JP5293866B2 - Operation method of heat treatment equipment - Google Patents

Operation method of heat treatment equipment Download PDF

Info

Publication number
JP5293866B2
JP5293866B2 JP2012168445A JP2012168445A JP5293866B2 JP 5293866 B2 JP5293866 B2 JP 5293866B2 JP 2012168445 A JP2012168445 A JP 2012168445A JP 2012168445 A JP2012168445 A JP 2012168445A JP 5293866 B2 JP5293866 B2 JP 5293866B2
Authority
JP
Japan
Prior art keywords
gas
reaction vessel
film
germanium
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012168445A
Other languages
Japanese (ja)
Other versions
JP2012238885A (en
Inventor
純和 古澤
充弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2012168445A priority Critical patent/JP5293866B2/en
Publication of JP2012238885A publication Critical patent/JP2012238885A/en
Application granted granted Critical
Publication of JP5293866B2 publication Critical patent/JP5293866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a thermal treatment apparatus which restricts germanium contamination in a subsequent deposition process when, after a germanium-containing thin film is deposited, a thin film deposition process where germanium could be a contaminant follows. <P>SOLUTION: An operation method for a thermal treatment apparatus 1 where a workpiece W, while being held by a holding jig 25, is carried into a reaction vessel 2 before being subjected to thermal treatment comprises the steps of: heating the inside of the reaction vessel 2 while also supplying process gas thereinto and depositing a germanium-containing thin film on the workpiece W; removing the thin film deposited inside the reaction vessel 2 by supplying cleaning gas thereto when no workpieces W have been carried thereinto; supplying oxygen and hydrogen gases to the inside of the reaction vessel 2 and also removing residual germanium from inside the reaction vessel 2 by gases activated by heating; carrying a workpiece W into the reaction vessel 2, and supplying process gas thereto while also heating to deposit on the workpiece a thin film where germanium becomes a contaminant. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は、被処理体を保持具に保持させて、その周囲に加熱手段が設けられた反応容器内に搬入して熱処理を行う熱処理装置を運転する方法であって、ゲルマニウム汚染を避けるための技術分野に関する。   The present invention is a method of operating a heat treatment apparatus for holding a target object in a holder and carrying it in a reaction vessel provided with a heating means around it to perform a heat treatment, in order to avoid germanium contamination. Technical field.

半導体ウエハに対して多数枚を一括して熱処理する縦型熱処理装置にて行われるプロセスの一つとして、シリコンゲルマニウム膜を成膜する手法が知られている(特許文献1)。このシリコンゲルマニウム膜の用途としては、ゲルマニウムが活性化率の高いドーパントであり、バイアス電圧を印加した際に空乏化しにくい利点があることからトランジスタのゲート絶縁膜として用いることが検討されており、あるいはダイオードなど他のデバイスに使用することも検討されている。その成膜プロセスとしては、シラン系のガスとモノゲルマンガスとの混合ガスを反応管内に供給して所定の温度に加熱することにより行われる。   As one of processes performed in a vertical heat treatment apparatus that heat-treats a large number of semiconductor wafers at once, a technique of forming a silicon germanium film is known (Patent Document 1). As a use of this silicon germanium film, germanium is a dopant with a high activation rate, and since it has an advantage that it is difficult to be depleted when a bias voltage is applied, it is considered to be used as a gate insulating film of a transistor, or It is also being considered for use in other devices such as diodes. The film forming process is performed by supplying a mixed gas of silane-based gas and monogermane gas into the reaction tube and heating it to a predetermined temperature.

一方半導体製造工場では、一つの縦型熱処理装置を用いて種々のプロセスが行われ、あるロットのウエハに対してシリコンゲルマニウム膜を成膜した後、他のロットのウエハに対して他の薄膜、例えばシリコン膜を成膜する場合がある。そして多くの場合、後から行われる熱処理により得ようとする例えばシリコン膜にとって、先の熱処理における処理ガス中のゲルマニウムは汚染物質となり、シリコン膜中にゲルマニウムが含まれることで得ようとするデバイスの特性が低下する。   On the other hand, in a semiconductor manufacturing factory, various processes are performed using one vertical heat treatment apparatus. After a silicon germanium film is formed on a wafer of a lot, another thin film is formed on a wafer of another lot. For example, a silicon film may be formed. In many cases, for example, a silicon film to be obtained by a heat treatment performed later, germanium in the processing gas in the previous heat treatment becomes a contaminant, and the germanium is contained in the silicon film to obtain the device. Characteristics are degraded.

シリコン膜の成膜を例にとると、シリコン膜の成膜処理を実施する前にいわゆるプリコート処理を行って反応容器などの表面をマスクすることにより、反応容器などに先に付着したシリコンゲルマニウム膜からゲルマニウムが処理雰囲気に飛散することが防止される。しかしながらシラン系のガスによりポリシリコン膜を成膜しようとする場合、シリコンゲルマニウムの形成される温度がポリシリコン膜の成膜温度よりも低いことから、例えば反応容器下方の炉口付近など、加熱手段から遠く、温度が低くなってしまう場所では、シリコンゲルマニウムが形成されてもポリシリコン膜が形成されず、シリコンゲルマニウムを十分にマスクできない場合がある。   Taking a silicon film as an example, a silicon germanium film previously attached to a reaction vessel or the like is formed by performing a so-called pre-coating process and masking the surface of the reaction vessel or the like before the silicon film is formed. Thus, germanium is prevented from being scattered in the processing atmosphere. However, when a polysilicon film is to be formed using a silane-based gas, the temperature at which silicon germanium is formed is lower than the temperature at which the polysilicon film is formed. In a place far from the temperature where the temperature is lowered, even if silicon germanium is formed, the polysilicon film is not formed, and the silicon germanium may not be sufficiently masked.

一方、反応容器内をクリーニングするために一般にハロゲンを含むガス例えばフッ素ガスを反応容器内に供給することが行われているが、シリコンゲルマニウム膜の場合には例えばフッ素ガスによりエッチングを行っても反応容器の内壁やウエハボートの表面部にゲルマニウムが残留してしまう。なおクリーニングをしてからプリコート処理を行う場合にも炉口付近など温度が低く、ポリシリコン膜が形成されにくい領域ではシリコンゲルマニウムを十分にマスクすることができない。また特許文献2には、クリーニングガスにより反応容器内に付着した付着膜を除去し、続いて水素ガス及び酸素ガスのラジカルを供給して反応容器の材質である石英中に含まれている銅などの金属を除去することが記載されているが、シリコンゲルマニウム膜の成膜に用いた熱処理装置により他の成膜処理を行う場合の問題については言及されていない。   On the other hand, in order to clean the inside of the reaction vessel, a gas containing halogen, such as fluorine gas, is generally supplied into the reaction vessel. However, in the case of a silicon germanium film, the reaction is performed even if etching is performed with, for example, fluorine gas. Germanium remains on the inner wall of the container and the surface of the wafer boat. Even when the pre-coating process is performed after cleaning, silicon germanium cannot be sufficiently masked in a region where the temperature is low such as the vicinity of the furnace opening and the polysilicon film is difficult to be formed. Further, in Patent Document 2, the adhesion film adhering to the inside of the reaction vessel is removed by a cleaning gas, and then hydrogen contained in quartz which is a material of the reaction vessel by supplying radicals of hydrogen gas and oxygen gas. However, there is no mention of a problem in the case where another film forming process is performed by the heat treatment apparatus used for forming the silicon germanium film.

