JP5296482B2 - Non-ferrous smelting arsenic removal method and non-ferrous smelting concentrate obtained by the method - Google Patents

Non-ferrous smelting arsenic removal method and non-ferrous smelting concentrate obtained by the method Download PDF

Info

Publication number
JP5296482B2
JP5296482B2 JP2008260091A JP2008260091A JP5296482B2 JP 5296482 B2 JP5296482 B2 JP 5296482B2 JP 2008260091 A JP2008260091 A JP 2008260091A JP 2008260091 A JP2008260091 A JP 2008260091A JP 5296482 B2 JP5296482 B2 JP 5296482B2
Authority
JP
Japan
Prior art keywords
arsenic
concentrate
leaching
smelting
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008260091A
Other languages
Japanese (ja)
Other versions
JP2010090420A (en
Inventor
敦 柴山
政義 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Akita University NUC
Original Assignee
Dowa Metals and Mining Co Ltd
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd, Akita University NUC filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2008260091A priority Critical patent/JP5296482B2/en
Publication of JP2010090420A publication Critical patent/JP2010090420A/en
Application granted granted Critical
Publication of JP5296482B2 publication Critical patent/JP5296482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing arsenic in a concentrate for non-ferrous metal smelting by which the arsenic concentration (arsenic grade) in the concentrate can be reduced into a low concentration of &le;0.5 mass% from several mass% by using a new pretreatment technique employing a wet smelting technique as a technique for removing the arsenic from the concentrate having high arsenic concentration and thus, the concentrate is obtained which can be smelted as usual by the smelting, and to provide the concentrate for non-ferrous metal smelting obtained by the method. <P>SOLUTION: The method for removing the arsenic in the concentrate for non-ferrous metal smelting includes: a pulp-slurry production process in which the pulp-slurry having 500-2,000 g/L pulp concentration is produced from the concentrate for non-ferrous smelting containing the arsenic; and a leaching process in which the arsenic is leached from the concentrate by adding 60-200 g NaHS and 50-200 g NaOH to the pulp-slurry 1 L. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、非鉄製錬における鉱石から所望の金属または除去対象金属を浸出(抽出)する処理に関し、製錬工程で処理できない高濃度砒素精鉱の前処理としての非鉄製錬用の精鉱の砒素除去方法及び該方法より得られた非鉄製錬用の精鉱に関する。   The present invention relates to a process for leaching (extracting) a desired metal or a metal to be removed from ore in non-ferrous smelting, and for a concentrate for non-ferrous smelting as a pretreatment of high-concentration arsenic concentrate that cannot be processed in the smelting process. The present invention relates to an arsenic removing method and a concentrate for nonferrous smelting obtained by the method.

従来、非鉄製錬における精鉱中の不純物として、中でも特にAs(砒素)を高濃度に含有するものは、砒素の処理がコストを増高させることから、処理が産業上においてできないために資源として利用されていなかった。最近の資源価格高、資源確保の観点から、高濃度の砒素を含有する精鉱を処理できる技術が求められている。
例えば、特許文献1に示すように、砒素を含む銅精鉱を90℃〜120℃で加熱処理した後、リパルプして浮選し、砒素鉱物を浮遊させて除去すると共に、沈鉱として砒素品位の低い銅精鉱を回収する。リパルプ後の銅精鉱には、黄血塩(フェロシアン化カリウム)を銅精鉱1トン当たり10kg〜15kg添加する技術が開示されている。
一方、銅製錬で許容できる砒素濃度は最大1質量%と想定されており、製錬工程で処理するためには前もって除去する前処理方法が必要であった。この分野での前処理技術はほとんどなく、いわゆる特許文献1のように選鉱による物理的処理が中心で、湿式法を用いた前処理法は前例がなく、研究開発が開始されたばかりである。
最近の銅資源の事情によれば、鉱床の深部付近を採掘するために、銅精鉱中の砒素品位は急激に上昇する傾向にある。また、銅価格の高騰により従来採掘できなかった高砒素含有鉱石の資源化が急務となっている。
海外の銅鉱山、特にチリの銅精鉱中の砒素濃度(砒素品位)はほぼ3質量%、高いもので8質量%にもなり、銅製錬で許容できる濃度にするための前処理が大きな課題であり、新規前処理技術が求められている。最近の研究によってNaHS(水硫化ソーダ)とNaOH(苛性ソーダ)を用いた浸出法が有効であるとの知見が得られている。発明者らは更なる研究を進め、高い砒素除去率が得られる処理方法を明らかにした。
Conventionally, as impurities in concentrates in non-ferrous smelting, especially those containing As (arsenic) at a high concentration, the treatment of arsenic increases costs, so the treatment cannot be carried out in the industry, so as a resource It was not used. From the viewpoint of recent high resource prices and securing of resources, there is a demand for technology capable of processing concentrates containing high concentrations of arsenic.
For example, as shown in Patent Document 1, copper concentrate containing arsenic is heat-treated at 90 ° C. to 120 ° C., then repulped and floated to float and remove the arsenic mineral, and arsenic quality as sedimentation Low copper concentrate is recovered. A technique of adding 10 to 15 kg of yellow blood salt (potassium ferrocyanide) per 1 ton of copper concentrate is disclosed in the copper concentrate after repulping.
On the other hand, the arsenic concentration allowable in copper smelting is assumed to be 1% by mass at the maximum, and a pretreatment method for removing in advance is necessary for treatment in the smelting process. There is almost no pretreatment technique in this field, and the physical treatment by beneficiation is the center as in the so-called Patent Document 1, and the pretreatment method using the wet method has no precedent, and the research and development has just started.
According to the recent situation of copper resources, the arsenic quality in copper concentrate tends to rise rapidly in order to mine near the deep part of the deposit. In addition, there is an urgent need to recycle high arsenic-containing ores that could not be mined in the past due to soaring copper prices.
Arsenic concentration (arsenic grade) in overseas copper mines, especially in Chile's copper concentrate, is almost 3% by mass, and the highest is 8% by mass. Pretreatment to achieve an acceptable concentration for copper smelting is a major issue. Therefore, a new pretreatment technique is required. Recent research has shown that a leaching method using NaHS (sodium hydrosulfide) and NaOH (caustic soda) is effective. The inventors have further researched and clarified a treatment method that can obtain a high arsenic removal rate.

