIG. 40 is a cross-sectional view of the semiconductor wafer during the wafer mounting step of FIG. 36 following FIG. 39; 図40に続く図36のレーザ照射工程時における半導体ウエハの断面図である。FIG. 41 is a cross-sectional view of the semiconductor wafer during the laser irradiation step of FIG. 36 following FIG. 40. 図41に続く図36のWSS剥離工程時における半導体ウエハの断面図である。FIG. 43 is a cross-sectional view of the semiconductor wafer during the WSS peeling process of FIG. 36 following FIG. 41. 本発明の他の実施の形態である半導体装置の製造工程における図36の接着層形成工程時の半導体ウエハの断面図である。FIG. 37 is a cross-sectional view of the semiconductor wafer during the adhesive layer formation step of FIG. 36 in the manufacturing process of the semiconductor device according to another embodiment of the present invention; 図43に続く接着層形成工程時の半導体ウエハの断面図である。FIG. 44 is a cross-sectional view of the semiconductor wafer during an adhesive layer forming step subsequent to FIG. 43. 図44に続く接着層形成工程時の半導体ウエハの断面図である。FIG. 45 is a cross-sectional view of the semiconductor wafer during an adhesive layer formation step subsequent to FIG. 44. 図45に続くウエハマウント工程時における半導体ウエハの断面図である。FIG. 46 is a cross-sectional view of the semiconductor wafer during the wafer mounting process following FIG. 45. 図46に続くレーザ照射工程時における半導体ウエハの断面図である。FIG. 47 is a cross-sectional view of the semiconductor wafer during the laser irradiation step following FIG. 46. 本発明の他の実施の形態である半導体装置の製造工程の接着層形成工程時に使用するマスクの平面図である。It is a top view of the mask used at the time of the contact bonding layer formation process of the manufacturing process of the semiconductor device which is other embodiment of this invention. 図48のマスクを用いた上記接着層形成工程時の半導体ウエハの断面図である。FIG. 49 is a cross-sectional view of the semiconductor wafer during the adhesive layer formation step using the mask of FIG. 48. 図49に続く接着層形成工程時の半導体ウエハの断面図である。FIG. 50 is a cross-sectional view of the semiconductor wafer during an adhesive layer formation step subsequent to FIG. 49. 図50の半導体ウエハの裏面の要部拡大平面図である。FIG. 52 is an enlarged plan view of the main part of the back surface of the semiconductor wafer of FIG. 50. 図50に続くウエハマウント工程時における半導体ウエハの断面図である。FIG. 51 is a cross-sectional view of the semiconductor wafer during a wafer mounting process following FIG. 50. 図52に続くWSS剥離工程後における半導体ウエハの断面図である。FIG. 53 is a cross-sectional view of the semiconductor wafer after the WSS peeling step following FIG. 52. 図53に続く分割工程時における半導体ウエハの断面図である。FIG. 54 is a cross-sectional view of the semiconductor wafer during the dividing step following FIG. 53. 本発明の他の実施の形態である半導体装置の断面図である。It is sectional drawing of the semiconductor device which is other embodiment of this invention. 本発明の他の実施の形態である半導体装置の断面図である。It is sectional drawing of the semiconductor device which is other embodiment of this invention. 本発明の他の実施の形態である半導体装置の断面図である。It is sectional drawing of the semiconductor device which is other embodiment of this invention. 本発明の他の実施の形態である半導体装置の断面図である。It is sectional drawing of the semiconductor device which is other embodiment of this invention.

以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。また、本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は可能な限り省略するようにしている。以下、本発明の実施の形態を図面に基づいて詳細に説明する。   In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number. Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges. Also, components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof is omitted as much as possible. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
本実施の形態1の半導体装置の製造方法を図1のフロー図に沿って説明する。
(Embodiment 1)
A method of manufacturing the semiconductor device according to the first embodiment will be described with reference to the flowchart of FIG.

まず、前工程100では、厚さ方向に沿って互いに反対側となる主面と裏面とを有する半導体ウエハ(以下、ウエハという)を用意し、そのウエハの主面(デバイス形成面)に複数の半導体チップ(以下、チップという)を形成する。この前工程100は、ウエハプロセスまたはウエハファブリケーションとも呼ばれ、ウエハの主面にチップ(素子や回路)を形成し、プローブ等により電気的試験を行える状態にするまでの工程である。前工程には、成膜工程、不純物導入(拡散またはイオン注入)工程、フォトリソグラフィ工程、エッチング工程、メタライズ工程、洗浄工程および各工程間の検査工程等がある。   First, in the pre-process 100, a semiconductor wafer (hereinafter referred to as a wafer) having a main surface and a back surface that are opposite to each other along the thickness direction is prepared, and a plurality of wafers are formed on the main surface (device forming surface) of the wafer. A semiconductor chip (hereinafter referred to as a chip) is formed. This pre-process 100 is also called a wafer process or wafer fabrication, and is a process until a chip (element or circuit) is formed on the main surface of the wafer and an electrical test can be performed with a probe or the like. The pre-process includes a film formation process, an impurity introduction (diffusion or ion implantation) process, a photolithography process, an etching process, a metallization process, a cleaning process, and an inspection process between the processes.

図2はこの前工程100後のウエハ1Wの主面の全体平面図、図3は図2のウエハ1Wの一例の要部拡大平面図、図4は図3の領域R1の拡大平面図、図5は図4のX1−X1線の断面図を示している。   2 is an overall plan view of the main surface of the wafer 1W after this pre-process 100, FIG. 3 is an enlarged plan view of the main part of an example of the wafer 1W in FIG. 2, and FIG. 4 is an enlarged plan view of a region R1 in FIG. 5 shows a cross-sectional view taken along line X1-X1 of FIG.

ウエハ1Wは、例えば直径300mm程度の平面略円形状の半導体薄板からなり、その主面には、例えば平面四角形状の複数のチップ1Cが、その各々の周囲に切断領域(分離領域)CRを介して配置されている。ウエハ1Wの半導体基板(以下、基板という)1Sは、例えばシリコン(Si)単結晶からなり、その主面には素子および配線層1Lが形成されている。この段階のウエハ1Wの厚さ(基板1Sの厚さと配線層1Lの厚さとの総和)は、例えば775μm程度である。なお、図2の符号Nはノッチを示している。また、図4の符号CLは切断線を示している。また、切断線CLは切断領域CRの幅方向(短方向)のほぼ中心を通るように配置される。   The wafer 1W is made of, for example, a substantially planar semiconductor thin plate having a diameter of about 300 mm, and a plurality of planar rectangular chips 1C, for example, are disposed on the main surface thereof through a cutting region (separation region) CR around each of them. Are arranged. A semiconductor substrate (hereinafter referred to as a substrate) 1S of the wafer 1W is made of, for example, silicon (Si) single crystal, and an element and a wiring layer 1L are formed on its main surface. The thickness of the wafer 1W at this stage (the sum of the thickness of the substrate 1S and the thickness of the wiring layer 1L) is, for example, about 775 μm. In addition, the code | symbol N of FIG. 2 has shown the notch. Moreover, the code | symbol CL of FIG. 4 has shown the cutting line. Further, the cutting line CL is arranged so as to pass through substantially the center in the width direction (short direction) of the cutting region CR.

上記配線層1Lには、層間絶縁膜1Li、配線、ボンディングパッド(外部端子;以下、パッドという)1LB、テスト(TEG:Test Element Group)用のパッド1LBt、アライメントターゲットAmおよび表面保護膜(以下、保護膜という)1Lpが形成されている。層間絶縁膜1Liは、複数の層間絶縁膜1Li1,1Li2,1Li3を有している。層間絶縁膜1Li1,1Li3には、例えば酸化シリコン(SiO等)のような無機系の絶縁膜が使用されている。層間絶縁膜1Li2には、半導体装置の動作速度の向上の観点から、例えば有機ポリマーまたは有機シリカガラスのような、誘電率が酸化シリコンよりも低い低誘電率膜(Low−k膜)が使用されている。 The wiring layer 1L includes an interlayer insulating film 1Li, a wiring, a bonding pad (external terminal; hereinafter referred to as a pad) 1LB, a test (TEG) pad 1LBt, an alignment target Am, and a surface protective film (hereinafter referred to as a “protecting layer”). 1 Lp (referred to as a protective film) is formed. The interlayer insulating film 1Li has a plurality of interlayer insulating films 1Li1, 1Li2, 1Li3. For the interlayer insulating films 1Li1, 1Li3, for example, an inorganic insulating film such as silicon oxide (SiO 2 or the like) is used. For the interlayer insulating film 1Li2, a low dielectric constant film (Low-k film) having a dielectric constant lower than that of silicon oxide, such as organic polymer or organic silica glass, is used from the viewpoint of improving the operation speed of the semiconductor device. ing.

この有機ポリマー(完全有機系低誘電性層間絶縁膜)としては、例えばSiLK(米The Dow Chemical Co製、比誘電率=2.7、耐熱温度=490℃以上、絶縁破壊耐圧=4.0〜5.0MV/Vm)またはポリアリルエーテル(PAE)系材料のFLARE(米Honeywell Electronic Materials製、比誘電率=2.8、耐熱温度=400℃以上)等がある。このPAE系材料は、基本性能が高く、機械的強度、熱的安定性および低コスト性に優れるという特徴を有している。   As this organic polymer (fully organic low dielectric interlayer insulating film), for example, SiLK (manufactured by The Dow Chemical Co., USA, relative dielectric constant = 2.7, heat-resistant temperature = 490 ° C. or higher, dielectric breakdown voltage = 4.0 to 4.0) 5.0 MV / Vm) or FLARE of polyallyl ether (PAE) material (manufactured by Honeywell Electronic Materials, relative permittivity = 2.8, heat-resistant temperature = 400 ° C. or higher). This PAE material is characterized by high basic performance and excellent mechanical strength, thermal stability and low cost.

上記有機シリカガラス(SiOC系材料)としては、例えばHSG−R7(日立化成工業製、比誘電率=2.8、耐熱温度=650℃)、Black Diamond(米Applied Materials,Inc製、比誘電率=3.0〜2.4、耐熱温度=450℃)またはp−MTES(日立開発製、比誘電率=3.2)等がある。この他のSiOC系材料としては、例えばCORAL(米Novellus Systems,Inc製、比誘電率=2.7〜2.4、耐熱温度=500℃)、Aurora2.7(日本エー・エス・エム社製、比誘電率=2.7、耐熱温度=450℃)等がある。   Examples of the organic silica glass (SiOC-based material) include HSG-R7 (manufactured by Hitachi Chemical Co., Ltd., relative dielectric constant = 2.8, heat-resistant temperature = 650 ° C.), Black Diamond (manufactured by Applied Materials, Inc., relative dielectric constant). = 3.0-2.4, heat-resistant temperature = 450 ° C.) or p-MTES (manufactured by Hitachi Development Co., Ltd., relative dielectric constant = 3.2). Examples of other SiOC-based materials include CORAL (manufactured by Novellus Systems, Inc., relative dielectric constant = 2.7 to 2.4, heat-resistant temperature = 500 ° C.), Aurora 2.7 (manufactured by Japan ASM Co., Ltd.). , Relative dielectric constant = 2.7, heat-resistant temperature = 450 ° C.).

また、他の低誘電率膜材料としては、例えばFSG等のような完全有機系のSiOF系材料、HSQ(hydrogen silsesquioxane)系材料、MSQ(methyl silsesquioxane)系材料、ポーラスHSQ系材料、ポーラスMSQ材料またはポーラス有機系材料を用いることもできる。   Other low dielectric constant film materials include, for example, fully organic SiOF materials such as FSG, HSQ (hydrogen silsesquioxane) materials, MSQ (methyl silsesquioxane) materials, porous HSQ materials, and porous MSQ materials. Alternatively, a porous organic material can be used.

上記HSQ系材料としては、例えばOCD T−12(東京応化工業製、比誘電率=3.4〜2.9、耐熱温度=450℃)、FOx(米Dow Corning Corp.製、比誘電率=2.9)またはOCL T−32(東京応化工業製、比誘電率=2.5、耐熱温度=450℃)等がある。   Examples of the HSQ-based material include OCD T-12 (manufactured by Tokyo Ohka Kogyo Co., Ltd., dielectric constant = 3.4 to 2.9, heat-resistant temperature = 450 ° C.), FOx (manufactured by Dow Corning Corp., USA), dielectric constant = 2.9) or OCL T-32 (manufactured by Tokyo Ohka Kogyo Co., Ltd., relative permittivity = 2.5, heat-resistant temperature = 450 ° C.).

上記MSQ系材料としては、例えばOCD T−9(東京応化工業製、比誘電率=2.7、耐熱温度=600℃)、LKD−T200(JSR製、比誘電率=2.7〜2.5、耐熱温度=450℃)、HOSP(米Honeywell Electronic Materials製、比誘電率=2.5、耐熱温度=550℃)、HSG−RZ25(日立化成工業製、比誘電率=2.5、耐熱温度=650℃)、OCL T−31(東京応化工業製、比誘電率=2.3、耐熱温度=500℃)またはLKD−T400(JSR製、比誘電率=2.2〜2、耐熱温度=450℃)等がある。   Examples of the MSQ material include OCD T-9 (manufactured by Tokyo Ohka Kogyo Co., Ltd., relative dielectric constant = 2.7, heat-resistant temperature = 600 ° C.), LKD-T200 (manufactured by JSR, relative dielectric constant = 2.7-2. 5, heat-resistant temperature = 450 ° C., HOSP (manufactured by Honeywell Electronic Materials, relative dielectric constant = 2.5, heat-resistant temperature = 550 ° C.), HSG-RZ25 (manufactured by Hitachi Chemical, relative dielectric constant = 2.5, heat-resistant Temperature = 650 ° C.), OCL T-31 (manufactured by Tokyo Ohka Kogyo Co., Ltd., dielectric constant = 2.3, heat-resistant temperature = 500 ° C.) or LKD-T400 (manufactured by JSR, dielectric constant = 2.2-2, heat-resistant temperature) = 450 ° C.).

上記ポーラスHSQ系材料としては、例えばXLK(米Dow Corning Corp.製、比誘電率=2.5〜2)、OCL T−72(東京応化工業製、比誘電率=2.2〜1.9、耐熱温度=450℃)、Nanoglass(米Honeywell Electronic Materials製、比誘電率=2.2〜1.8、耐熱温度=500℃以上)またはMesoELK(米Air Productsand Chemicals,Inc、比誘電率=2以下)等がある。   Examples of the porous HSQ material include XLK (manufactured by Dow Corning Corp., relative dielectric constant = 2.5-2), OCL T-72 (manufactured by Tokyo Ohka Kogyo Co., Ltd., relative dielectric constant = 2.2-1.9). , Heat resistant temperature = 450 ° C), Nanoglass (manufactured by Honeywell Electronic Materials, relative dielectric constant = 2.2 to 1.8, heat resistant temperature = 500 ° C or higher) or MesoELK (US Air Products and Chemicals, Inc, relative dielectric constant = 2) Etc.)

上記ポーラスMSQ系材料としては、例えばHSG−6211X(日立化成工業製、比誘電率=2.4、耐熱温度=650℃)、ALCAP−S(旭化成工業製、比誘電率=2.3〜1.8、耐熱温度=450℃)、OCL T−77(東京応化工業製、比誘電率=2.2〜1.9、耐熱温度=600℃)、HSG−6210X(日立化成工業製、比誘電率=2.1、耐熱温度=650℃)またはsilica aerogel(神戸製鋼所製、比誘電率1.4〜1.1)等がある。   Examples of the porous MSQ material include HSG-6221X (manufactured by Hitachi Chemical Co., Ltd., relative dielectric constant = 2.4, heat-resistant temperature = 650 ° C.), ALCAP-S (manufactured by Asahi Kasei Kogyo Co., Ltd., relative dielectric constant = 2.3-1). .8, heat resistant temperature = 450 ° C.), OCL T-77 (manufactured by Tokyo Ohka Kogyo Co., Ltd., relative dielectric constant = 2.2 to 1.9, heat resistant temperature = 600 ° C.), HSG-6210X (manufactured by Hitachi Chemical Co., Ltd., dielectric constant) Rate = 2.1, heat-resistant temperature = 650 ° C.) or silica aerogel (manufactured by Kobe Steel, relative dielectric constant: 1.4 to 1.1).

