JP3164046B2 - Furnace tube cleaning mechanism - Google Patents

Furnace tube cleaning mechanism

Info

Publication number
JP3164046B2
JP3164046B2 JP34236897A JP34236897A JP3164046B2 JP 3164046 B2 JP3164046 B2 JP 3164046B2 JP 34236897 A JP34236897 A JP 34236897A JP 34236897 A JP34236897 A JP 34236897A JP 3164046 B2 JP3164046 B2 JP 3164046B2
Authority
JP
Japan
Prior art keywords
core tube
furnace core
furnace
heat treatment
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34236897A
Other languages
Japanese (ja)
Other versions
JPH11176761A (en
Inventor
かおり 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34236897A priority Critical patent/JP3164046B2/en
Publication of JPH11176761A publication Critical patent/JPH11176761A/en
Application granted granted Critical
Publication of JP3164046B2 publication Critical patent/JP3164046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化、拡散、また
はアニールなどの加熱処理する熱処理炉で使われる炉芯
管の洗浄機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cleaning mechanism for a furnace core tube used in a heat treatment furnace for performing heat treatment such as oxidation, diffusion, or annealing.

【0002】[0002]

【従来の技術】通常、酸化、拡散、アニール工程などの
熱処理工程では半導体基板であるウェハなどから金属な
どの汚染物が飛散し炉芯管に付着する。このような状態
で次のウェハの熱処理を行うと、ウェハに汚染物が移り
飛び、半導体ウェハの欠陥や絶縁膜の耐圧低下などの不
良を引き起こしてしまう。
2. Description of the Related Art Generally, in heat treatment processes such as oxidation, diffusion, and annealing processes, contaminants such as metal are scattered from a semiconductor substrate wafer or the like and adhere to a furnace core tube. If heat treatment of the next wafer is performed in such a state, contaminants move to the wafer, causing defects such as a defect in the semiconductor wafer and a decrease in withstand voltage of the insulating film.

【0003】そこで、従来は、定期的に作業を中止して
炉芯管などの炉材を洗浄している。従来の洗浄方法は炉
芯管を熱処理炉から抜き取り、これをHF+HNO3
どの薬液で僅かにエッチングして除去するか、HC1な
どの薬液で洗浄して除去するかで内壁の汚染金属を洗浄
除去している。
Therefore, conventionally, the work is periodically stopped to clean the furnace material such as the furnace core tube. The conventional cleaning method removes the furnace core tube from the heat treatment furnace and removes it by slightly etching it with a chemical such as HF + HNO 3 or removing it by cleaning it with a chemical such as HC1. are doing.

【0004】しかし、この方法では洗浄の度に炉芯管な
どを外さなければならないためウェハ熱処理がその間中
断されて生産能力が低下し、さらに炉芯管などの炉材は
通常石英ガラス製なので取扱中に破損することもある。
[0004] However, in this method, the furnace core tube and the like must be removed each time cleaning is performed, so that the wafer heat treatment is interrupted during that time, and the production capacity is reduced. It may be damaged during operation.

【0005】また、炉芯管を取り外すことなく洗浄方法
として、塩酸やトリクロロエタンを高温状態で流して重
金属を除去する方法があるが、この方法であると、塩酸
を用いた場合には炉芯管前後の金属配管が腐食したり、
あるいは、トリクロロエタンを用いると炉芯管内にカー
ボンが残留するといった問題がある。
As a cleaning method without removing the furnace core tube, there is a method of removing heavy metals by flowing hydrochloric acid or trichloroethane in a high temperature state. In this method, when hydrochloric acid is used, the furnace core tube is removed. Corrosion of metal pipes before and after,
Alternatively, when trichloroethane is used, there is a problem that carbon remains in the furnace core tube.

【0006】これらの問題を解消する洗浄方法として、
特開平4−282828号公報に開示されている。この
洗浄方法は、汚染されている熱処理炉の炉芯管内にハロ
ゲン系のガスを供給しながら紫外線を照射させハロゲン
をラジカルにし、内壁に付着する重金属などがラジカル
化してガス化され除去している。
[0006] As a cleaning method for solving these problems,
It is disclosed in JP-A-4-282828. In this cleaning method, ultraviolet rays are radiated while supplying a halogen-based gas into a contaminated furnace core tube of a heat treatment furnace to turn halogens into radicals, and heavy metals and the like adhering to inner walls are radicalized and gasified and removed. .