特開2003−123532号公報:請求項1、図1Japanese Patent Laid-Open No. 2003-123532: Claim 1, FIG. 特開2008−283126号公報:第0030段落〜第0031段落、図1、図2JP 2008-283126 A: Paragraphs 0030 to 0031, FIGS. 1 and 2

本発明はこのような背景に基づいてなされたものであり、ゲルマニウムを含む薄膜の成膜処理をした後に、ゲルマニウムが汚染物質となる薄膜を成膜処理する場合に、後の成膜処理におけるゲルマニウム汚染を抑えることができる熱処理装置の運転方法を提供することにある。   The present invention has been made on the basis of such a background, and in the case where a thin film containing germanium is formed after the thin film containing germanium is formed, the germanium in the subsequent film forming process is formed. An object of the present invention is to provide a method for operating a heat treatment apparatus that can suppress contamination.

本発明に係る熱処理装置の運転方法は、被処理体を保持具に保持させて、その周囲に加熱手段が設けられた反応容器内に搬入して熱処理を行う熱処理装置を運転する方法において、
前記反応容器内に被処理体を搬入して処理ガスを供給すると共に当該反応容器内を前記加熱手段により加熱して、被処理体にゲルマニウムを含む薄膜を成膜する工程と、
次いで反応容器内に被処理体が搬入されていない状態でハロゲンを含むクリーニングガスを当該反応容器内に供給して、前記工程にて前記反応容器内に成膜された薄膜を除去する工程と、
その後、酸素ガス、オゾンガス及び窒素と酸素との化合物ガスから選択される酸化ガスと、水素ガスとを前記反応容器内に供給すると共に当該反応容器内を加熱してこれらガスを活性化し、この活性化されたガスにより反応容器内に存在するゲルマニウムを除去する工程と、を含むことを特徴とする。
The operation method of the heat treatment apparatus according to the present invention is a method of operating a heat treatment apparatus in which a workpiece is held in a holder and carried into a reaction vessel provided with a heating means around it to perform heat treatment.
A process of bringing a target object into the reaction container and supplying a processing gas and heating the inside of the reaction container with the heating means to form a thin film containing germanium on the target object;
Next, supplying a cleaning gas containing halogen in the reaction container in a state where the object to be processed is not carried into the reaction container, and removing the thin film formed in the reaction container in the process;
Thereafter, an oxidizing gas selected from oxygen gas, ozone gas and a compound gas of nitrogen and oxygen, and hydrogen gas are supplied into the reaction vessel, and the reaction vessel is heated to activate these gases. characterized in that it comprises a step of removing the germanium present in the reduction and reaction vessel by gas.

前記熱処理装置の運転方法は、以下に列挙する特徴を備えていてもよい。
(a)前記ゲルマニウムを含む膜はシリコンゲルマニウム膜であること
The operating method of the heat treatment apparatus may include the characteristics listed below.
(A) The film containing germanium is a silicon germanium film .

本発明によれば、ゲルマニウムを含む薄膜の成膜処理をした後に、ハロゲンを含むクリーニングガスにより前記薄膜を除去し、次いで酸素ガス、オゾンガス及び窒素と酸素との化合物ガスから選択される酸化ガスと、水素ガスとを活性化し、この活性化されたガスにより反応容器内に存在するゲルマニウムを除去するようにしているので、ゲルマニウム汚染の少ない反応容器を得ることができる。 According to the present invention, after the thin film containing germanium is formed, the thin film is removed with a cleaning gas containing halogen, and then an oxidizing gas selected from oxygen gas, ozone gas, and a compound gas of nitrogen and oxygen, , activates the hydrogen gas, since followed by removal of the germanium present in the reaction vessel by the activated gas can be obtained with less reaction vessel gain Rumaniumu contamination.

本実施の形態に係る縦型熱処理装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the vertical heat processing apparatus which concerns on this Embodiment. 前記縦型熱処理装置の運転方法を示す第1の説明図である。It is the 1st explanatory view showing the operating method of the above-mentioned vertical heat treatment apparatus. 前記縦型熱処理装置の運転方法を示す第2の説明図である。It is the 2nd explanatory view showing the operating method of the above-mentioned vertical heat treatment apparatus. 本発明の運転方法を適用してゲルマニウムを除去した結果を示す説明図である。It is explanatory drawing which shows the result of having applied the operating method of this invention, and removing germanium.

以下、本発明に係る熱処理装置の運転方法をシリコンゲルマニウム膜(SiGe膜)とシリコン膜(Si膜)膜との双方を成膜可能な縦型熱処理装置に適用した実施の形態について図1を用いて説明する。縦型熱処理装置1は、例えばCVD(Chemical Vapor Deposition)法によりSiGe膜またはSi膜の成膜を行うことが可能な成膜装置として構成されている。   Hereinafter, an embodiment in which the operation method of the heat treatment apparatus according to the present invention is applied to a vertical heat treatment apparatus capable of forming both a silicon germanium film (SiGe film) and a silicon film (Si film) will be described with reference to FIG. I will explain. The vertical heat treatment apparatus 1 is configured as a film forming apparatus capable of forming a SiGe film or a Si film by, for example, a CVD (Chemical Vapor Deposition) method.

図1中2は、例えば石英により縦長の円筒状に形成された反応容器であり、この反応容器2の下端は、炉口として開口した開口部21となっていて、開口部21の周縁部にはフランジ22が反応容器2と一体に形成されている。反応容器2の下方には、フランジ22の下面に当接して開口部21を気密に閉塞する、例えば石英製の蓋体23が設けられている。蓋体23は、図示しないボートエレベータにより上下方向に昇降させることが可能となっており、これにより前記開口部21を開閉することができる。   In FIG. 1, reference numeral 2 denotes a reaction vessel formed of, for example, quartz in a vertically long cylindrical shape, and the lower end of the reaction vessel 2 is an opening portion 21 that is opened as a furnace port. The flange 22 is formed integrally with the reaction vessel 2. Below the reaction vessel 2 is provided a lid 23 made of, for example, quartz that abuts the lower surface of the flange 22 and hermetically closes the opening 21. The lid body 23 can be moved up and down by a boat elevator (not shown), whereby the opening 21 can be opened and closed.