特開2006−239553号公報JP 2006-239553 A

本発明は、従来における前記問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高砒素濃度の精鉱から砒素を除去する技術として湿式製錬技術を用いた新規前処理技術を用いることで、精鉱中の砒素濃度(砒素品位)を数質量%から0.5質量%以下の低濃度にすることができ、もって、製錬で通常通り溶錬することが可能な精鉱を得ることができる非鉄製錬用の精鉱の砒素除去方法及び該方法より得られた非鉄製錬用の精鉱を提供することを目的とする。   An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention uses a new pretreatment technique using a hydrometallurgical technique as a technique for removing arsenic from concentrates having a high arsenic concentration, thereby reducing the arsenic concentration (arsenic quality) in the concentrate from several mass%. A method for removing arsenic from concentrate for non-ferrous smelting, which can obtain a concentrate that can be reduced to a low concentration of 0.5% by mass or less and can be smelted as usual by smelting. It aims at providing the concentrate for nonferrous smelting obtained more.

本発明は、本発明者による前記知見に基づくものであり、前記課題を解決するための手段としては以下の通りである。即ち、
<1> 砒素を含む非鉄製錬用の精鉱からパルプ濃度500g/L〜2,000g/Lのパルプスラリーを作製するパルプスラリー作製工程と、前記パルプスラリー1Lに対して、NaHSを60g〜200g、NaOHを50g〜200g加えて、前記精鉱から砒素を浸出する浸出工程とを含むことを特徴とする非鉄製錬用の精鉱の砒素除去方法である。
<2> 浸出工程において、大気圧下、浸出温度60℃以上で精鉱から砒素を浸出する前記<1>に記載の非鉄製錬用の精鉱の砒素除去方法である。
<3> パルプスラリー1Lに対するNaHS及びNaOHの添加量がそれぞれ100gであり、前記NaHS、前記NaOH、及び前記パルプスラリーの反応時間が3時間〜6時間である前記<1>から<2>のいずれかに記載の非鉄製錬用の精鉱の砒素除去方法である。
<4> 非鉄製錬用の精鉱が銅精鉱であり、前記銅精鉱中の砒素濃度が1質量%以上である前記<1>から<3>のいずれかに記載の非鉄製錬用の精鉱の砒素除去方法である。
<5> 前記<1>から<4>のいずれかに記載の非鉄製錬用の精鉱の砒素除去方法により得られ、砒素濃度が0.5質量%以下であることを特徴とする非鉄製錬用の精鉱である。
This invention is based on the said knowledge by this inventor, and as a means for solving the said subject, it is as follows. That is,
<1> Pulp slurry preparation step of preparing a pulp slurry having a pulp concentration of 500 g / L to 2,000 g / L from a concentrate for nonferrous smelting containing arsenic, and 60 g to 200 g of NaHS with respect to 1 L of the pulp slurry. And a leaching step of leaching arsenic from the concentrate by adding 50 g to 200 g of NaOH, and a method for removing arsenic from concentrate for non-ferrous smelting.
<2> The arsenic removal method for concentrate for non-ferrous smelting according to <1>, wherein in the leaching step, arsenic is leached from the concentrate at a leaching temperature of 60 ° C. or higher under atmospheric pressure.
<3> Any of <1> to <2>, wherein the amount of NaHS and NaOH added to 1 L of the pulp slurry is 100 g, and the reaction time of the NaHS, NaOH, and the pulp slurry is 3 hours to 6 hours. This is a method for removing arsenic from concentrate for non-ferrous smelting.
<4> The concentrate for non-ferrous smelting is copper concentrate, and the arsenic concentration in the copper concentrate is 1% by mass or more, for non-ferrous smelting according to any one of <1> to <3> This is a method for removing arsenic from concentrate.
<5> Obtained by the arsenic removal method of concentrate for nonferrous smelting according to any one of <1> to <4>, wherein the arsenic concentration is 0.5% by mass or less. It is a concentrate for smelting.