【0007】[0007]

【発明が解決しようとする課題】上述した従来の洗浄方
法では、紫外線を照射させなければならず、どの程度の
時間紫外線を照射すれば良いか汚染金属の除去程度を認
識する手段がないので、紫外線ランプが無駄に消費する
電力が大きく運用コストが高くなるという問題がある。
また、設備にしても現用の設備に紫外線ランプと紫外線
ランプを点灯させる電源を必要とし設備コストも高くな
るし停止時間も予測できない。
In the above-described conventional cleaning method, ultraviolet rays must be irradiated, and there is no means for recognizing how long the ultraviolet rays should be irradiated and the degree of removal of the contaminated metal. There is a problem that the power consumed by the ultraviolet lamp wastefully is large and the operation cost is high.
In addition, the equipment requires an ultraviolet lamp and a power supply for turning on the ultraviolet lamp in the current equipment, so that the equipment cost increases and the stop time cannot be predicted.

【0008】炉芯管に金属が付着する内壁部分は処理ご
とに違うことはなく、使用するウェハ積載具であるボ−
トが同じである限り、金属が付着する部分はほぼ同じ部
分である。従って、ハロゲン系ガスとしてフッ素ガスを
使用すると、フッ素ラジカルが石英製の炉芯管の金属が
付着していない部分をエッチングし、何回かの過度の紫
外線照射により厚さが局部的に薄くなる。特にガス導入
口やガス排気口のネック部が薄くなると、僅かな機械的
な衝撃により破損する恐れがある。
[0008] The inner wall portion where the metal adheres to the furnace core tube does not differ for each processing, and the wafer loading tool used is a board.
As long as the distances are the same, the portion where the metal adheres is almost the same. Therefore, when fluorine gas is used as a halogen-based gas, fluorine radicals etch the metal-free portion of the furnace core tube made of quartz, and the thickness is locally reduced by several times of excessive ultraviolet irradiation. . In particular, when the neck portion of the gas introduction port or the gas exhaust port becomes thin, it may be damaged by a slight mechanical impact.

【0009】従って、本発明の目的は、加熱処理により
炉芯管内壁に付着する汚染金属を簡便で効果的に洗浄し
得るとともにコストが安価な炉芯管の洗浄機構を提供す
ることにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a furnace core tube cleaning mechanism which can easily and effectively clean contaminant metals adhering to the inner wall of the furnace core tube by heat treatment and which is inexpensive.

【0010】[0010]

【課題を解決するための手段】本発明の特徴は、熱処理
炉の炉芯管の内壁に付着する汚染金属をハロゲン化物に
変えるハロゲン系ガスを前記炉芯管に供給する手段と、
前記熱処理炉のヒータから露出する前記炉芯管の外部か
ら前記炉芯管のほぼ中央部の内壁に向けレーザ光を照射
する投光鏡筒と、前記内壁より反射光を入光し前記汚染
金属の膜厚を測定するエリプソメータとを備える炉芯管
の洗浄機構である。
Means for Solving the Problems] Features of the present invention, the heat treatment
Contaminated metal adhering to the inner wall of the furnace core tube is converted to halide
Means for supplying a halogen-based gas to be changed to the furnace core tube;
Outside the furnace core tube exposed from the heater of the heat treatment furnace
Irradiates a laser beam toward the inner wall at the substantially central part of the furnace core tube
And the reflected light from the inner wall and the contamination
Ru cleaning mechanism der furnace core tube and a ellipsometer for measuring the thickness of the metal.

