JP5289325B2 - Soundness evaluation method for secondary barrier of liquefied gas tank - Google Patents

Soundness evaluation method for secondary barrier of liquefied gas tank Download PDF

Info

Publication number
JP5289325B2
JP5289325B2 JP2009543957A JP2009543957A JP5289325B2 JP 5289325 B2 JP5289325 B2 JP 5289325B2 JP 2009543957 A JP2009543957 A JP 2009543957A JP 2009543957 A JP2009543957 A JP 2009543957A JP 5289325 B2 JP5289325 B2 JP 5289325B2
Authority
JP
Japan
Prior art keywords
pressure
space
barrier
equal
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009543957A
Other languages
Japanese (ja)
Other versions
JP2010514622A (en
Inventor
キム、センヒョク
ジョー、キーフン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Heavy Industries Co Ltd
Original Assignee
Samsung Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Heavy Industries Co Ltd filed Critical Samsung Heavy Industries Co Ltd
Publication of JP2010514622A publication Critical patent/JP2010514622A/en
Application granted granted Critical
Publication of JP5289325B2 publication Critical patent/JP5289325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/022Land-based bulk storage containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/24Measuring arrangements characterised by the use of fluids for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S251/00Valves and valve actuation

Description

本発明は、運用中の船舶の液化ガスタンクの二次防壁の健全性を評価できる、液化ガスタンクの二次防壁の健全性評価方法に関する。   The present invention relates to a method for evaluating the soundness of a secondary barrier of a liquefied gas tank, which can evaluate the soundness of a secondary barrier of a liquefied gas tank of a ship in operation.

クリーンな燃料として注目を集めている天然ガスを生産地から消費地まで輸送する方法として、気体状態の天然ガスをパイプラインを用いて輸送する方法や液体状態の天然ガスを船舶で輸送する方法が知られている。   As a method of transporting natural gas, which is attracting attention as a clean fuel, from the production area to the consumption area, there are a method of transporting natural gas in a gaseous state using a pipeline and a method of transporting natural gas in a liquid state by ship. Are known.

天然ガスをパイプラインを用いて輸送する方法の場合、長距離輸送をするために高圧ガスを取り扱わなければならず、パイプラインの継続的なメンテナンスや補修が必要である。また、パイプラインの設置は地政学的な問題の影響を大きく受ける。   In the case of transporting natural gas using a pipeline, high-pressure gas must be handled for long-distance transportation, and continuous maintenance and repair of the pipeline are necessary. Pipeline installation is also greatly affected by geopolitical issues.

近年、このような課題を克服するために、天然ガスを船舶を用いて輸送する方法が広く用いられている。特に、極低温物体の貯蔵技術や大型船舶の建造技術の発達により、液体状態の天然ガスを輸送可能な液化天然ガス輸送船の建造が容易になっている。従って、船舶を用いた天然ガスの輸送がますます増えている。   In recent years, in order to overcome such problems, a method of transporting natural gas using a ship has been widely used. In particular, construction of a liquefied natural gas transport ship capable of transporting natural gas in a liquid state has been facilitated by development of storage technology for cryogenic objects and construction technology for large ships. Therefore, the transportation of natural gas using ships is increasing more and more.

液化天然ガス輸送船に使用されているタンクは、メンブレンタンク方式と独立タンク方式とに大きく分類される。メンブレンタンク方式と独立タンク方式のうち、近年はメンブレンタンク方式がより広く用いられている。   Tanks used in liquefied natural gas transport ships are roughly classified into membrane tank systems and independent tank systems. Of the membrane tank system and the independent tank system, the membrane tank system has been more widely used in recent years.

メンブレンタンク方式、特に、MARK3方式の場合、タンクは厚さ1.2mmの波形ステンレス鋼で作られている。これにより、極低温の液化ガスを貯蔵する一次防壁が形成される。もし一次防壁に問題が生じた場合、液化天然ガスはタンクから漏出し、船体に損傷を与える。この損傷を防止するために、極低温の液化天然ガスを船体から所定の時間隔離する二次防壁が断熱空間に取り付けられる。   In the case of the membrane tank system, particularly the MARK 3 system, the tank is made of corrugated stainless steel having a thickness of 1.2 mm. Thereby, the primary barrier for storing the cryogenic liquefied gas is formed. If there is a problem with the primary barrier, liquefied natural gas will leak from the tank and damage the hull. In order to prevent this damage, a secondary barrier that isolates the cryogenic liquefied natural gas from the hull for a predetermined time is attached to the heat insulating space.

船舶が建造中である場合、二次防壁に対する健全性の評価は、二次防壁気密試験法により行われている。前記気密試験法は、第一の断熱空間を大気圧状態で維持し、第2の断熱空間の圧力を−530mbarまで減圧させた後、前記減圧した圧力が大気圧に戻るまでの時間を計測するものである。前記気密試験法は、二次防壁の多孔性により圧力の交換が行われるという事実を用いている。   When the ship is under construction, the integrity of the secondary barrier is evaluated by the secondary barrier hermetic test method. In the airtightness test method, the first heat insulating space is maintained at atmospheric pressure, the pressure in the second heat insulating space is reduced to −530 mbar, and then the time until the reduced pressure returns to atmospheric pressure is measured. Is. The hermetic test method uses the fact that pressure exchange takes place due to the porosity of the secondary barrier.

しかしながら、前記方法は建造中の船舶に対してのみ適用することができるものであって、即ち、前記方法は運用中の船舶に対して適用することができない。従って、運用中の船舶の液化ガスタンクの二次防壁の健全性を評価できる方法が必要とされている。   However, the method can only be applied to a ship under construction, i.e. the method cannot be applied to a ship in operation. Therefore, there is a need for a method that can evaluate the soundness of the secondary barrier of a liquefied gas tank of a ship in operation.

そこで、本発明は上記事情に鑑みてなされたものであって、その目的は、運用中の船舶の液化ガスタンクの二次防壁の健全性を評価できる、液化ガスタンクの二次防壁の健全性評価方法を提供することにある。   Therefore, the present invention has been made in view of the above circumstances, and its purpose is to evaluate the soundness of the secondary barrier of the liquefied gas tank of the ship in operation, and to evaluate the soundness of the secondary barrier of the liquefied gas tank Is to provide.

本発明の一態様によれば、(A)統合自動化システムを観察するステップと、(B)前記ステップ(A)における観察により異常が観察された場合、第1の差圧試験を行うステップと、(C)前記ステップ(B)における前記第1の差圧試験の結果として、断熱空間の圧力と防壁間空間の圧力とが互いに等しくない場合、或いは前記両圧力が互いに等しくなった後に圧力逆転現象が発生した場合、第2の差圧試験を行うステップとを含む液化ガスタンクの二次防壁の健全性評価方法が提供される。   According to one aspect of the present invention, (A) a step of observing the integrated automation system, and (B) a step of performing a first differential pressure test when an abnormality is observed by the observation in step (A), (C) As a result of the first differential pressure test in the step (B), when the pressure in the heat insulating space and the pressure in the space between the barrier walls are not equal to each other, or after both the pressures are equal to each other, the pressure reversal phenomenon When this occurs, a method for evaluating the soundness of the secondary barrier of the liquefied gas tank including the step of performing a second differential pressure test is provided.