上記ポーラス有機系材料としては、例えばPolyELK(米Air Productsand Chemicals,Inc、比誘電率=2以下、耐熱温度=490℃)等がある。   Examples of the porous organic material include PolyELK (US Air Products and Chemicals, Inc., dielectric constant = 2 or less, heat-resistant temperature = 490 ° C.), and the like.

上記SiOC系材料、SiOF系材料は、例えばCVD法(Chemical Vapor Deposition)によって形成されている。例えば上記Black Diamondは、トリメチルシランと酸素との混合ガスを用いたCVD法等によって形成される。また、上記p−MTESは、例えばメチルトリエトキシシランとNOとの混合ガスを用いたCVD法等によって形成される。それ以外の上記低誘電率の絶縁材料は、例えば塗布法で形成されている。 The SiOC material and the SiOF material are formed by, for example, a CVD method (Chemical Vapor Deposition). For example, the Black Diamond is formed by a CVD method using a mixed gas of trimethylsilane and oxygen. The p-MTES is formed by, for example, a CVD method using a mixed gas of methyltriethoxysilane and N 2 O. The other low dielectric constant insulating materials are formed by, for example, a coating method.

なお、図5では、説明を簡単にするため層間絶縁膜1Li2は単層で示しているが、実際は、複数の低誘電率膜が積層されている。この複数の低誘電率膜の間には、例えば炭化シリコン(SiC)や炭窒化シリコン(SiCN)等のような絶縁膜が介在されている。また、その炭化シリコンや炭窒化シリコン等のような絶縁膜と低誘電率膜との間には、例えば二酸化シリコン(SiO)に代表される酸化シリコン(SiO)からなるキャップ絶縁膜が介在される場合もある。このキャップ絶縁膜は、例えば化学機械研磨処理(CMP;Chemical Mechanical Polishing)時における低誘電率膜の機械的強度の確保、表面保護および耐湿性の確保等のような機能を有している。このキャップ絶縁膜の厚さは、低誘電率膜よりも相対的に薄く形成されている。ただし、キャップ絶縁膜は、酸化シリコン膜に限定されるものではなく種々変更可能であり、例えば窒化シリコン(Si)膜、炭化シリコン膜または炭窒化シリコン膜を用いても良い。これら窒化シリコン膜、炭化シリコン膜または炭窒化シリコン膜は、例えばプラズマCVD法によって形成することができる。プラズマCVD法で形成された炭化シリコン膜としては、例えばBLOk(AMAT社製、比誘電率=4.3)がある。その形成に際しては、例えばトリメチルシランとヘリウム(またはN、NH)との混合ガスを用いる。 In FIG. 5, the interlayer insulating film 1Li2 is shown as a single layer for the sake of simplicity, but actually, a plurality of low dielectric constant films are stacked. An insulating film such as silicon carbide (SiC) or silicon carbonitride (SiCN) is interposed between the plurality of low dielectric constant films. In addition, a cap insulating film made of silicon oxide (SiO x ) typified by silicon dioxide (SiO 2 ) is interposed between the insulating film such as silicon carbide or silicon carbonitride and the low dielectric constant film. Sometimes it is done. The cap insulating film has functions such as ensuring the mechanical strength, surface protection, and moisture resistance of the low dielectric constant film during, for example, chemical mechanical polishing (CMP). The cap insulating film is formed to be relatively thinner than the low dielectric constant film. However, the cap insulating film is not limited to the silicon oxide film and can be variously changed. For example, a silicon nitride (Si x N y ) film, a silicon carbide film, or a silicon carbonitride film may be used. These silicon nitride film, silicon carbide film, or silicon carbonitride film can be formed by, for example, a plasma CVD method. As a silicon carbide film formed by the plasma CVD method, for example, there is BLOk (manufactured by AMAT, relative permittivity = 4.3). In the formation, for example, a mixed gas of trimethylsilane and helium (or N 2 , NH 3 ) is used.

また、図5では、説明を簡単にするため層間絶縁膜1Li2中に配線を示していないが、実際には、層間絶縁膜1Li2には、上記配線が多層になって形成されている。この配線は、例えば埋込配線とされている。すなわち、この配線は、層間絶縁膜1Li2の各層に形成された配線溝内に導体膜が埋め込まれることで形成されている。配線を形成する導体膜は、主導体膜と、その外周面(底面および側面)を覆うように形成されたバリアメタル膜とを有している。主導体膜は、例えば銅(Cu)により形成されている。バリアメタル膜は、例えば窒化チタン(TiN)、窒化タングステン(WN)、窒化タンタル(TaN)、タンタル(Ta)、チタン(Ti)、タングステン(W)またはチタンタングステン(TiW)あるいはそれらの積層膜により形成されている。   Further, in FIG. 5, wiring is not shown in the interlayer insulating film 1Li2 for the sake of simplicity, but actually, the wiring is formed in a multilayer in the interlayer insulating film 1Li2. This wiring is, for example, a buried wiring. That is, this wiring is formed by embedding a conductor film in a wiring groove formed in each layer of the interlayer insulating film 1Li2. The conductor film forming the wiring has a main conductor film and a barrier metal film formed so as to cover the outer peripheral surface (bottom surface and side surface) thereof. The main conductor film is made of, for example, copper (Cu). The barrier metal film is made of, for example, titanium nitride (TiN), tungsten nitride (WN), tantalum nitride (TaN), tantalum (Ta), titanium (Ti), tungsten (W), titanium tungsten (TiW), or a laminated film thereof. Is formed.

層間絶縁膜1Li3上の配線、パッド1LB,1LBtおよびアライメントターゲットAmは、例えばアルミニウム等のような金属膜により形成されている。このような最上の配線およびパッド1LB,1LBt等は、配線層1Lの最上層に形成された保護膜1Lpにより覆われている。保護膜1Lpは、例えば酸化シリコンのような無機系の絶縁膜と、その上に堆積された、例えば窒化シリコンのような無機系の絶縁膜と、さらにその上に堆積された、例えばポリイミド樹脂のような有機系の絶縁膜との積層膜により形成されている。この保護膜1Lpの一部には、開口部2が形成されており、そこからパッド1LB,1LBtの一部が露出されている。パッド1LBは、チップ1Cの外周に沿って並んで配置され、上記層間絶縁膜1Li中の配線を通じてチップ1Cの集積回路素子と電気的に接続されている。   The wiring on the interlayer insulating film 1Li3, the pads 1LB, 1LBt, and the alignment target Am are formed of a metal film such as aluminum. Such uppermost wiring and pads 1LB, 1LBt, etc. are covered with a protective film 1Lp formed on the uppermost layer of the wiring layer 1L. The protective film 1Lp includes an inorganic insulating film such as silicon oxide, an inorganic insulating film such as silicon nitride deposited thereon, and a polyimide resin such as polyimide resin deposited thereon. It is formed of a laminated film with such an organic insulating film. An opening 2 is formed in a part of the protective film 1Lp, and parts of the pads 1LB and 1LBt are exposed therefrom. The pads 1LB are arranged side by side along the outer periphery of the chip 1C, and are electrically connected to the integrated circuit elements of the chip 1C through the wiring in the interlayer insulating film 1Li.

テスト用のパッド1LBtおよびアライメントターゲットAmは、チップ1Cの切断領域CRに配置されている。テスト用のパッド1LBtは、例えば平面矩形状に形成され、上記配線を通じてTEG用の素子と電気的に接続されている。アライメントターゲットAmは、例えば露光装置等のような製造装置とウエハ1Wのチップ1Cとの位置合わせの際に用いられるパターンで、例えば平面十字状に形成されている。アライメントターゲットAmは、十字状の他に、L字状やドット状に形成される場合もある。   The test pad 1LBt and the alignment target Am are arranged in the cutting region CR of the chip 1C. The test pad 1LBt is formed in, for example, a rectangular shape, and is electrically connected to the TEG element through the wiring. The alignment target Am is a pattern used for alignment between a manufacturing apparatus such as an exposure apparatus and the chip 1C of the wafer 1W, and is formed in a planar cross shape, for example. In addition to the cross shape, the alignment target Am may be formed in an L shape or a dot shape.

続く図1のテスト工程101では、ウエハ1Wの各チップ1Cのパッド1LBおよび切断領域CRのテスト用のパッド1LBtにプローブを当てて各種の電気的特性検査を行う。このテスト工程は、G/W(Good chip/Wafer)チェック工程とも呼ばれ、主としてウエハ1Wに形成された各チップ1Cの良否を電気的に判定する試験工程である。   In the subsequent test process 101 of FIG. 1, various electrical characteristic inspections are performed by applying probes to the pads 1LB of each chip 1C of the wafer 1W and the test pads 1LBt of the cutting region CR. This test process is also referred to as a G / W (Good chip / Wafer) check process, and is a test process that mainly electrically determines the quality of each chip 1C formed on the wafer 1W.

続く図1の後工程102は、上記チップ1Cを封止体(パッケージ)に収納し完成するまでの工程であり、裏面加工工程102A、チップ分割工程102Bおよび組立工程102Cを有している。以下、裏面加工工程102A、チップ分割工程102Bおよび組立工程102Cについて順に説明する。   A subsequent process 102 in FIG. 1 is a process until the chip 1C is housed in a sealing body (package) and completed, and includes a back surface processing process 102A, a chip dividing process 102B, and an assembling process 102C. Hereinafter, the back surface processing step 102A, the chip dividing step 102B, and the assembly step 102C will be described in order.

図6〜図8は上記裏面加工工程102Aにおけるウエハ1Wの断面図を示している。   6 to 8 are sectional views of the wafer 1W in the back surface processing step 102A.

まず、図6に示すように、ウエハ1Wの主面全面に接着層3を回転塗布(スピンコート)法等により均一に塗布する。続いて、図7に示すように、ウエハ1Wの主面上に接着層3を介して支持基板4を貼り付ける(図1の工程102A1)。この支持基板4は、この後の工程においてウエハ1Wの補強部材として機能するウエハサポートシステム(Wafer Support System:WSS)である。これにより、ウエハ1Wの搬送時においては、極薄で大径のウエハ1Wを安定した状態でハンドリングできる上、ウエハ1Wを外部の衝撃から保護することもできるので、ウエハ1Wの割れや欠け等を抑制または防止できる。また、この後の各工程時においては、ウエハ1Wの反りや撓みを抑制または防止でき、極薄で大径のウエハ1Wの平坦性を向上させることができるので、各工程での処理の安定性や制御性を向上させることができる。支持基板4の材料としては、例えば透明なガラスのような硬質支持基板(Hard−WSSまたはGlass−WSS)が使用されている。ただし、支持基板4の他の材料として、例えばステンレスのような他の硬質支持基板(Hard−WSS)を用いても良い。また、支持基板4のさらに他の材料として、例えばPET(Polyethylene Terephthalate)やPEN(Polyethylene Naphthalate)等のような絶縁支持基板をテープ基材に貼り付けたテープWSSを用いても良い。なお、支持基板4をウエハ1Wの主面に貼り付ける際には、支持基板4の剥離層4aの形成面を接着層3に押し付けることで支持基板4をウエハ1Wの主面に固定する。この剥離層4aは、支持基板4をウエハ1Wから剥離する際に剥離を容易にするための機能層である。   First, as shown in FIG. 6, the adhesive layer 3 is uniformly applied to the entire main surface of the wafer 1W by a spin coating method or the like. Subsequently, as shown in FIG. 7, the support substrate 4 is bonded to the main surface of the wafer 1W via the adhesive layer 3 (step 102A1 in FIG. 1). The support substrate 4 is a wafer support system (WSS) that functions as a reinforcing member for the wafer 1W in the subsequent process. As a result, when the wafer 1W is transported, the ultra-thin and large-diameter wafer 1W can be handled in a stable state, and the wafer 1W can be protected from external impacts. Can be suppressed or prevented. In each subsequent process, warping and bending of the wafer 1W can be suppressed or prevented, and the flatness of the ultra-thin and large-diameter wafer 1W can be improved, so that the processing stability in each process is improved. And controllability can be improved. As a material of the support substrate 4, for example, a hard support substrate (Hard-WSS or Glass-WSS) such as transparent glass is used. However, as another material of the support substrate 4, for example, another hard support substrate (Hard-WSS) such as stainless steel may be used. Further, as another material of the support substrate 4, a tape WSS in which an insulating support substrate such as PET (Polyethylene Terephthalate) or PEN (Polyethylene Naphthalate) is attached to a tape base material may be used. When the support substrate 4 is attached to the main surface of the wafer 1W, the support substrate 4 is fixed to the main surface of the wafer 1W by pressing the formation surface of the release layer 4a of the support substrate 4 against the adhesive layer 3. The peeling layer 4a is a functional layer for facilitating peeling when the support substrate 4 is peeled from the wafer 1W.

その後、図8に示すように、ウエハ1Wの厚さを測定した後、その測定結果に基づいてウエハ1Wに対して薄型化処理を施す。ここでは、ウエハ1Wの裏面に対して研削処理および研磨処理(平坦加工)を順に施す(図1の工程102A2,102A3)。このような薄型化処理後のウエハ1Wの厚さ(基板1Sの厚さと配線層1Lの厚さとの総和)は、例えば100μm以下(例えば90μm程度、70μm程度あるいは50μm程度)とされている。ここで、ウエハ1Wの厚さが薄くなり100μm以下になってくると上記裏面研削処理によりウエハ1Wの裏面に生じた損傷やストレスが原因でチップの抗折強度が低下しチップを実装する時の圧力でチップが割れてしまう不具合が生じ易くなる。このため、裏面研削処理後の裏面研磨処理は、そのような不具合が生じないようにウエハ1Wの裏面の損傷やストレスを無くす上で重要な処理となっている。裏面研磨処理としては、研磨パッドとシリカとを用いて研磨する方法や化学機械研磨(Chemical Mechanical Polishing:CMP)法の他、例えば硝酸とフッ酸とを用いたエッチング法を用いても良い。ただし、ウエハ1Wの裏面が研磨処理により平坦化されていると、不純物がウエハ1Wの裏面からウエハ1W内部(デバイス形成面)に向かって容易に拡散する場合がある。そのため、ウエハ1Wの裏面の凹凸(損傷やストレス等)を不純物捕獲用のゲッタリング層として機能させることを必要とする製品の場合には、裏面研磨処理を行わず、ウエハ1Wの裏面に凹凸(損傷やストレス等)を意図的に残すようにする場合もある。なお、図8の破線は、薄型化処理前の基板1Sを示している。   Thereafter, as shown in FIG. 8, after measuring the thickness of the wafer 1W, the wafer 1W is thinned based on the measurement result. Here, grinding processing and polishing processing (flat processing) are sequentially performed on the back surface of the wafer 1W (steps 102A2 and 102A3 in FIG. 1). The thickness of the wafer 1W after such thinning processing (the sum of the thickness of the substrate 1S and the thickness of the wiring layer 1L) is, for example, 100 μm or less (for example, about 90 μm, about 70 μm, or about 50 μm). Here, when the thickness of the wafer 1W is reduced to 100 μm or less, the bending strength of the chip decreases due to damage or stress generated on the back surface of the wafer 1W by the back surface grinding process, and the chip is mounted. The problem that the chip breaks due to pressure is likely to occur. For this reason, the back surface polishing process after the back surface grinding process is an important process for eliminating damage and stress on the back surface of the wafer 1W so as not to cause such a problem. As the back surface polishing treatment, for example, an etching method using nitric acid and hydrofluoric acid may be used in addition to a polishing method using a polishing pad and silica or a chemical mechanical polishing (CMP) method. However, if the back surface of the wafer 1W is flattened by polishing, impurities may easily diffuse from the back surface of the wafer 1W toward the inside of the wafer 1W (device formation surface). Therefore, in the case of a product that requires the unevenness (damage, stress, etc.) on the back surface of the wafer 1W to function as a gettering layer for trapping impurities, the back surface polishing process is not performed and the unevenness ( In some cases, damage or stress is intentionally left. 8 indicates the substrate 1S before the thinning process.