蓋体23には、その中央部を貫通する回転軸24が設けられており、回転軸24の上端部には保持具であるウエハボート25が搭載されている。ウエハボート25は、3本以上例えば4本の支柱26を備えており、前記支柱26には、複数枚例えば125枚の被処理体であるウエハWを棚状に保持できるように多数の溝(スロット)が形成されている。但し、本例では125枚のウエハWの保持領域のうち、上下両端部については複数枚のダミーウエハが保持され、その間の領域に製品ウエハWが保持されることになる。回転軸24の下端には、当該回転軸24を回転させるための駆動部をなすモータMが設けられており、モータMは回転軸24を介してウエハボート25全体を回転させることができる。また蓋体23の上には前記回転軸24を囲むように保温ユニット27が設けられている。   The lid body 23 is provided with a rotating shaft 24 penetrating through the central portion thereof, and a wafer boat 25 as a holder is mounted on the upper end portion of the rotating shaft 24. The wafer boat 25 is provided with three or more, for example, four support columns 26. A plurality of grooves (for example, 125 wafers W) to be processed can be held in the support column 26 in a shelf shape. Slot) is formed. However, in this example, among the 125 wafer W holding regions, a plurality of dummy wafers are held at the upper and lower ends, and the product wafer W is held in the region between them. A motor M that forms a drive unit for rotating the rotary shaft 24 is provided at the lower end of the rotary shaft 24, and the motor M can rotate the entire wafer boat 25 via the rotary shaft 24. In addition, a heat retaining unit 27 is provided on the lid 23 so as to surround the rotating shaft 24.

反応容器2の上方には、当該反応容器2内を排気するための排気口4が形成されている。この排気口4の下流には、例えば圧力調節弁などから構成される圧力制御機構24を備えた排気管43が設けられており、この排気管43には真空ポンプ41が接続されている。真空ポンプ41は反応容器2内を所望の真空度に減圧排気する役割を果たす。反応容器2の周囲には、反応容器2内を加熱するための加熱手段であるヒーター31を備えた加熱炉3が設けられている。ヒーター31としては、カーボンワイヤヒーターが採用されており、これによりコンタミネーションの少ない高清浄なプロセスが実現できると共に、急速昇降温が実現できる。   An exhaust port 4 for exhausting the inside of the reaction vessel 2 is formed above the reaction vessel 2. An exhaust pipe 43 provided with a pressure control mechanism 24 composed of, for example, a pressure control valve is provided downstream of the exhaust port 4, and a vacuum pump 41 is connected to the exhaust pipe 43. The vacuum pump 41 serves to evacuate the reaction vessel 2 to a desired degree of vacuum. Around the reaction vessel 2, a heating furnace 3 provided with a heater 31 as a heating means for heating the inside of the reaction vessel 2 is provided. As the heater 31, a carbon wire heater is employed, thereby realizing a highly clean process with less contamination and rapid temperature rise / fall.

反応容器2の下部のフランジ22には、ウエハWに処理ガスを供給するための3本のL字型インジェクター(第1のインジェクター51〜第3のインジェクター53)が挿入、固定されている。ここで図1においては、図示の便宜上、これら3本のインジェクター51〜53がフランジ22の同じ位置から挿入されているように示してあるが、実際にはこれらのインジェクター51〜53はメンテナンス性を考慮してある程度まとまった位置に、例えばフランジ22の周方向に沿って等間隔に配置されている。   Three L-shaped injectors (first injector 51 to third injector 53) for supplying a processing gas to the wafer W are inserted and fixed to the flange 22 at the bottom of the reaction vessel 2. Here, in FIG. 1, for convenience of illustration, these three injectors 51 to 53 are shown as being inserted from the same position of the flange 22, but actually these injectors 51 to 53 are easy to maintain. For example, they are arranged at equal intervals along the circumferential direction of the flange 22 at a certain position in consideration.

3本のインジェクター51〜53は、反応容器2内の異なる高さ位置に処理ガスを供給することができるように、各々異なる長さの細管から構成されており、その先端部(上端部)がガス供給孔として開口している。一番低い第1のインジェクター51の先端部は例えばウエハボート25におけるウエハWの保持領域の下端部付近に位置し、真ん中の第2のインジェクター52の先端部は例えば前記ウエハWの保持領域の中段よりも少し低い所に位置しており、また一番高い第3のインジェクター53の先端部は例えば前記ウエハWの保持領域の最上段と第2のインジェクター52の先端部との間に位置している。ここで各インジェクター51〜53の先端部の配置は上述のレイアウトに限定されるものではなく、実験結果などに基づいて適切な位置に設定することができる。   Each of the three injectors 51 to 53 is composed of thin tubes having different lengths so that the processing gas can be supplied to different height positions in the reaction vessel 2, and its tip end (upper end) is formed. It opens as a gas supply hole. The tip of the lowest first injector 51 is positioned, for example, near the lower end of the wafer W holding region in the wafer boat 25, and the tip of the second injector 52 in the middle is, for example, the middle stage of the wafer W holding region. The tip of the highest third injector 53 is located, for example, between the uppermost stage of the holding region of the wafer W and the tip of the second injector 52. Yes. Here, arrangement | positioning of the front-end | tip part of each injector 51-53 is not limited to the above-mentioned layout, It can set to an appropriate position based on an experimental result.

各インジェクター51〜53の基端側は、フランジ22の外に伸び出して各々処理ガス供給管611〜613と接続されており、これら処理ガス供給管611〜613にはSiGe膜及びSi膜のシリコン原料となるシラン系の処理ガス、例えばモノシランガス(SiHガス)を供給するためのシランガス供給部62が、各々バルブV11〜V13やマスフローコントローラM11〜M13を介して接続されている。またさらに処理ガス供給管611〜613には、SiGe膜のゲルマニウム原料となるゲルマン系の処理ガス、例えばモノゲルマンガス(GeHガス)を供給するためのゲルマンガス供給部63が、各々バルブV21〜V23やマスフローコントローラM21〜M23を介して接続されている。かかる構成により、各インジェクター51〜53から供給される混合ガスは、各々独立してモノシランガス及びモノゲルマンガスの流量を調整することができる。ここで本例では、ゲルマンガス供給部63からは例えば水素にて10%に希釈されたモノゲルマンガスが供給される。 The base end sides of the injectors 51 to 53 extend out of the flange 22 and are connected to the processing gas supply pipes 611 to 613, respectively. The processing gas supply pipes 611 to 613 are connected to the SiGe film and silicon of the Si film. Silane gas supply units 62 for supplying a silane-based processing gas as a raw material, such as monosilane gas (SiH 4 gas), are connected via valves V11 to V13 and mass flow controllers M11 to M13, respectively. Further, the processing gas supply pipes 611 to 613 are provided with germane gas supply parts 63 for supplying germane processing gas, which is a germanium raw material of the SiGe film, for example, monogermane gas (GeH 4 gas), respectively. They are connected via V23 and mass flow controllers M21 to M23. With this configuration, the mixed gas supplied from each of the injectors 51 to 53 can independently adjust the flow rates of the monosilane gas and the monogerman gas. Here, in this example, the germane gas diluted to 10% with, for example, hydrogen is supplied from the germane gas supply unit 63.