好ましくは、前記評価方法は、(D)前記ステップ(C)における前記第2の差圧試験の結果として、前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しい場合、第3の差圧試験を行うステップを更に含む。   Preferably, in the evaluation method, (D) as a result of the second differential pressure test in the step (C), when the pressure in the heat insulation space and the pressure in the space between the barrier walls are equal to each other, the third difference The method further includes performing a pressure test.

好ましくは、前記第1の差圧試験は、(a-1)前記タンクが定常状態のとき、制御弁及び圧力トランスミッタを点検するステップと、(b-1)前記断熱空間用の安全弁の漏れが発生しているか否かを確認するステップと、(c-1)弁制御モードを自動モードから手動モードに切り換えるステップと、(d-1)前記断熱空間と前記防壁間空間との間に差圧を設定するステップと、(e-1)前記制御弁を閉鎖し、圧力の変化を観察し、工程変数を記録するステップと、(f-1)前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいか否かを判断するステップと、(g-1)前記ステップ(f-1)において前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいと判断された場合、前記両圧力が互いに等しくなった後に圧力逆転現象が発生するか否かを判断するステップとを含む。   Preferably, the first differential pressure test includes: (a-1) checking the control valve and the pressure transmitter when the tank is in a steady state; and (b-1) leakage of the safety valve for the heat insulation space. (C-1) a step of switching the valve control mode from the automatic mode to the manual mode, and (d-1) a differential pressure between the heat insulation space and the space between the barrier walls. (E-1) closing the control valve, observing changes in pressure and recording process variables; (f-1) pressure in the heat insulation space and pressure in the space between the barriers And (g-1) when it is determined in step (f-1) that the pressure in the heat insulation space and the pressure in the space between the barrier walls are equal to each other, Pressure reversal after pressures are equal to each other And a step of elephant determining whether occurring.

好ましくは、前記第1の差圧試験は更に、(h-1)前記ステップ(g-1)において前記圧力逆転現象が発生したと判断された場合、前記弁制御モードを前記手動モードから前記自動モードに切り換え、窒素加圧システムの漏れ部位を点検し、前記ステップ(c-1)に戻るステップを含む。   Preferably, the first differential pressure test further includes (h-1) when it is determined that the pressure reversal phenomenon has occurred in the step (g-1), the valve control mode is changed from the manual mode to the automatic mode. Switching to mode, checking for leak sites in the nitrogen pressurization system, and returning to step (c-1).

好ましくは、前記第2の差圧試験は、(a-2)前記タンクが定常状態のとき、制御弁及び圧力トランスミッタを点検するステップと、(b-2)前記断熱空間用の安全弁の漏れが発生しているか否かを確認するステップと、(c-2)弁制御モードを自動モードから手動モードに切り換えるステップと、(d-2)前記断熱空間と前記防壁間空間との間に差圧を設定するステップと、(e-2)前記制御弁を閉鎖し、前記制御弁の前後に配置された手動弁を閉鎖し、圧力の変化を観察し、工程変数を記録するステップと、(f-2)前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいか否かを判断するステップとを含む。   Preferably, the second differential pressure test includes: (a-2) checking the control valve and the pressure transmitter when the tank is in a steady state; and (b-2) leakage of the safety valve for the heat insulation space. (C-2) a step of switching the valve control mode from the automatic mode to the manual mode, and (d-2) a differential pressure between the heat insulation space and the space between the barrier walls. (E-2) closing the control valve, closing manual valves arranged before and after the control valve, observing pressure changes, and recording process variables; -2) determining whether the pressure in the heat insulation space and the pressure in the space between the barrier walls are equal to each other.

好ましくは、前記第2の差圧試験は更に、(g-2)前記ステップ(f-2)において前記両圧力が互いに等しくないと判断された場合、前記第1の差圧試験の試験結果と前記第2の差圧試験の試験結果とを比較するステップと、(h-2)前記ステップ(g-2)において前記両試験結果が互いに同一ではないと判断された場合、前記弁制御モードを前記手動モードから前記自動モードに切り換え、窒素加圧システムの漏れ部位を点検し、前記ステップ(c-2)に戻るステップとを含む。   Preferably, the second differential pressure test further includes: (g-2) if it is determined in step (f-2) that the two pressures are not equal to each other, the test result of the first differential pressure test Comparing the test result of the second differential pressure test, and (h-2) if it is determined in step (g-2) that the test results are not the same, the valve control mode is set to Switching from the manual mode to the automatic mode, inspecting for leak sites in the nitrogen pressurization system, and returning to the step (c-2).

好ましくは、前記第3の差圧試験は、(a-3)前記タンクが定常状態のとき、制御弁及び圧力トランスミッタを点検するステップと、(b-3)前記断熱空間用の安全弁の漏れが発生しているか否かを確認するステップと、(c-3)窒素加圧システムの一部にネームプレートを設置するステップと、(d-3)弁制御モードを自動モードから手動モードに切り換えるステップと、(e-3)前記断熱空間と前記防壁間空間との間に差圧を設定するステップと、(f-3)前記制御弁を閉鎖し、前記制御弁の前後に配置された手動弁を閉鎖し、圧力の変化を観察し、工程変数を記録するステップと、(g-3)前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいか否かを判断するステップとを含む。   Preferably, the third differential pressure test includes: (a-3) checking the control valve and the pressure transmitter when the tank is in a steady state; and (b-3) leakage of the safety valve for the insulated space. (C-3) a step of installing a name plate in a part of the nitrogen pressurization system, and (d-3) a step of switching the valve control mode from the automatic mode to the manual mode. And (e-3) a step of setting a differential pressure between the heat insulating space and the space between the barrier walls, and (f-3) a manual valve disposed before and after the control valve by closing the control valve. And observing the change in pressure and recording the process variable, and (g-3) determining whether the pressure in the heat insulation space and the pressure in the space between the barrier walls are equal to each other. .