次に、図9はチップ分割工程102Bのレーザ照射工程102B1時におけるウエハ1Wの断面図、図10は図9のウエハ1Wの要部拡大平面図を示している。   Next, FIG. 9 is a cross-sectional view of the wafer 1W during the laser irradiation step 102B1 in the chip dividing step 102B, and FIG. 10 is an enlarged plan view of the main part of the wafer 1W in FIG.

まず、極薄のウエハ1Wをその主面に支持基板4を貼り付けたままの状態でレーザダイシング装置に搬送し、そのウエハ1Wの裏面を上に向けた状態で吸着ステージに載置する。続いて、ウエハ1Wの裏面から赤外線カメラ(以下、IRカメラ)を用いて、ウエハ1Wの主面のパターン(チップ1Cや切断領域CRのパターンの他、切断領域CRに配置されているパッド1LBtやアライメントターゲットAm、チップ1C内に配置されているパッド1LB等)を認識する。その後、IRカメラで得られたパターン情報に基づいて切断線CLの位置合わせ(位置補正)を実施した後、レーザ発生部5から放射されたレーザ光(エネルギービーム)LB1をウエハ1Wの裏面側からウエハ1Wの基板1Sの内部に集光点を合わせた状態で照射するとともに、上記パターン情報に基づいて位置合わせされた切断線CLに沿って移動させる。これにより、ウエハ1Wの切断領域CRにおける基板1Sの内部に多光子吸収による改質領域(光学的損傷部または破砕層)PLを形成する。この改質領域PLは、ウエハ1Wの内部が多光子吸収によって加熱され溶融されたことで形成されており、後のチップ分割工程時のウエハ1Wの切断起点領域となる。この溶融処理領域は、一旦溶融した後に再固化した領域や、まさに溶融状態の領域や、溶融状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということもできる。例えば基板1S部分では、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造および多結晶構造を含む構造に変化した領域を意味する。   First, the ultra-thin wafer 1W is transferred to the laser dicing apparatus with the support substrate 4 attached to the main surface thereof, and placed on the suction stage with the back surface of the wafer 1W facing up. Subsequently, by using an infrared camera (hereinafter referred to as an IR camera) from the back surface of the wafer 1W, a pattern on the main surface of the wafer 1W (a pattern of the chip 1C and the cutting region CR, a pad 1LBt disposed in the cutting region CR, Alignment target Am, pad 1LB arranged in chip 1C, etc.) are recognized. Then, after alignment (position correction) of the cutting line CL is performed based on the pattern information obtained by the IR camera, the laser beam (energy beam) LB1 emitted from the laser generator 5 is applied from the back side of the wafer 1W. Irradiation is performed in a state where the condensing point is aligned with the inside of the substrate 1S of the wafer 1W, and the wafer 1W is moved along the cutting line CL aligned based on the pattern information. As a result, a modified region (optically damaged portion or fractured layer) PL by multiphoton absorption is formed inside the substrate 1S in the cutting region CR of the wafer 1W. The modified region PL is formed by heating and melting the inside of the wafer 1W by multiphoton absorption, and becomes a cutting start region of the wafer 1W in the subsequent chip dividing step. This melting treatment region is a region that has been once melted and then re-solidified, a region that is in a molten state, a region that is re-solidified from a molten state, and can also be referred to as a phase-changed region or a region in which the crystal structure has changed. . The melt treatment region can also be said to be a region in which one structure is changed to another structure in a single crystal structure, an amorphous structure, or a polycrystalline structure. For example, in the substrate 1S portion, a region changed from a single crystal structure to an amorphous structure, a region changed from a single crystal structure to a polycrystalline structure, and a region changed from a single crystal structure to a structure including an amorphous structure and a polycrystalline structure Means.

レーザ光LB1は、切断領域CRに沿って連続的に照射しても良いし、断続的に照射しても良い。レーザ光LB1を連続的に照射した場合、改質領域PLは切断線CLに沿って直線状に形成される。レーザ光LB1を断続的に照射した場合、改質領域PLは破線状(ドット状)に形成される。上記低誘電率膜は熱伝導率が低く熱がこもり易いためレーザ光LB1の照射時の熱により変色することがあるが、レーザ光LB1を断続的に照射した場合、レーザ光LB1の照射面積を小さくでき、レーザ光LB1の照射による熱の発生を極力抑えることができるので、熱による低誘電率膜の変色を抑制または防止できる。   The laser beam LB1 may be irradiated continuously along the cutting region CR, or may be irradiated intermittently. When the laser beam LB1 is continuously irradiated, the modified region PL is formed linearly along the cutting line CL. When the laser beam LB1 is intermittently irradiated, the modified region PL is formed in a broken line shape (dot shape). Since the low dielectric constant film has a low thermal conductivity and heat is likely to be trapped, it may be discolored by the heat at the time of irradiation with the laser beam LB1, but when the laser beam LB1 is intermittently irradiated, the irradiation area of the laser beam LB1 is reduced. Since the generation of heat due to irradiation with the laser beam LB1 can be suppressed as much as possible, discoloration of the low dielectric constant film due to heat can be suppressed or prevented.

なお、ウエハ1Wの裏面は、レーザ光LB1の入射面となっているので、レーザ光LB1の散乱を低減または防止するために平坦かつ滑面であることが好ましい。また、改質領域PLの形成において、ウエハ1Wの裏面ではレーザ光LB1がほとんど吸収されていないので、ウエハ1Wの裏面が溶融することはない。また、特に限定されるものではないが、レーザ光LB1の照射条件は、例えば以下の通りである。すなわち、レーザ光LB1の種類は、例えばLD励起固体パルスレーザ、光源は、例えば波長が1064nmのYAGレーザ、周波数は、例えば400kHz、レーザパワーは、例えば1W以下、レーザスポット径は、例えば1〜2μm、レーザ光LB1の移動速度は、例えば300mm/s程度である。   Since the back surface of the wafer 1W is an incident surface for the laser beam LB1, it is preferably flat and smooth to reduce or prevent scattering of the laser beam LB1. Further, in the formation of the modified region PL, since the laser beam LB1 is hardly absorbed on the back surface of the wafer 1W, the back surface of the wafer 1W is not melted. Moreover, although it does not specifically limit, the irradiation conditions of the laser beam LB1 are as follows, for example. That is, the type of the laser beam LB1 is, for example, an LD-excited solid pulse laser, the light source is, for example, a YAG laser having a wavelength of 1064 nm, the frequency is, for example, 400 kHz, the laser power is, for example, 1 W or less, and the laser spot diameter is, for example, 1-2 μm The moving speed of the laser beam LB1 is, for example, about 300 mm / s.

次に、図11〜図13はチップ分割工程102Bの接着層形成工程102B2時におけるウエハ1Wの様子を示している。なお、図11はウエハ1Wの断面図を、図12および図13の左側はウエハ1Wの断面図を、右側はウエハ1Wの裏面の全体平面図をそれぞれ示している。   Next, FIGS. 11 to 13 show the state of the wafer 1W during the adhesive layer forming step 102B2 of the chip dividing step 102B. 11 is a cross-sectional view of the wafer 1W, the left side of FIGS. 12 and 13 is a cross-sectional view of the wafer 1W, and the right side is an overall plan view of the back surface of the wafer 1W.

まず、上記レーザダイシング装置から取り出したウエハ1Wをその主面に支持基板4を貼り付けたままの状態で回転塗布装置(スピン・コーター)に搬送し、そのウエハ1Wの裏面を上に向けた状態で回転支持台に載置し真空吸着することで固定する。続いて、図11に示すように、回転塗布装置のノズル7から液状(ペースト状)の接着材8をウエハ1Wの裏面上の中央に滴下する。この接着材8のベース材は、例えば熱可塑性樹脂により形成されている。熱可塑性樹脂の具体例としては、例えばポリイミド樹脂がある。また、接着材8のベース材として、例えば熱硬化性樹脂を用いても良い。熱硬化性樹脂の具体例としては、例えばエポキシ樹脂、ポリイミド樹脂またはシリコーン樹脂等がある。その後、図12に示すように、ウエハ1Wを高速回転させることでウエハ1Wの裏面全面に薄い接着材8の被膜を形成する(回転塗布法)。その後、ウエハ1Wをその主面に支持基板4を貼り付けたままの状態でヒートステージ上に搬送し、例えば100〜200℃、30分程度の条件で乾燥処理を施して接着材8を固化する。接着材8のベース材料が熱硬化性樹脂の場合は、熱処理を施すことにより熱硬化性樹脂をある程度硬化させるが完全に硬化させず接着性を有する状態にとどめておく。このようにして、図13に示すように、ウエハ1Wの裏面全面に固体状の薄い接着層8aを形成する。この接着材8を固化することで得られた接着層8aは、この後の工程でウエハ1Wから得られたチップ1Cを他のチップ上に固定するためのものであり、その厚さが均一になるようにウエハ1Wの裏面全面に形成されている。接着層8aの厚さは、例えば10μmよりも薄く、例えば5μm程度あるいはそれ以下である。また、上記のように接着材8のみ回転塗布した後、固化することで接着層8aを形成するため、DAFのようにフィルム基板を必要としない分、接着層8aの厚さをDAFよりも薄く形成することが可能である。   First, the wafer 1W taken out from the laser dicing apparatus is transported to a spin coater (spin coater) with the support substrate 4 still attached to the main surface thereof, and the back surface of the wafer 1W is directed upward. It is fixed by placing it on a rotating support and sucking it with vacuum. Subsequently, as shown in FIG. 11, a liquid (paste-like) adhesive material 8 is dropped from the nozzle 7 of the spin coater onto the center of the back surface of the wafer 1W. The base material of the adhesive material 8 is formed of, for example, a thermoplastic resin. As a specific example of the thermoplastic resin, for example, there is a polyimide resin. Further, for example, a thermosetting resin may be used as the base material of the adhesive material 8. Specific examples of the thermosetting resin include, for example, an epoxy resin, a polyimide resin, or a silicone resin. Thereafter, as shown in FIG. 12, the wafer 1W is rotated at a high speed to form a thin film of the adhesive 8 on the entire back surface of the wafer 1W (rotary coating method). Thereafter, the wafer 1W is transported onto a heat stage with the support substrate 4 attached to the main surface thereof, and dried, for example, at 100 to 200 ° C. for about 30 minutes to solidify the adhesive 8. . When the base material of the adhesive 8 is a thermosetting resin, the thermosetting resin is cured to some extent by performing a heat treatment, but is not completely cured but remains in an adhesive state. In this way, as shown in FIG. 13, a solid thin adhesive layer 8a is formed on the entire back surface of the wafer 1W. The adhesive layer 8a obtained by solidifying the adhesive 8 is for fixing the chip 1C obtained from the wafer 1W in the subsequent process on another chip, and the thickness thereof is uniform. It is formed on the entire back surface of the wafer 1W. The thickness of the adhesive layer 8a is, for example, thinner than 10 μm, for example, about 5 μm or less. Further, since the adhesive layer 8a is formed by spin-coating only the adhesive 8 as described above and then solidifying, the thickness of the adhesive layer 8a is thinner than that of the DAF because the film substrate is not required unlike the DAF. It is possible to form.

本実施の形態1では、回転塗布装置のノズル7から液状(ペースト状)の接着材8をウエハ1Wの裏面上の中央に滴下した後、ウエハ1Wを高速回転させることでウエハ1Wの裏面全面に薄い接着材8の被膜を形成する方法を説明したが、接着剤8の粘度が高いものを使用する場合には、予めウエハ1Wを高速回転した状態で液状(ペースト状)の接着材8をウエハ1Wの裏面上の中央に滴下し、その後回転数を変えてウエハ1Wの裏面全面に薄い接着材8の被膜を形成することが好ましい。   In the first embodiment, after a liquid (paste-like) adhesive material 8 is dropped from the nozzle 7 of the spin coater onto the center of the back surface of the wafer 1W, the wafer 1W is rotated at a high speed so that the entire surface of the back surface of the wafer 1W is rotated. Although the method of forming the thin adhesive film 8 has been described, in the case where the adhesive 8 having a high viscosity is used, the liquid (paste-like) adhesive 8 is preliminarily rotated with the wafer 1W rotated at a high speed. It is preferable to drop the film onto the center of the back surface of 1 W, and then change the number of revolutions to form a thin film of adhesive 8 on the entire back surface of wafer 1 W.

本実施の形態1では、上記のように回転塗布法を用いて接着層8aを形成することにより、接着層8aの厚さを上記のように薄くすることができる。また、樹脂コーティング方式により接着層8aを形成するので、ウエハ1Wの裏面内での接着層8aの厚さの均一性を向上させることができる。また、ウエハ1Wの主面に支持基板4を貼り付けることによりウエハ1Wの平坦度が高い状態で接着剤8を回転塗布できるので、ウエハ1Wの裏面内での接着層8aの厚さの均一性を向上させることができる。上記WSSを用いない場合、ウエハ1Wの主面にテープ材のみを貼り付ける場合あるいは上記テープWSSを用いる場合は、ウエハ1Wの主面全面を上記回転支持台側に真空吸引した状態で接着材8を回転塗布することが好ましい。このようにウエハ1Wの主面全面を真空吸引することにより、極薄で大径のウエハ1Wの反りや撓みを低減または防止することができ、ウエハ1Wの平坦性を向上させることができるので、ウエハ1Wの裏面内における接着層8aの厚さの均一性を向上させることができる。   In the first embodiment, by forming the adhesive layer 8a using the spin coating method as described above, the thickness of the adhesive layer 8a can be reduced as described above. Further, since the adhesive layer 8a is formed by the resin coating method, the uniformity of the thickness of the adhesive layer 8a in the back surface of the wafer 1W can be improved. Further, since the adhesive 8 can be spin-coated while the flatness of the wafer 1W is high by attaching the support substrate 4 to the main surface of the wafer 1W, the thickness of the adhesive layer 8a within the back surface of the wafer 1W is uniform. Can be improved. When the WSS is not used, when only the tape material is attached to the main surface of the wafer 1W, or when the tape WSS is used, the adhesive material 8 is vacuum-sucked on the entire main surface of the wafer 1W toward the rotary support base. Is preferably applied by spin coating. Thus, by vacuum-sucking the entire main surface of the wafer 1W, warping and bending of the ultra-thin and large-diameter wafer 1W can be reduced or prevented, and the flatness of the wafer 1W can be improved. The uniformity of the thickness of the adhesive layer 8a in the back surface of the wafer 1W can be improved.