さらに反応容器2のフランジ22には、成膜の際に反応容器2の内部に付着したSiGeやSiなどの付着物(反応生成物など)を除去(クリーニング)するためのクリーニングガスを反応容器2内に供給するクリーニングガスインジェクター54が設けられている。クリーニングガスインジェクター54は例えばL字型に形成され、その先端は、ウエハボート25におけるウエハWの保持領域の下端部付近まで伸び出して開口している。また当該クリーニングガスインジェクター54の後端はフランジ22の外に伸び出してクリーニングガス供給管71に接続されている。クリーニングガス供給管71には、バルブV5やマスフローコントローラM5を介してクリーニングガス供給部74が接続されており、当該部74からは、例えばハロゲン系の酸性ガスである、フッ素(F)とフッ化水素(HF)とを含むガスや、フッ素と水素(H)とを含むガスを窒素(N)で希釈したものなどを供給することができる。ここで図1においては、クリーニングガス供給部74には図示の便宜上「F」とだけ記してある。また本例ではクリーニングガスとしてフッ素、水素及び窒素の混合ガスを用いる場合について説明する。 Further, a cleaning gas for removing (cleaning) deposits (reaction products, etc.) such as SiGe and Si adhering to the inside of the reaction vessel 2 during film formation is applied to the flange 22 of the reaction vessel 2. A cleaning gas injector 54 is provided to be supplied inside. The cleaning gas injector 54 is formed, for example, in an L shape, and its tip extends to the vicinity of the lower end of the wafer W holding region in the wafer boat 25 and opens. The rear end of the cleaning gas injector 54 extends out of the flange 22 and is connected to the cleaning gas supply pipe 71. A cleaning gas supply unit 74 is connected to the cleaning gas supply pipe 71 via a valve V5 and a mass flow controller M5. From the unit 74, for example, fluorine (F 2 ), which is a halogen-based acidic gas, and fluorine is used. A gas containing hydrogen fluoride (HF) or a gas containing fluorine and hydrogen (H 2 ) diluted with nitrogen (N 2 ) can be supplied. Here, in FIG. 1, only “F 2 ” is shown in the cleaning gas supply unit 74 for convenience of illustration. In this example, a case where a mixed gas of fluorine, hydrogen and nitrogen is used as the cleaning gas will be described.

ここで本実施の形態に係る縦型熱処理装置1は、例えばSiGe膜を成膜する工程を含む熱処理を終え、次にGeを含まない膜、例えばSi膜の成膜を行う工程を含む熱処理を実行する際に、背景技術において述べたようにFガスなどのクリーニングガスでは十分に除去することがないゲルマニウム(Ge)を反応容器2内からパージするために、反応容器2内にパージガスを供給する機構を備えている。 Here, the vertical heat treatment apparatus 1 according to the present embodiment finishes the heat treatment including a step of forming a SiGe film, for example, and then performs a heat treatment including a step of forming a film not containing Ge, for example, a Si film. When performing, in order to purge germanium (Ge) which is not sufficiently removed by a cleaning gas such as F 2 gas as described in the background art, a purge gas is supplied into the reaction vessel 2 It has a mechanism to do.

即ち、例えば既述のクリーニングガスインジェクター54に連なるクリーニングガス供給管71には、バルブV3、V4やマスフローコントローラM3、M4を介してパージガスである水素(H)ガス及び酸化ガスである亜酸化窒素(NO)ガスを供給するための水素供給部72並びに酸化ガス供給部73が接続されている。クリーニングガス供給管71へのこれらのパージガスの導入部には、例えばガス混合部710が設けられており、パージガスは十分に混合された状態で反応容器2内に供給される。本例ではクリーニングガスと共通の配管71やインジェクター54を用いてパージガスを反応容器2内に供給する構成としたが、パージガス専用の供給配管やインジェクターを設けてもよいことは勿論である。 That is, for example, the cleaning gas supply pipe 71 connected to the above-described cleaning gas injector 54 is supplied with hydrogen (H 2 ) gas as a purge gas and nitrous oxide as an oxidizing gas via valves V3 and V4 and mass flow controllers M3 and M4. A hydrogen supply unit 72 and an oxidizing gas supply unit 73 for supplying (N 2 O) gas are connected. For example, a gas mixing unit 710 is provided at the introduction portion of these purge gases into the cleaning gas supply pipe 71, and the purge gas is supplied into the reaction vessel 2 in a sufficiently mixed state. In this example, the purge gas is supplied into the reaction vessel 2 by using the pipe 71 and the injector 54 common to the cleaning gas. However, it is needless to say that a supply pipe or injector dedicated to the purge gas may be provided.

またさらに縦型熱処理装置1は、既述のヒーター31や圧力制御部42及び各ガス供給部62、63、72、73、74の動作を制御する制御部8を備えている。制御部8は例えば図示しないCPUとプログラムとを備えたコンピュータからなり、プログラムには当該縦型熱処理装置1によってウエハWへの成膜を行ったり、反応容器2内のクリーニングやGeのパージを実行したりするのに必要な動作、例えばヒーター31の出力コントロールや反応容器2内の圧力調整及び反応容器2への処理ガスやクリーニングガス、パージガスの供給量調整に係る制御等についてのステップ(命令)群が組まれている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリカード等の記憶媒体に格納され、そこからコンピュータにインストールされる。   The vertical heat treatment apparatus 1 further includes a control unit 8 that controls operations of the heater 31, the pressure control unit 42, and the gas supply units 62, 63, 72, 73, and 74 described above. The control unit 8 includes a computer having a CPU and a program (not shown), for example. The program performs film formation on the wafer W by the vertical heat treatment apparatus 1 and performs cleaning of the reaction vessel 2 and purge of Ge. Steps (commands) for operations necessary to perform, for example, control related to output control of the heater 31, pressure adjustment in the reaction vessel 2, and adjustment of supply amounts of processing gas, cleaning gas, and purge gas to the reaction vessel 2 A group is formed. This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.

次に上述の縦型熱処理装置1を用いてウエハWに対してSiGe膜の成膜を行う動作について説明する。
まず、基板であるウエハWを所定枚数ウエハボート25に棚状に載置して、図示しないボートエレベータを上昇させることにより、ウエハWを反応容器2内に搬入する。
Next, an operation for forming a SiGe film on the wafer W using the vertical heat treatment apparatus 1 described above will be described.
First, a predetermined number of wafers W, which are substrates, are placed on the wafer boat 25 in a shelf shape, and a boat elevator (not shown) is raised to carry the wafers W into the reaction vessel 2.

ウエハボート25の搬入を終え、反応容器2の下端の開口部21が蓋体23により塞がれた後、反応容器2内は排気口4を通じて真空ポンプ41により真空排気され、反応容器2内の圧力は例えば10Pa〜130Paの減圧雰囲気に調整される。また、ヒーター31により反応容器2内は例えば350°C〜650°Cの範囲で設定されたプロセス温度に加熱される。   After the loading of the wafer boat 25 is completed and the opening 21 at the lower end of the reaction vessel 2 is closed by the lid 23, the reaction vessel 2 is evacuated by the vacuum pump 41 through the exhaust port 4, The pressure is adjusted to a reduced pressure atmosphere of 10 Pa to 130 Pa, for example. Further, the inside of the reaction vessel 2 is heated by the heater 31 to a process temperature set in a range of 350 ° C. to 650 ° C., for example.

