JP5293964B2 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP5293964B2
JP5293964B2 JP2009163296A JP2009163296A JP5293964B2 JP 5293964 B2 JP5293964 B2 JP 5293964B2 JP 2009163296 A JP2009163296 A JP 2009163296A JP 2009163296 A JP2009163296 A JP 2009163296A JP 5293964 B2 JP5293964 B2 JP 5293964B2
Authority
JP
Japan
Prior art keywords
resin
capacitor
epoxy resin
resin composition
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009163296A
Other languages
Japanese (ja)
Other versions
JP2011018814A (en
Inventor
光春 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2009163296A priority Critical patent/JP5293964B2/en
Publication of JP2011018814A publication Critical patent/JP2011018814A/en
Application granted granted Critical
Publication of JP5293964B2 publication Critical patent/JP5293964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、コンデンサ素子を外装ケースに収納し、外装ケースに樹脂充填して封止してなるコンデンサに関するものである。   The present invention relates to a capacitor in which a capacitor element is housed in an outer case, and the outer case is filled with resin and sealed.

樹脂封止型コンデンサとしては、フィルムコンデンサをコンデンサ素子として構成したものが知られている。そして、近年、樹脂封止型フィルムコンデンサは、従来の家電分野から車載分野をはじめとして、あらゆる分野に展開されている。特に産業用や車載用の樹脂封止型フィルムコンデンサには、高電流に耐え得る性能と小型化また高い信頼性が要求される。   As a resin-encapsulated capacitor, a capacitor in which a film capacitor is configured as a capacitor element is known. In recent years, resin-encapsulated film capacitors have been deployed in various fields including the conventional home appliance field and the in-vehicle field. In particular, resin-encapsulated film capacitors for industrial use and in-vehicle use are required to have performance capable of withstanding high current, downsizing, and high reliability.

図2は、従来の樹脂封止型フィルムコンデンサを示しており、1は樹脂フィルムに金属蒸着した金属化フィルムを巻回または積層してなるコンデンサ素子、2はコンデンサ素子1の端面に設けられた電極、3はコンデンサ素子1を収納する外装ケース、4は外装ケ―ス3内に充填される充填樹脂、5は電極2に取り付けられ、コンデンサ素子1と外部機器等とを電気的に接続する接続端子である。   FIG. 2 shows a conventional resin-encapsulated film capacitor, wherein 1 is a capacitor element formed by winding or laminating a metallized film deposited on a resin film, and 2 is provided on the end face of the capacitor element 1. Electrode 3 is an exterior case for storing capacitor element 1, 4 is a filling resin filled in exterior case 3, 5 is attached to electrode 2, and electrically connects capacitor element 1 to an external device or the like. It is a connection terminal.

以上のように構成された従来の樹脂封止型フィルムコンデンサは、コンデンサ素子1の電極2に接続端子5を接続し、それらを外装ケース3に内蔵する。さらに、コンデンサ素子1の耐湿性、耐塵性を向上させるために、外装ケース3内に充填樹脂4をモールドさせていた。この充填樹脂4の材質として、電気特性が優れ、耐水性、耐湿性が良く、他の材料との密着性が良いなどの特性面の理由により、熱硬化性のエポキシ樹脂組成物が多用されていた。   In the conventional resin-encapsulated film capacitor configured as described above, the connection terminal 5 is connected to the electrode 2 of the capacitor element 1, and they are built in the outer case 3. Further, in order to improve the moisture resistance and dust resistance of the capacitor element 1, the filling resin 4 is molded in the outer case 3. As the material of the filling resin 4, a thermosetting epoxy resin composition is frequently used for reasons of characteristics such as excellent electrical characteristics, good water resistance and moisture resistance, and good adhesion to other materials. It was.