好ましくは、前記第3の差圧試験は更に、(h-3)前記ステップ(g-3)において前記両圧力が互いに等しいと判断された場合、前記両圧力が互いに等しくなった後に圧力逆転現象が発生するか否かを判断するステップと、(i-3)前記ステップ(h-3)において前記圧力逆転現象が発生しないと判断された場合、前記断熱空間と前記防壁間空間とを等圧に設定するステップと、(j-3)前記制御弁を閉鎖し、前記制御弁の前後に配置された手動弁を閉鎖し、前記制御弁を開放して前記断熱空間から気体を排気し、圧力の変化を観察し、工程変数を記録するステップと、(k-3)前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいか否かを判断するステップと、(l-3)前記ステップ(k−3)において前記両圧力が互いに等しいと判断された場合、前記弁制御モードを前記手動モードから前記自動モードに切り換えるステップと、(m-3)前記窒素加圧システムの漏れ部位を点検し、前記ステップ(d-3)に戻るステップとを含む。   Preferably, the third differential pressure test further includes (h-3) a pressure reversal phenomenon after the pressures are equal to each other when the pressures are determined to be equal to each other in the step (g-3). And (i-3) when it is determined in step (h-3) that the pressure reversal phenomenon does not occur, the heat insulation space and the space between the barrier walls are isobaric. And (j-3) closing the control valve, closing manual valves disposed before and after the control valve, opening the control valve to exhaust gas from the heat insulating space, and (K-3) determining whether the pressure in the heat insulating space and the pressure in the inter-barrier space are equal to each other; (l-3) In step (k-3), the two pressures are equal to each other. If it is determined that the valve control mode is not correct, the step of switching the valve control mode from the manual mode to the automatic mode, (m-3) checking the leakage site of the nitrogen pressurization system, and returning to the step (d-3) Steps.

好ましくは、前記第3の差圧試験は更に、前記ステップ(h-3)において前記圧力逆転現象が発生したと判断された場合、前記ステップ(l-3)に進むステップを含む。   Preferably, the third differential pressure test further includes a step of proceeding to step (l-3) when it is determined in step (h-3) that the pressure reversal phenomenon has occurred.

好ましくは、前記第3の差圧試験は更に、前記ステップ(k-3)において前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しくないと判断された場合、二次防壁の気密試験を行うステップを含む。   Preferably, in the third differential pressure test, if it is determined in step (k-3) that the pressure in the heat insulation space and the pressure in the space between the barrier walls are not equal to each other, the airtight test for the secondary barrier wall The step of performing is included.

本発明によれば、運用中の船舶の液化ガスタンクの二次防壁の健全性を評価できる、液化ガスタンクの二次防壁の健全性評価方法を提供できるという効果を奏する。   Advantageous Effects of Invention According to the present invention, there is an effect that it is possible to provide a soundness evaluation method for a secondary barrier of a liquefied gas tank that can evaluate the soundness of a secondary barrier of a liquefied gas tank of a ship in operation.

本発明の一実施形態に係る二次防壁の健全性評価方法が適用された液化ガスタンクの概略ブロックダイヤグラムを示す図である。It is a figure which shows the general | schematic block diagram of the liquefied gas tank to which the soundness evaluation method of the secondary barrier which concerns on one Embodiment of this invention was applied. 図1の液化ガスタンクの二次防壁の健全性評価方法を示すフローチャートである。It is a flowchart which shows the soundness evaluation method of the secondary barrier of the liquefied gas tank of FIG. 本発明の一実施形態に係る第1の差圧試験過程を示すフローチャートである。It is a flowchart which shows the 1st differential pressure test process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1の差圧試験過程を示すフローチャートである。It is a flowchart which shows the 1st differential pressure test process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2の差圧試験過程を示すフローチャートである。It is a flowchart which shows the 2nd differential pressure test process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2の差圧試験過程を示すフローチャートである。It is a flowchart which shows the 2nd differential pressure test process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第3の差圧試験過程を示すフローチャートである。It is a flowchart which shows the 3rd differential pressure test process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第3の差圧試験過程を示すフローチャートである。It is a flowchart which shows the 3rd differential pressure test process which concerns on one Embodiment of this invention.

以下、添付する図面を参照して本発明の好適な実施形態を説明することで、本発明を詳細に説明する。各図面に示された同じ参照符号は同じ部材であることを意味する。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The same reference numerals shown in the drawings mean the same members.

図1は、本発明の一実施形態に係る二次防壁の健全性評価方法が適用された液化ガスタンクの概略ブロックダイヤグラムを示す。   FIG. 1 shows a schematic block diagram of a liquefied gas tank to which a secondary barrier soundness evaluation method according to an embodiment of the present invention is applied.

図1を参照すると、液化ガスタンク10は、一次防壁100と二次防壁200とを有する。一次防壁100及び二次防壁200により、防壁間空間IBSと断熱空間ISが形成される。防壁間空間IBS及び断熱空間ISは、窒素供給制御弁110、210を介して、防壁間空間IBS及び断熱空間ISに窒素を供給する窒素加圧システムと連結される。また、防壁間空間IBS及び断熱空間ISは、窒素排気制御弁120、220と連結されており、防壁間空間IBS及び断熱空間IS内の気体は窒素排気制御弁120、220を介して大気に排気される。このような構成により、防壁間空間IBS及び断熱空間ISの内圧が維持される。手動弁111、112、121、122、211、212、221、222は、制御弁110、120、210、220の前後に配置される。防壁間空間IBS及び断熱空間ISの内部には、防壁間空間IBS及び断熱空間ISの内圧を測定するための圧力トランスミッタ(PT)130、230が提供される。また、断熱空間ISには、断熱空間ISのための安全弁240が提供される。   Referring to FIG. 1, the liquefied gas tank 10 includes a primary barrier 100 and a secondary barrier 200. The primary barrier 100 and the secondary barrier 200 form an inter-barrier space IBS and a heat insulating space IS. The inter-barrier space IBS and the heat insulation space IS are connected to a nitrogen pressurization system that supplies nitrogen to the inter-barrier space IBS and the heat insulation space IS through the nitrogen supply control valves 110 and 210. The inter-barrier space IBS and the heat insulation space IS are connected to the nitrogen exhaust control valves 120 and 220, and the gas in the inter-barrier space IBS and the heat insulation space IS is exhausted to the atmosphere via the nitrogen exhaust control valves 120 and 220. Is done. With such a configuration, the internal pressure of the inter-barrier space IBS and the heat insulating space IS is maintained. The manual valves 111, 112, 121, 122, 211, 212, 221, 222 are arranged before and after the control valves 110, 120, 210, 220. Pressure transmitters (PT) 130 and 230 for measuring internal pressures of the inter-barrier space IBS and the heat insulation space IS are provided in the inter-barrier space IBS and the heat insulation space IS. The heat insulation space IS is provided with a safety valve 240 for the heat insulation space IS.

図2は、図1の液化ガスタンクの二次防壁の健全性評価方法を示すフローチャートである。   FIG. 2 is a flowchart showing a soundness evaluation method of the secondary barrier of the liquefied gas tank of FIG.