本発明によると、従来における諸問題を解決でき、高砒素濃度の精鉱から砒素を除去する技術として湿式製錬技術を用いた新規前処理技術を用いることで、精鉱中の砒素濃度(砒素品位)を数質量%から0.5質量%以下の低濃度にすることができ、もって、製錬で通常通り溶錬することが可能な精鉱を得ることができる非鉄製錬用の精鉱の砒素除去方法及び該方法より得られた非鉄製錬用の精鉱を提供することができる。   According to the present invention, various problems in the prior art can be solved, and a new pretreatment technique using a hydrometallurgical technique is used as a technique for removing arsenic from concentrate having a high arsenic concentration. The concentrate for non-ferrous smelting can be reduced to a low concentration of several mass% to 0.5 mass% or less, so that a concentrate that can be smelted as usual by smelting can be obtained. A method for removing arsenic and a concentrate for non-ferrous smelting obtained by the method can be provided.

(精鉱の砒素除去方法)
本発明の精鉱の砒素除去方法は、少なくとも、パルプスラリー作製工程と、浸出工程とを含み、さらに、必要に応じて適宜選択した、その他の工程とを含む。
(Method for removing arsenic from concentrate)
The method for removing arsenic from concentrate according to the present invention includes at least a pulp slurry preparation step and a leaching step, and further includes other steps appropriately selected as necessary.

<パルプスラリー作製工程>
前記パルプスラリー作製工程は、砒素を含む非鉄製錬用の精鉱からパルプ濃度500g/L〜2,000g/Lのパルプスラリーを作製する工程である。
<Pulp slurry preparation process>
The pulp slurry preparation step is a step of preparing a pulp slurry having a pulp concentration of 500 g / L to 2,000 g / L from nonferrous smelting concentrate containing arsenic.

<<精鉱>>
前記精鉱としては、非鉄金属を得るために製錬の原料として用いられるものであれば適用可能であり、鉱石における所望金属を濃縮したもの、例えば、銅精鉱、亜鉛精鉱、エナジャイト(硫砒銅鉱)などが挙げられる。
前記精鉱中の砒素濃度は、0.5質量%以上または1.0質量%以上であり、3質量%〜8質量%以上であってもよい。
<< Concentrate >>
The concentrate is applicable as long as it is used as a raw material for smelting to obtain non-ferrous metals, and concentrates of the desired metal in the ore, such as copper concentrate, zinc concentrate, enagite (arsenic sulfate) Copper ore).
The concentration of arsenic in the concentrate is 0.5% by mass or more or 1.0% by mass or more, and may be 3% by mass to 8% by mass or more.

<<パルプスラリー>>
前記パルプスラリーは、前記精鉱に水等を加えたものである。前記パルプスラリーのパルプ濃度は、500g/L〜2,000g/Lであり、設備費、運転費の観点から、高濃度であることが好ましい。前記パルプスラリーのパルプ濃度が500g/L〜2,000g/Lであると、産業機器における利用に適している。
<< Pulp Slurry >>
The pulp slurry is obtained by adding water or the like to the concentrate. The pulp concentration of the pulp slurry is 500 g / L to 2,000 g / L, and is preferably a high concentration from the viewpoint of equipment costs and operating costs. When the pulp concentration of the pulp slurry is 500 g / L to 2,000 g / L, it is suitable for use in industrial equipment.

<浸出工程>
前記浸出工程は、パルプスラリー1Lに対して、NaHSを60g〜200g、NaOHを50g〜200g加えて、前記精鉱から砒素を浸出する工程である。
即ち、精鉱を含有するパルプスラリーに、砒素を選択的に浸出するためのNaHS及びNaOHを加える。
<Leaching process>
The leaching step is a step of leaching arsenic from the concentrate by adding 60 g to 200 g of NaHS and 50 g to 200 g of NaOH to 1 L of pulp slurry.
That is, NaHS and NaOH for selectively leaching arsenic are added to a pulp slurry containing concentrate.

<<NaHS及びNaOH>>
前記NaHS及びNaOHは、パルプスラリー1Lに対して、NaHSが60g〜200g添加され、NaOHが50g〜200g添加されれば、特に限定されるものではない。例えば、NaHS及びNaOHを固体のままパルプスラリーに、同時乃至順次添加してもよく、また、NaHSとNaOHとを含有する水溶液を添加してもよい。NaHSとNaOHとを含有する水溶液は、事前にNaHSを含む水溶液とNaOHを含む水溶液との両方を混合してもよく、NaOHを含む水溶液とNaOHを含む水溶液とを個別に加えながら浸出してもよい。
<< NaHS and NaOH >>
The NaHS and NaOH are not particularly limited as long as 60 g to 200 g of NaHS and 50 g to 200 g of NaOH are added to 1 L of the pulp slurry. For example, NaHS and NaOH may be added simultaneously or sequentially to the pulp slurry as a solid, or an aqueous solution containing NaHS and NaOH may be added. The aqueous solution containing NaHS and NaOH may be mixed in advance with an aqueous solution containing NaHS and an aqueous solution containing NaOH, or may be leached while separately adding an aqueous solution containing NaOH and an aqueous solution containing NaOH. Good.