また、DAFを用いた場合、ウエハ1Wのサイズや厚さ等により仕様が異なるが、本実施の形態1のような樹脂コーティング方式の場合は、樹脂材料は1種類で良く、特にウエハ1Wのサイズや厚さによらない。また、DAFに求められるような成型技術や加工技術が不要なので、コストを低減できる。また、ウエハ1WにDAFを接着する場合、ウエハ1WとDAFとの間の皺やボイドを無くし密着性を上げるために、ウエハ1Wへの加圧が必要であるが、50μm以下の薄いウエハ1Wでは、加圧によるウエハ1Wへの損傷が益々懸念される。これに対して、本実施の形態1では、接着層8aの形成において、ウエハ1Wへの加圧が不要であり、ウエハ1Wの損傷劣化を低減または防止することができる。したがって、半導体装置の歩留まりおよび信頼性を向上させることができる。   When DAF is used, the specifications vary depending on the size and thickness of the wafer 1W. However, in the case of the resin coating method as in the first embodiment, only one type of resin material may be used, and particularly the size of the wafer 1W. It does not depend on the thickness. Further, since the molding technique and processing technique required for DAF are unnecessary, the cost can be reduced. In addition, when DAF is bonded to the wafer 1W, it is necessary to apply pressure to the wafer 1W in order to eliminate wrinkles and voids between the wafer 1W and the DAF and improve adhesion, but in the case of a thin wafer 1W having a thickness of 50 μm or less. There is an increasing concern about damage to the wafer 1W due to pressurization. On the other hand, in the first embodiment, it is not necessary to apply pressure to the wafer 1W in forming the adhesive layer 8a, and damage deterioration of the wafer 1W can be reduced or prevented. Therefore, the yield and reliability of the semiconductor device can be improved.

次に、図14はチップ分割工程102Bのウエハマウント工程102B3後におけるウエハ1Wの断面図を示している。   Next, FIG. 14 shows a cross-sectional view of the wafer 1W after the wafer mounting process 102B3 of the chip dividing process 102B.

この工程では、図14に示すように、ウエハ1Wの主面に支持基板4を貼り付けたままの状態でウエハ1Wの裏面(接着層8aの形成面)を治具10のテープ10に貼り付ける。治具10のテープ10aのテープベースは、例えば柔軟性を持つプラスチック材料からなり、その主面には接着層が形成されている。ウエハ1Wはテープ10aの接着層によりしっかりと固定されている。このテープ10aとして、例えばUVテープを使用することも好ましい。UVテープは、接着層の材料として紫外線(UV)硬化性樹脂が使用された粘着テープであり、強力な粘着力を持ちつつ、紫外線を照射すると接着層の粘着力が急激に弱くなる性質を有している。テープ10aの主面外周にはリング10bがテープ10aの接着層により貼り付けられている。このリング10bは、テープ10aの補強部材である。この補強の観点からリング10bは、例えばステンレス等のような金属により形成することが好ましいが、金属と同程度の硬度を持つように厚さを設定したプラスチック材料により形成しても良い。   In this step, as shown in FIG. 14, the back surface (formation surface of the adhesive layer 8 a) of the wafer 1 </ b> W is attached to the tape 10 of the jig 10 with the support substrate 4 being attached to the main surface of the wafer 1 </ b> W. . The tape base of the tape 10a of the jig 10 is made of, for example, a flexible plastic material, and an adhesive layer is formed on the main surface thereof. The wafer 1W is firmly fixed by the adhesive layer of the tape 10a. For example, a UV tape is also preferably used as the tape 10a. UV tape is a pressure-sensitive adhesive tape that uses ultraviolet (UV) curable resin as the material for the adhesive layer, and has the property that the adhesive strength of the adhesive layer suddenly weakens when irradiated with ultraviolet light while having strong adhesive strength. doing. A ring 10b is attached to the outer periphery of the main surface of the tape 10a with an adhesive layer of the tape 10a. The ring 10b is a reinforcing member for the tape 10a. From the viewpoint of reinforcement, the ring 10b is preferably formed of a metal such as stainless steel, but may be formed of a plastic material whose thickness is set to have the same degree of hardness as the metal.

次に、図15〜図18はチップ分割工程102BのWSS剥離工程102B4時におけるウエハ1Wの様子を示している。なお、図15および図16はウエハ1Wの断面図を、図17はウエハ1Wの主面の全体平面図を、図18は図17のX2−X2線の断面図をそれぞれ示している。   Next, FIGS. 15 to 18 show the state of the wafer 1W during the WSS peeling process 102B4 of the chip dividing process 102B. 15 and 16 are sectional views of the wafer 1W, FIG. 17 is an overall plan view of the main surface of the wafer 1W, and FIG. 18 is a sectional view taken along line X2-X2 of FIG.

この工程では、まず、図15に示すように、レーザ発生部11から放射されたレーザ光LB2を、ウエハ1Wの主面上の接着層3に焦点を合わせた状態で透明な支持基板4を介してウエハ1Wの主面の端から端まで走査し照射する。このレーザ光LB2の条件は、例えば波長1064nmの赤外線レーザ、出力:20W、照射速度:2000mm/s、スポット径:f200μm程度である。これにより、図16に示すように、支持基板4をウエハ1Wの主面から剥離する。   In this step, first, as shown in FIG. 15, the laser beam LB2 emitted from the laser generator 11 is focused on the adhesive layer 3 on the main surface of the wafer 1W via the transparent support substrate 4. Then, scanning is performed from end to end of the main surface of the wafer 1W. The conditions of the laser beam LB2 are, for example, an infrared laser with a wavelength of 1064 nm, output: 20 W, irradiation speed: 2000 mm / s, and spot diameter: f200 μm. Thereby, as shown in FIG. 16, the support substrate 4 is peeled from the main surface of the wafer 1W.

接着層3を、例えば紫外線硬化樹脂(UVレジン)により形成しても良い。UVレジンは、強力な粘着力を持ちつつ、紫外線を照射すると硬化が促進され粘着力が急激に弱くなる性質を有している。UVレジンを使用した場合、上記レーザ光LB2は、赤外線レーザに代えて紫外線レーザを使用する。これにより、接着層3の粘着力を弱めることができるので、支持基板4を容易に剥離することができる。続いて、図17および図18に示すように、ウエハ1Wの主面上の接着層3を除去する。   The adhesive layer 3 may be formed of, for example, an ultraviolet curable resin (UV resin). The UV resin has a strong adhesive force, and has a property that curing is accelerated and the adhesive force is rapidly weakened when irradiated with ultraviolet rays. When a UV resin is used, the laser beam LB2 uses an ultraviolet laser instead of the infrared laser. Thereby, since the adhesive force of the contact bonding layer 3 can be weakened, the support substrate 4 can be peeled easily. Subsequently, as shown in FIGS. 17 and 18, the adhesive layer 3 on the main surface of the wafer 1W is removed.

次に、図19および図20は分割工程102B5時におけるウエハ1Wの断面図およびウエハ1Wの裏面の全体平面図を示している。なお、図20は平面図であるが、図面を見易くするため接着層8aの形成領域にハッチングを付した。   Next, FIG. 19 and FIG. 20 show a sectional view of the wafer 1W and an overall plan view of the back surface of the wafer 1W at the time of the dividing step 102B5. Although FIG. 20 is a plan view, hatching is given to the formation region of the adhesive layer 8a for easy viewing of the drawing.

この工程では、図19に示すように、ウエハ1Wを載せた治具10を載置台12に載せた後、治具10のリング10bを固定した状態で載置台12をウエハ1Wの主面に垂直な方向(矢印Aで示す方向)に押し上げる。すると、テープ10aがウエハ1Wの直径方向(矢印Bで示す方向)に引き延ばされる結果、そのテープ10aが延びる力により、ウエハ1Wの改質領域PLを分割起点としてウエハ1Wの厚さ方向に沿って亀裂が入る。これにより、ウエハ1Wを個々のチップ(第2チップ)1Cに分割する(ステルスダイシング)。また、同時にチップ1Cの分割により個々のチップ1C間において接着層8aも割れる。チップ1Cの裏面の接着層としてDAF材を用いた場合、ステルスダイシングによるチップ1Cの切断において、チップ1Cの裏面のDAF材の外周部が切断されずに延びてしまう等、チップ1Cの裏面のDAF材を上手く切断できない場合がある。これに対して、本実施の形態1では、上記のように接着層8aの厚さがDAF材に比べて極めて薄いので、ステルスダイシングによるチップ1Cの分割時に接着層8aを上手く綺麗に切断することができる。したがって、ステルスダイシングを採用できるので、チップ1Cの薄型化に対応でき、半導体装置を薄型化することができる。また、チップ1Cの外観不良を低減できるので、半導体装置の歩留まりを向上させることができる。   In this step, as shown in FIG. 19, after placing the jig 10 on which the wafer 1W is placed on the mounting table 12, the mounting table 12 is perpendicular to the main surface of the wafer 1W while the ring 10b of the jig 10 is fixed. Push up in the direction indicated by arrow A. Then, as a result of the tape 10a being stretched in the diameter direction of the wafer 1W (direction indicated by the arrow B), the extending force of the tape 10a causes the modified region PL of the wafer 1W to be divided starting points along the thickness direction of the wafer 1W. Cracks. Thus, the wafer 1W is divided into individual chips (second chips) 1C (stealth dicing). At the same time, the adhesive layer 8a is also broken between the individual chips 1C by dividing the chips 1C. When the DAF material is used as the adhesive layer on the back surface of the chip 1C, the outer periphery of the DAF material on the back surface of the chip 1C extends without being cut when the chip 1C is cut by stealth dicing. The material may not be cut well. On the other hand, in the first embodiment, as described above, the thickness of the adhesive layer 8a is extremely thin compared to the DAF material. Therefore, the adhesive layer 8a is cut well and clean when the chip 1C is divided by stealth dicing. Can do. Therefore, since stealth dicing can be employed, the chip 1C can be made thinner and the semiconductor device can be made thinner. Moreover, since the appearance defect of the chip 1C can be reduced, the yield of the semiconductor device can be improved.

また、ダイシングブレードによりウエハ1Wを切断するブレードダイシング方式の場合、ウエハ1Wが薄くなってくると切断時にチッピングが生じ易くなりチップの抗折強度が低下するので、チップ1Cの品質を確保する観点から低速(例えば毎秒60mm程度またはウエハ1Wの厚さに応じてそれ以下)で処理せざるを得なくなってくる。これに対して、本実施の形態1の場合、ウエハ1Wの表面に損傷を与えず内部のみを割断するため、チップ1Cの表面に存在するチッピングを極少に抑えることができる。このため、チップ1Cの抗折強度を向上させることができる。また、例えば毎秒300mmという高速な切断処理ができるので、スループットを向上させることができる。   Further, in the case of the blade dicing method in which the wafer 1W is cut by a dicing blade, chipping tends to occur at the time of cutting when the wafer 1W becomes thin, and the bending strength of the chip is lowered. From the viewpoint of ensuring the quality of the chip 1C. Processing must be performed at low speed (for example, about 60 mm per second or less depending on the thickness of the wafer 1W). On the other hand, in the case of the first embodiment, since only the inside is cleaved without damaging the surface of the wafer 1W, chipping existing on the surface of the chip 1C can be minimized. For this reason, the bending strength of the chip 1 </ b> C can be improved. Further, for example, a high-speed cutting process of 300 mm per second can be performed, so that the throughput can be improved.

また、上記のようにウエハ1Wの主面の切断領域CRには、ウエハ1Wの主面側からレーザ光を照射するとテスト用のパッド1LBtが邪魔になりその部分の加工(改質層の形成)が上手くできない場合がある。これに対して、本実施の形態1では、テスト用のパッド1LBt等のようなメタルの存在しないウエハ1Wの裏面側からレーザ光LBを照射するので、上記のような不具合を生じることなく良好に改質領域PLを形成でき、ウエハ1Wを良好に切断することができる。   Further, as described above, when the laser beam is irradiated from the main surface side of the wafer 1W to the cutting region CR of the main surface of the wafer 1W, the test pad 1LBt becomes an obstacle and the portion is processed (formation of a modified layer). May not be successful. On the other hand, in the first embodiment, the laser beam LB is irradiated from the back surface side of the wafer 1W where there is no metal such as the test pad 1LBt. The modified region PL can be formed, and the wafer 1W can be cut well.

次に、図21は組立工程102Cのピックアップ工程102C1時におけるウエハ1Wの断面図を示している。この工程では、複数のチップ1Cを保持した治具10をピックアップ装置に搬送し載置台15上に載せる。続いて、治具10のテープ10aの裏面を真空吸引した状態で、押上ピンによりテープ10aの裏面からチップ1Cを押し上げる。この時、テープ10aとして上記UVテープを使用した場合にはテープ10aの接着層に紫外線を照射することにより接着層を硬化させ接着力を弱める。この状態でチップ1Cをピックアップ装置のコレットにより真空吸引して引き上げる。   Next, FIG. 21 shows a cross-sectional view of the wafer 1W during the pickup process 102C1 of the assembly process 102C. In this step, the jig 10 holding the plurality of chips 1C is transported to the pickup device and placed on the mounting table 15. Subsequently, in a state where the back surface of the tape 10a of the jig 10 is vacuum-sucked, the chip 1C is pushed up from the back surface of the tape 10a by a push-up pin. At this time, when the UV tape is used as the tape 10a, the adhesive layer is cured by irradiating the adhesive layer of the tape 10a with ultraviolet rays to weaken the adhesive force. In this state, the chip 1C is pulled up by vacuum suction with a collet of the pickup device.

次に、図22は組立工程102Cのダイボンディング工程102C2時におけるチップ1Cおよび配線基板17の斜視図、図23は図22の工程時のチップ1Cおよび配線基板17の断面図を示している。この工程では、上記のようにしてピックアップしたチップ1Cを、図22および図23に示すように、配線基板17の主面上に実装されている他のチップ(第1チップ)18Cの主面上に移送する。続いて、チップ1Cの裏面の接着層8aとチップ18Cの主面とを対向させた状態でチップ1Cを下降しチップ18Cの主面上に載せる。その後、接着層8aのベース材が熱可塑性樹脂の場合は、接着層8aを加熱して軟化させ接着性を持たせた状態で、チップ1Cの裏面の接着層8aをチップ18Cの主面に軽く押し付けることにより、チップ18Cの主面上にチップ1Cを固着する。この時の加熱温度は、特に限定されないが400℃程度である。一方、接着層8aのベース材が熱硬化性樹脂の場合は、接着層8aに熱を加えて完全に硬化させて、チップ18Cの主面上にチップ1Cを固着する。このようにしてチップ18C上にチップ1Cを積み重ねる。   Next, FIG. 22 is a perspective view of the chip 1C and the wiring board 17 at the time of the die bonding process 102C2 of the assembly process 102C, and FIG. 23 is a sectional view of the chip 1C and the wiring board 17 at the time of the process of FIG. In this step, the chip 1C picked up as described above is placed on the main surface of another chip (first chip) 18C mounted on the main surface of the wiring board 17, as shown in FIGS. Transport to. Subsequently, the chip 1C is lowered and placed on the main surface of the chip 18C with the adhesive layer 8a on the back surface of the chip 1C facing the main surface of the chip 18C. Thereafter, when the base material of the adhesive layer 8a is a thermoplastic resin, the adhesive layer 8a on the back surface of the chip 1C is lightly applied to the main surface of the chip 18C in a state where the adhesive layer 8a is heated and softened to have adhesiveness. By pressing, the chip 1C is fixed on the main surface of the chip 18C. The heating temperature at this time is not particularly limited, but is about 400 ° C. On the other hand, when the base material of the adhesive layer 8a is a thermosetting resin, the adhesive layer 8a is heated to be completely cured, and the chip 1C is fixed on the main surface of the chip 18C. In this way, the chips 1C are stacked on the chips 18C.