昇温を終えたら、シランガス供給部62及びゲルマンガス供給部63からモノシランガス及びモノゲルマンガスを供給し、3本のインジェクター51〜53を介して反応容器2内にこれらの混合ガスである処理ガスを供給する(図2(a))。処理ガスであるモノシランガスとモノゲルマンガスとの混合比は各インジェクター51〜53でそれぞれ異なっており、例えばモノシランガスとモノゲルマンガスとの混合比は第1のインジェクター51では1200sccm:600sccm、第2のインジェクター52では300sccm:190sccm、第3のインジェクター53では300sccm:220sccmに調整される。   When the temperature rise is finished, monosilane gas and monogermane gas are supplied from the silane gas supply unit 62 and the germane gas supply unit 63, and the processing gas which is a mixed gas of these is supplied into the reaction vessel 2 through the three injectors 51 to 53. Supply (FIG. 2A). The mixing ratio of monosilane gas and monogermane gas, which is a processing gas, is different in each of the injectors 51 to 53. For example, the mixing ratio of monosilane gas and monogermane gas is 1200 sccm: 600 sccm in the first injector 51, and the second injector. 52 is adjusted to 300 sccm: 190 sccm, and the third injector 53 is adjusted to 300 sccm: 220 sccm.

こうして反応容器2内に供給されたモノシランガス及びモノゲルマンガスは熱分解し、ウエハWにはSiGe膜(シリコンゲルマニウム膜)が成膜される。ここでモノゲルマンは活性化エネルギーが低く分解反応性が大きいため、モノゲルマンを単独で反応容器2内の底部から供給すると、上段側にてモノゲルマンが不足してしまう。しかし本例では互いに高さの異なる3本のインジェクター51〜53を設けているので、底部側に設けた第1のインジェクター51から供給したモノゲルマンの不足分が上段側のインジェクター52、53により補給される。   The monosilane gas and the monogermane gas thus supplied into the reaction vessel 2 are thermally decomposed, and a SiGe film (silicon germanium film) is formed on the wafer W. Here, since monogermane has low activation energy and high decomposition reactivity, when monogermane is supplied alone from the bottom of the reaction vessel 2, monogermane is insufficient on the upper side. However, since the three injectors 51 to 53 having different heights are provided in this example, the shortage of monogerman supplied from the first injector 51 provided on the bottom side is replenished by the upper injectors 52 and 53. Is done.

また、モノシランガス、モノゲルマンガスを予め混合した状態で供給しているため、モノゲルマンに比べ活性化エネルギーが小さく分解反応性の低いモノシランによりモノゲルマンが希釈され、ウエハボート25の下段側でのモノゲルマンの過剰な分解が抑制されて、ウエハボート25の上下方向におけるウエハW面間の膜厚差が少なく均一なSiGe膜を成膜することができる。また成膜の期間中、ウエハボート25はモータMにより回転しており、各ウエハW面内においても均一なSiGe膜を成膜することができる。
こうして、所定時間成膜を行ったら、処理ガスの供給並びに真空排気を停止し、反応容器2内を例えばNガスなどの不活性ガスで置換した後、反応容器2内からウエハボート25を搬出する。
In addition, since monosilane gas and monogermane gas are supplied in a premixed state, the monogermane is diluted with monosilane having a lower activation energy and lower decomposition reactivity than monogermane, and the monosilane on the lower side of the wafer boat 25 is diluted. Excessive decomposition of germane is suppressed, and a uniform SiGe film can be formed with little difference in film thickness between the wafer W surfaces in the vertical direction of the wafer boat 25. Further, during the film formation period, the wafer boat 25 is rotated by the motor M, and a uniform SiGe film can be formed even within each wafer W surface.
Thus, after the film formation for a predetermined time, the supply of the processing gas and the evacuation are stopped, the inside of the reaction vessel 2 is replaced with an inert gas such as N 2 gas, and then the wafer boat 25 is unloaded from the reaction vessel 2. To do.

以上に説明した動作により実行されるSiGe膜の成膜においては、反応容器2やウエハボート25など処理ガスが供給される雰囲気に晒される各種部材の表面にSiGeなどの反応生成物が付着し、成膜を繰り返すうちにこうした反応生成物が次第に堆積していくことから、Fガスによる反応容器2内のクリーニングが定期的に行われる。また成膜する膜をSiGe膜から例えばSi膜などの別の膜種に切り替える時などにおいて、切り替え後の膜中へのGeのコンタミネーションを防止する目的などから、Fガスによるクリーニングを行った後、さらにGeのパージを行ってから次の成膜を開始する運転が行われる。以下、これらのクリーニング並びにGeのパージについて説明する。 In the film formation of the SiGe film executed by the operation described above, reaction products such as SiGe adhere to the surfaces of various members exposed to the atmosphere supplied with the processing gas, such as the reaction vessel 2 and the wafer boat 25, Since such reaction products gradually accumulate as the film formation is repeated, cleaning of the reaction container 2 with F 2 gas is periodically performed. Also, when the film to be formed is switched from a SiGe film to another film type such as a Si film, cleaning with F 2 gas was performed for the purpose of preventing Ge contamination in the film after switching. Thereafter, after Ge is further purged, an operation for starting the next film formation is performed. The cleaning and Ge purge will be described below.

SiGe膜の成膜を終え、例えばウエハWに成膜する膜種をSi膜に切り替える場合には、次の成膜を始める前にFガスによるクリーニングを行う。このクリーニングにおいては、Nガスでパージされた反応容器2内に、ウエハWを保持していない状態のウエハボート25を搬入して蓋体23を閉じ、反応容器2内を例えば13300Paの減圧雰囲気とすると共に、反応容器2内の温度を例えば400℃程度まで昇温する。そしてクリーニングガス供給部74より反応容器2内にFガスを例えば12000sccm供給する。ここで既述のように本例に係るFガスは例えばフッ素(F)と水素(H)と窒素(N)との混合気体であり、各ガスは例えばFが2000sccm、Hが2000sccm、Nが8000sccmで供給される。 When the film formation of the SiGe film is finished, for example, when the film type to be formed on the wafer W is switched to the Si film, cleaning with F 2 gas is performed before the next film formation is started. In this cleaning, the wafer boat 25 in a state where the wafer W is not held is carried into the reaction vessel 2 purged with N 2 gas, the lid body 23 is closed, and the inside of the reaction vessel 2 is reduced in an atmosphere of, for example, 13300 Pa. In addition, the temperature in the reaction vessel 2 is raised to, for example, about 400 ° C. Then, for example, 12000 sccm of F 2 gas is supplied into the reaction container 2 from the cleaning gas supply unit 74. Here, as described above, the F 2 gas according to this example is, for example, a mixed gas of fluorine (F 2 ), hydrogen (H 2 ), and nitrogen (N 2 ), and each gas has, for example, F 2 of 2000 sccm, H 2 is supplied at 2000 sccm and N 2 is supplied at 8000 sccm.

加熱された反応容器2内にFガスが供給されると、当該ガス中のフッ素が活性化され、この活性化されたフッ素により反応容器2の内面やウエハボート25など、反応容器2内の各種部材の表面に堆積しているSiGeがエッチングされ、これら部材表面に付着した付着物(反応生成物など)を除去することができる(図2(b))。 When F 2 gas is supplied into the heated reaction vessel 2, fluorine in the gas is activated, and the activated fluorine causes the inside of the reaction vessel 2, such as the inner surface of the reaction vessel 2 or the wafer boat 25, to be activated. The SiGe deposited on the surfaces of the various members is etched, and deposits (such as reaction products) adhering to the surfaces of these members can be removed (FIG. 2B).