NaHSの添加量は、パルプスラリー1Lに対して60g〜200gLであり、NaOHの添加量は、パルプスラリー1Lに対して50g〜200gである。
NaHSの添加量がパルプスラリー1Lに対して60g未満では、砒素の浸出率が下降してしまう。
また、パルプスラリー1Lに対するNaHS及びNaOHの添加量をそれぞれ100g程度とした場合が最も砒素の浸出率が高く、NaHS添加量及びNaOH添加量のいずれかが低くても浸出率は低下する。この条件下ではいろんな鉱種を用いても同様に良好な浸出率が得られる。
The addition amount of NaHS is 60 g to 200 gL with respect to 1 L of pulp slurry, and the addition amount of NaOH is 50 g to 200 g with respect to 1 L of pulp slurry.
If the amount of NaHS added is less than 60 g relative to 1 L of pulp slurry, the arsenic leaching rate will decrease.
Further, when the amount of NaHS and NaOH added to 1 L of the pulp slurry is about 100 g, the arsenic leaching rate is the highest, and the leaching rate decreases even if either the NaHS addition amount or the NaOH addition amount is low. Under these conditions, a good leaching rate can be obtained even if various mineral species are used.

また、NaHS添加量とNaOH添加量との比が1:1〜2:1程度となるのが好ましい。
NaOH添加量は、NaHS添加量との組合わせにおいて重要である。NaOH添加量とNaHS添加量との組合せにおいて、例えば、銅精鉱であれば、砒素を選択的にスラリー液に移行する浸出が可能となり、銅が殆どスラリー液に移行しない画期的な浸出が可能となる。
Moreover, it is preferable that the ratio of the addition amount of NaHS and the addition amount of NaOH is about 1: 1 to 2: 1.
The added amount of NaOH is important in combination with the added amount of NaHS. In the combination of the added amount of NaOH and the added amount of NaHS, for example, in the case of copper concentrate, leaching that selectively transfers arsenic to the slurry liquid becomes possible, and epoch-making leaching that hardly transfers copper to the slurry liquid is possible. It becomes possible.

浸出工程における浸出反応液の温度、すなわち浸出温度は、60℃〜100℃であることが好ましく、80℃〜100℃であることがより好ましい。例えば、浸出反応液の温度を80℃とすることは、高山地帯での操業を考えても適切である。
また、浸出工程においては、大気圧下で浸出可能である。
また、浸出時間は、原料精鉱にも依存するが、2時間以上が好ましく、2〜8時間程度がより好ましく、3時間〜6時間が特に好ましい。
なお、浸出工程に用いられる装置としては、耐アルカリ性容器(タンク)であって、撹拌等を行うことができる装置であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、市販の容器、攪拌機、ポンプ、ろ過機などが挙げられる。また、浸出工程では、特別な薬剤を使わないため、入手容易な仕様の装置を利用することができ、設備費が安価にすることができるというメリットがある。
The temperature of the leaching reaction solution in the leaching step, that is, the leaching temperature is preferably 60 ° C. to 100 ° C., and more preferably 80 ° C. to 100 ° C. For example, setting the temperature of the leaching reaction liquid to 80 ° C. is appropriate even in consideration of operation in an alpine region.
In the leaching step, leaching can be performed under atmospheric pressure.
Moreover, although the leaching time depends on the raw material concentrate, it is preferably 2 hours or longer, more preferably about 2 to 8 hours, and particularly preferably 3 hours to 6 hours.
The apparatus used for the leaching step is not particularly limited as long as it is an alkali-resistant container (tank) and can perform stirring and the like, and can be appropriately selected according to the purpose. , Commercially available containers, agitators, pumps, filters, and the like. Moreover, since a special chemical | medical agent is not used in a leaching process, the apparatus of an easily available specification can be utilized and there exists an advantage that an installation cost can be made cheap.

<その他の工程>
前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記浸出工程に行われる固液分離工程などが挙げられる。
<Other processes>
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, the solid-liquid separation process etc. which are performed to the said leaching process are mentioned.

<固液分離工程>
前記固液分離工程は、精鉱の浸出後に、ろ過機などにより固液分離をする工程である。固液分離工程後の液側に砒素が浸出し、固体側(残渣側)には、銅などが残留した砒素をほとんど含有しない精鉱が得られる。得られた精鉱は、銅製錬などの非鉄製錬原料として利用できる。また、得られた精鉱は、砒素をほとんど含まないため、後工程の製錬工程において砒素処理がほとんど不要となり、コスト減、設備仕様の安価を助長する。また、砒素が浸出された液には、精鉱に含まれる大部分の砒素が含まれているので、砒素処理を集中的に行うことができ、コスト減、設備減となる。
<Solid-liquid separation process>
The solid-liquid separation step is a step of performing solid-liquid separation with a filter or the like after leaching of the concentrate. Arsenic is leached to the liquid side after the solid-liquid separation step, and concentrate containing almost no arsenic with copper remaining is obtained on the solid side (residue side). The obtained concentrate can be used as a non-ferrous smelting raw material such as copper smelting. Moreover, since the obtained concentrate contains almost no arsenic, arsenic treatment is almost unnecessary in the subsequent smelting process, which helps to reduce the cost and reduce the equipment specifications. In addition, since the leached arsenic liquid contains most of the arsenic contained in the concentrate, the arsenic treatment can be performed intensively, resulting in cost reduction and equipment reduction.