しかし、特に大電流を流し得るために、前記コンデンサ素子1や接続端子5が大型化するのに伴い、従来の樹脂封止型フィルムコンデンサは、それぞれの材質の違いから線膨張係数に差があるため、内部発熱や環境の温度変化によりコンデンサ素子1及び接続端子5に機械的応力がかかる場合がある。そして、充填樹脂剤として多用されるエポキシ樹脂組成物は耐湿性に優れている反面、柔軟性が劣るために低高温時に生ずる応力に耐えきれずにクラックが生じてしまうことがある。このクラックは多くの場合、接続端子5と充填樹脂4の接触界面より発生し、コンデンサ素子近傍へ水分・湿度などを侵入させるため、寿命特性が十分なものではなかった。   However, in order to allow a particularly large current to flow, as the capacitor element 1 and the connection terminal 5 increase in size, the conventional resin-encapsulated film capacitor has a difference in linear expansion coefficient due to the difference in each material. Therefore, mechanical stress may be applied to the capacitor element 1 and the connection terminal 5 due to internal heat generation or environmental temperature change. And although the epoxy resin composition frequently used as a filling resin agent is excellent in moisture resistance, since it is inferior in flexibility, it may not be able to withstand the stress generated at low and high temperatures, and cracks may occur. In many cases, the cracks are generated at the contact interface between the connection terminal 5 and the filling resin 4, and moisture and humidity are intruded into the vicinity of the capacitor element, so that the life characteristics are not sufficient.

これらの課題を克服するために、特許文献1では、充填樹脂剤をエポキシ樹脂組成物とウレタン樹脂組成物の2層構造とし、接続端子の少なくとも外部機器等との接続部に近い部分に充填する樹脂をウレタン樹脂組成物とすることで、接続端子周辺に集中する応力による樹脂クラックの発生を防止することが提案されている。   In order to overcome these problems, in Patent Document 1, the filling resin agent has a two-layer structure of an epoxy resin composition and a urethane resin composition, and is filled in at least a portion of a connection terminal close to a connection portion with an external device or the like. It has been proposed to prevent the occurrence of resin cracks due to stress concentrated around the connection terminals by using a urethane resin composition as the resin.

特開2003−338423号JP 2003-338423 A

しかしながら、一般的にウレタン樹脂組成物は、ウレタン樹脂組成物自身の耐湿性が劣る上に、他の材料との接着強度が低いため、界面から容易に水分の進入を許してしまう場合があるので、接続端子部における樹脂最外層のクラックは防止できるものの、コンデンサ素子周辺を覆うエポキシ樹脂組成物層部まで、水分が比較的容易に浸入する。一方、コンデンサ素子周辺を覆うエポキシ樹脂組成物は、耐湿性に優れるものの、接続端子との接触界面でクラックを発生しやすいものである。このため、一端接続端子部のエポキシ樹脂組成物にクラックが発生してしまうと、高温高湿雰囲気中に長時間放置された場合においては、ウレタン樹脂組成物層から侵入した水分が、エポキシ樹脂組成物に発生したクラックを通してコンデンサ素子内部まで侵入することを十分に防ぐことができないものであった。   However, in general, the urethane resin composition is inferior in moisture resistance of the urethane resin composition itself and has low adhesion strength with other materials, and therefore may easily allow moisture to enter from the interface. Although cracking of the outermost resin layer in the connection terminal portion can be prevented, moisture penetrates relatively easily to the epoxy resin composition layer portion covering the periphery of the capacitor element. On the other hand, the epoxy resin composition covering the periphery of the capacitor element is excellent in moisture resistance, but easily generates cracks at the contact interface with the connection terminal. For this reason, if cracks occur in the epoxy resin composition of the one-end connection terminal part, when it is left in a high temperature and high humidity atmosphere for a long time, the moisture that has penetrated from the urethane resin composition layer Intrusion into the capacitor element through a crack generated in the object cannot be sufficiently prevented.