こうして所定時間クリーニングを実行したら、反応容器2内に供給するガスをFガスからNガスに切り替えてクリーニングを終え、反応容器2内を例えば46.55Paまで減圧すると共に、反応容器2内の温度を例えば750℃〜950℃の範囲の例えば850℃まで昇温する。そして、水素供給部72及び酸化ガス供給部73から反応容器2内に、Hガスを例えば1700sccm、NOガスを例えば2000sccm供給することにより、反応容器2内の各種部材上に残存しているGeをパージする(図2(c))。 When cleaning is performed for a predetermined time in this way, the gas supplied into the reaction vessel 2 is switched from F 2 gas to N 2 gas to finish the cleaning, the inside of the reaction vessel 2 is decompressed to 46.55 Pa, for example, and the inside of the reaction vessel 2 The temperature is raised to, for example, 850 ° C. in the range of 750 ° C. to 950 ° C., for example. Then, H 2 gas, for example, 1700 sccm and N 2 O gas, for example, 2000 sccm are supplied into the reaction vessel 2 from the hydrogen supply unit 72 and the oxidizing gas supply unit 73 to remain on various members in the reaction vessel 2. The purged Ge is purged (FIG. 2C).

ガスやNOガスを既述の温度範囲に加熱すると、これらのガスが活性化して水素ラジカルや酸素ラジカルなどの活性種が生成され、これらのラジカルが反応容器2内の各種部材上に残存しているGeと反応して当該Geをパージガス内に取り込み、Geを含んだパージガスが反応容器2外へと排出(パージアウト)することができる。 When H 2 gas or N 2 O gas is heated to the above-described temperature range, these gases are activated to generate active species such as hydrogen radicals and oxygen radicals, and these radicals are generated on various members in the reaction vessel 2. It reacts with the remaining Ge and takes in the Ge into the purge gas, and the purge gas containing Ge can be discharged out of the reaction vessel 2 (purge out).

Geのパージを終えたらパージガスの供給を止め、ウエハボート25にウエハWを載置していない状態のまま、反応容器2内の圧力及び温度をSi膜の成膜時の条件に調整し、図3(a)に示すように反応容器2内にモノシランガスを供給して、反応容器2内の部材の表面を、ポリシリコン膜でプリコートする。Fクリーニングやラジカルによるパージ後において、各種部材表面に微量に金属分などが残存する場合であっても、これらのコンタミネーション物質はプリコートにより覆い隠され、反応容器2内は清浄な状態となる。 こうしてプリコートを終えたら、再びウエハボート25にウエハWを棚状に保持して反応容器2内に搬入し、例えばモノシランガスによるSi膜の成膜を開始して膜種の切り替えを完了する(図3(b))。 When the purge of Ge is finished, supply of the purge gas is stopped, and the pressure and temperature in the reaction vessel 2 are adjusted to the conditions for forming the Si film while the wafer W is not placed on the wafer boat 25. As shown in 3 (a), monosilane gas is supplied into the reaction vessel 2, and the surface of the member in the reaction vessel 2 is precoated with a polysilicon film. Even after a small amount of metal remains on the surfaces of various members after F 2 cleaning or radical purging, these contaminants are covered by the precoat, and the reaction vessel 2 is clean. . When the pre-coating is thus completed, the wafer W is again held in the wafer boat 25 in a shelf shape and carried into the reaction vessel 2, and for example, the formation of a Si film with monosilane gas is started to complete the film type switching (FIG. 3). (B)).

以上、図2、図3を参照しながら説明したように成膜される膜種の切り替えは、SiGe膜の成膜→Fガスによるクリーニング→Hガス及びNOガスによるGeのパージ→ポリシリコン膜のプリコート→Si膜の成膜の順に各種の工程が実行される。ここでポリシリコン膜のプリコートは例えば450℃程度の温度にて行われるのに対し、SiGeはこのプリコート時の温度よりも低い例えば300℃〜400℃の温度にて形成する。 As described above with reference to FIGS. 2 and 3, the film type to be formed is switched by forming the SiGe film → cleaning with F 2 gas → purging Ge with H 2 gas and N 2 O gas → Various processes are performed in the order of pre-coating of the polysilicon film → deposition of the Si film. Here, the pre-coating of the polysilicon film is performed at a temperature of, for example, about 450 ° C., whereas SiGe is formed at a temperature of, for example, 300 ° C. to 400 ° C., which is lower than the temperature at the time of this pre-coating.

このため上述の一連の切り替え動作において、例えばFクリーニングを行った後に、Geのパージを行わずにポリシリコン膜のプリコートを行ってしまうと、背景技術にて説明したように反応容器2の炉口付近など、温度が低く、ポリシリコン膜が形成されにくい領域ではシリコンゲルマニウムを十分にマスクすることができないことから、当該部材表面に残っているGeにより、後段で成膜されるSi膜が汚染されてしまう。 For this reason, in the above-described series of switching operations, for example, after performing F 2 cleaning, if the polysilicon film is precoated without purging Ge, the furnace of the reaction vessel 2 as described in the background art. Since silicon germanium cannot be sufficiently masked in areas where the temperature is low and the polysilicon film is difficult to form, such as near the mouth, the Si film deposited at the later stage is contaminated by Ge remaining on the surface of the member. Will be.

また、Fガスによるクリーニングを行ってからGeのパージを行う順番についても、この順番を入れ替えて先にGeのパージを行うと、各部材の表面に堆積しているSiGe膜が例えば酸素ラジカルにより酸化されて、酸化膜が形成されてしまうためFガスではエッチングされずクリーニングができなくなってしまう。
以上に説明した観点から、縦型熱処理装置1での膜種切り替え時に、反応容器2内に残存しているGeを効果的に除去するためには、図2、図3に示した順番にFガスによるクリーニング、Geのパージ、ポリシリコン膜のプリコートを実行することが好ましいといえる。
In addition, regarding the order of purging Ge after cleaning with F 2 gas, if this order is changed and Ge is purged first, the SiGe film deposited on the surface of each member is caused by, for example, oxygen radicals. Since it is oxidized and an oxide film is formed, it is not etched with F 2 gas and cannot be cleaned.
From the viewpoint described above, in order to effectively remove Ge remaining in the reaction vessel 2 at the time of film type switching in the vertical heat treatment apparatus 1, F in the order shown in FIGS. It can be said that it is preferable to perform cleaning with two gases, purge of Ge, and pre-coating of a polysilicon film.

本実施の形態に係る縦型熱処理装置1の運転方法によれば以下の効果がある。ゲルマニウムを含む例えばSiGe膜の成膜をした後に、ハロゲンを含むクリーニングガス(例えばFガス)により前記SiGe膜を除去し、次いで酸化ガスである亜酸化窒素ガスと、水素ガスとを活性化し、この活性化されたガスにより反応容器2内に存在するGeを除去するようにしているので、その後に行われる例えばSi膜の成膜においてゲルマニウム汚染を抑えることができる。 The operation method of the vertical heat treatment apparatus 1 according to the present embodiment has the following effects. For example, after forming a SiGe film containing germanium, the SiGe film is removed by a cleaning gas containing halogen (for example, F 2 gas), and then nitrous oxide gas and hydrogen gas, which are oxidizing gases, are activated, Since the Ge present in the reaction vessel 2 is removed by the activated gas, germanium contamination can be suppressed in the subsequent film formation of, for example, a Si film.