本発明の精鉱の砒素除去方法の好ましい例としては、銅精鉱をパルプ濃度が500g/L以上の高濃度スラリー状のパルプスラリーを作製し、この作製したパルプスラリーに、パルプスラリー1Lに対して、NaHSを100g、NaOHを100g加えて、浸出温度(スラリー液温度)80℃以上で3時間攪拌浸出し、銅精鉱中の砒素を水溶性のNaAsSの形態でスラリー液中に溶解させ、未溶解の銅精鉱はろ過回収する。これにより、銅精鉱に含まれる砒素を80質量%以上浸出することができ、銅精鉱に含まれる銅は100%未溶解の銅精鉱中に入るために完全回収される。また、上記精鉱の砒素除去方法において、浸出温度(スラリー液温度)を80℃以上として反応時間をさらに長くすれば砒素の浸出率を95%にすることもできる。
これにより、得られた銅精鉱の砒素濃度を通常の精鉱並み(数質量%から0.5質量%以下の低濃度)として、銅溶錬工程に投入することができ、今まで資源化できなかった鉱石や精鉱が容易に処理できる。
As a preferred example of the arsenic removal method of concentrate according to the present invention, a high concentration slurry-like pulp slurry having a pulp concentration of 500 g / L or more is prepared from copper concentrate, and the prepared pulp slurry is added to 1 L of pulp slurry. Then, 100 g of NaHS and 100 g of NaOH were added and stirred and leached for 3 hours at a leaching temperature (slurry liquid temperature) of 80 ° C. or more, and arsenic in the copper concentrate was added to the slurry liquid in the form of water-soluble Na 3 AsS 3. Dissolve the undissolved copper concentrate by filtration. Thereby, 80 mass% or more of arsenic contained in the copper concentrate can be leached, and the copper contained in the copper concentrate is completely recovered because it enters the 100% undissolved copper concentrate. In the arsenic removal method for concentrate, the leaching rate of arsenic can be 95% if the leaching temperature (slurry liquid temperature) is 80 ° C. or more and the reaction time is further increased.
As a result, the arsenic concentration of the obtained copper concentrate can be put into the copper smelting process as usual concentrate (low concentration of several mass% to 0.5 mass% or less). Ore and concentrate that could not be processed easily.

なお、本明細書において、wt%とあるのは、質量%である。Lとあるのは、単位でリットルである。   In the present specification, wt% means mass%. L is in liters.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(原料の準備)
原料を下記の表1に示す3種類の原料(精鉱)を用意した。即ち、(1)銅精鉱は、As(砒素)1.67質量%、Cu(銅)11.49質量%、Fe(鉄)18.17質量%であり、(2)銅精鉱は、As(砒素)3.11質量%、Cu(銅)33.46質量%、Fe(鉄)14.34質量%であり、(3)エナジャイトは、As(砒素)8.32質量%、Cu(銅)33.71質量%、Fe(鉄)16.34質量%である。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
(Preparation of raw materials)
Three types of raw materials (concentrates) shown in Table 1 below were prepared. That is, (1) copper concentrate is As (arsenic) 1.67 mass%, Cu (copper) 11.49 mass%, Fe (iron) 18.17 mass%, (2) copper concentrate is As (arsenic) 3.11 mass%, Cu (copper) 33.46 mass%, Fe (iron) 14.34 mass%, (3) Enagite is As (arsenic) 8.32 mass%, Cu ( Copper) 33.71% by mass and Fe (iron) 16.34% by mass.