このように本実施の形態1では、チップ1Cの薄型化のみならず、チップ1Cの裏面の接着層8aの厚さを薄くすることができるので、チップ1C,18Cの積層高さを低くすることができる。したがって、チップ1C,18Cを積層した構成を有する半導体装置を薄型化することができる。また、接着層8aが薄いので水分の吸収量も低減でき、ボイドの発生も低減できるので、半導体装置の信頼性を向上させることもできる。また、接着層8aは固体状とされているので、チップ1Cの実装時にチップ1Cの外周にはみ出してしまうこともなく、接着層8aが下側のチップ18Cのパッドを覆ってしまうような問題も生じない。また、チップ1Cが薄くても、チップ1Cの裏面の接着層8aがチップ1Cの側面を通じて主面にまき上がってしまうようなこともない。さらに、接着層8aの厚さ精度が高い上、上層のチップ1Cが傾いてしまうこともない。なお、ピックアップしたチップ1Cを搬送トレイに収容して他の製造工場(例えばアセンブリファブ)に搬送出荷し、この工程後の組立を依頼しても良い(図1の工程103A)。   As described above, in the first embodiment, not only the thickness of the chip 1C but also the thickness of the adhesive layer 8a on the back surface of the chip 1C can be reduced, so that the stacking height of the chips 1C and 18C is reduced. Can do. Therefore, a semiconductor device having a configuration in which the chips 1C and 18C are stacked can be reduced in thickness. Further, since the adhesive layer 8a is thin, the amount of moisture absorbed can be reduced and the generation of voids can be reduced, so that the reliability of the semiconductor device can be improved. Further, since the adhesive layer 8a is solid, it does not protrude to the outer periphery of the chip 1C when the chip 1C is mounted, and there is a problem that the adhesive layer 8a covers the pad of the lower chip 18C. Does not occur. Even if the chip 1C is thin, the adhesive layer 8a on the back surface of the chip 1C does not roll up to the main surface through the side surface of the chip 1C. Furthermore, the thickness accuracy of the adhesive layer 8a is high, and the upper chip 1C does not tilt. Note that the picked-up chip 1C may be accommodated in a transport tray, transported and shipped to another manufacturing factory (for example, an assembly fab), and assembly after this process may be requested (process 103A in FIG. 1).

ここで、配線基板17およびチップ18Cの構成と実装方法の一例を説明する。配線基板17は、例えば多層配線構成を有するプリント配線基板からなり、厚さ方向に沿って互いに反対側になる主面および裏面を有している。配線基板17の主面にはチップ18Cが実装されている。また、配線基板17の主面には、チップ18Cの外周を取り囲むように複数の電極17aが配置されている。また、配線基板17の裏面には、複数の電極17bが配置されている。配線基板17の主面の電極17aと裏面の電極17bとは配線基板17の内層の配線を通じて電気的に接続されている。配線基板17の電極17a,17bおよび配線は、例えば銅からなる。電極17a,17bの露出表面にはニッケル(Ni)下地の金(Au)メッキが施されている。   Here, an example of the configuration and mounting method of the wiring board 17 and the chip 18C will be described. The wiring board 17 is made of, for example, a printed wiring board having a multilayer wiring configuration, and has a main surface and a back surface that are opposite to each other in the thickness direction. A chip 18 </ b> C is mounted on the main surface of the wiring board 17. A plurality of electrodes 17a are arranged on the main surface of the wiring board 17 so as to surround the outer periphery of the chip 18C. A plurality of electrodes 17 b are disposed on the back surface of the wiring board 17. The electrode 17 a on the main surface of the wiring board 17 and the electrode 17 b on the back surface are electrically connected through wiring on the inner layer of the wiring board 17. The electrodes 17a and 17b and the wiring of the wiring board 17 are made of, for example, copper. The exposed surfaces of the electrodes 17a and 17b are plated with gold (Au) on a nickel (Ni) base.

チップ18Cの構成は、上記チップ1Cとほぼ同じである。チップ18Cの基板18Sは、例えばシリコン(Si)単結晶からなり、その主面には素子および配線層18Lが形成されている。配線層18Lの構成は、上記チップ1Cの配線層1Lと同じであり、最上層には、パッド18LBが配置されている。チップ18Cは、その主面を上に向け、かつ、その裏面が接着層20aにより配線基板17の主面に固着された状態で配線基板17の主面上に実装されている。接着層20aは、例えばポリイミド樹脂のような熱可塑性樹脂により形成されている。接着層20aの厚さは、上記チップ1Cの裏面の接着層8aよりも厚く、例えば10μm以上である。その理由は、配線基板17の主面上に形成された配線や電極による大きな凹凸を接着層20aにより吸収させるためである。もし1段目の半導体チップ18Cを、樹脂コーティング方式により形成した接着層8aを介して実装した場合、接着層8aの厚さは5μm程度と薄いため、配線基板17の主面上に形成された凹凸を接着層8aで吸収することができない。すなわち、配線基板17の主面と接着層8aとの間に隙間が生じ、後の封止体形成工程において封止樹脂が未充填となるボイド不良の問題が生じる可能性がある。これに対して、チップ1Cの裏面の凹凸は、例えば1〜2μm(MAX)程度であり、チップ1Cが積層されるチップ18Cの主面の凹凸は、例えば1〜2μm(MAX)程度であり、配線基板17の主面ほどの凹凸が無いので、チップ1Cの裏面の接着層8aは薄くしても問題がない。   The configuration of the chip 18C is substantially the same as that of the chip 1C. The substrate 18S of the chip 18C is made of, for example, silicon (Si) single crystal, and elements and a wiring layer 18L are formed on the main surface. The configuration of the wiring layer 18L is the same as that of the wiring layer 1L of the chip 1C, and the pad 18LB is disposed on the uppermost layer. The chip 18C is mounted on the main surface of the wiring board 17 with its main surface facing upward and its back surface fixed to the main surface of the wiring substrate 17 by the adhesive layer 20a. The adhesive layer 20a is formed of a thermoplastic resin such as a polyimide resin. The thickness of the adhesive layer 20a is thicker than the adhesive layer 8a on the back surface of the chip 1C, for example, 10 μm or more. The reason is that the adhesive layer 20a absorbs large irregularities due to the wiring and electrodes formed on the main surface of the wiring board 17. If the first-stage semiconductor chip 18C is mounted via the adhesive layer 8a formed by the resin coating method, the thickness of the adhesive layer 8a is as thin as about 5 μm, so that it is formed on the main surface of the wiring board 17. Unevenness cannot be absorbed by the adhesive layer 8a. That is, a gap is generated between the main surface of the wiring board 17 and the adhesive layer 8a, and there may be a problem of a void defect in which the sealing resin is not filled in the subsequent sealing body forming step. On the other hand, the unevenness of the back surface of the chip 1C is, for example, about 1-2 μm (MAX), and the unevenness of the main surface of the chip 18C on which the chip 1C is stacked is, for example, about 1-2 μm (MAX). Since there is no unevenness as much as the main surface of the wiring board 17, there is no problem even if the adhesive layer 8a on the back surface of the chip 1C is thin.

このようなチップ18Cの実装方法は、例えば次のとおりである。まず、配線基板17を用意し、その主面のチップ実装領域にペースト状の接着材を塗布する。このペースト状の接着材は、例えばポリイミド樹脂等のような熱可塑性樹脂により形成されている。続いて、そのペースト状の接着材にチップ18Cの裏面を押し付けてチップ18Cを配線基板17の主面上に載せた後、ペースト状の接着材を乾燥させて固体状の接着層20aを形成する。これにより、チップ18Cを配線基板17に固着する。   The mounting method of such a chip 18C is, for example, as follows. First, the wiring substrate 17 is prepared, and a paste-like adhesive is applied to the chip mounting region on the main surface. This paste-like adhesive is formed of a thermoplastic resin such as a polyimide resin. Subsequently, the back surface of the chip 18C is pressed against the paste-like adhesive material to place the chip 18C on the main surface of the wiring substrate 17, and then the paste-like adhesive material is dried to form the solid adhesive layer 20a. . Thereby, the chip 18 </ b> C is fixed to the wiring board 17.

また、図58に示すように、接着層20aの材料としてDAF(Die Attach Film)を使用しても良い。すなわち、1段目の半導体チップ18Cは、DAF(接着層20a)を介して配線基板17の主面に実装し、1断面の半導体チップの主面上に実装する2段目以降の半導体チップは、樹脂コーティング方式により形成した接着層8aを介して実装してもよい。これにより、1段目の半導体チップ18Cに使用するDAF(接着層20a)は固体状とされているため、半導体チップ18Cの実装時に半導体チップ18Cの外周にはみ出してしまうことがない。すなわち、配線基板の主面上に配置された電極17aに向かって接着材(接着層20a)がはみ出すことがないため、半導体チップ18Cと電極17aの間の距離を短くできるため、ペースト状の接着材を使用する場合に比べて半導体装置の小型化が実現できる。   As shown in FIG. 58, DAF (Die Attach Film) may be used as the material of the adhesive layer 20a. That is, the first-stage semiconductor chip 18C is mounted on the main surface of the wiring substrate 17 via the DAF (adhesive layer 20a), and the second-stage and subsequent semiconductor chips mounted on the main surface of the one-section semiconductor chip are Alternatively, it may be mounted via an adhesive layer 8a formed by a resin coating method. Thereby, since the DAF (adhesive layer 20a) used for the first-stage semiconductor chip 18C is solid, the DAF (adhesion layer 20a) does not protrude from the outer periphery of the semiconductor chip 18C when the semiconductor chip 18C is mounted. That is, since the adhesive (adhesive layer 20a) does not protrude toward the electrode 17a disposed on the main surface of the wiring board, the distance between the semiconductor chip 18C and the electrode 17a can be shortened, and thus the paste-like adhesive The semiconductor device can be downsized as compared with the case of using a material.

次に、図24は組立工程102Cのワイヤボンディング工程102C3後の半導体装置の断面図、図25は組立工程102Cの封止工程102C4後における半導体装置の断面図を示している。   Next, FIG. 24 is a cross-sectional view of the semiconductor device after the wire bonding step 102C3 in the assembly step 102C, and FIG. 25 is a cross-sectional view of the semiconductor device after the sealing step 102C4 in the assembly step 102C.

まず、ワイヤボンディング工程102C3では、図24に示すように、上層のチップ1Cのパッド1LBと下層のチップ18Cのパッド18LBとをボンディングワイヤ(以下、ワイヤという)21により接続するとともに、下層のチップ18Cのパッド18LBと配線基板17の電極17aとをワイヤ21により接続する。上層のチップ1Cのパッド1LBと配線基板17の電極17aとをワイヤ21により接続しても良い。ワイヤ21は、例えば金(Au)により形成されている。続いて、封止工程102C4では、図25に示すように、チップ1C,18Cおよびワイヤ21等を、例えばトランスファモールド法を用いてエポキシ系樹脂等からなる封止体22により封止する。更に、電極17b上に外部端子としてはんだボール23を形成する。はんだボール23は、例えば鉛(Pb)−錫(Sn)の鉛半田材、または、例えば錫(Sn)−銀(Ag)−銅(Cu)系の鉛フリー半田材から成る。以上のようにして半導体装置を製造する。   First, in the wire bonding step 102C3, as shown in FIG. 24, the pad 1LB of the upper chip 1C and the pad 18LB of the lower chip 18C are connected by a bonding wire (hereinafter referred to as a wire) 21 and the lower chip 18C. The pad 18LB and the electrode 17a of the wiring board 17 are connected by a wire 21. The pad 1LB of the upper chip 1C and the electrode 17a of the wiring board 17 may be connected by a wire 21. The wire 21 is made of, for example, gold (Au). Subsequently, in the sealing step 102C4, as shown in FIG. 25, the chips 1C and 18C, the wires 21 and the like are sealed with a sealing body 22 made of an epoxy resin or the like using, for example, a transfer mold method. Further, solder balls 23 are formed as external terminals on the electrodes 17b. The solder ball 23 is made of, for example, a lead solder material of lead (Pb) -tin (Sn) or a lead-free solder material of, for example, tin (Sn) -silver (Ag) -copper (Cu). A semiconductor device is manufactured as described above.

(実施の形態2)
本実施の形態2では、前記実施の形態1と同様に、図1の前工程100からレーザ照射工程102B1を経た後、チップ分割工程102Bの接着層形成工程102B2において、ウエハの裏面に印刷法により接着層を形成する。
(Embodiment 2)
In the second embodiment, as in the first embodiment, after the laser irradiation step 102B1 from the previous step 100 in FIG. 1, in the adhesive layer forming step 102B2 of the chip dividing step 102B, the back surface of the wafer is printed by a printing method. An adhesive layer is formed.

図26は上記接着層形成工程102B2時のウエハ1Wの断面図、図27は上記接着層形成工程102B2時に用いるマスク25Aの平面図を示している。なお、図27は平面図であるが、図面を見易くするためマスク25Aにハッチングを付した。   FIG. 26 is a cross-sectional view of the wafer 1W during the adhesive layer forming step 102B2, and FIG. 27 is a plan view of the mask 25A used during the adhesive layer forming step 102B2. Although FIG. 27 is a plan view, the mask 25A is hatched to make the drawing easy to see.

まず、図26に示すように、ウエハ1Wの裏面上に、マスク25Aを位置合わせした状態で被せた後、このマスク25Aの上から液状(ペースト状)の接着材8をスキージ26によりウエハ1Wの裏面に沿って引き延ばす。マスク25Aにおいて、ウエハ1Wの個々のチップ1Cの対応位置には、図26および図27に示すように、個々のチップ1Cとほぼ同じ平面寸法の開口部25A1が形成されており、その各々の開口部25A1から各々のチップ1Cの裏面が露出されている。また、マスク25Aにおいて、ウエハ1Wの個々のチップ1Cの隣接間の切断領域CR(改質領域PLの形成領域)の対応位置には、マスクパターン25A2が形成されており、これによりチップ1Cの隣接間の切断領域CRに対応する部分が覆われている。   First, as shown in FIG. 26, a mask 25A is placed on the back surface of the wafer 1W in an aligned state, and then a liquid (paste-like) adhesive material 8 is applied to the wafer 1W from above the mask 25A by the squeegee 26. Stretch along the back side. In the mask 25A, as shown in FIGS. 26 and 27, openings 25A1 having substantially the same planar dimensions as the individual chips 1C are formed at the corresponding positions of the individual chips 1C on the wafer 1W. The back surface of each chip 1C is exposed from the portion 25A1. Further, in the mask 25A, a mask pattern 25A2 is formed at the corresponding position of the cutting region CR (formation region of the modified region PL) between the adjacent chips 1C of the wafer 1W, thereby adjacent to the chip 1C. A portion corresponding to the cutting region CR is covered.

次に、図28は液状の接着材8をスキージ26により引き延ばしマスク25Aを介してウエハ1Wの裏面に選択的に塗布している様子を示すウエハ1Wの断面図、図29は図28のウエハ1Wの裏面側の平面図を示している。なお、図29は平面図であるが、図面を見易くするため接着材8の塗布領域にハッチングを付した。また、図29では図面を見易くするためにウエハ1Wを透かして見せている。   Next, FIG. 28 is a cross-sectional view of the wafer 1W showing that the liquid adhesive 8 is stretched by the squeegee 26 and selectively applied to the back surface of the wafer 1W through the mask 25A. FIG. 29 is a cross-sectional view of the wafer 1W of FIG. The top view of the back surface side of is shown. Although FIG. 29 is a plan view, hatching is applied to the application region of the adhesive 8 in order to make the drawing easy to see. Further, in FIG. 29, the wafer 1W is shown through in order to make the drawing easy to see.