図2を参照すると、液化ガスタンク10の二次防壁200の健全性を評価するために、まず、統合自動化システムを観察する(S100)。前記観察を通じて異常が観察されたか否かを判断する(S110)。液化ガスタンク10が正常な状態にあると判断された場合、再びステップS100を行う。異常を観察したと判断された場合、第1の差圧試験を行う(S200)。第1の差圧試験では、断熱空間ISと防壁間空間IBSとの間に差圧を設定した後、圧力の変化を観察する。観察の結果、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しく、前記両圧力が互いに等しくなった後に圧力逆転現象が発生したと判断された場合、窒素加圧システムの漏れ部位を点検し、第1の差圧試験を繰り返し行う。観察の結果、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しくない、或いは前記両圧力が互いに等しくなった後に圧力逆転現象が発生しないと判断された場合、第2の差圧試験を行う(S400)。   Referring to FIG. 2, in order to evaluate the soundness of the secondary barrier 200 of the liquefied gas tank 10, first, an integrated automation system is observed (S100). It is determined whether an abnormality is observed through the observation (S110). When it is determined that the liquefied gas tank 10 is in a normal state, step S100 is performed again. If it is determined that an abnormality has been observed, a first differential pressure test is performed (S200). In the first differential pressure test, the pressure change is observed after setting the differential pressure between the heat insulating space IS and the inter-barrier space IBS. As a result of the observation, if it is determined that the pressure in the heat insulation space IS and the pressure in the inter-barrier space IBS are equal to each other and the pressure reversal phenomenon has occurred after the two pressures are equal to each other, Check and repeat the first differential pressure test. As a result of observation, if it is determined that the pressure in the heat insulation space IS and the pressure in the inter-barrier space IBS are not equal to each other, or that the pressure reversal phenomenon does not occur after the two pressures are equal to each other, the second differential pressure test (S400).

第2の差圧試験では、断熱空間ISと防壁間空間IBSとの間に差圧を設定した後、圧力の変化を観察する。観察の結果、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しくなく、第1の差圧試験の試験結果と第2の差圧試験の試験結果とが互いに同一であると判断された場合、二次防壁200の健全性を確認する。観察の結果、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しくなく、第1の差圧試験の試験結果と第2の差圧試験の試験結果とが互いに同一ではないと判断された場合、防壁内の窒素加圧システムの漏れ部位を点検し、第1の差圧試験を繰り返し行う。観察の結果、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しいと判断された場合、第3の差圧試験を行う(S600)。   In the second differential pressure test, a differential pressure is set between the heat insulation space IS and the inter-barrier space IBS, and then a change in pressure is observed. As a result of the observation, it is determined that the pressure in the heat insulation space IS and the pressure in the inter-barrier space IBS are not equal to each other, and the test result of the first differential pressure test and the test result of the second differential pressure test are the same. If so, the soundness of the secondary barrier 200 is confirmed. As a result of the observation, it is determined that the pressure in the heat insulation space IS and the pressure in the inter-barrier space IBS are not equal to each other, and the test result of the first differential pressure test and the test result of the second differential pressure test are not the same. If this happens, check the leakage site of the nitrogen pressurization system in the barrier and repeat the first differential pressure test. As a result of the observation, if it is determined that the pressure in the heat insulation space IS and the pressure in the inter-barrier space IBS are equal to each other, a third differential pressure test is performed (S600).

第3の差圧試験では、断熱空間ISと防壁間空間IBSとの間に差圧を設定した後、圧力の変化を観察する。観察の結果、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しくない場合、二次防壁200の健全性を確認する。観察の結果、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しく、前記両圧力が互いに等しくなった後に圧力逆転現象が発生したと判断された場合、窒素加圧システムの漏れ部位を点検し、差圧試験を繰り返し行う。観察の結果、前記両圧力が互いに等しくなった後に圧力逆転現象が発生しないと判断された場合、断熱空間ISと防壁間空間IBSとを等圧に設定した後、圧力の変化を観察する。等圧試験の結果、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しいと判断された場合、二次防壁の気密試験を行う。断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しくないと判断された場合、窒素加圧システムの漏れ部位を点検し、差圧試験を繰り返し行う。   In the third differential pressure test, the pressure change is observed after setting the differential pressure between the heat insulating space IS and the inter-barrier space IBS. As a result of the observation, if the pressure in the heat insulating space IS and the pressure in the inter-barrier space IBS are not equal to each other, the soundness of the secondary barrier 200 is confirmed. As a result of the observation, if it is determined that the pressure in the heat insulation space IS and the pressure in the inter-barrier space IBS are equal to each other and the pressure reversal phenomenon has occurred after the two pressures are equal to each other, Check and repeat the differential pressure test. As a result of observation, when it is determined that the pressure reversal phenomenon does not occur after the two pressures are equal to each other, the pressure change is observed after setting the heat insulating space IS and the inter-barrier space IBS to the same pressure. As a result of the isobaric test, when it is determined that the pressure in the heat insulating space IS and the pressure in the inter-barrier space IBS are equal to each other, an airtight test of the secondary barrier is performed. When it is determined that the pressure in the heat insulating space IS and the pressure in the inter-barrier space IBS are not equal to each other, the leakage site of the nitrogen pressurization system is checked, and the differential pressure test is repeated.

図3及び図4は、本発明の一実施形態に係る第1の差圧試験過程を示すフローチャートである。   3 and 4 are flowcharts showing a first differential pressure test process according to an embodiment of the present invention.

図3及び図4を参照すると、第1の差圧試験では、まず、タンク10が定常状態であるか否かを判断する(S201)。タンク10が定常状態ではないと判断された場合、タンク10が定常状態に達するまで待機する(S202)。タンク10が定常状態であると判断された場合、制御弁110、120、210、220及び圧力トランスミッタ130、230を点検する(S203)。次に、断熱空間IS用の安全弁240の漏れを確認し(S204)、弁制御モードを自動モードから手動モードに切り換える(S205)。次に、断熱空間ISと防壁間空間IBSとの間に差圧を設定し(S206)、制御弁110、120、210、220を閉鎖する(S207)。次に、圧力の変化を観察し、工程変数を記録する(S208)。次に、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しいか否かを判断する(S209)。ステップS209において両空間IS及びIBSの圧力が互いに等しいと判断された場合、前記両圧力が互いに等しくなった後に圧力逆転現象が発生するか否かを判断する(S210)。圧力逆転現象が発生しない場合、第2の差圧試験を行う(S211)。一方、ステップS209において両空間IS及びIBSの圧力が互いに等しくない場合、第2の差圧試験を行う(S211)。   Referring to FIGS. 3 and 4, in the first differential pressure test, it is first determined whether or not the tank 10 is in a steady state (S201). When it is determined that the tank 10 is not in a steady state, the process waits until the tank 10 reaches a steady state (S202). When it is determined that the tank 10 is in a steady state, the control valves 110, 120, 210, 220 and the pressure transmitters 130, 230 are inspected (S203). Next, leakage of the safety valve 240 for the heat insulation space IS is confirmed (S204), and the valve control mode is switched from the automatic mode to the manual mode (S205). Next, a differential pressure is set between the heat insulating space IS and the inter-barrier space IBS (S206), and the control valves 110, 120, 210, and 220 are closed (S207). Next, the change in pressure is observed, and the process variable is recorded (S208). Next, it is determined whether or not the pressure in the heat insulating space IS and the pressure in the inter-barrier space IBS are equal to each other (S209). If it is determined in step S209 that the pressures in both spaces IS and IBS are equal to each other, it is determined whether or not a pressure reversal phenomenon occurs after the two pressures are equal to each other (S210). When the pressure reversal phenomenon does not occur, the second differential pressure test is performed (S211). On the other hand, if the pressures in the spaces IS and IBS are not equal to each other in step S209, a second differential pressure test is performed (S211).