(実施例1)
実施例1に用いた原料は、表1における(1)銅精鉱である。CuFeS、FeSが主たる組成である。この(1)銅精鉱に水を添加してパルプ濃度が500g/Lのパルプスラリーを作製し、作製したパルプスラリーに、パルプスラリー1Lに対して、NaHSを100g、NaOHを100g加えて、浸出時間3時間で浸出を行った。さらに、浸出後に、吸引ろ過機を用いて固液分離を行った。図1に、浸出時の温度を変化させた(30℃、60℃、80℃、95℃)ときの砒素浸出率の変化を示す。
なお、砒素浸出率の測定は、以下のようにして行った。
<砒素浸出率の測定>
浸出前の原料の砒素濃度及び浸出後の固体(残渣)の砒素濃度をICP(誘導結合プラズマ発光分光分析装置)を用いて測定した。
砒素浸出率は、浸出前の原料の砒素濃度から算出した砒素質量を母数として、浸出後の固体(残渣)の砒素濃度から算出砒素質量を百分率(%)で換算した。
この結果、砒素浸出率は、温度80℃で87.91%であり、温度95℃で95.40%に達し、高い砒素浸出率が得られた。
Example 1
The raw material used in Example 1 is (1) copper concentrate in Table 1. CuFeS 2 and FeS are the main compositions. (1) Add water to the copper concentrate to produce a pulp slurry with a pulp concentration of 500 g / L. Add 100 g of NaHS and 100 g of NaOH to 1 L of the pulp slurry and leach. Leaching took place in 3 hours. Further, after leaching, solid-liquid separation was performed using a suction filter. FIG. 1 shows changes in the arsenic leaching rate when the temperature during leaching is changed (30 ° C., 60 ° C., 80 ° C., 95 ° C.).
The arsenic leaching rate was measured as follows.
<Measurement of arsenic leaching rate>
The arsenic concentration of the raw material before leaching and the arsenic concentration of the solid (residue) after leaching were measured using ICP (Inductively Coupled Plasma Emission Spectrometer).
The arsenic leaching rate was calculated by converting the arsenic mass calculated from the arsenic concentration of the solid (residue) after leaching into a percentage (%) with the arsenic mass calculated from the arsenic concentration of the raw material before leaching as a parameter.
As a result, the arsenic leaching rate was 87.91% at a temperature of 80 ° C., reaching 95.40% at a temperature of 95 ° C., and a high arsenic leaching rate was obtained.

(実施例2)
NaOH添加量及びNaHS添加量を変化させ((a)パルプスラリー1Lに対して、NaOHを100g、NaHSを100g添加、(b)パルプスラリー1Lに対して、NaOHを50g、NaHSを100g添加、(c)パルプスラリー1Lに対して、NaOHを100g、NaHSを50g添加)、浸出時間を変化させ(0.5時間〜4時間)、浸出温度を80℃で行った以外は、実施例1と同様に行った。この結果を図2に示す。図2中、(a)は、パルプスラリー1Lに対して、NaOHを100g、NaHSを100g添加した場合を示し、(b)は、パルプスラリー1Lに対して、NaOHを50g、NaHSを100g添加した場合を示し、(c)は、パルプスラリー1Lに対して、NaOHを100g、NaHSを50g添加した場合を示す。なお、上記(a)(b)は、本願発明の実施例に相当するが、上記(c)は、本願発明の比較例に相当する。
この結果、パルプスラリー1Lに対して、NaOHを100g、NaHSを100g添加した場合が最も砒素浸出率が高く、浸出時間3時間で砒素浸出率が80%を超え、浸出時間4時間でほぼ浸出時間が100%近くなった。
(Example 2)
The addition amount of NaOH and the addition amount of NaHS were changed ((a) 100 g of NaOH and 100 g of NaHS were added to 1 L of pulp slurry, (b) 50 g of NaOH and 100 g of NaHS were added to 1 L of pulp slurry, ( c) Same as Example 1 except that 100 g of NaOH and 50 g of NaHS were added to 1 L of pulp slurry, the leaching time was changed (0.5 to 4 hours), and the leaching temperature was 80 ° C. Went to. The result is shown in FIG. In FIG. 2, (a) shows a case where 100 g of NaOH and 100 g of NaHS are added to 1 L of pulp slurry, and (b) is a case where 50 g of NaOH and 100 g of NaHS are added to 1 L of pulp slurry. (C) shows the case where 100 g of NaOH and 50 g of NaHS are added to 1 L of pulp slurry. The above (a) and (b) correspond to examples of the present invention, while the above (c) corresponds to a comparative example of the present invention.
As a result, when 100 g of NaOH and 100 g of NaHS were added to 1 L of pulp slurry, the arsenic leaching rate was highest, the arsenic leaching rate exceeded 80% after 3 hours of leaching, and the leaching time was almost 4 hours. Became nearly 100%.