【0011】[0011]

【0012】[0012]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0013】図1は本発明の一実施の形態における炉芯
管の洗浄機構を説明するためのフローチャートである。
まず、図1のステップAで、摂氏700度から950度
の温度範囲で加熱処理されているウェハの処理が完了し
たら、反応ガスの供給を停止し残存する反応ガスを排気
する。そして、窒素など導入し炉芯管内を大気にする。
次に、図1のステップBで、炉芯管のハッチ10を開
き、ウェハの複数枚を搭載したボートを炉芯管より引き
出す。このとき炉芯管内の温度は処理温度である摂氏7
00度から950度に保たれている。次に、ステップC
で、炉芯管の開口をハッチ10で閉じる。
FIG. 1 is a flow chart for explaining a cleaning mechanism of a furnace core tube according to an embodiment of the present invention.
First, in step A of FIG. 1, when the processing of the wafer that has been heated in the temperature range of 700 to 950 degrees Celsius is completed, the supply of the reaction gas is stopped and the remaining reaction gas is exhausted. And, we introduced the furnace core tube such as nitrogen to the atmosphere.
Next, in step B of FIG. 1, the hatch 10 of the furnace core tube is opened, and a boat on which a plurality of wafers are mounted is pulled out from the furnace core tube. At this time, the temperature in the furnace core tube is 7 degrees Celsius, which is the processing temperature.
It is kept between 00 and 950 degrees. Next, step C
Then, the opening of the furnace core tube is closed with a hatch 10.

【0014】そして、ステップDで、金属で汚染されて
いる炉芯管内に安全性を考慮したハロゲン系のガス、例
えば、F2,CH3F,COF2などのフッ素系ガスやN
OC1,C12,CC14などの塩素系ガスを導入し、ガ
スの供給および排気をしながら汚染金属をガスにより化
学反応させハロゲン化物にする。ハロゲン化合物は揮発
性があるので、排気装置の排気に伴って炉芯管外に排出
される。
In step D, a halogen-based gas such as a fluorine-based gas such as F 2 , CH 3 F, or COF 2 or N 2 is placed in the furnace core tube contaminated with the metal in consideration of safety.
OC1, C1 2, by introducing a chlorine-based gas such as CC1 4, to a halide by reaction of contaminant metals by gas while the supply and exhaust of the gas. Since the halogen compound is volatile, it is discharged outside the furnace core tube with the exhaust of the exhaust device.

【0015】このとき、ステップEにより、石英製の炉
芯管のヒ−タから露出する外部からレ−ザ光を炉芯管の
内壁に照射しその反射光を偏向解析し汚染金属の膜厚を
測定する。なお、この測定には市販のエリプソメ−タが
使用される。
At this time, in step E, the inner wall of the furnace core tube is irradiated with laser light from the outside exposed from the heater of the furnace core tube made of quartz, the reflected light is subjected to deflection analysis, and the film thickness of the contaminated metal is determined. Is measured. A commercially available ellipsometer is used for this measurement.

【0016】次に、ステップFにより、炉内の石英表面
に付着した金属汚染物があるために、エリプソメータの
ビーム光の反射率が変わり、汚染が除去できたか否かを
判定する。また、汚染金属を除去するときの温度が処理
時の温度と変わらないので、炉芯管のハッチやガス供給
管の繋ぎ目構造などが熱膨張による不具合が生じない。
Next, in step F, the reflectance of the ellipsometer beam light changes due to the presence of metal contaminants attached to the quartz surface in the furnace, and it is determined whether or not the contamination has been removed. Further, since the temperature at the time of removing the contaminated metal is not different from the temperature at the time of the treatment, the hatch of the furnace core tube and the joint structure of the gas supply tube do not cause any trouble due to thermal expansion.