ステップS210において圧力逆転現象が発生したと判断された場合、弁制御モードを手動モードから自動モードに切り換える(S212)。次に、窒素加圧システムの漏れ部位を点検する(S213)。その後、試験過程はステップS205に進む。   When it is determined in step S210 that the pressure reversal phenomenon has occurred, the valve control mode is switched from the manual mode to the automatic mode (S212). Next, the leakage part of the nitrogen pressurization system is checked (S213). Thereafter, the test process proceeds to step S205.

図5及び図6は、本発明の一実施形態に係る第2の差圧試験過程を示すフローチャートである。   5 and 6 are flowcharts showing a second differential pressure test process according to an embodiment of the present invention.

図5及び図6を参照すると、第2の差圧試験では、まず、タンク10が定常状態であるか否かを判断する(S401)。タンク10が定常状態ではない場合、タンク10が定常状態に達するまで待機する(S402)。タンク10が定常状態である場合、制御弁110、120、210、220及び圧力トランスミッタ130、230を点検する(S403)。次に、断熱空間IS用の安全弁240の漏れを確認し(S404)、弁制御モードを自動モードから手動モードに切り換える(S405)。次に、断熱空間ISと防壁間空間IBSとの間に差圧を設定し(S406)、制御弁110、120、210、220を閉鎖する(S407)。次に、制御弁110、120、210、220の前後の手動弁111、112、121、122、211、212、221、222を閉鎖し(S408)、圧力の変化を観察し、工程変数を記録する(S409)。次に、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しいか否かを判断する(S410)。両空間IS及びIBSの圧力が互いに等しい場合、第3の差圧試験を行う(S411)。両空間IS及びIBSの圧力が互いに等しくない場合、第1の差圧試験の試験結果と第2の差圧試験の試験結果とが互いに同一であるか否かを判断する(S412)。第1及び第2の差圧試験の試験結果が互いに同一である場合、二次防壁200の健全性を確認する(S413)。そうでなければ、弁制御モードを手動モードから自動モードに切り換える(S414)。次に、窒素加圧システムの漏れ部位を点検する(S415)。その後、試験過程はステップS405に進む。   5 and 6, in the second differential pressure test, first, it is determined whether or not the tank 10 is in a steady state (S401). If the tank 10 is not in a steady state, the process waits until the tank 10 reaches a steady state (S402). When the tank 10 is in a steady state, the control valves 110, 120, 210, 220 and the pressure transmitters 130, 230 are inspected (S403). Next, leakage of the safety valve 240 for the heat insulation space IS is confirmed (S404), and the valve control mode is switched from the automatic mode to the manual mode (S405). Next, a differential pressure is set between the heat insulating space IS and the inter-barrier space IBS (S406), and the control valves 110, 120, 210, and 220 are closed (S407). Next, the manual valves 111, 112, 121, 122, 211, 212, 221, and 222 before and after the control valves 110, 120, 210, and 220 are closed (S408), the pressure change is observed, and the process variables are recorded. (S409). Next, it is determined whether or not the pressure in the heat insulating space IS and the pressure in the inter-barrier space IBS are equal to each other (S410). When the pressures of both spaces IS and IBS are equal to each other, a third differential pressure test is performed (S411). If the pressures in the two spaces IS and IBS are not equal to each other, it is determined whether or not the test result of the first differential pressure test and the test result of the second differential pressure test are the same (S412). When the test results of the first and second differential pressure tests are the same, the soundness of the secondary barrier 200 is confirmed (S413). Otherwise, the valve control mode is switched from the manual mode to the automatic mode (S414). Next, the leakage site of the nitrogen pressurization system is checked (S415). Thereafter, the test process proceeds to step S405.

図7及び図8は、本発明の一実施形態に係る第3の差圧試験過程を示すフローチャートである。   7 and 8 are flowcharts showing a third differential pressure test process according to an embodiment of the present invention.