(実施例3)
表1の3種類の原料((1)銅精鉱、(2)銅精鉱、(3)エナジャイト)を用い、浸出時間を変化させ(0.5時間〜6時間)、浸出温度を80℃で行った以外は、実施例1と同様に行った。原料の違いによる砒素浸出率を調べた結果を図3に示す。
この結果から、精鉱によって浸出時間が短い場合は違いが見られるが、浸出時間が4時間以上であれば、いずれも90%以上の砒素浸出率が得られた。以上より、実施例3の処理法は原料の種類にかかわらず、良好な砒素浸出率が達成できることがわかる。
また、原料としての(3)エナジャイトを浸出時間6時間で処理して得られたサンプルにおいて、原料を100とした場合の各元素の浸出残渣中の分布率は、Cu及びFeが100質量%であり、Asが4.7質量%であり、浸出液中にはAsのみ選択的に95.3%浸出されていた。また、原料としての(3)エナジャイトを浸出時間1、3、6時間で処理して得られたサンプルの形態分析をXRDにより測定した結果を図4に示す。原料中のエナジャイトCuAsSのピークがなくなり、CuSの強いピークが現れていることからも十分な浸出効果があることが認められる。
(Example 3)
Using the three types of raw materials in Table 1 ((1) Copper concentrate, (2) Copper concentrate, (3) Enagite), the leaching time was changed (0.5 to 6 hours), and the leaching temperature was 80 ° C. The procedure was the same as in Example 1 except that the procedure was performed in step 1. The results of examining the arsenic leaching rate due to the difference in raw materials are shown in FIG.
From this result, a difference is seen when the leaching time is short depending on the concentrate, but an arsenic leaching rate of 90% or more was obtained when the leaching time was 4 hours or more. From the above, it can be seen that the treatment method of Example 3 can achieve a good arsenic leaching rate regardless of the type of raw material.
In addition, in the sample obtained by treating energite as a raw material with a leaching time of 6 hours, the distribution ratio of each element in the leaching residue when the raw material is 100 is 100% by mass for Cu and Fe. Yes, As was 4.7% by mass, and only As was selectively leached in the leachate. Moreover, the result of having measured the morphological analysis of the sample obtained by processing (3) energite as a raw material by leaching time 1, 3, 6 hours by XRD is shown in FIG. It is recognized that there is a sufficient leaching effect because the peak of energite Cu 3 AsS 4 disappears from the raw material and a strong peak of Cu 2 S appears.

(実施例4)
原料としての(3)エナジャイトに水を添加してパルプ濃度が1,000g/Lのパルプスラリーを作製し、作製したパルプスラリーに、パルプスラリー1Lに対して、NaOHを200g、NaHSを200g添加して、浸出温度80℃、浸出時間10時間で浸出を行った。さらに、浸出後に、吸引ろ過機を用いて固液分離を行った。その結果、浸出後の浸出残渣中濃度はAs(砒素)0.1%以下、Cu(銅)14.5%、Fe(鉄)10.4%であり、ほぼ全量のAs(砒素)が浸出されたことが分かった。
Example 4
(3) Water is added to the energite as a raw material to produce a pulp slurry having a pulp concentration of 1,000 g / L, and 200 g of NaOH and 200 g of NaHS are added to 1 L of the pulp slurry. The leaching was performed at a leaching temperature of 80 ° C. and a leaching time of 10 hours. Further, after leaching, solid-liquid separation was performed using a suction filter. As a result, the concentration in the leaching residue after leaching was 0.1% or less for As (arsenic), 14.5% for Cu (copper), and 10.4% for Fe (iron), and almost the entire amount of As (arsenic) was leached. I understood that it was done.

図1は、実施例1の測定結果を示すグラフである。FIG. 1 is a graph showing the measurement results of Example 1. 図2は、実施例2の測定結果を示すグラフである。FIG. 2 is a graph showing the measurement results of Example 2. 図3は、実施例3の測定結果を示すグラフである。FIG. 3 is a graph showing the measurement results of Example 3. 図4は、実施例3で得られたサンプルのXRDにより測定した結果を示す図である。FIG. 4 is a graph showing the results of measurement by XRD of the sample obtained in Example 3.

Claims (5)

砒素を含む非鉄製錬用の精鉱からパルプ濃度500g/L〜2,000g/Lのパルプスラリーを作製するパルプスラリー作製工程と、
前記パルプスラリー1Lに対して、NaHSを60g〜200g、NaOHを50g〜200g加えて、前記精鉱から砒素を浸出する浸出工程とを含むことを特徴とする非鉄製錬用の精鉱の砒素除去方法。
A pulp slurry preparation step of preparing a pulp slurry having a pulp concentration of 500 g / L to 2,000 g / L from a nonferrous smelting concentrate containing arsenic;
Arsenic removal from concentrate for non-ferrous smelting, comprising adding 60 g to 200 g of NaHS and 50 g to 200 g of NaOH to 1 L of the pulp slurry, and leaching arsenic from the concentrate Method.
浸出工程において、大気圧下、浸出温度60℃以上で精鉱から砒素を浸出する請求項1に記載の非鉄製錬用の精鉱の砒素除去方法。   The method for removing arsenic from concentrate for non-ferrous smelting according to claim 1, wherein, in the leaching step, arsenic is leached from the concentrate at a leaching temperature of 60 ° C or higher under atmospheric pressure. パルプスラリー1Lに対するNaHS及びNaOHの添加量がそれぞれ100gであり、前記NaHS、前記NaOH、及び前記パルプスラリーの反応時間が3時間〜6時間である請求項1から2のいずれかに記載の非鉄製錬用の精鉱の砒素除去方法。   The amount of NaHS and NaOH added to 1 L of pulp slurry is 100 g, and the reaction time of the NaHS, NaOH, and the pulp slurry is 3 hours to 6 hours. The non-ferrous product according to any one of claims 1 to 2 A method for removing arsenic from concentrate for smelting. 非鉄製錬用の精鉱が銅精鉱であり、前記銅精鉱中の砒素濃度が1質量%以上である請求項1から3のいずれかに記載の非鉄製錬用の精鉱の砒素除去方法。   The concentrate for nonferrous smelting is copper concentrate, and the arsenic concentration in the copper concentrate is 1% by mass or more. 4. Arsenic removal from concentrate for nonferrous smelting Method. 請求項1から4のいずれかに記載の非鉄製錬用の精鉱の砒素除去方法により得られ、砒素濃度が0.5質量%以下であることを特徴とする非鉄製錬用の精鉱。   A concentrate for nonferrous smelting obtained by the method for removing arsenic from concentrate for nonferrous smelting according to any one of claims 1 to 4, wherein the arsenic concentration is 0.5 mass% or less.
JP2008260091A 2008-10-06 2008-10-06 Non-ferrous smelting arsenic removal method and non-ferrous smelting concentrate obtained by the method Active JP5296482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008260091A JP5296482B2 (en) 2008-10-06 2008-10-06 Non-ferrous smelting arsenic removal method and non-ferrous smelting concentrate obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008260091A JP5296482B2 (en) 2008-10-06 2008-10-06 Non-ferrous smelting arsenic removal method and non-ferrous smelting concentrate obtained by the method