【0017】図2は炉芯管内を洗浄する洗浄機構を説明
するために熱処理装置を示す断面図である。熱処理炉は
通常、縦型炉と横型炉があうが、図2では横型炉に洗浄
機構を適用した場合を示している。この洗浄機構は、図
2に示すように、内部が空でハッチ10で閉じられた炉
芯管1のガス導入口3に連結し開閉バルブ7を介して処
理ガスを供給する配管9aから開閉バルブ6と連結しハ
ロゲン系ガスを供給するガス供給管9と、ハロゲン系の
ガスによって炉芯管1に付着するハロゲン化された金属
膜にレ−ザ光を窓8aを透過させ照射する投光鏡筒5a
と金属膜から反射するレ−ザ光を窓8bを介して入光す
る入光鏡筒5bとを具備するエリプソメ−タと、ヒ−タ
2の加熱により揮発されるハロゲン化物をガス排出口4
から排気する排気装置(図示せず)とを備えているエリ
プソメ−タは、周知の測定器であるので説明を省略する
が、炉芯管1のヒ−タ2から露出する部分にある窓8a
から炉芯管1のほぼ中央の内壁に向け投光鏡筒5aから
レ−ザ光を斜めに投射し、その反射光をヒ−タ2から外
れた位置にある窓8bを透過させ入光鏡筒5bに入光さ
せる。そして、図示していない偏光解析器で入光された
反射光を偏光解析することで金属膜の膜厚を測定する。
FIG. 2 is a sectional view showing a heat treatment apparatus for explaining a cleaning mechanism for cleaning the inside of the furnace core tube. The heat treatment furnace generally includes a vertical furnace and a horizontal furnace, but FIG. 2 shows a case where a cleaning mechanism is applied to a horizontal furnace. As shown in FIG. 2, the cleaning mechanism is connected to a gas inlet 3 of a furnace core tube 1 whose interior is empty and closed by a hatch 10, and supplies a processing gas through an opening / closing valve 7 through a pipe 9 a. A gas supply pipe 9 connected to the gas supply tube 6 for supplying a halogen-based gas; and a floodlighting mirror for transmitting laser light through the window 8a to the halogenated metal film adhered to the furnace core tube 1 by the halogen-based gas. Tube 5a
An ellipsometer having a light entrance barrel 5b for entering laser light reflected from a metal film through a window 8b, and a gas outlet 4 for discharging a halide volatilized by heating the heater 2.
An ellipsometer provided with an exhaust device (not shown) for exhausting air from the furnace is a well-known measuring device, and therefore its description is omitted, but the window 8a in the portion of the furnace core tube 1 exposed from the heater 2 is omitted.
The laser beam is projected obliquely from the light projecting lens barrel 5a toward the substantially central inner wall of the furnace core tube 1, and the reflected light is transmitted through a window 8b located at a position deviated from the heater 2 so as to enter the light entrance mirror. The light enters the cylinder 5b. Then, the thickness of the metal film is measured by analyzing the polarization of the reflected light by a polarization analyzer (not shown).

【0018】図3は本発明の洗浄方法による除去効果を
示したグラフである。ここで、洗浄効果を確認するため
に、SiGeが成長されているウェハを熱処理したとき
の炉芯管へのGe汚染について調べてみた。そこで、G
e汚染されている状態で熱処理を行ったウェハ(洗浄
前)と本発明の洗浄方法を施した後で熱処理を行ったウ
ェハ(洗浄後)のそれぞれを取り出し、それぞれのウェ
ハ表面に付着しているGe量を測定してみた。
FIG. 3 is a graph showing the removal effect of the cleaning method of the present invention. Here, in order to confirm the cleaning effect, Ge contamination on the furnace core tube when the wafer on which SiGe was grown was heat-treated was examined. So G
e. A wafer that has been subjected to a heat treatment in a state of being contaminated (before cleaning) and a wafer that has been subjected to a heat treatment after performing the cleaning method of the present invention (after cleaning) are taken out and adhered to the respective wafer surfaces. The amount of Ge was measured.

【0019】その結果、図3に示すように、洗浄前では
1011atoms/cm2レベルにまで汚染されていた
炉内のGe汚染量が洗浄を行うことにより108ato
ms/cm2レベルにまで低減できている。なお、前述
の洗浄温度は摂氏900度で洗浄時間は40分であっ
た。このような洗浄方法は、特にハロゲン化物に形を変
えると揮発生になる性質を持つ金属の除去に向いてお
り、TaO5膜のTaやイオン注入後のBなどによる汚
染に十分対応できるという知見を得た。
As a result, as shown in FIG. 3, the amount of Ge contaminated in the furnace which had been contaminated to a level of 10 11 atoms / cm 2 before cleaning was reduced to 10 8 atoms / cm 2 by performing cleaning.
ms / cm 2 level. The washing temperature was 900 degrees Celsius and the washing time was 40 minutes. Such a cleaning method is particularly suitable for removing a metal having a property of being volatile when converted into a halide, and has a knowledge that it can sufficiently cope with contamination of TaO5 film by Ta or B after ion implantation. Obtained.