ここで、ポリエチレンテレフタレートやポリプロピレン等のフィルムにアルミニウム、亜鉛等の金属を蒸着した金属化フィルムを用いたフィルムコンデンサでは、コンデンサ素子内に進入した水分の影響により、金属化フィルムの蒸着された金属層が劣化する。これは、酸素や水蒸気がコンデンサ素子内に侵入すると、蒸着膜の金属が酸化され、その酸化物(アルミニウム蒸着膜で起きやすい水玉状透明部分の酸化物)が高絶縁物であればストレス集中が続くため、電圧印加時間に比例して酸化反応が進むため、コンデンサ容量が大きく減少してしまうという現象を引き起こす。このように、コンデンサ素子内部への酸素や水蒸気の侵入は、結果としてコンデンサの特性を劣化させるために、金属化フィルムコンデンサにおいては、耐湿性を向上させることが必要となる。   Here, in a film capacitor using a metallized film in which a metal such as aluminum or zinc is vapor-deposited on a film such as polyethylene terephthalate or polypropylene, the metal layer on which the metallized film is vaporized due to the influence of moisture entering the capacitor element Deteriorates. This is because when oxygen or water vapor enters the capacitor element, the metal in the deposited film is oxidized, and stress concentration occurs if the oxide (the oxide of the polka-dot-like transparent portion that tends to occur in the aluminum deposited film) is a high insulator. Since the oxidation reaction proceeds in proportion to the voltage application time, the capacitor capacity is greatly reduced. As described above, invasion of oxygen or water vapor into the capacitor element results in deterioration of the capacitor characteristics, so that it is necessary to improve moisture resistance in the metallized film capacitor.

以上にように、ウレタン樹脂組成物は樹脂の柔軟性に優れクラック発生を抑制できるものの、耐湿性の観点では十分ではなく、耐湿性に優れるがクラック発生のあるエポキシ樹脂組成物と組み合わせても、コンデンサとして十分な耐湿性を得ることができないという欠点を有していた。   As described above, although the urethane resin composition is excellent in the flexibility of the resin and can suppress the occurrence of cracks, it is not sufficient in terms of moisture resistance, even if combined with an epoxy resin composition that is excellent in moisture resistance but has cracks, There was a drawback that sufficient moisture resistance as a capacitor could not be obtained.

この発明は、以上のような問題点に鑑み、耐湿性に優れるとともに、充填樹脂のクラック等が発生するおそれの少ない樹脂封止型コンデンサを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a resin-sealed capacitor that has excellent moisture resistance and is less likely to cause cracks in a filled resin.

この出願の発明は、電極を有するコンデンサ素子と、コンデンサ素子の電極と接続する接続端子と、コンデンサ素子と接続端子の少なくとも一部とを収納する外装ケースとを備え、コンデンサ素子と接続端子とが、第一エポキシ樹脂組成物と第二エポキシ樹脂組成物とによって外装ケース内で封止されたものであって、硬化後のASTM D−5045に準拠して測定される破壊靭性値が2.5MPa・m1/2以上である第二エポキシ樹脂組成物で封止樹脂層の最外層を覆うように配置してコンデンサとしたものである。 The invention of this application includes a capacitor element having an electrode, a connection terminal connected to the electrode of the capacitor element, and an exterior case that houses at least a part of the capacitor element and the connection terminal. The fracture toughness value measured in accordance with ASTM D-5045 after curing is 2.5 MPa, which is sealed in the outer case by the first epoxy resin composition and the second epoxy resin composition. The capacitor is formed by covering the outermost layer of the sealing resin layer with the second epoxy resin composition having m 1/2 or more.

また、この発明において、第一エポキシ樹脂組成物の硬化後のASTM D−5045に準拠して測定される破壊靭性値を2.0MPa・m1/2以上としてコンデンサとしたものである。 Moreover, in this invention, the fracture toughness value measured based on ASTM D-5045 after curing of the first epoxy resin composition is set to 2.0 MPa · m 1/2 or more to provide a capacitor.

破壊靭性値は樹脂の亀裂進展の抵抗値を示す値であり、その試験法としてはASTM(米国材料試験協会;American Society for Testing and Materials)規格のD−5045「プラスチック材料の平面歪み破壊靭性およびエネルギー解放率」で規格化されている。   The fracture toughness value is a value indicating the resistance value of the crack growth of the resin. The test method is ASTM (American Society for Testing and Materials) standard D-5045 “Plane strain fracture toughness of plastic material and It is standardized by “energy release rate”.