Publications (2)

Publication Number Publication Date
JP2010090420A JP2010090420A (en) 2010-04-22
JP5296482B2 true JP5296482B2 (en) 2013-09-25

Family

ID=42253411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008260091A Active JP5296482B2 (en) 2008-10-06 2008-10-06 Non-ferrous smelting arsenic removal method and non-ferrous smelting concentrate obtained by the method

Country Status (1)

Country Link
JP (1) JP5296482B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161386A (en) * 2010-02-10 2011-08-25 Akita Univ Method for treating thioarsenite
CN105219948B (en) * 2014-06-17 2018-01-12 武汉理工大学 A kind of method of high-As and high-S type gold mine dearsenification desulfurization
CN105219950A (en) * 2014-06-17 2016-01-06 武汉理工大学 A kind of sulfate slag puies forward golden roasting pretreatment method
WO2017170602A1 (en) * 2016-03-30 2017-10-05 Jx金属株式会社 Method for recovering arsenic
CN115216628B (en) * 2022-06-14 2023-09-22 云锡文山锌铟冶炼有限公司 Method for removing copper and arsenic from copper-arsenic-containing acidic solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236825A (en) * 1997-02-28 1998-09-08 Nikko Kinzoku Kk Production of calcium arsenate fro smelting dust
JP4567303B2 (en) * 2003-07-23 2010-10-20 前澤工業株式会社 Method for treating arsenic-containing sulfuric acid
JP4572703B2 (en) * 2005-03-03 2010-11-04 住友金属鉱山株式会社 Separation of arsenic minerals from copper concentrate

Also Published As

Publication number Publication date
JP2010090420A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
AU2011256118B2 (en) Method for the extraction and recovery of vanadium
JP4450108B1 (en) Separation of arsenic minerals from high arsenic grade copper-containing materials
CA2943483C (en) Copper removal method for aqueous nickel chloride solution
CN106460092B (en) The separation method of scandium
CN105219968B (en) A kind of method of titanium and iron in acidleach precipitate flotation combined recovery red mud
JP5296482B2 (en) Non-ferrous smelting arsenic removal method and non-ferrous smelting concentrate obtained by the method
WO2011116426A1 (en) Process for leaching refractory uraniferous minerals
US6409979B1 (en) Selective precipitation of nickel and cobalt
JP2017202481A (en) Beneficiation method
CN108034823A (en) A kind of method that molybdenum and copper are recycled in the molybdenum removal slag from Tungsten smelting
JP5774374B2 (en) Method for separating arsenic mineral from copper-containing material containing arsenic mineral
WO2017110462A1 (en) Mineral dressing method
CA2931118C (en) Process for producing refined nickel and other products from a mixed hydroxide intermediate
EP2902510A1 (en) A new method for leaching of electric arc furnace dust (EAFD) with sulphuric acid
CN108411109B (en) A kind of golden tellurium separation-extraction technology of the Gold Concentrate under Normal Pressure containing tellurium
JP6493423B2 (en) Method for separating zinc, method for producing zinc material, and method for producing iron material
RU2439177C2 (en) Processing method of sulphide-oxidated copper ores with copper and silver extraction
JP2006083457A (en) Treatment method for zinc leach residue and the like
WO2002022895A1 (en) Method for producing metal or metal compound comprising process of treating with fluorine and adjusted raw material used therein
JP2011058018A (en) Method for recovering gold concentrate from leach residue of copper sulfide minerals
CN105886797A (en) Method for preparing sponge indium from polymetallic sulfide material
JP2021008654A (en) Nickel oxide ore exudation treatment method and wet smelting method including the same
JP3937273B2 (en) Method for treating slurry containing colloidal silica
JP7057900B2 (en) Pretreatment method for nickel oxide ore slurry
CN110551901B (en) Method for recovering copper and lead from tail liquid and treatment method of leaching tail liquid generated by gold concentrate gold extraction process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Ref document number: 5296482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250