【0020】また、ハロゲン系ガス流入と同時に加熱す
る場合、その加熱温度はその熱処理炉が日頃使われてい
る温度、またはそれよりも若干高い温度で(最高摂氏9
50度まで)洗浄すれば、炉に不具合を起こさせること
なくより早く除去できる。次に処理する半導体ウェハへ
の入れ替えを早くできる。
When heating is performed simultaneously with the flow of the halogen-based gas, the heating temperature is a temperature at which the heat treatment furnace is used on a daily basis, or a temperature slightly higher than that (up to 9 degrees Celsius).
Cleaning (up to 50 degrees) allows faster removal without causing furnace failure. Replacement with a semiconductor wafer to be processed next can be performed quickly.

【0021】[0021]

【発明の効果】以上説明したように、本発明の洗浄方法
およびその機構は、ハロゲン系ガスを導入し、炉内の温
度を処理温度に維持させ炉内壁に付着する汚染金属をハ
ロゲン化物の状態に変え揮発させ排気除去することがで
きる。よって、従来のように炉芯管を取り出したり紫外
光の照射する必要がなくなり、洗浄で中断されていた時
間が大幅に短縮でき生産能力が向上すると言う効果があ
る。
As described above, the cleaning method and the mechanism of the present invention introduce the halogen-based gas, maintain the furnace temperature at the processing temperature, and remove the contaminant metal adhering to the furnace inner wall into the state of the halide. It can be volatilized and exhausted and removed. Therefore, there is no need to take out the furnace core tube or irradiate with ultraviolet light as in the conventional case, and there is an effect that the time interrupted by cleaning can be greatly reduced and the production capacity can be improved.

【0022】また、必要に応じて不具合が発生しない摂
氏900度まで上昇させ、より早く汚染金属が除去でき
る。さらに、ハロゲン系ガスや電力を無駄なく消費し、
適切な装置の停止時間で済み、運用コストの低減および
稼動率の向上が図れるという効果もある。
Further, if necessary, the temperature is raised to 900 degrees Celsius where no trouble occurs, so that the contaminated metal can be removed more quickly. Furthermore, it consumes halogen gas and electric power without waste,
There is also an effect that an appropriate stop time of the device is sufficient, and the operation cost can be reduced and the operation rate can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における炉芯管の洗浄
を説明するためのフローチャートである。
[1] washer furnace tube in an embodiment of the present invention
It is a flowchart for demonstrating a structure .

【図2】炉芯管内を洗浄する洗浄機構を説明するために
熱処理装置を示す断面図である。
FIG. 2 is a sectional view showing a heat treatment apparatus for explaining a cleaning mechanism for cleaning the inside of a furnace core tube.

【図3】本発明の洗浄方法による除去効果を示したグラ
フである。
FIG. 3 is a graph showing the removal effect of the cleaning method of the present invention.

【符号の説明】[Explanation of symbols]

1 炉芯管 2 ヒ−タ 3 ガス導入口 4 ガス排出口 5a 投光鏡筒 5b 入光鏡筒 6,7 開閉バルブ 8a,8b 窓 9 ガス供給管 9a 配管 10 ハッチ DESCRIPTION OF SYMBOLS 1 Furnace core tube 2 Heater 3 Gas inlet 4 Gas outlet 5a Projection lens barrel 5b Light entrance lens barrel 6,7 Opening / closing valve 8a, 8b Window 9 Gas supply pipe 9a Pipe 10 Hatch

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 H01L 21/22 - 21/24 H01L 21/31 H01L 21/365 H01L 21/38 - 21/40 H01L 21/469 H01L 21/86 ──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/205 H01L 21/22-21/24 H01L 21/31 H01L 21/365 H01L 21/38-21 / 40 H01L 21/469 H01L 21/86