ここでGeのパージの際にNOガスを用いている理由は、Si膜を成膜する縦型熱処理装置1においては、Si膜のグレインの粒径を小さくするアニール処理に用いる目的で当該ガスの供給ラインを予め設けている場合があるためであるが、Geのパージに利用可能な酸化ガスはこの例に限定されるものではない。例えば、Geをパージするための酸化ガスとして、NOやNOなど他の種類の窒素と酸素の化合物ガスや酸素ガス、オゾンガスなどを用いてもよい。 Here, the reason why the N 2 O gas is used for the purge of Ge is that the vertical heat treatment apparatus 1 for forming the Si film is used for an annealing process for reducing the grain size of the Si film. This is because a gas supply line may be provided in advance, but the oxidizing gas that can be used for the Ge purge is not limited to this example. For example, as an oxidizing gas for purging Ge, other types of nitrogen and oxygen compound gas such as NO and NO 2 , oxygen gas, ozone gas, and the like may be used.

上述の実施の形態中に示した縦型熱処理装置1において、ウエハボート25の上段側と下段側とに保持した石英基板の表面に約5μmのSiGeを成膜した後に、以下の各実施例、比較例に係る処置を実行し、各処置後の基板に残存する単位表面積当たりのGe原子数[個/cm]を計測した。各処置の実施条件は、図2、図3にて説明した条件と同様とした。またGeの原子数の計測にはICP−MS(Inductively Coupled Plasma Mass Spectrometer)を用いた。
A.実験条件
(比較例1)
SiGe成膜後の基板をフッ硝酸液中に数分間浸漬するウェット洗浄を行った。
(比較例2)
石英板表面に1μmの膜厚のポリシリコン膜を成膜するコーティングを行った。
(比較例3)
反応容器2内にFガスを供給し、ウエハボート25上に載置した石英基板に対するクリーニングを約1時間実施した。
(実施例1)
(比較例3)のFガスクリーニングを行った後の石英基板を再度反応容器2内に載置し、HガスとNOガスとを供給してGeのパージを5時間実施した。
In the vertical heat treatment apparatus 1 shown in the above-described embodiment, after depositing about 5 μm of SiGe on the surface of the quartz substrate held on the upper side and the lower side of the wafer boat 25, each of the following examples, The treatment according to the comparative example was performed, and the number of Ge atoms per unit surface area [number / cm 2 ] remaining on the substrate after each treatment was measured. The implementation conditions for each treatment were the same as the conditions described in FIGS. An ICP-MS (Inductively Coupled Plasma Mass Spectrometer) was used for measuring the number of Ge atoms.
A. Experimental conditions
(Comparative Example 1)
Wet cleaning was performed by immersing the SiGe film-formed substrate in a hydrofluoric acid solution for several minutes.
(Comparative Example 2)
Coating was performed to form a polysilicon film having a thickness of 1 μm on the surface of the quartz plate.
(Comparative Example 3)
F 2 gas was supplied into the reaction vessel 2 and the quartz substrate placed on the wafer boat 25 was cleaned for about 1 hour.
Example 1
The quartz substrate after the F 2 gas cleaning of (Comparative Example 3) was placed in the reaction vessel 2 again, H 2 gas and N 2 O gas were supplied, and Ge was purged for 5 hours.

B.実験結果
各実施例、比較例におけるGeの計測結果を図4に示す。図4の横軸に示したTの符号はウエハボート25の上段側に保持された基板の計測結果を示し、Bの符号はウエハボート25の下段側での結果を示している。
B. Experimental result
The measurement results of Ge in each example and comparative example are shown in FIG. 4 indicates a measurement result of the substrate held on the upper side of the wafer boat 25, and B indicates a result on the lower side of the wafer boat 25.

図4の結果によれば、(比較例1)のウェット洗浄では、ウエハボート25の上段側、下段側のいずれにおいても基板表面には1.0×1012[個/cm]以上のGe原子が残存しており、ウェット洗浄のみではGeを十分に除去できないことが分かる。また、洗浄槽内の洗浄液もGeにより汚染されてしまう。 According to the result of FIG. 4, in the wet cleaning of (Comparative Example 1), 1.0 × 10 12 [pieces / cm 2 ] or more of Ge is present on the substrate surface on both the upper side and the lower side of the wafer boat 25. It can be seen that atoms remain and Ge cannot be sufficiently removed only by wet cleaning. Moreover, the cleaning liquid in the cleaning tank is also contaminated by Ge.

また(比較例2)のポリシリコン膜によるコーティングを行った場合においても、ウエハボート25の上段側では3.0×1012[個/cm]以上、下段側では1.0×1011[個/cm]以上のGe原子が残存したままとなっている。このことから、Geが残存している状態にてプリコートを行ってもGe汚染を防止する効果は殆どないといえる。 Even in the case of coating with the polysilicon film of (Comparative Example 2), the upper side of the wafer boat 25 is 3.0 × 10 12 [pieces / cm 2 ] or more, and the lower side is 1.0 × 10 11 [ Ge atoms / cm 2 ] or more remain. From this, it can be said that even if pre-coating is performed in a state where Ge remains, there is almost no effect of preventing Ge contamination.

次に(比較例3)のFガスによるクリーニングでは、ウエハボート25の上段側、下段側いずれについても1.0×1011〜2.0×1011[個/cm]以上のGe原子が残存しており、この場合にもGeの十分な除去効果は見られない。 Next, in cleaning with F 2 gas in (Comparative Example 3), Ge atoms of 1.0 × 10 11 to 2.0 × 10 11 [pieces / cm 2 ] or more on both the upper side and the lower side of the wafer boat 25. In this case, the sufficient removal effect of Ge is not observed.

以上のように(比較例1)〜(比較例3)の各処置を行っても、基板表面のGeを除去する効果は見られなかったが、Fガスクリーニングを実施した後の石英基板に対して(実施例1)としてHガスとNOガスとを用いてパージを行うと、基板表面のGeは上段側、下段側共に3.0×10[個/cm]程度となって、ICP−MSの計測下限値近くまで除去され、Geの除去効果は劇的に改善されている。これらの実験結果から、反応容器内に残存するGeの除去にはHガスとNOガスとを用いたパージが有効であることを確認できた。 As described above, even if each of the treatments of (Comparative Example 1) to (Comparative Example 3) was performed, the effect of removing Ge on the substrate surface was not seen, but the quartz substrate after the F 2 gas cleaning was performed. On the other hand, when purging using H 2 gas and N 2 O gas as (Example 1), the Ge on the substrate surface is about 3.0 × 10 8 [pieces / cm 2 ] on both the upper and lower sides. Thus, it is removed to near the ICP-MS measurement lower limit, and the Ge removal effect is dramatically improved. From these experimental results, it was confirmed that purging using H 2 gas and N 2 O gas was effective in removing Ge remaining in the reaction vessel.