この発明は、この破壊靭性値に着目してなされたものであり、コンデンサ素子と接続端子の一部を外装ケース内に封止する第一エポキシ樹脂組成物と第二エポキシ樹脂組成物からなる封止樹脂層の最外層を覆う第二エポキシ樹脂組成物として、この破壊靭性値が2.5以上であるエポキシ系樹脂を用いて樹脂封止型コンデンサとしたことによって、充填樹脂のクラックの発生のおそれが少ない樹脂封止型コンデンサとすることができる。また、充填樹脂はエポキシ系の樹脂であるため、耐湿性にも優れる。   The present invention has been made paying attention to this fracture toughness value, and is composed of a first epoxy resin composition and a second epoxy resin composition for sealing a part of a capacitor element and a connection terminal in an outer case. As the second epoxy resin composition covering the outermost layer of the stop resin layer, by using an epoxy resin having a fracture toughness value of 2.5 or more as a resin-encapsulated capacitor, occurrence of cracks in the filled resin A resin-encapsulated capacitor with less fear can be obtained. Moreover, since the filling resin is an epoxy resin, it is excellent in moisture resistance.

さらに、第一エポキシ樹脂組成物の破壊靭性値を2.0以上とすることで、封止樹脂層内層部におけるクラックの発生も最小限に抑えられることにより、耐湿性が更に優れた樹脂封止型コンデンサが得られるものである。   Further, by setting the fracture toughness value of the first epoxy resin composition to 2.0 or more, the occurrence of cracks in the inner layer portion of the sealing resin layer can be minimized, so that the resin sealing further improves moisture resistance. Type capacitors are obtained.

本発明の樹脂封止型フィルムコンデンサの内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the resin sealing type film capacitor of this invention. 従来例1の樹脂封止型フィルムコンデンサの内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the resin sealing type film capacitor of the prior art example 1. 従来例2の樹脂封止型フィルムコンデンサの内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the resin sealing type film capacitor of the prior art example 2.

以下、本発明の実施の形態について、図1を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG.

図1は本発明の実施の形態の樹脂封止型フィルムコンデンサの断面図であり、1は樹脂フィルムに金属蒸着した金属化フィルムを巻回または積層してなるコンデンサ素子、2はコンデンサ素子1の端面に設けられた電極、3はコンデンサ素子1を収納する外装ケース、4は外装ケ―ス3内に充填される充填樹脂であり、5は電極2に取り付けられ、コンデンサ素子1と外部機器等と電気的に接続する接続端子である。   FIG. 1 is a cross-sectional view of a resin-encapsulated film capacitor according to an embodiment of the present invention. 1 is a capacitor element obtained by winding or laminating a metallized film deposited on a resin film, and 2 is a capacitor element 1. An electrode provided on the end face, 3 is an outer case for housing the capacitor element 1, 4 is a filling resin filled in the outer case 3, 5 is attached to the electrode 2, and the capacitor element 1 and an external device, etc. Is a connection terminal that is electrically connected to the terminal.

そして、充填樹脂4は、コンデンサ素子1の周囲を覆うように封止樹脂層の内層部に配置された第一エポキシ樹脂組成物4aと、封止樹脂層の最外層を覆うように配置された第二エポキシ樹脂組成物4bとからなるものであり、コンデンサ素子1を水分や塵から保護し、さらに外装ケース3はコンデンサ素子1や接続端子5および充填樹脂4を保持、保護していて、これらによって樹脂封止型フィルムコンデンサが構成されている。   And the filling resin 4 was arrange | positioned so that the 1st epoxy resin composition 4a arrange | positioned in the inner-layer part of the sealing resin layer so that the circumference | surroundings of the capacitor | condenser element 1 might be covered, and the outermost layer of a sealing resin layer may be covered. The second epoxy resin composition 4b is used to protect the capacitor element 1 from moisture and dust, and the outer case 3 holds and protects the capacitor element 1, the connection terminal 5 and the filling resin 4, and these Thus, a resin-encapsulated film capacitor is configured.

(実施例1)上記実施の形態において、第二エポキシ樹脂組成物としてASTM/D−5045で規定される破壊靭性値が2.5以上であるエポキシ系樹脂を使用し、第一エポキシ樹脂組成物としてASTM/D−5045で規定される破壊靭性値が2.0以上であるエポキシ系樹脂を使用した樹脂封止型フィルムコンデンサである。   (Example 1) In the above-described embodiment, an epoxy resin having a fracture toughness value specified by ASTM / D-5045 of 2.5 or more is used as the second epoxy resin composition, and the first epoxy resin composition As a resin-encapsulated film capacitor using an epoxy resin having a fracture toughness value specified by ASTM / D-5045 of 2.0 or more.