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱処理炉の炉芯管の内壁に付着する汚染
金属をハロゲン化物に変えるハロゲン系ガスを前記炉芯
管に供給する手段と、前記熱処理炉のヒータから露出す
る前記炉芯管の外部から前記炉芯管のほぼ中央部の内壁
に向けレーザ光を照射する投光鏡筒と、前記内壁より反
射光を入光し前記汚染金属の膜厚を測定するエリプソメ
ータとを備えることを特徴とする炉芯管の洗浄機構
1. Contamination adhering to an inner wall of a furnace core tube of a heat treatment furnace.
Halogen-based gas that converts metal to halide
Means for supplying to the tube and exposed from the heater of the heat treatment furnace.
From the outside of the furnace core tube to an inner wall at a substantially central portion of the furnace core tube.
A projection lens barrel that irradiates the laser beam toward the
Ellipsometry for measuring the thickness of the contaminated metal by receiving light
And a cleaning mechanism for the furnace core tube.
JP34236897A 1997-12-12 1997-12-12 Furnace tube cleaning mechanism Expired - Fee Related JP3164046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34236897A JP3164046B2 (en) 1997-12-12 1997-12-12 Furnace tube cleaning mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34236897A JP3164046B2 (en) 1997-12-12 1997-12-12 Furnace tube cleaning mechanism

Publications (2)

Publication Number Publication Date
JPH11176761A JPH11176761A (en) 1999-07-02
JP3164046B2 true JP3164046B2 (en) 2001-05-08

Family

ID=18353195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34236897A Expired - Fee Related JP3164046B2 (en) 1997-12-12 1997-12-12 Furnace tube cleaning mechanism

Country Status (1)

Country Link
JP (1) JP3164046B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191931A (en) * 2013-03-26 2014-10-06 Panasonic Corp Lighting fixture
KR200491219Y1 (en) 2018-01-02 2020-05-15 주식회사 경신산업 Lamp

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067381B2 (en) * 2009-02-19 2012-11-07 東京エレクトロン株式会社 Operation method of heat treatment equipment
JP5293866B2 (en) * 2012-07-30 2013-09-18 東京エレクトロン株式会社 Operation method of heat treatment equipment
JP5549761B2 (en) * 2013-06-04 2014-07-16 東京エレクトロン株式会社 Cleaning method for heat treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191931A (en) * 2013-03-26 2014-10-06 Panasonic Corp Lighting fixture
KR200491219Y1 (en) 2018-01-02 2020-05-15 주식회사 경신산업 Lamp

Also Published As

Publication number Publication date
JPH11176761A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JP4440647B2 (en) Method and system for repairing defects
KR101010419B1 (en) Integrated method for removal of halogen residues from etched substrates by thermal process
JP6184713B2 (en) Particle measuring method and heat treatment apparatus
US20030045131A1 (en) Method and apparatus for processing a wafer
US20080296258A1 (en) Plenum reactor system
KR100832107B1 (en) Contamination analysis unit and method, and reticle cleaning facility and method using the unit
JP2005033187A (en) Processing method and processing system
JP3164046B2 (en) Furnace tube cleaning mechanism
JP2008199023A (en) Method for determining substrate position and, method and device for processing substrate
US10115572B2 (en) Methods for in-situ chamber clean in plasma etching processing chamber
US20030155077A1 (en) Substrate processing apparatus
JP2006128559A (en) Substrate processing system
JP2001507515A (en) Laser removal of foreign matter from the surface
JP4681291B2 (en) Charged particle beam apparatus and its contamination removal method
JP5199406B2 (en) Processing method and processing system
JP4546902B2 (en) Scanning electron microscope
US8148054B2 (en) Immersion multiple-exposure method and immersion exposure system for separately performing multiple exposure of micropatterns and non-micropatterns
TWI412897B (en) Method of controlling contamination of a surface
KR102227364B1 (en) A Cleaning Apparatus for Removing a Hume on a Wafer and a Cleaning Method Using the Same
JPH0249428A (en) Method and apparatus for forming thin film on surface of semiconductor substrate
Casper et al. Semiconductor Yield Enhancement through Particle Control
US20040099282A1 (en) System and a method for cleaning process chambers and vacuum lines
JP2006269849A (en) Substrate processing system and dark room for substrate processing
Barna et al. MMST manufacturing technology-hardware, sensors, and processes
JP2007157828A (en) Apparatus and method for removing circumferential edge film of substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

LAPS Cancellation because of no payment of annual fees