図7及び図8を参照すると、第3の差圧試験では、まず、タンク10が定常状態であるか否かを判断する(S601)。タンク10が定常状態ではない場合、タンク10が定常状態に達するまで待機する(S602)。タンク10が定常状態である場合、制御弁110、120、210、220及び圧力トランスミッタ130、230を点検する(S603)。次に、断熱空間IS用の安全弁240の漏れを確認し(S604)、窒素加圧システムの一部にネームプレートを設置する(S605)。次に、弁制御モードを自動モードから手動モードに切り換え(S606)、断熱空間ISと防壁間空間IBSとの間に差圧を設定する(S607)。次に、制御弁110、120、210、220を閉鎖し(S608)、制御弁110、120、210、220の前後の手動弁111、112、121、122、211、212、221、222を閉鎖する(S609)。次に、圧力の変化を観察し、工程変数を記録する(S610)。次に、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しいか否かを判断する(S611)。両空間IS及びIBSの圧力が互いに等しくない場合、二次防壁200の健全性を確認する(S612)。両空間IS及びIBSの圧力が互いに等しい場合、圧力逆転現象が発生するか否かを判断する(S613)。圧力逆転現象が発生しない場合、断熱空間ISと防壁間空間IBSとを等圧に設定する(S614)。次に、制御弁110、120、210、220を閉鎖し(S615)、制御弁110、120、210、220の前後の手動弁111、112、121、122、211、212、221、222を閉鎖する(S616)。次に、断熱空間IS用の排気制御弁220のみ開放し(S617)、圧力の変化を観察し、工程変数を記録する(S618)。次に、断熱空間ISの圧力と防壁間空間IBSの圧力とが互いに等しいか否かを判断する(S619)。両空間IS及びIBSの圧力が互いに等しくない場合、二次防壁200の気密試験を行う(S620)。両空間IS及びIBSの圧力が互いに等しい場合、弁制御モードを手動モードから自動モードに切り換える(S621)。   7 and 8, in the third differential pressure test, first, it is determined whether or not the tank 10 is in a steady state (S601). If the tank 10 is not in a steady state, the process waits until the tank 10 reaches a steady state (S602). When the tank 10 is in a steady state, the control valves 110, 120, 210, 220 and the pressure transmitters 130, 230 are inspected (S603). Next, leakage of the safety valve 240 for the heat insulation space IS is confirmed (S604), and a name plate is installed in a part of the nitrogen pressurization system (S605). Next, the valve control mode is switched from the automatic mode to the manual mode (S606), and a differential pressure is set between the heat insulating space IS and the inter-barrier space IBS (S607). Next, the control valves 110, 120, 210, and 220 are closed (S608), and the manual valves 111, 112, 121, 122, 211, 212, 221, and 222 before and after the control valves 110, 120, 210, and 220 are closed. (S609). Next, the change in pressure is observed, and process variables are recorded (S610). Next, it is determined whether or not the pressure in the heat insulating space IS and the pressure in the inter-barrier space IBS are equal to each other (S611). When the pressures of the two spaces IS and IBS are not equal to each other, the soundness of the secondary barrier 200 is confirmed (S612). If the pressures in both spaces IS and IBS are equal to each other, it is determined whether or not a pressure reversal phenomenon occurs (S613). When the pressure reversal phenomenon does not occur, the heat insulating space IS and the inter-barrier space IBS are set to the same pressure (S614). Next, the control valves 110, 120, 210, and 220 are closed (S615), and the manual valves 111, 112, 121, 122, 211, 212, 221, and 222 before and after the control valves 110, 120, 210, and 220 are closed. (S616). Next, only the exhaust control valve 220 for the heat insulation space IS is opened (S617), the change in pressure is observed, and the process variable is recorded (S618). Next, it is determined whether or not the pressure in the heat insulating space IS and the pressure in the inter-barrier space IBS are equal to each other (S619). If the pressures of the two spaces IS and IBS are not equal to each other, an airtight test of the secondary barrier 200 is performed (S620). If the pressures in both spaces IS and IBS are equal to each other, the valve control mode is switched from the manual mode to the automatic mode (S621).

一方、ステップS613において圧力逆転現象が発生したと判断された場合、試験過程はステップS621に進み、弁制御モードを手動モードから自動モードに切り換える。ステップS621の後、窒素加圧システムの漏れ部位を点検する(S622)。   On the other hand, if it is determined in step S613 that the pressure reversal phenomenon has occurred, the test process proceeds to step S621, and the valve control mode is switched from the manual mode to the automatic mode. After step S621, the leakage site of the nitrogen pressurization system is checked (S622).

本発明に係る液化ガスタンク10の二次防壁200の健全性評価方法では、当業者の要求次第で、1つのステップ(例えば、窒素加圧システムの漏れ部位を点検するステップなど)又は全ステップを繰り返し行えることはいうまでもない。   In the soundness evaluation method for the secondary barrier 200 of the liquefied gas tank 10 according to the present invention, one step (for example, a step for checking a leakage site of the nitrogen pressurization system, etc.) or all steps are repeated depending on the request of a person skilled in the art. It goes without saying that it can be done.

本発明は図面に示された一実施形態を参照して説明されたが、これは例示的なものに過ぎず、当該技術分野において通常の知識を有する者であれば、特許請求の範囲に定義される本発明の範囲を逸脱することなく多様な変形及び変更が可能であることが理解できるであろう。   Although the present invention has been described with reference to an embodiment shown in the drawings, this is by way of example only, and one having ordinary skill in the art is defined in the claims. It will be understood that various modifications and changes can be made without departing from the scope of the invention as set forth.

Claims (7)