(実施例2)第一エポキシ樹脂組成物に一般的な破壊靭性値を持つエポキシ系樹脂を使用した以外は、実施例1と同様に構成した樹脂封止型フィルムコンデンサである。   (Example 2) A resin-encapsulated film capacitor configured in the same manner as in Example 1 except that an epoxy resin having a general fracture toughness value is used for the first epoxy resin composition.

(従来例1)図2に示すように、1種類の一般的な破壊靭性値を持つエポキシ系樹脂のみで充填樹脂4層を形成する以外は、本発明の実施の形態と同様に構成した樹脂封止型フィルムコンデンサである。   (Conventional Example 1) As shown in FIG. 2, a resin configured in the same manner as in the embodiment of the present invention except that the four layers of the filling resin are formed only by an epoxy resin having one general fracture toughness value. It is a sealed film capacitor.

(従来例2)図3に示すように、コンデンサ素子1の周囲を覆うように封止樹脂層の内層部に配置された一般的な破壊靭性値を持つエポキシ系樹脂からなるエポキシ樹脂組成物4aと、封止樹脂層の最外層を覆うように配置されたウレタン樹脂組成物4cから封止樹脂層を構成する以外は、本発明の実施の形態と同様に構成した樹脂封止型フィルムコンデンサである。   (Conventional Example 2) As shown in FIG. 3, an epoxy resin composition 4a made of an epoxy-based resin having a general fracture toughness value disposed in the inner layer portion of the sealing resin layer so as to cover the periphery of the capacitor element 1. And a resin-encapsulated film capacitor configured in the same manner as in the embodiment of the present invention except that the encapsulating resin layer is composed of the urethane resin composition 4c arranged so as to cover the outermost layer of the encapsulating resin layer. is there.

上記の実施例1、2および従来例1、2の充填樹脂の構成、および、各エポキシ樹脂組成物の破壊靭性値を表1に示す。   Table 1 shows the structures of the filled resins of Examples 1 and 2 and Conventional Examples 1 and 2 and the fracture toughness values of the respective epoxy resin compositions.

そして、これらの充填樹脂構成で実施例1、2、および、従来例1、2の樹脂封止型フィルムコンデンサを作成し、−40℃から+120℃まで周囲温度を変化させることを繰り返す冷熱衝撃試験、および、周囲温度85℃、湿度85%における耐湿放置試験を行った結果を表2に示す。なお、冷熱衝撃試験については、1000サイクル後の樹脂クラック発生の大きさの結果、耐湿放置試験については、1000時間後、および、2000時間後の静電容量変化率を示す。   And the thermal shock test which repeats changing the ambient temperature from -40 degreeC to +120 degreeC by making the resin sealing type film capacitor of Examples 1 and 2 and conventional examples 1 and 2 with these filled resin configurations Table 2 shows the results of a moisture resistance test at an ambient temperature of 85 ° C. and a humidity of 85%. In addition, as for the thermal shock test, as a result of the magnitude | size of the resin crack generation | occurrence | production after 1000 cycles, as for a moisture-resistant leaving test, the electrostatic capacitance change rate after 1000 hours and 2000 hours is shown.

以上の結果より、実施例1、および、実施例2は、冷熱衝撃試験でのクラック発生の大きさが小さく、耐湿放置試験での静電容量変化率も小さいことが判る。これは、封止樹脂層の最外層に破壊靭性値が2.5以上の第二エポキシ樹脂組成物を用いたことで、クラック発生が抑制され、その結果、外装樹脂と接続端子の接触界面からの水分の浸入がないことと、エポキシ樹脂自身の耐湿性の高さの相乗効果で耐湿放置特性が向上したものである。   From the above results, it can be seen that in Example 1 and Example 2, the magnitude of crack generation in the thermal shock test is small, and the capacitance change rate in the moisture resistance test is also small. This is because crack generation is suppressed by using the second epoxy resin composition having a fracture toughness value of 2.5 or more for the outermost layer of the sealing resin layer, and as a result, from the contact interface between the exterior resin and the connection terminal. The moisture resistance leaving property is improved by the synergistic effect of no moisture permeation and the high moisture resistance of the epoxy resin itself.