図28および図29に示すように、ウエハ1Wの裏面に沿って接着材8を引き延ばしながらスキージ26を移動させると、液状の接着材8がマスク25Aの開口部25A1内に入り込む。これにより、接着材8は、チップ1Cの裏面に付着するが、切断領域CRには付着しないようになっている。このようにしてスキージ26をウエハ1Wの端から端まで移動させる。   As shown in FIGS. 28 and 29, when the squeegee 26 is moved while the adhesive 8 is stretched along the back surface of the wafer 1W, the liquid adhesive 8 enters the opening 25A1 of the mask 25A. Thereby, the adhesive 8 adheres to the back surface of the chip 1C, but does not adhere to the cutting region CR. In this way, the squeegee 26 is moved from end to end of the wafer 1W.

次に、図30はマスク25Aを外した状態を示すウエハ1Wの断面図、図31は図30のウエハ1Wの裏面の平面図を示している。なお、図31は平面図であるが、図面を見易くするため接着材8(接着層8b)の塗布領域にハッチングを付した。   Next, FIG. 30 is a cross-sectional view of the wafer 1W with the mask 25A removed, and FIG. 31 is a plan view of the back surface of the wafer 1W in FIG. In addition, although FIG. 31 is a top view, in order to make drawing easy to see, the application | coating area | region of the adhesive material 8 (adhesion layer 8b) was hatched.

ウエハ1Wの裏面に接着材8を塗布した後、マスク25Aを取り外し、前記実施の形態1と同様に、接着材8を乾燥させることにより、ウエハ1Wの裏面の各チップ1Cの領域に選択的に固体状の接着層8bを形成する。切断領域CRには接着層8bが形成されていない。   After applying the adhesive material 8 to the back surface of the wafer 1W, the mask 25A is removed, and the adhesive material 8 is dried in the same manner as in the first embodiment, so that the region of each chip 1C on the back surface of the wafer 1W is selectively used. A solid adhesive layer 8b is formed. The adhesive layer 8b is not formed in the cutting region CR.

次に、図32はチップ分割工程102Bのウエハマウント工程102B3時におけるウエハ1Wの断面図、図33はWSS剥離工程102B4後におけるウエハ1Wの断面図を示している。   Next, FIG. 32 is a sectional view of the wafer 1W during the wafer mounting step 102B3 of the chip dividing step 102B, and FIG. 33 is a sectional view of the wafer 1W after the WSS peeling step 102B4.

この工程では、図32に示すように、前記実施の形態1と同様に、ウエハ1Wの裏面(接着層8bの形成面)を治具10のテープ10に貼り付けた後、図33に示すように、前記実施の形態1と同様に、支持基板4を剥離し、続いて接着層3を除去する。   In this step, as shown in FIG. 32, the back surface (formation surface of the adhesive layer 8b) of the wafer 1W is attached to the tape 10 of the jig 10 as shown in FIG. In the same manner as in the first embodiment, the support substrate 4 is peeled off, and then the adhesive layer 3 is removed.

次に、図34および図35は分割工程102B5時におけるウエハ1Wの断面図およびウエハ1Wの裏面の全体平面図を示している。なお、図35は平面図であるが、図面を見易くするため接着層8bの形成領域にハッチングを付した。   Next, FIGS. 34 and 35 show a sectional view of the wafer 1W and an overall plan view of the back surface of the wafer 1W at the time of the dividing step 102B5. FIG. 35 is a plan view, but hatching is applied to the formation region of the adhesive layer 8b to make the drawing easy to see.

この工程では、図34および図35に示すように、前記実施の形態1と同様にして、ウエハ1Wの改質領域PLを分割起点として、ウエハ1Wを個々のチップ(第2チップ)1Cに分割する(ステルスダイシング)。この時、本実施の形態2では、分割工程102B5の前に接着層8bが既に個々のチップ1C毎に分割されており、接着層8bが切断領域CRに形成されていないので、チップ1C間の接着層8bを綺麗に分離できる。すなわち、チップ1Cの裏面の接着層8bの外周部に不具合を生じることなく、チップ1Cをステルスダイシングにより綺麗に分割することができる。したがって、ステルスダイシングを採用できるので、半導体装置を薄型化することができる。また、チップ1Cの外観不良を低減できるので、半導体装置の歩留まりを向上させることができる。これ以外は前記実施の形態1と同様の効果を得ることができる。   In this step, as shown in FIGS. 34 and 35, the wafer 1W is divided into individual chips (second chips) 1C using the modified region PL of the wafer 1W as a starting point, as in the first embodiment. Yes (stealth dicing). At this time, in the second embodiment, the adhesive layer 8b is already divided for each chip 1C before the dividing step 102B5, and the adhesive layer 8b is not formed in the cutting region CR. The adhesive layer 8b can be separated cleanly. That is, the chip 1C can be neatly divided by stealth dicing without causing a defect in the outer peripheral portion of the adhesive layer 8b on the back surface of the chip 1C. Accordingly, since stealth dicing can be employed, the semiconductor device can be thinned. Moreover, since the appearance defect of the chip 1C can be reduced, the yield of the semiconductor device can be improved. Other than this, the same effects as those of the first embodiment can be obtained.

これ以降の組立工程102Cは前記実施の形態1と同じなので説明を省略する。   Since the subsequent assembly process 102C is the same as that of the first embodiment, the description thereof is omitted.

(実施の形態3)
前記実施の形態1,2では、チップ分割工程において、改質領域LBを形成するためのレーザ照射工程後に、ウエハ1Wの裏面に接着層を形成する場合について説明した。本実施の形態3では、チップ分割工程において、ウエハ1Wの裏面に接着層を形成した後、、改質領域LBを形成するためのレーザ照射工程を行う場合について説明する。
(Embodiment 3)
In the first and second embodiments, the case where the adhesive layer is formed on the back surface of the wafer 1W after the laser irradiation process for forming the modified region LB in the chip dividing process has been described. In the third embodiment, a case will be described in which a laser irradiation step for forming the modified region LB is performed after an adhesive layer is formed on the back surface of the wafer 1W in the chip dividing step.

図36は本実施の形態3の半導体装置のフロー図を示している。本実施の形態3では、前記実施の形態1と同様に、図36の前工程200、テスト工程201を経た後、後工程202の裏面加工工程202AのWSSの装着工程202A1、裏面研削工程202A2および裏面研磨工程202A3を順に行う。   FIG. 36 shows a flowchart of the semiconductor device of the third embodiment. In the third embodiment, similarly to the first embodiment, after the pre-process 200 and the test process 201 in FIG. 36, the WSS mounting process 202A1, the back-grinding process 202A2 in the back-surface machining process 202A in the post-process 202, and The back surface polishing step 202A3 is sequentially performed.

続いて、本実施の形態3では、チップ分割工程202Bにおいて、改質領域PLを形成するためのレーザ照射工程を行う前に、接着層形成工程202B1を行う。図37〜図39はチップ分割工程202Bの接着層形成工程202B1時におけるウエハ1Wの様子を示している。なお、図37はウエハ1Wの断面図を、図38および図39の左側はウエハ1Wの断面図を、右側はウエハ1Wの裏面の全体平面図をそれぞれ示している。また、図38および図39の右側は平面図であるが、図面を見易くするために接着材8(接着層8a)にハッチグを付した。   Subsequently, in the third embodiment, in the chip dividing process 202B, the adhesive layer forming process 202B1 is performed before performing the laser irradiation process for forming the modified region PL. 37 to 39 show the state of the wafer 1W during the adhesive layer forming step 202B1 of the chip dividing step 202B. FIG. 37 is a sectional view of the wafer 1W, the left side of FIGS. 38 and 39 is a sectional view of the wafer 1W, and the right side is an overall plan view of the back surface of the wafer 1W. Moreover, although the right side of FIG. 38 and FIG. 39 is a top view, in order to make drawing easy to see, the adhesive material 8 (adhesive layer 8a) was hatched.

ここでは、図37に示すように、前記実施の形態1と同様に、回転塗布装置のノズル7から液状(ペースト状)の接着材8をウエハ1Wの裏面上の中央に滴下した後、図38に示すように、ウエハ1Wを高速回転させることでウエハ1Wの裏面全面に薄い接着材8の被膜を形成する(回転塗布法)。その後、前記実施の形態1と同様に、ウエハ1Wの裏面の接着材8に対して乾燥処理を施して接着材8を固化して、図39に示すように、ウエハ1Wの裏面全面に固体状の薄い接着層8aを形成する。これにより、前記実施の形態1と同様にウエハ1Wの裏面に薄い接着層8aを厚さが均一になるように形成することができる。   Here, as shown in FIG. 37, in the same manner as in the first embodiment, after the liquid (paste-like) adhesive 8 is dropped from the nozzle 7 of the spin coater onto the center on the back surface of the wafer 1W, FIG. As shown in FIG. 2, a thin film of the adhesive 8 is formed on the entire back surface of the wafer 1W by rotating the wafer 1W at a high speed (rotary coating method). Thereafter, as in the first embodiment, the adhesive 8 on the back surface of the wafer 1W is dried to solidify the adhesive 8, and the entire back surface of the wafer 1W is solid as shown in FIG. A thin adhesive layer 8a is formed. Thereby, similarly to the first embodiment, the thin adhesive layer 8a can be formed on the back surface of the wafer 1W so as to have a uniform thickness.

次に、図40は図36のウエハマウント工程202B2時におけるウエハ1Wの断面図、図41は図36のレーザ照射工程202B3時におけるウエハ1Wの断面図、図42は図36のWSS剥離工程202B4時におけるウエハ1Wの断面図をそれぞれ示している。   Next, FIG. 40 is a cross-sectional view of the wafer 1W during the wafer mounting step 202B2 of FIG. 36, FIG. 41 is a cross-sectional view of the wafer 1W during the laser irradiation step 202B3 of FIG. Sectional views of the wafer 1W are shown.

まず、図40に示すように、前記実施の形態1と同様に、ウエハ1Wの裏面(接着層8aの形成面)を治具10のテープ10aに貼り付け、ウエハ1Wを治具10に載せる。続いて、ウエハ1Wを治具10に載せたままの状態でレーザダイシング装置に搬送し、そのウエハ1Wの主面(すなわち、支持基板4の上面)を上に向けた状態で吸着ステージに載置する。続いて、IRカメラを用いてウエハ1Wの主面上方からウエハ1Wの主面のパターン(チップ1Cや切断領域CRのパターンの他、切断領域CRに配置されているパッド1LBtやアライメントターゲットAm、チップ1C内に配置されているパッド1LB等)を認識した後、それにより得られたパターン情報に基づいて切断線CLの位置合わせ(位置補正)を実施する。   First, as shown in FIG. 40, as in the first embodiment, the back surface of the wafer 1W (the surface on which the adhesive layer 8a is formed) is attached to the tape 10a of the jig 10, and the wafer 1W is placed on the jig 10. Subsequently, the wafer 1W is transferred to the laser dicing apparatus while being placed on the jig 10, and placed on the suction stage with the main surface of the wafer 1W (ie, the upper surface of the support substrate 4) facing upward. To do. Subsequently, using the IR camera, the pattern on the main surface of the wafer 1W from above the main surface of the wafer 1W (in addition to the pattern of the chip 1C and the cutting region CR, the pad 1LBt, the alignment target Am, and the chip arranged in the cutting region CR) After recognizing the pad 1LB and the like arranged in 1C), alignment (position correction) of the cutting line CL is performed based on the pattern information obtained thereby.

その後、図41に示すように、ウエハ1Wの主面上方に設置されたレーザ発生部5から放射されたレーザ光LB1を、透明な支持基板4を介してウエハ1Wの主面側からウエハ1Wの基板1Sの内部に集光点を合わせた状態で照射するとともに、上記パターン情報に基づいて位置合わせされた切断線CLに沿って移動させる。これにより、ウエハ1Wの切断領域CRにおける基板1Sの内部に上記改質領域PLを形成する。レーザ光LB1の走査の仕方や照射条件は前記実施の形態1で説明したのと同じである。   Thereafter, as shown in FIG. 41, the laser beam LB1 emitted from the laser generating unit 5 installed above the main surface of the wafer 1W is passed through the transparent support substrate 4 from the main surface side of the wafer 1W. Irradiation is performed with the condensing point aligned inside the substrate 1S, and the substrate 1S is moved along the cutting line CL aligned based on the pattern information. Thus, the modified region PL is formed in the substrate 1S in the cutting region CR of the wafer 1W. The scanning method and irradiation conditions of the laser beam LB1 are the same as those described in the first embodiment.

その後、図42に示すように、レーザ発生部11から放射されたレーザ光LB2を、透明な支持基板4を介してウエハ1Wの主面の端から端まで走査し、ウエハ1Wの主面上の接着層3に照射する。これにより、接着層3の接着力を低減させて、前記実施の形態1と同様に、支持基板4をウエハ1Wから剥離する。その後、前記実施の形態1と同様に、ウエハ1Wの主面上の接着層3を除去する。   Thereafter, as shown in FIG. 42, the laser beam LB2 radiated from the laser generator 11 is scanned from end to end of the main surface of the wafer 1W through the transparent support substrate 4, and the main surface of the wafer 1W is scanned. Irradiate the adhesive layer 3. Thereby, the adhesive force of the adhesive layer 3 is reduced, and the support substrate 4 is peeled from the wafer 1W in the same manner as in the first embodiment. Thereafter, as in the first embodiment, the adhesive layer 3 on the main surface of the wafer 1W is removed.

これ以降の分割工程202B5、組立工程202C(ピックアップ工程202C1、ダイボンディング工程202C2、ワイヤボンディング工程202C3、封止工程202C4)および搬送出荷工程203Aは前記実施の形態1で説明した各工程と同じなので説明を省略する。   Subsequent division process 202B5, assembly process 202C (pickup process 202C1, die bonding process 202C2, wire bonding process 202C3, sealing process 202C4) and transfer / shipping process 203A are the same as the processes described in the first embodiment, and thus will be described. Is omitted.

(実施の形態4)
本実施の形態4では、前記実施の形態3と同様に、図36の前工程200から裏面研磨工程202A3を経た後、チップ分割工程202Bの接着層形成工程202B1において、ウエハ1Wの裏面に印刷法により接着層を形成する。
(Embodiment 4)
In the fourth embodiment, as in the third embodiment, after the back surface polishing step 202A3 from the previous step 200 in FIG. To form an adhesive layer.

図43は上記接着層形成工程202B1時のウエハ1Wの断面図、図44は液状の接着材8をスキージ26により引き延ばしマスク25Aを介してウエハ1Wの裏面に選択的に塗布している様子を示すウエハ1Wの断面図、図45はマスク25Aを外した状態を示すウエハ1Wの断面図をそれぞれ示している。   FIG. 43 is a cross-sectional view of the wafer 1W during the adhesive layer forming step 202B1, and FIG. 44 shows a state in which the liquid adhesive 8 is stretched by the squeegee 26 and selectively applied to the back surface of the wafer 1W through the mask 25A. 45 is a cross-sectional view of the wafer 1W, and FIG. 45 is a cross-sectional view of the wafer 1W showing a state where the mask 25A is removed.