液化ガスタンクの二次防壁の健全性評価方法であって、
前記液化ガスタンクは、外壁と、前記二次防壁と、前記二次防壁の内部に配置され、その内部に液化ガスを収容する一次防壁とを有し、前記外壁と前記二次防壁との間に断熱空間が形成され、前記二次防壁と前記一次防壁との間に防壁間空間が形成され、
前記方法は、
(A)前記液化ガスタンクの二次防壁の健全性に関する情報を表示する統合自動化システムを観察するステップと、
(B)前記ステップ(A)における観察により異常が観察された場合、第1の差圧試験を行うステップと、
(C)前記ステップ(B)における前記第1の差圧試験の結果として、前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しくない場合、或いは前記両圧力が互いに等しくなった後に圧力逆転現象が発生しないと判断された場合、第2の差圧試験を行うステップとを含み、
前記第1の差圧試験は、
(a-1)前記タンクが定常状態のとき、制御弁及び圧力トランスミッタを点検するステップと、
(b-1)前記断熱空間用の安全弁の漏れが発生しているか否かを確認するステップと、
(c-1)弁制御モードを自動モードから手動モードに切り換えるステップと、
(d-1)前記断熱空間と前記防壁間空間との間に差圧を設定するステップと、
(e-1)前記制御弁を閉鎖し、圧力の変化を観察し、該圧力の変化を記録するステップと、
(f-1)前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいか否かを判断するステップと、
(g-1)前記ステップ(f-1)において前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいと判断された場合、前記両圧力が互いに等しくなった後に圧力逆転現象が発生するか否かを判断するステップとを含み、
前記第2の差圧試験は、
(a-2)前記タンクが定常状態のとき、制御弁及び圧力トランスミッタを点検するステップと、
(b-2)前記断熱空間用の安全弁の漏れが発生しているか否かを確認するステップと、
(c-2)弁制御モードを自動モードから手動モードに切り換えるステップと、
(d-2)前記断熱空間と前記防壁間空間との間に差圧を設定するステップと、
(e-2)前記制御弁を閉鎖し、前記制御弁の前後に配置された手動弁を閉鎖し、圧力の変化を観察し、該圧力の変化を記録するステップと、
(f-2)前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいか否かを判断するステップとを含むことを特徴とする評価方法。
A method for evaluating the soundness of a secondary barrier of a liquefied gas tank,
The liquefied gas tank has an outer wall, the secondary barrier, and a primary barrier that is disposed inside the secondary barrier and accommodates liquefied gas therein, and is disposed between the outer wall and the secondary barrier. An insulation space is formed, and an inter-barrier space is formed between the secondary barrier and the primary barrier,
The method
(A) observing an integrated automation system that displays information about the health of the secondary barrier of the liquefied gas tank;
(B) when an abnormality is observed by the observation in step (A), performing a first differential pressure test;
(C) As a result of the first differential pressure test in the step (B), when the pressure in the heat insulation space and the pressure in the space between the barrier walls are not equal to each other, or after the both pressures are equal to each other, Performing a second differential pressure test when it is determined that the reverse phenomenon does not occur,
The first differential pressure test includes
(A-1) checking the control valve and the pressure transmitter when the tank is in a steady state;
(B-1) a step of confirming whether or not a leakage of the safety valve for the heat insulation space has occurred;
(C-1) switching the valve control mode from the automatic mode to the manual mode;
(D-1) setting a differential pressure between the heat insulating space and the space between the barriers;
(E-1) closing the control valve, observing a change in pressure, and recording the change in pressure;
(F-1) determining whether the pressure in the heat insulating space and the pressure in the inter-barrier space are equal to each other;
(G-1) When it is determined in step (f-1) that the pressure in the heat insulation space and the pressure in the space between the barrier walls are equal to each other, a pressure reversal phenomenon occurs after the two pressures are equal to each other. Determining whether or not
The second differential pressure test is
(A-2) checking the control valve and the pressure transmitter when the tank is in a steady state;
(B-2) a step of confirming whether a leakage of the safety valve for the heat insulation space has occurred;
(C-2) switching the valve control mode from the automatic mode to the manual mode;
(D-2) setting a differential pressure between the heat insulating space and the inter-barrier space;
(E-2) closing the control valve, closing manual valves arranged before and after the control valve, observing a change in pressure, and recording the change in pressure;
(F-2) The evaluation method characterized by including the step of determining whether the pressure of the said heat insulation space and the pressure of the said space between barrier walls are mutually equal.
(D)前記ステップ(C)における前記第2の差圧試験の前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいか否かを判断するステップの結果として、前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しい場合、第3の差圧試験を行うステップを更に含み、
前記第3の差圧試験は、
(a-3)前記タンクが定常状態のとき、制御弁及び圧力トランスミッタを点検するステップと、
(b-3)前記断熱空間用の安全弁の漏れが発生しているか否かを確認するステップと、
(c-3)窒素加圧システムの一部にネームプレートを設置するステップと、
(d-3)弁制御モードを自動モードから手動モードに切り換えるステップと、
(e-3)前記断熱空間と前記防壁間空間との間に差圧を設定するステップと、
(f-3)前記制御弁を閉鎖し、前記制御弁の前後に配置された手動弁を閉鎖し、圧力の変化を観察し、該圧力の変化を記録するステップと、
(g-3)前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいか否かを判断するステップとを含むことを特徴とする請求項1に記載の評価方法。
(D) As a result of the step of determining whether or not the pressure in the heat insulation space and the pressure in the inter-barrier space in the second differential pressure test in the step (C) are equal to each other, A step of performing a third differential pressure test when the pressure between the barrier walls is equal to each other;
The third differential pressure test is:
(A-3) checking the control valve and the pressure transmitter when the tank is in a steady state;
(B-3) a step of confirming whether a leakage of the safety valve for the heat insulation space has occurred;
(C-3) installing a nameplate in a part of the nitrogen pressurization system;
(D-3) switching the valve control mode from the automatic mode to the manual mode;
(E-3) setting a differential pressure between the heat insulating space and the space between the barriers;
(F-3) closing the control valve, closing manual valves arranged before and after the control valve, observing a change in pressure, and recording the change in pressure;
(G-3) The evaluation method of Claim 1 including the step which judges whether the pressure of the said heat insulation space and the pressure of the said inter-barrier space are mutually equal.
前記第1の差圧試験は、
(h-1)前記ステップ(g-1)において前記圧力逆転現象が発生したと判断された場合、前記弁制御モードを前記手動モードから前記自動モードに切り換え、窒素加圧システムの漏れ部位を点検し、前記ステップ(c-1)に戻るステップを更に含むことを特徴とする請求項1に記載の評価方法。
The first differential pressure test includes
(H-1) If it is determined in step (g-1) that the pressure reversal phenomenon has occurred, the valve control mode is switched from the manual mode to the automatic mode, and the leakage part of the nitrogen pressurization system is checked. The evaluation method according to claim 1, further comprising a step of returning to step (c-1).
前記第2の差圧試験は、
(g-2)前記ステップ(f-2)において前記両圧力が互いに等しくないと判断された場合、前記第1の差圧試験の試験結果と前記第2の差圧試験の試験結果とを比較するステップと、
(h-2)前記ステップ(g-2)において前記両試験結果が互いに同一ではないと判断された場合、前記弁制御モードを前記手動モードから前記自動モードに切り換え、窒素加圧システムの漏れ部位を点検し、前記ステップ(c-2)に戻るステップとを更に含むことを特徴とする請求項1に記載の評価方法。
The second differential pressure test is
(G-2) When it is determined in step (f-2) that the two pressures are not equal to each other, the test result of the first differential pressure test is compared with the test result of the second differential pressure test. And steps to
(H-2) When it is determined in step (g-2) that the two test results are not the same, the valve control mode is switched from the manual mode to the automatic mode, The evaluation method according to claim 1, further comprising the step of inspecting and returning to step (c-2).
前記第3の差圧試験は、
(h-3)前記ステップ(g-3)において前記両圧力が互いに等しいと判断された場合、前記両圧力が互いに等しくなった後に圧力逆転現象が発生するか否かを判断するステップと、
(i-3)前記ステップ(h-3)において前記圧力逆転現象が発生しないと判断された場合、前記断熱空間と前記防壁間空間とを等圧に設定するステップと、
(j-3)前記制御弁を閉鎖し、前記制御弁の前後に配置された手動弁を閉鎖し、前記制御弁を開放して前記断熱空間から気体を排気し、圧力の変化を観察し、該圧力の変化を記録するステップと、
(k-3)前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しいか否かを判断するステップと、
(l-3)前記ステップ(k−3)において両圧力が互いに等しいと判断された場合、前記弁制御モードを前記手動モードから前記自動モードに切り換えるステップと、
(m-3)前記窒素加圧システムの漏れ部位を点検し、前記ステップ(d-3)に戻るステップとを更に含むことを特徴とする請求項2に記載の評価方法。
The third differential pressure test is:
(H-3) If it is determined in step (g-3) that the two pressures are equal to each other, determining whether a pressure reversal phenomenon occurs after the two pressures are equal to each other;
(I-3) when it is determined that the pressure reversal phenomenon does not occur in the step (h-3), the step of setting the heat insulating space and the space between the barrier walls to equal pressure;
(J-3) closing the control valve, closing the manual valve arranged before and after the control valve, opening the control valve to exhaust gas from the heat insulating space, and observing a change in pressure; Recording the change in pressure ;
(K-3) determining whether the pressure in the heat insulating space and the pressure in the inter-barrier space are equal to each other;
(L-3) when it is determined in step (k-3) that both pressures are equal to each other, the step of switching the valve control mode from the manual mode to the automatic mode;
The evaluation method according to claim 2, further comprising: (m-3) checking a leakage site of the nitrogen pressurization system and returning to the step (d-3).
前記第3の差圧試験は、
前記ステップ(h-3)において前記圧力逆転現象が発生したと判断された場合、前記ステップ(l-3)に進むステップを更に含むことを特徴とする請求項5に記載の評価方法。
The third differential pressure test is:
6. The evaluation method according to claim 5, further comprising a step of proceeding to step (l-3) when it is determined in step (h-3) that the pressure reversal phenomenon has occurred.
前記第3の差圧試験は、
前記ステップ(k-3)において前記断熱空間の圧力と前記防壁間空間の圧力とが互いに等しくないと判断された場合、二次防壁の気密試験を行うステップを更に含むことを特徴とする請求項6に記載の評価方法。
The third differential pressure test is:
The method further comprises a step of performing an airtight test on a secondary barrier when it is determined in step (k-3) that the pressure in the heat insulation space and the pressure in the space between the barrier walls are not equal to each other. 6. The evaluation method according to 6.
JP2009543957A 2006-12-29 2007-12-28 Soundness evaluation method for secondary barrier of liquefied gas tank Active JP5289325B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0137715 2006-12-29
KR1020060137715A KR100870875B1 (en) 2006-12-29 2006-12-29 Test method for soundness of secondary barrier in the liquefied gas tank
PCT/KR2007/006963 WO2008082199A1 (en) 2006-12-29 2007-12-28 Test method for soundness of secondary barrier in liquefied gas tank