また、封止樹脂層の内層部に破壊靭性値が2.0以上の第一エポキシ樹脂組成物を用いた実施例1では、破壊靭性値が1.54である通常のエポキシ樹脂を用いた実施例2に比較して、耐湿放置試験後の静電容量変化率が、更に小さいことが判る。これは、封止樹脂層内層部におけるクラックの発生も最小限に抑えられることにより、更に優れた耐湿性が得られたものである。   In Example 1 in which the first epoxy resin composition having a fracture toughness value of 2.0 or more was used for the inner layer portion of the sealing resin layer, an implementation using a normal epoxy resin having a fracture toughness value of 1.54 Compared to Example 2, it can be seen that the rate of change in capacitance after the moisture resistance test is smaller. This is because the occurrence of cracks in the inner layer portion of the sealing resin layer can be suppressed to a minimum, thereby further improving moisture resistance.

これに対して、従来例1では、冷熱衝撃試験でのクラック発生の大きさが大きく、耐湿放置試験での静電容量変化率も大きいことが判る。これは、破壊靭性値が1.54である通常のエポキシ樹脂充填樹脂と接続端子の接触界面に、冷熱衝撃試験により大きなクラックが発生し、この部分からコンデンサ素子部に水分が浸入することで、耐湿放置特性も悪化したものである。   On the other hand, it can be seen that in Conventional Example 1, the magnitude of crack generation in the thermal shock test is large, and the capacitance change rate in the moisture resistance test is also large. This is because a large crack is generated by a thermal shock test at a contact interface between a normal epoxy resin-filled resin having a fracture toughness value of 1.54 and a connection terminal, and moisture enters the capacitor element portion from this portion. The moisture resistance property is also deteriorated.

また、従来例2では、冷熱衝撃試験でのクラック発生は見られないものの、耐湿放置試験での静電容量変化率が大きいことが判る。これは、封止樹脂層の最外層に柔軟性に優れるウレタン樹脂を用いることでクラック発生は抑制されるものの、耐湿性に劣るウレタン樹脂部より侵入した水分が、封止樹脂層の内層部に配置された破壊靭性値が1.54である通常のエポキシ樹脂組成物に発生したクラックを通してコンデンサ素子内部まで侵入するためである。   Moreover, in the prior art example 2, although the crack generation | occurrence | production in a thermal shock test is not seen, it turns out that the electrostatic capacitance change rate in a moisture-resistant leaving test is large. Although the crack generation is suppressed by using a urethane resin having excellent flexibility for the outermost layer of the sealing resin layer, moisture that has entered from the urethane resin portion having inferior moisture resistance enters the inner layer portion of the sealing resin layer. This is because the inside of the capacitor element enters through a crack generated in a normal epoxy resin composition having a fracture toughness value of 1.54.

本発明の樹脂封止型コンデンサは、充填樹脂にクラックが発生するおそれが少なく、耐湿性に優れるという効果を有し、高電流に耐え得る性能と小型化また高い信頼性が要求される車載用などに用いられるコンデンサとして有用である。   The resin-encapsulated capacitor of the present invention has an effect that it is less likely to cause cracks in the filled resin and has excellent moisture resistance, and is required for performance that can withstand high current, downsizing, and high reliability. It is useful as a capacitor used in

1 コンデンサ素子
2 電極
3 外装ケース
4 充填樹脂
4a 第一エポキシ樹脂組成物
4b 第二エポキシ樹脂組成物
4c ウレタン樹脂組成物
5 接続端子
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Electrode 3 Exterior case 4 Filling resin 4a 1st epoxy resin composition 4b 2nd epoxy resin composition 4c Urethane resin composition 5 Connection terminal

Claims (2)

電極を有するコンデンサ素子と、前記コンデンサ素子の電極と接続する接続端子と、前記コンデンサ素子と前記接続端子の少なくとも一部とを収納する外装ケースとを備え、前記コンデンサ素子と接続端子とが、第一エポキシ樹脂組成物と第二エポキシ樹脂組成物とによって外装ケース内で封止されたものであって、硬化後のASTM D−5045に準拠して測定される破壊靭性値が2.5MPa・m1/2以上の第二エポキシ樹脂組成物が封止樹脂層の最外層を覆うように配置されたコンデンサ。 A capacitor element having an electrode; a connection terminal connected to the electrode of the capacitor element; and an outer case that houses at least a part of the capacitor element and the connection terminal. The epoxy resin composition and the second epoxy resin composition are sealed in an exterior case, and the fracture toughness value measured according to ASTM D-5045 after curing is 2.5 MPa · m. The capacitor | condenser arrange | positioned so that the 2nd or more 2nd epoxy resin composition may cover the outermost layer of a sealing resin layer. 前記第一エポキシ樹脂組成物の硬化後のASTM D−5045に準拠して測定される破壊靭性値が2.0MPa・m1/2以上である請求項1記載のコンデンサ。 The capacitor according to claim 1, wherein a fracture toughness value measured in accordance with ASTM D-5045 after curing of the first epoxy resin composition is 2.0 MPa · m 1/2 or more.
JP2009163296A 2009-07-10 2009-07-10 Capacitor Active JP5293964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163296A JP5293964B2 (en) 2009-07-10 2009-07-10 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163296A JP5293964B2 (en) 2009-07-10 2009-07-10 Capacitor

Publications (2)

Publication Number Publication Date
JP2011018814A JP2011018814A (en) 2011-01-27
JP5293964B2 true JP5293964B2 (en) 2013-09-18

Family

ID=43596376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163296A Active JP5293964B2 (en) 2009-07-10 2009-07-10 Capacitor

Country Status (1)

Country Link
JP (1) JP5293964B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665772A (en) * 2016-07-29 2018-02-06 钰邦电子(无锡)有限公司 Novel capacitor encapsulating structure
CN108666133A (en) * 2018-05-17 2018-10-16 东莞市威庆电子有限公司 A kind of PP plastic shells capacitance and its manufacture craft

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571795Y2 (en) * 1990-03-08 1998-05-18 株式会社村田製作所 Resin-sealed electronic components
JP3531652B2 (en) * 1994-04-22 2004-05-31 ニッセイ電機株式会社 Electronic component and method of manufacturing the same
JP4747550B2 (en) * 2004-10-18 2011-08-17 Dic株式会社 Epoxy resin, epoxy resin composition and cured product thereof
JP4747560B2 (en) * 2004-11-17 2011-08-17 パナソニック株式会社 Film capacitor and manufacturing method thereof
JP4765343B2 (en) * 2005-03-09 2011-09-07 パナソニック株式会社 Case mold type capacitor
JP4141487B2 (en) * 2006-04-25 2008-08-27 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP4829766B2 (en) * 2006-12-13 2011-12-07 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP4910684B2 (en) * 2006-12-25 2012-04-04 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials

Also Published As

Publication number Publication date
JP2011018814A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
WO2019065870A1 (en) Electrolytic capacitor and method for manufacturing same
JP2006253280A (en) Case-molding capacitor
JP2007019235A (en) Dry capacitor
JP5293964B2 (en) Capacitor
JP2015534731A (en) Ceramic part provided with protective layer and method of manufacturing the same
JP2000208367A (en) Solid electrolytic capacitor and manufacture of the same
JP3975993B2 (en) Case mold type film capacitor
JP5484268B2 (en) Capacitor
JP6715517B2 (en) Capacitor
JP4794521B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006253279A (en) Capacitor unit
JP2013247144A (en) Capacitor unit and gas insulation breaker
JP2011192788A (en) Metalized film capacitor, metalized film capacitor device, and method of manufacturing them
JP2010016161A (en) Metalized film capacitor
JP2007142454A (en) Case-mold film capacitor
US11935697B2 (en) Capacitor
JP2019140256A (en) Electrolytic capacitor and manufacturing method thereof
JP5489935B2 (en) Metallized film capacitors
JP5334783B2 (en) Metallized film capacitors
JP4715452B2 (en) Capacitor
JP2006344775A (en) Packaged solid-state electrolytic capacitor and manufacturing method thereof
JP7244032B2 (en) Film capacitor
JP2019140255A (en) Electrolytic capacitor and manufacturing method thereof
JP2007173351A (en) Metallized film capacitor
CN113488338B (en) Winding type capacitor packaging structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5293964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150