W ウエハ
1 縦型熱処理装置
2 反応容器
25 ウエハボート
3 加熱炉
31 ヒーター
4 排気口
51 第1のインジェクター
52 第2のインジェクター
53 第3のインジェクター
54 クリーニングガスインジェクター
611〜613
処理ガス供給管
62 モノシラン供給部
63 モノゲルマン供給部
71 クリーニングガス供給管
710 ガス混合部
72 水素供給部
73 酸化ガス供給部
74 クリーニングガス供給部
8 制御部
W Wafer 1 Vertical heat treatment apparatus 2 Reaction vessel 25 Wafer boat 3 Heating furnace 31 Heater 4 Exhaust port 51 First injector 52 Second injector 53 Third injector 54 Cleaning gas injectors 611 to 613
Process gas supply pipe 62 Monosilane supply part 63 Monogerman supply part 71 Cleaning gas supply pipe 710 Gas mixing part 72 Hydrogen supply part 73 Oxidation gas supply part 74 Cleaning gas supply part 8 Control part

Claims (2)

被処理体を保持具に保持させて、その周囲に加熱手段が設けられた反応容器内に搬入して熱処理を行う熱処理装置を運転する方法において、
前記反応容器内に被処理体を搬入して処理ガスを供給すると共に当該反応容器内を前記加熱手段により加熱して、被処理体にゲルマニウムを含む薄膜を成膜する工程と、
次いで反応容器内に被処理体が搬入されていない状態でハロゲンを含むクリーニングガスを当該反応容器内に供給して、前記工程にて前記反応容器内に成膜された薄膜を除去する工程と、
その後、酸素ガス、オゾンガス及び窒素と酸素との化合物ガスから選択される酸化ガスと、水素ガスとを前記反応容器内に供給すると共に当該反応容器内を加熱してこれらガスを活性化し、この活性化されたガスにより反応容器内に存在するゲルマニウムを除去する工程と、を含むことを特徴とする熱処理装置の運転方法。
In a method of operating a heat treatment apparatus for holding a target object in a holder and carrying it in a reaction vessel provided with a heating means around it to perform heat treatment,
A process of bringing a target object into the reaction container and supplying a processing gas and heating the inside of the reaction container with the heating means to form a thin film containing germanium on the target object;
Next, supplying a cleaning gas containing halogen in the reaction container in a state where the object to be processed is not carried into the reaction container, and removing the thin film formed in the reaction container in the process;
Thereafter, an oxidizing gas selected from oxygen gas, ozone gas and a compound gas of nitrogen and oxygen, and hydrogen gas are supplied into the reaction vessel, and the reaction vessel is heated to activate these gases. And a step of removing germanium present in the reaction vessel with the gas that has been converted into a gas.
前記ゲルマニウムを含む膜はシリコンゲルマニウム膜であることを特徴とする請求項1に記載の熱処理装置の運転方法。  The operation method of the heat treatment apparatus according to claim 1, wherein the film containing germanium is a silicon germanium film.
JP2012168445A 2012-07-30 2012-07-30 Operation method of heat treatment equipment Active JP5293866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168445A JP5293866B2 (en) 2012-07-30 2012-07-30 Operation method of heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168445A JP5293866B2 (en) 2012-07-30 2012-07-30 Operation method of heat treatment equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009036831A Division JP5067381B2 (en) 2009-02-19 2009-02-19 Operation method of heat treatment equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013117894A Division JP5549761B2 (en) 2013-06-04 2013-06-04 Cleaning method for heat treatment apparatus

Publications (2)

Publication Number Publication Date
JP2012238885A JP2012238885A (en) 2012-12-06
JP5293866B2 true JP5293866B2 (en) 2013-09-18

Family

ID=47461457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168445A Active JP5293866B2 (en) 2012-07-30 2012-07-30 Operation method of heat treatment equipment

Country Status (1)

Country Link
JP (1) JP5293866B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2833684B2 (en) * 1993-09-29 1998-12-09 セントラル硝子株式会社 Cleaning method for thin film forming apparatus
JP4258476B2 (en) * 1994-06-15 2009-04-30 セイコーエプソン株式会社 Method for manufacturing thin film semiconductor device
JP3164046B2 (en) * 1997-12-12 2001-05-08 日本電気株式会社 Furnace tube cleaning mechanism
JP2000323420A (en) * 1999-05-14 2000-11-24 Sony Corp Manufacture for semiconductor device
JP3660897B2 (en) * 2001-09-03 2005-06-15 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP4438850B2 (en) * 2006-10-19 2010-03-24 東京エレクトロン株式会社 Processing apparatus, cleaning method and storage medium
JP5554469B2 (en) * 2007-05-14 2014-07-23 東京エレクトロン株式会社 Thin film forming apparatus cleaning method, thin film forming method, and thin film forming apparatus
JP2008283148A (en) * 2007-05-14 2008-11-20 Tokyo Electron Ltd Cleaning method for thin film forming apparatus, thin film forming method, and thin film forming apparatus

Also Published As

Publication number Publication date
JP2012238885A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5067381B2 (en) Operation method of heat treatment equipment
TWI815898B (en) Etching method and etching device
JP5514129B2 (en) Film forming method, film forming apparatus, and method of using film forming apparatus
JP5202372B2 (en) Metal contamination reduction method for film forming apparatus, semiconductor device manufacturing method, storage medium, and film forming apparatus
CN101106075B (en) Film formation apparatus for semiconductor process and method for using the same
KR101233031B1 (en) Semiconductor device manufacturing method, and substrate processing method and apparatus
KR101300586B1 (en) Silicon film formation apparatus and method for using same
US20140199839A1 (en) Film-forming method for forming silicon oxide film on tungsten film or tungsten oxide film
JP6101113B2 (en) Semiconductor device manufacturing method, cleaning method, substrate processing apparatus, and program
TW201720541A (en) Manufacturing method of semiconductor device, substrate processing device and recording media comprising the substrate processing step, the processing chamber pressure increasing step, and the treatment indoor pressure reduction step
US12033852B2 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR20080001646A (en) Film formation apparatus and method of using the same
JP7154159B2 (en) Film forming method and film forming apparatus
JP6108518B2 (en) Semiconductor device manufacturing method, cleaning method, substrate processing apparatus, and program
JP2014146828A (en) Deposition method, deposition device and method of using deposition device
JP2009263764A (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP5549761B2 (en) Cleaning method for heat treatment apparatus
JP5293866B2 (en) Operation method of heat treatment equipment
KR102165710B1 (en) Method of cleaning, method of manufacturing semiconductor device, substrate processing apparatus, and program
JP2009124070A (en) Method of manufacturing semiconductor device, and substrate treatment apparatus
CN113355653B (en) Cleaning method, method for manufacturing semiconductor device, substrate processing apparatus, and storage medium
EP4117023A1 (en) Method of processing substrate, substrate processing apparatus, and recording medium
CN109891555B (en) Low temperature epitaxial layer forming method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250