Publications (2)

Publication Number Publication Date
JP2010514622A JP2010514622A (en) 2010-05-06
JP5289325B2 true JP5289325B2 (en) 2013-09-11

Family

ID=39588787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009543957A Active JP5289325B2 (en) 2006-12-29 2007-12-28 Soundness evaluation method for secondary barrier of liquefied gas tank

Country Status (6)

Country Link
JP (1) JP5289325B2 (en)
KR (1) KR100870875B1 (en)
CN (1) CN101568818B (en)
ES (1) ES2374805B1 (en)
MY (1) MY159535A (en)
WO (1) WO2008082199A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101019043B1 (en) * 2008-11-17 2011-03-07 삼성중공업 주식회사 Method for airtight test of cargo tank
DE102015203552A1 (en) * 2015-02-27 2016-09-01 Robert Bosch Gmbh Arrangement and method for checking the tightness of a container
JP7303945B2 (en) 2019-11-14 2023-07-05 サムスン ヘビー インダストリーズ カンパニー リミテッド LNG cargo hold test method and offshore structure applying it and liquefied nitrogen supply system for offshore structure

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413840A (en) * 1966-04-19 1968-12-03 Mcmullen John J Leak detection system
FR2317649A1 (en) * 1975-07-10 1977-02-04 Technigaz Leak detection system for space between two walls - monitors controlled flow of nitrogen and argon mixture around space
US4404843A (en) * 1981-07-20 1983-09-20 Marathon Oil Company Cryogenic storage tank leak detection system
JPS60219534A (en) 1984-04-16 1985-11-02 Kawasaki Heavy Ind Ltd Gas leakage detection apparatus of double shell low temperature tank
JPS60244832A (en) 1984-05-21 1985-12-04 Mitsubishi Heavy Ind Ltd Testing method of leak in tank barrier
DE3750043D1 (en) * 1987-10-28 1994-07-14 Martin Lehmann Method and use of an arrangement for testing at least one hollow body for its volume behavior.
JPH0440334A (en) * 1990-06-05 1992-02-10 Nkk Corp Defect detecting method for lng tank
CN2187787Y (en) * 1994-03-31 1995-01-18 刘兴汉 Sealing property check machine for steel pot of liquefied petroleum gas
KR100257672B1 (en) * 1995-05-19 2000-06-01 모리시타 요이찌 Gas safety management system
US6360595B1 (en) * 2001-03-16 2002-03-26 Ethicon Endo-Surgery, Inc. Liquid measuring device and method of using
JP2005257340A (en) * 2004-03-09 2005-09-22 Toyota Motor Corp Gas leak detection device for high-pressure tank system
JP2005264885A (en) * 2004-03-22 2005-09-29 Chuo Motor Wheel Co Ltd Liquefied gas fuel reservoir device
JP2005351197A (en) * 2004-06-11 2005-12-22 Aisan Ind Co Ltd Device for supplying liquefied gas fuel

Also Published As

Publication number Publication date
ES2374805B1 (en) 2012-10-29
MY159535A (en) 2017-01-13
ES2374805A1 (en) 2012-02-22
WO2008082199A1 (en) 2008-07-10
CN101568818A (en) 2009-10-28
KR100870875B1 (en) 2008-11-28
JP2010514622A (en) 2010-05-06
KR20080062218A (en) 2008-07-03
CN101568818B (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP5289325B2 (en) Soundness evaluation method for secondary barrier of liquefied gas tank
KR101387880B1 (en) Method for Measuring the Actual Porosity of the Sealing Barrier in a Tank for the Containment of a Fluid
KR20100102886A (en) Tightness testing method for lng cargo tank of gtt no96 membrane type
KR20080056570A (en) Leakage testing system for cryogenic valve
JP2008309698A (en) Airtightness inspection device, airtightness inspection method and method for manufacturing airtight product
US20220034453A1 (en) Method for checking the leakproofness of a leakproof and thermally insulating tank for storing a fluid
KR20090085458A (en) Parts tester for an extremely low temperature
KR100760828B1 (en) Leak detection apparatus
JP4512827B2 (en) Leakage inspection method and apparatus
KR101471152B1 (en) Performance Test Device And Method For Cryogenic Liquefied Gas Storage Tank
CN113227638B (en) Method for detecting leakage of sealed thermally insulated tank
KR101588685B1 (en) Apparatus and method for leak detection of liquified gas
KR101017488B1 (en) Method of leak detection for lngc cargo tank using infrared rays camera
KR20100088437A (en) Method of leak detection for lngc cargo tank using infrared rays camera
JP2020144064A (en) Leakage inspection method and leakage inspection device of battery pack
CN108072499A (en) A kind of bilayer air-conditioner pipe air tightness detection system and method
JP3790533B2 (en) Multipath workpiece leak inspection system
KR101551789B1 (en) Apparatus for determining leakage location in an independence type storage tank
KR100633486B1 (en) Evaluation system for gas drop test and leakage test and method thereof
CN113390920B (en) Method for testing performance of heat-insulating material
JP2014084957A (en) Inspection method of high-pressure gas tank
KR100784897B1 (en) Method for leak testing of lng cargo tank
KR102163016B1 (en) Gas tight confirmation device of storage tank and Gas tight confirmation method using it
CN117869773A (en) LNG film type storage tank body air pressure monitoring system and method
CN115127738A (en) Liquid hydrogen valve leakage detection device and method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120131

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120229

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5289325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250