まず、図43に示すように、前記実施の形態2と同様に、ウエハ1Wの裏面上に、マスク25Aを位置合わせした状態で被せた後、このマスク25Aの上から液状(ペースト状)の接着材8をスキージ26によりウエハ1Wの裏面に沿って引き延ばす。すると、図44に示すように、前記実施の形態2と同様に、液状の接着材8がマスク25Aの開口部25A2内に入り込みウエハ1Wの裏面に付着する。このようにしてウエハ1Wの裏面に選択的に接着材8を塗布した後、図45に示すように、前記実施の形態2と同様に、マスク25Aを取り外す。その後、前記実施の形態1,2と同様に、接着材8を乾燥させることにより、ウエハ1Wの裏面のチップ1Cの領域に選択的に固体状の接着層8bを形成する。切断領域CRには接着層8bが形成されていない。   First, as shown in FIG. 43, as in the second embodiment, after the mask 25A is placed on the back surface of the wafer 1W in an aligned state, liquid (paste-like) adhesion is performed on the mask 25A. The material 8 is stretched along the back surface of the wafer 1W by the squeegee 26. Then, as shown in FIG. 44, as in the second embodiment, the liquid adhesive 8 enters the opening 25A2 of the mask 25A and adheres to the back surface of the wafer 1W. After the adhesive material 8 is selectively applied to the back surface of the wafer 1W in this way, the mask 25A is removed as in the second embodiment, as shown in FIG. Thereafter, as in the first and second embodiments, the adhesive 8 is dried to selectively form a solid adhesive layer 8b in the region of the chip 1C on the back surface of the wafer 1W. The adhesive layer 8b is not formed in the cutting region CR.

次に、図46はチップ分割工程202Bのウエハマウント工程202B2時におけるウエハ1Wの断面図、図47は図36のレーザ照射工程202B3時におけるウエハ1Wの断面図をそれぞれ示している。   46 is a sectional view of the wafer 1W during the wafer mounting step 202B2 of the chip dividing step 202B, and FIG. 47 is a sectional view of the wafer 1W during the laser irradiation step 202B3 of FIG.

まず、図46に示すように、前記実施の形態1〜3と同様に、ウエハ1Wの裏面(接着層8bの形成面)を治具10のテープ10に貼り付けた後、前記実施の形態3と同様に、IRカメラを用いてウエハ1Wの主面上方からウエハ1Wの主面の上記パターンを認識する。そして、それにより得られたパターン情報に基づいて切断線CLの位置合わせ(位置補正)を実施する。続いて、図47に示すように、前記実施の形態3と同様に、ウエハ1Wの主面上方に設置されたレーザ発生部5から放射されたレーザ光LB1を、透明な支持基板4を介してウエハ1Wの主面側からウエハ1Wの基板1Sの内部に集光点を合わせた状態で照射するとともに、上記パターン情報に基づいて位置合わせされた切断線CLに沿って移動させる。これにより、ウエハ1Wの切断領域CRにおける基板1Sの内部に上記改質領域PLを形成する。   First, as shown in FIG. 46, as in the first to third embodiments, the back surface of the wafer 1W (formation surface of the adhesive layer 8b) is attached to the tape 10 of the jig 10, and then the third embodiment. Similarly to the above, the above pattern on the main surface of the wafer 1W is recognized from above the main surface of the wafer 1W using an IR camera. Then, alignment (position correction) of the cutting line CL is performed based on the pattern information obtained thereby. Subsequently, as shown in FIG. 47, similarly to the third embodiment, the laser beam LB1 emitted from the laser generating unit 5 installed above the main surface of the wafer 1W is passed through the transparent support substrate 4. Irradiation from the main surface side of the wafer 1W to the inside of the substrate 1S of the wafer 1W in a state where the condensing points are aligned, is performed along the cutting line CL aligned based on the pattern information. Thus, the modified region PL is formed in the substrate 1S in the cutting region CR of the wafer 1W.

その後、前記実施の形態3と同様に、ウエハ1Wの主面から支持基板4を剥離した後、ウエハ1Wの主面上の接着層3を除去し、前記実施の形態1〜3と同様にしてウエハ1Wを個々のチップ1Cに分割する。これ以降の工程は前記実施の形態3と同じなので説明を省略する。   Thereafter, as in the third embodiment, after the support substrate 4 is peeled from the main surface of the wafer 1W, the adhesive layer 3 on the main surface of the wafer 1W is removed, and the same as in the first to third embodiments. The wafer 1W is divided into individual chips 1C. Since the subsequent steps are the same as those in the third embodiment, description thereof is omitted.

(実施の形態5)
本実施の形態5では、ウエハの裏面に印刷法により接着層を形成する場合の変形例について説明する。
(Embodiment 5)
In the fifth embodiment, a modification example in which an adhesive layer is formed on the back surface of a wafer by a printing method will be described.

図48は本実施の形態5の接着層形成工程時に使用するマスク25Bの平面図を示している。なお、図48は平面図であるが、図面を見易くするためハッチングを付した。   FIG. 48 is a plan view of the mask 25B used in the adhesive layer forming step of the fifth embodiment. In addition, although FIG. 48 is a top view, it hatched in order to make drawing easy to see.

本実施の形態5では、マスク25Bの転写領域Dのマスクパターンが目の細かい網目状のパターンとされている。すなわち、マスク25Bの転写領域Dには、チップ1Cの平面寸法よりも小さな複数の開口部が転写領域Dの面内に上下左右方向に隣接した状態で配置されている。   In the fifth embodiment, the mask pattern of the transfer region D of the mask 25B is a fine mesh pattern. That is, in the transfer area D of the mask 25B, a plurality of openings smaller than the planar dimension of the chip 1C are arranged in the transfer area D in a state adjacent to each other in the vertical and horizontal directions.

次に、図49は上記接着層形成工程102B2時のウエハ1Wの断面図、図50はマスク25Bを外した状態を示すウエハ1Wの断面図、図51は図50のウエハ1Wの裏面の要部拡大平面図をそれぞれ示している。なお、図51は平面図であるが、図面を見易くするために接着層8bにハッチングを付した。   Next, FIG. 49 is a cross-sectional view of the wafer 1W during the adhesive layer forming step 102B2, FIG. 50 is a cross-sectional view of the wafer 1W with the mask 25B removed, and FIG. 51 is a main part of the back surface of the wafer 1W in FIG. Each enlarged plan view is shown. Note that FIG. 51 is a plan view, but the adhesive layer 8b is hatched for easy viewing of the drawing.

まず、図49に示すように、図48で示したマスク25Bを、前記実施の形態2と同様に、ウエハ1Wの裏面上に位置合わせした状態で被せた後、マスク25Bの上から液状(ペースト状)の接着材8をスキージ26によりウエハ1Wの裏面に沿って引き延ばし、マスク25Bの開口部25B1を通じてウエハ1Wの裏面に選択的に塗布する。この時、ウエハ1Wの裏面においてマスク25Bのマスクパターン25B2に対応する位置には接着材8は塗布されない。   First, as shown in FIG. 49, after covering the mask 25B shown in FIG. 48 on the back surface of the wafer 1W in the same manner as in the second embodiment, a liquid (paste) is applied from above the mask 25B. The adhesive material 8 is stretched along the back surface of the wafer 1W by the squeegee 26 and selectively applied to the back surface of the wafer 1W through the opening 25B1 of the mask 25B. At this time, the adhesive 8 is not applied to the position corresponding to the mask pattern 25B2 of the mask 25B on the back surface of the wafer 1W.

このようにしてウエハ1Wの裏面に選択的に接着材8を塗布した後、図50に示すように、前記実施の形態2と同様に、マスク25Bを取り外す。その後、前記実施の形態1,2と同様に、接着材8を乾燥させることにより、ウエハ1Wの裏面に固体状の複数の微細な接着層8cを選択的に形成する。ここで、図51に示すように、接着層8cの平面積は、チップ1Cの平面積よりも極端に小さい。このため、仮に接着層8cの位置が予定していた位置よりも上下左右に若干ずれたとしてもチップ1Cの領域内に配置される接着層8cの総面積には大きな違いは生じないので、チップ1Cの裏面の接着層8cの総接着力も大きく落ちてしまうこともない。また、仮に接着層8cの位置が予定していた位置よりも上下左右に若干ずれてウエハ1Wの切断領域CRに接着層8cが配置されてしまったとしも個々の接着層8cは微細で孤立しており互いに分離しているので、ウエハ1Wの切断の妨げにならない。したがって、接着層8cを形成するためのマスク25Bとウエハ1Wとの平面位置合わせ精度を緩和することができる。   After the adhesive 8 is selectively applied to the back surface of the wafer 1W in this way, the mask 25B is removed as in the second embodiment, as shown in FIG. After that, as in the first and second embodiments, the adhesive 8 is dried to selectively form a plurality of solid fine adhesive layers 8c on the back surface of the wafer 1W. Here, as shown in FIG. 51, the plane area of the adhesive layer 8c is extremely smaller than the plane area of the chip 1C. For this reason, even if the position of the adhesive layer 8c is slightly shifted in the vertical and horizontal directions from the planned position, the total area of the adhesive layer 8c arranged in the region of the chip 1C is not greatly different. The total adhesive force of the adhesive layer 8c on the back surface of 1C does not drop greatly. Even if the position of the adhesive layer 8c is slightly shifted vertically and horizontally from the planned position and the adhesive layer 8c is disposed in the cutting region CR of the wafer 1W, the individual adhesive layers 8c are fine and isolated. Since they are separated from each other, they do not hinder the cutting of the wafer 1W. Therefore, the planar alignment accuracy between the mask 25B for forming the adhesive layer 8c and the wafer 1W can be relaxed.

次に、図52はチップ分割工程102Bのウエハマウント工程102B3時におけるウエハ1Wの断面図、図53はWSS剥離工程102B4後におけるウエハ1Wの断面図、図54は分割工程102B5時におけるウエハ1Wの断面図を示している。   Next, FIG. 52 is a sectional view of the wafer 1W during the wafer mounting step 102B3 of the chip dividing step 102B, FIG. 53 is a sectional view of the wafer 1W after the WSS peeling step 102B4, and FIG. 54 is a sectional view of the wafer 1W during the dividing step 102B5. The figure is shown.

この工程では、図52に示すように、前記実施の形態1〜4と同様に、ウエハ1Wの裏面(接着層8cの形成面)を治具10のテープ10aに貼り付けた後、図53に示すように、前記実施の形態1〜4と同様に、支持基板4を剥離し、続いて接着層3を除去する。その後、図54に示すように、前記実施の形態1〜4と同様に、ウエハ1Wの改質領域PLを分割起点として、ウエハ1Wを個々のチップ1Cに分割する(ステルスダイシング)。この時、本実施の形態5では、接着層8cはチップ1Cよりも小さく互いに分離しているので、チップ1Cを切断するときに接着層8cも綺麗に分離することができる。したがって、ステルスダイシングを採用できるので、半導体装置を薄型化することができる。また、チップ1Cの外観不良を低減できるので、半導体装置の歩留まりを向上させることができる。これ以外は前記実施の形態1,2と同様の効果を得ることができる。   In this step, as shown in FIG. 52, the back surface (formation surface of the adhesive layer 8c) of the wafer 1W is affixed to the tape 10a of the jig 10 as shown in FIGS. As shown, like the first to fourth embodiments, the support substrate 4 is peeled, and then the adhesive layer 3 is removed. Thereafter, as shown in FIG. 54, similarly to the first to fourth embodiments, the wafer 1W is divided into individual chips 1C using the modified region PL of the wafer 1W as a division starting point (stealth dicing). At this time, in the fifth embodiment, since the adhesive layer 8c is smaller than the chip 1C and separated from each other, the adhesive layer 8c can also be separated cleanly when the chip 1C is cut. Accordingly, since stealth dicing can be employed, the semiconductor device can be thinned. Moreover, since the appearance defect of the chip 1C can be reduced, the yield of the semiconductor device can be improved. Other than this, the same effects as those of the first and second embodiments can be obtained.

これ以降の組立工程102Cは前記実施の形態1,2と同じなので説明を省略する。なお、本実施の形態5では、図1のフローで説明したが、本実施の形態5で説明した方法は図36のフローにも適用できる。   Since the subsequent assembly process 102C is the same as that of the first and second embodiments, description thereof will be omitted. In the fifth embodiment, the flow shown in FIG. 1 is described. However, the method described in the fifth embodiment can be applied to the flow shown in FIG.

(実施の形態6)
図55は本実施の形態6の半導体装置の断面図を示している。本実施の形態6では、下層のチップ18Cが、その主面(デバイス形成面)を配線基板17の主面に向けた状態で、バンプ電極30を介して配線基板17の主面上に実装されている。チップ18Cの集積回路は、バンプ電極30を通じて配線基板17の主面上の電極に電気的に接続され、さらに配線基板17の配線に電気的に接続されている。バンプ電極30は、例えば鉛(Pb)−錫(Sn)半田により形成されている。チップ18Cと配線基板17との対向面間にはアンダーフィル31が充填されている。
(Embodiment 6)
FIG. 55 shows a sectional view of the semiconductor device of the sixth embodiment. In the sixth embodiment, the lower chip 18C is mounted on the main surface of the wiring board 17 via the bump electrodes 30 with the main surface (device forming surface) facing the main surface of the wiring board 17. ing. The integrated circuit of the chip 18 </ b> C is electrically connected to the electrode on the main surface of the wiring substrate 17 through the bump electrode 30 and further electrically connected to the wiring of the wiring substrate 17. The bump electrode 30 is formed of, for example, lead (Pb) -tin (Sn) solder. An underfill 31 is filled between the facing surfaces of the chip 18 </ b> C and the wiring board 17.

チップ18Cの裏面上には、チップ1Cが実装されている。チップ1Cの裏面は接着層8aを介してチップ18Cの裏面に接着されている。チップ1Cの主面の集積回路は、前記実施の形態1と同様にワイヤ21を介して配線基板17の電極17aに電気的に接続されている。なお、上記接着層8aの厚さは、チップ18Cと配線基板17との対向面間の距離よりも小さい。   A chip 1C is mounted on the back surface of the chip 18C. The back surface of the chip 1C is bonded to the back surface of the chip 18C through the adhesive layer 8a. The integrated circuit on the main surface of the chip 1C is electrically connected to the electrode 17a of the wiring board 17 through the wire 21 as in the first embodiment. The thickness of the adhesive layer 8a is smaller than the distance between the facing surfaces of the chip 18C and the wiring board 17.

下層のチップ18Cの実装方法は、例えば次のとおりである。まず、チップ18Cをその主面が下を向いた状態で配線基板17のチップ実装領域に移送し、チップ18Cの主面のバンプ電極30と配線基板17の主面の電極とをペースト材を用いて仮固定する。続いて、リフロ処理(熱処理)することでチップ18Cのバンプ電極30と配線基板17の電極とを固着する(フリップチップボンディング)。その後、チップ18Cと配線基板17との対向面間にアンダーフィル31を充填する。上層のチップ1Cの実装方法は、前記実施の形態1と同じなので説明を省略する。なお、接着層8aを前記実施の形態2,4,5で説明した接着層8b,8cとしても良い。   The mounting method of the lower layer chip 18C is, for example, as follows. First, the chip 18C is transferred to the chip mounting region of the wiring board 17 with its main surface facing downward, and the bump electrode 30 on the main surface of the chip 18C and the electrode on the main surface of the wiring board 17 are used with a paste material. And temporarily fix. Subsequently, the bump electrode 30 of the chip 18C and the electrode of the wiring board 17 are fixed by reflow treatment (heat treatment) (flip chip bonding). Thereafter, an underfill 31 is filled between the facing surfaces of the chip 18C and the wiring board 17. Since the mounting method of the upper layer chip 1C is the same as that of the first embodiment, the description thereof is omitted. The adhesive layer 8a may be the adhesive layers 8b and 8c described in the second, fourth, and fifth embodiments.

(実施の形態7)
図56は本実施の形態7の半導体装置の断面図を示している。本実施の形態7では、チップ1C1(1C)の主面上に、他のチップ1C2(1C)がその主面を上に向けた状態で実装されている。最上層のチップ1C2の裏面は接着層8aを介してチップ1C1の主面に接着されている。チップ1C2の主面の集積回路はワイヤ21を介して配線基板17の電極17aに電気的に接続されている。チップ1C1,1C2の裏面の接着層8aは薄く形成されているので、チップ18C,1C1,1C2の多段構成を有する半導体装置を薄型にすることができる。また、最上層のチップ1C2の裏面の接着層8aの厚さは、中間層のチップ1C1の裏面の接着層8aの厚さと等しい。各チップ1C1,1C2の裏面の接着層8aの厚さを等しくすることにより、各チップ1C1,1C2の裏面の接着層8aの厚さ設計を容易にすることができる。
(Embodiment 7)
FIG. 56 is a sectional view of the semiconductor device according to the seventh embodiment. In the seventh embodiment, another chip 1C2 (1C) is mounted on the main surface of the chip 1C1 (1C) with the main surface facing upward. The back surface of the uppermost chip 1C2 is bonded to the main surface of the chip 1C1 through the adhesive layer 8a. The integrated circuit on the main surface of the chip 1C2 is electrically connected to the electrode 17a of the wiring board 17 through the wire 21. Since the adhesive layer 8a on the back surface of the chips 1C1 and 1C2 is formed thin, the semiconductor device having the multi-stage configuration of the chips 18C, 1C1 and 1C2 can be thinned. The thickness of the adhesive layer 8a on the back surface of the uppermost chip 1C2 is equal to the thickness of the adhesive layer 8a on the back surface of the chip 1C1 as the intermediate layer. By making the thickness of the adhesive layer 8a on the back surface of each chip 1C1, 1C2 equal, the thickness design of the adhesive layer 8a on the back surface of each chip 1C1, 1C2 can be facilitated.

なお、最下のチップ18Cを前記実施の形態1と同様に接着層20aにより配線基板17の主面上に接着しても良い。この場合、接着層20aの厚さは、チップ1C1,1C2の裏面の接着層8aよりも厚い。また、接着層8aを前記実施の形態2,4,5で説明した接着層8b,8cにしても良い。   Note that the lowermost chip 18C may be bonded onto the main surface of the wiring board 17 by the adhesive layer 20a as in the first embodiment. In this case, the adhesive layer 20a is thicker than the adhesive layer 8a on the back surface of the chips 1C1 and 1C2. The adhesive layer 8a may be the adhesive layers 8b and 8c described in the second, fourth, and fifth embodiments.

(実施の形態8)
図57は本実施の形態8の半導体装置の断面図を示している。本実施の形態8の半導体装置は、1つのパッケージ内に所望の機能のシステムが構築されたSIP(System In Package)とされている。配線基板17の主面上には、複数の薄型のチップ18,1C,37Cが積層されている。最下層のチップ18Cは、その主面のバンプ電極30を介して配線基板17の主面上に実装されている。このチップ18Cの主面には、例えばCPU(Central Processing Unit)やDSP(Digital Signal Processor)等のような論理回路が形成されている。このチップ18Cの裏面上には、接着層8aを介してチップ1Cが実装されている。このチップ1Cの主面には、例えばSRAM(Static Random Access Memory)やフラッシュメモリ等のようなメモリ回路が形成されている。このチップ1Cの主面のパッド1LBは、ワイヤ21を介して配線基板17の主面の電極17aと電気的に接続されている。このチップ1Cの主面上には、スペーサ35およびDAF36を介してチップ37Cが実装されている。このチップ37Cには、例えばSRAMやフラッシュメモリ等のようなメモリ回路が形成されており、チップ37Cの主面のパッドは、ワイヤ21を介して配線基板17の主面の電極17aと電気的に接続されている。このようなチップ18C,1C,37Cおよびワイヤ21は封止体22により封止されている。
(Embodiment 8)
FIG. 57 is a sectional view of the semiconductor device according to the eighth embodiment. The semiconductor device according to the eighth embodiment is a SIP (System In Package) in which a system having a desired function is built in one package. On the main surface of the wiring substrate 17, a plurality of thin chips 18, 1C, 37C are stacked. The lowermost chip 18C is mounted on the main surface of the wiring board 17 via the bump electrodes 30 on the main surface. On the main surface of the chip 18C, a logic circuit such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor) is formed. On the back surface of the chip 18C, the chip 1C is mounted via an adhesive layer 8a. A memory circuit such as an SRAM (Static Random Access Memory) or a flash memory is formed on the main surface of the chip 1C. The pads 1LB on the main surface of the chip 1C are electrically connected to the electrodes 17a on the main surface of the wiring board 17 through the wires 21. A chip 37C is mounted on the main surface of the chip 1C via a spacer 35 and a DAF 36. A memory circuit such as an SRAM or a flash memory is formed on the chip 37C. The pads on the main surface of the chip 37C are electrically connected to the electrodes 17a on the main surface of the wiring board 17 through the wires 21. It is connected. Such chips 18C, 1C, 37C and wires 21 are sealed by a sealing body 22.

なお、チップ18Cを前記実施の形態1と同様に接着層20aにより配線基板17の主面上に接着しても良い。また、接着層8aを前記実施の形態2,4,5で説明した接着層8b,8cにしても良い。   Note that the chip 18C may be bonded onto the main surface of the wiring board 17 by the adhesive layer 20a as in the first embodiment. The adhesive layer 8a may be the adhesive layers 8b and 8c described in the second, fourth, and fifth embodiments.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発
明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可
能であることは言うまでもない。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

以上の説明では主として本発明者によってなされた発明をその背景となった利用分野である半導体装置の製造方法に適用した場合について説明したが、それに限定されるものではなく種々適用可能であり、例えばマイクロマシンの製造方法にも適用できる。   In the above description, the case where the invention made mainly by the present inventor is applied to the method of manufacturing a semiconductor device which is a field of use as the background has been described. However, the present invention is not limited to this and can be applied in various ways. It can also be applied to a micromachine manufacturing method.

本発明は、半導体装置の製造業に適用できる。   The present invention can be applied to the semiconductor device manufacturing industry.

1W 半導体ウエハ
1C 半導体チップ(第2チップ)
1S 半導体基板
1L 配線層
1Li,1Li1,1Li2,1Li3 層間絶縁膜
1LB ボンディングパッド
1LBt テスト用のボンディングパッド
1Lp 表面保護膜
2 開口部
3 接着層
4 支持基板
4a 剥離層
5 レーザ発生部
7 ノズル
8 接着材
8a,8b,8c 接着層
10 治具
10a テープ
10b リング
11 レーザ発生部
12 載置台
15 載置台
17 配線基板
17a,17b 電極
18C 半導体チップ(第1チップ)
18S 半導体基板
18L 配線層
18LB ボンディングパッド
20a 接着層
21 ボンディングワイヤ
22 封止体
23 はんだボール
25A,25B マスク
25A1,25B1 開口部
25A2,25B2 マスクパターン
26 スキージ
30 バンプ電極
31 アンダーフィル
35 スペーサ
36 DAF
37C 半導体チップ
CR 切断領域
CL 切断線
Am アライメントターゲット
LB1 レーザ光
LB2 レーザ光
PL 改質領域
1W semiconductor wafer 1C semiconductor chip (second chip)
1S Semiconductor substrate 1L Wiring layer 1Li, 1Li1, 1Li2, 1Li3 Interlayer insulating film 1LB Bonding pad 1LBt Bonding pad 1Lp for test Surface protective film 2 Opening 3 Adhesive layer 4 Support substrate 4a Peeling layer 5 Laser generating part 7 Nozzle 8 Adhesive 8a, 8b, 8c Adhesive layer 10 Jig 10a Tape 10b Ring 11 Laser generator 12 Mounting table 15 Mounting table 17 Wiring boards 17a, 17b Electrode 18C Semiconductor chip (first chip)
18S Semiconductor substrate 18L Wiring layer 18LB Bonding pad 20a Adhesive layer 21 Bonding wire 22 Sealing body 23 Solder balls 25A, 25B Masks 25A1, 25B1 Openings 25A2, 25B2 Mask pattern 26 Squeegee 30 Bump electrode 31 Underfill 35 Spacer 36 DAF
37C Semiconductor chip CR Cutting region CL Cutting line Am Alignment target LB1 Laser beam LB2 Laser beam PL Modified region

Claims (5)

上面、前記上面に形成された複数の配線、前記上面に形成された複数の第1電極、前記上面とは反対側の下面、および前記下面に形成された複数の第2電極を有する配線基板と、
第1表面、前記第1表面に形成された複数の第1ボンディングパッド、前記第1表面とは反対側の第1裏面、および前記第1表面と前記第1裏面との間に位置する第1側面を有し、前記第1裏面が前記配線基板の前記上面と対向するように、かつ前記配線基板の前記複数の第1電極が覆われないように、かつ前記配線基板の前記複数の配線が覆われるように、第1接着層を介して前記配線基板の前記上面上に搭載された第1半導体チップと、
第2表面、前記第2表面に形成された複数の第2ボンディングパッド、前記第2表面とは反対側の第2裏面、および前記第2表面と前記第2裏面との間に位置する第2側面を有し、前記第2裏面が前記第1半導体チップの前記第1表面と対向するように、かつ前記第1半導体チップの前記複数の第1ボンディングパッドが覆われないように、かつ前記第1半導体チップの前記複数の第1ボンディングパッドの間に位置するように、第2接着層を介して前記第1半導体チップの前記第1表面上に搭載された第2半導体チップと、
前記第1半導体チップの前記複数の第1ボンディングパッドと前記配線基板の前記複数の第1電極をそれぞれ電気的に接続する複数の第1ワイヤと、
前記第1半導体チップ、前記第2半導体チップおよび前記複数の第1ワイヤを封止する封止体と、
前記複数の第2電極上に形成された複数の外部端子と、
を含み、
前記第1半導体チップの前記第1側面の一部は、前記第1接着層で覆われており、
前記第2半導体チップの前記第2側面は、前記第2接着層で覆われていなく、
前記第2接着層のうちの前記第2半導体チップと平面的に重なる部分の厚さは、前記第1接着層のうちの前記第1半導体チップと平面的に重なる部分の厚さよりも薄いことを特徴とする半導体装置。
A wiring board having an upper surface, a plurality of wirings formed on the upper surface, a plurality of first electrodes formed on the upper surface, a lower surface opposite to the upper surface, and a plurality of second electrodes formed on the lower surface; ,
First surface, the first located between the plurality of first bonding pads formed on the first surface, before Symbol first back surface opposite to the first surface, and the first back surface and said first surface The plurality of wirings of the wiring board having one side surface, the first back surface facing the top surface of the wiring board , and the plurality of first electrodes of the wiring board not being covered. A first semiconductor chip mounted on the upper surface of the wiring board via a first adhesive layer so as to be covered ,
A second surface, the first located between the plurality of second bonding pads formed on the second surface, before Symbol second back surface opposite to the second surface, and the second back surface and the second surface has two sides, so that the second rear surface so as to face the first surface of the first semiconductor chip, and is not covered said plurality of first bonding pads of the first semiconductor chip, and wherein A second semiconductor chip mounted on the first surface of the first semiconductor chip via a second adhesive layer so as to be positioned between the plurality of first bonding pads of the first semiconductor chip;
A plurality of first wires that respectively electrically connect the plurality of first bonding pads of the first semiconductor chip and the plurality of first electrodes of the wiring board;
A sealing member for sealing the first semiconductor chip, before Symbol second semiconductor chip and the plurality of first wires,
A plurality of external terminals formed on the plurality of second electrodes;
Including
A portion of the first side surface of the first semiconductor chip is covered with the first adhesive layer;
The second side surface of the second semiconductor chip is not covered with the second adhesive layer,
The thickness of the portion of the second adhesive layer that overlaps with the second semiconductor chip in a plane is thinner than the thickness of the portion of the first adhesive layer that overlaps with the first semiconductor chip in a plane. A featured semiconductor device.
請求項1において、
前記配線基板の前記上面の粗さは、前記第1半導体チップの前記第1表面の粗さよりも大きく、
前記第1半導体チップの前記第1表面の粗さは、前記第2接着層のうちの前記第2半導体チップと平面的に重なる部分の厚さよりも小さいことを特徴とする半導体装置。
In claim 1,
The roughness of the upper surface of the wiring board is larger than the roughness of the first surface of the first semiconductor chip,
The semiconductor device according to claim 1 , wherein a roughness of the first surface of the first semiconductor chip is smaller than a thickness of a portion of the second adhesive layer that overlaps the second semiconductor chip in a planar manner.
請求項2において、
前記第1接着層は、フィルム基板を有しており、
前記第2接着層は、前記フィルム基板を有していないことを特徴とする半導体装置。
In claim 2,
The first adhesive layer has a film substrate,
The semiconductor device, wherein the second adhesive layer does not have the film substrate.
請求項3において、
前記第2接着層は、スピンコート法により形成されることを特徴とする半導体装置。
In claim 3,
The semiconductor device according to claim 1, wherein the second adhesive layer is formed by a spin coating method.
請求項1において、In claim 1,
前記第2半導体チップの前記複数の第2ボンディングパッドは、複数の第2ワイヤを介して前記第1半導体チップの前記複数の第1ボンディングパッドとそれぞれ電気的に接続されていることを特徴とする半導体装置。The plurality of second bonding pads of the second semiconductor chip are electrically connected to the plurality of first bonding pads of the first semiconductor chip through a plurality of second wires, respectively. Semiconductor device.
JP2011063771A 2011-03-23 2011-03-23 Semiconductor device Expired - Fee Related JP5297491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063771A JP5297491B2 (en) 2011-03-23 2011-03-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063771A JP5297491B2 (en) 2011-03-23 2011-03-23 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005231946A Division JP2007048958A (en) 2005-08-10 2005-08-10 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011135102A JP2011135102A (en) 2011-07-07
JP5297491B2 true JP5297491B2 (en) 2013-09-25

Family

ID=44347418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063771A Expired - Fee Related JP5297491B2 (en) 2011-03-23 2011-03-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5297491B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197146A (en) * 2012-03-16 2013-09-30 Renesas Electronics Corp Semiconductor device manufacturing method and semiconductor manufacturing device
JP5918639B2 (en) * 2012-06-25 2016-05-18 株式会社ディスコ Wafer processing method
JP7276644B2 (en) * 2017-08-31 2023-05-18 日本電気硝子株式会社 SUPPORTING GLASS SUBSTRATE AND LAMINATED SUBSTRATE USING THE SAME
US20240153822A1 (en) * 2021-03-09 2024-05-09 Tokyo Electron Limited Semiconductor chip manufacturing method and substrate processing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264205A (en) * 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP4343493B2 (en) * 2002-06-19 2009-10-14 三井化学株式会社 Method for stacking semiconductor chips
JP2005101312A (en) * 2003-09-25 2005-04-14 Renesas Technology Corp Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2011135102A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP2007048958A (en) Semiconductor device and manufacturing method thereof
JP4796588B2 (en) Manufacturing method of semiconductor device
JP4769429B2 (en) Manufacturing method of semiconductor device
US9716080B1 (en) Thin fan-out multi-chip stacked package structure and manufacturing method thereof
KR101182083B1 (en) Semiconductor device manufacturing method
US20040097054A1 (en) Fabrication method of semiconductor circuit device
TWI733049B (en) Semiconductor package and manufacturing method thereof
JP5352624B2 (en) Manufacturing method of semiconductor device
TW200805569A (en) Process for manufacturing semiconductor device
TW201128721A (en) Manufacturing method of semiconductor device
JP2013080972A (en) Method of manufacturing semiconductor device
TWI381485B (en) Semiconductor device manufacturing method and semiconductor device
JP5297491B2 (en) Semiconductor device
JP2014146829A (en) Semiconductor chip and semiconductor device
KR20070018713A (en) A semiconductor device and a manufacturing method of the same
US9269675B2 (en) Semiconductor device and manufacturing method thereof
JP2011066294A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130614

R150 Certificate of patent or registration of utility model

Ref document number: 5297491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees